
HAL Id: hal-01426415
https://hal.science/hal-01426415v2

Submitted on 4 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An iterated ”hyperplane exploration” approach for the
quadratic knapsack problem

Yuning Chen, Jin-Kao Hao

To cite this version:
Yuning Chen, Jin-Kao Hao. An iterated ”hyperplane exploration” approach for the quadratic knapsack
problem. Computers and Operations Research, 2017, 77, pp.226-239. �10.1016/j.cor.2016.08.006�.
�hal-01426415v2�

https://hal.science/hal-01426415v2
https://hal.archives-ouvertes.fr

An iterated “hyperplane exploration”

approach for the Quadratic Knapsack

Problem

Yuning Chen a and Jin-Kao Hao a,b,∗

aLERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers, France
bInstitut Universitaire de France, Paris, France

Computers & Operations Research 77: 226-239, 2017

Abstract

The quadratic knapsack problem (QKP) is a well-known combinatorial optimization
problem with numerous applications. Given its NP-hard nature, finding optimal so-
lutions or even high quality suboptimal solutions to QKP in the general case is a
highly challenging task. In this paper, we propose an iterated “hyperplane explo-
ration” approach (IHEA) to solve QKP approximately. Instead of considering the
whole solution space, the proposed approach adopts the idea of searching over a set
of hyperplanes defined by a cardinality constraint to delimit the search to promising
areas of the solution space. To explore these hyperplanes efficiently, IHEA employs
a variable fixing strategy to reduce each hyperplane-constrained sub-problem and
then applies a dedicated tabu search procedure to locate high quality solutions
within the reduced solution space. Extensive experimental studies over three sets
of 220 QKP instances indicate that IHEA competes very favorably with the state-
of-the-art algorithms both in terms of solution quality and computing efficiency.
We provide additional information to gain insight into the key components of the
proposed approach.
Keywords: Quadratic Knapsack problem; Hyperplane exploration; Tabu search;

Variable fixing; Heuristics.

∗ Corresponding author.
Email addresses: yuning@info.univ-angers.fr (Yuning Chen),

hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 12 October 2016

1 Introduction1

The quadratic knapsack problem (QKP) [14] can be informally described as2

follows. We are given a capacity-constrained knapsack and a set of candidate3

objects (or items). Each object has a positive weight, and if selected, generates4

an object profit and a pairwise profit with any other selected object. The5

purpose of QKP is to select a subset of objects to fill the knapsack so as to6

maximize the overall profit while the total weight of the selected objects does7

not exceed the knapsack capacity.8

Formally, let c be the knapsack capacity and N = {1, 2, ..., n} the set of9

objects. Let pii be the profit of object i (i ∈ N), wi be its weight. For each10

pair of objects i and j (1 ≤ i ̸= j ≤ n), pij denotes the pairwise profit11

which is added to the total profit only when both objects are selected. Let xi12

(1 ≤ i ≤ n) be the decision variables such that xi = 1 if object i is selected,13

xi = 0 otherwise. Then QKP can be formulated as follows:14

Maximize f(x) =
n∑

i=1

n∑
j=i

pijxixj (1)

subject to:
n∑

j=1

wjxj ≤ c (2)

x ∈ {0, 1}n (3)

QKP can be reduced to the classical knapsack problem (KP) by restricting the15

pairwise profit pij to 0 for all 1 ≤ i ̸= j ≤ n and thus generalizes KP. From16

a graph-theoretic view of point, QKP is also a generalization of the Clique17

problem [6, 28]. From the perspective of computational complexity, QKP is18

NP-hard in the strong sense [6]. It is also tightly related to other challenging19

problems (e.g., edge-weighted maximum clique [9] and weighted maximum b-20

clique [27]), and appears as a column generation sub-problem when solving21

the graph partitioning problem [22]. In addition to its theoretical importance,22

QKP is capable of formulating a number of practical applications [28] like23

satellite site selection in telecommunications, locations of airports and railway24

stations in logistics and compiler design.25

QKP is well studied in the literature. Over the last decades, much effort26

has been devoted to developing exact algorithms. Most of these algorithms27

are based on the general branch-and-bound (B&B) framework. In this con-28

text, many useful techniques were introduced including upper planes [14], La-29

grangian relaxation [2, 6], linearization [1, 22], semidefinite programming [21].30

The progress made on exact methods continually enlarged the class of QKP in-31

stances that can be solved optimally. Among state-of-the-art exact approaches,32

2

the B&B algorithm introduced in [29] is probably one of the most successful 1

methods which uses aggressive problem reduction techniques. Today’s state- 2

of-the-art exact methods are able to solve instances with up to 1500 variables. 3

On the other hand, to handle problems whose optimal solutions cannot be 4

reached by an exact algorithm, heuristics constitute a useful and complemen- 5

tary approach which aims to find sub-optimal solutions as good as possible to 6

large problems within a reasonable time. Existing QKP heuristic methods can 7

be classified into two categories, namely the randomized or stochastic heuris- 8

tics (which use random choices in their search components) and deterministic 9

heuristics (which, given a particular input, always produce the same output). 10

Representative randomized heuristic approaches for QKP include three greedy, 11

genetic and greedy genetic algorithms [23], a Mini-Swarm algorithm [35], and a 12

GRASP-tabu search algorithm [37]. Typical deterministic heuristic approaches 13

include an upper plane based heuristic [14], a greedy constructive heuristic [5], 14

a hybrid method [1] combining the greedy heuristic of [5] and the “fill-up and 15

exchange” procedure of [14], a linearization and exchange heuristic [20] and 16

a dynamic programming heuristic [12]. Different from the methods dealing 17

directly with QKP, the approach of [18] reformulates it as an unconstrained 18

binary quadratic problem (UBQP) and applies a tabu search algorithm de- 19

signed for UBQP to solve the reformulated model. Among the aforementioned 20

heuristics, the Mini-Swarm algorithm [35], the GRASP-tabu search algorithm 21

of [37] and the very recent dynamic programming heuristic of [12] are the 22

state-of-the-art approaches which are used as our references for performance 23

assessment and comparisons. Finally, several approximation algorithms can 24

be found in [24,36]. For a comprehensive survey of different solution methods 25

prior to 2007, the reader is referred to [28]. 26

One observes that, compared to the research effort on exact algorithms which 27

has taken place for a long time, studies on heuristics for QKP are more recent 28

and less abundant. In this work, we are interested in solving large scale QKP 29

instances approximately and present an effective heuristic approach which 30

explores the idea of searching over promising hyperplanes. The proposed ap- 31

proach basically introduces an additional cardinality constraint to the original 32

model to prune regions of the search space where no optimal solution exists. 33

Such an idea proved to be very useful for designing effective heuristics for the 34

multidimensional knapsack problem [4,11,32]. Similar ideas were also explored 35

as a type of “generalized branching” [30] or “constraint branching” [13] within 36

the general B&B framework. In this work, we adapt for the first time the idea 37

of hyperplane exploration in the context of QKP. For this purpose, we address 38

two relevant issues which are critical to make our approach successful. First, 39

we need to identify the promising hyperplanes which are likely to contain high 40

quality solutions. Second, we want to search efficiently inside the identified hy- 41

perplanes since each hyperplane, though already much reduced relative to the 42

original model, may still contain a very large number of candidate solutions. 43

3

Based on the above considerations, our proposed iterated “hyperplane explo-1

ration” algorithm (IHEA) for QKP makes two original contributions.2

• From the algorithmic perspectives, we present for the first time a decom-3

position approach for solving QKP. By introducing the cardinality con-4

straint, IHEA divides the initial problem into several disjoint hyperplane-5

constrained sub-problems and focuses its exploration within the most promis-6

ing hyperplanes while discarding unpromising sub-problems. To further re-7

duce the search space of each hyperplane-constrained problem, IHEA uses8

specific rules to fix a large number of variables. To seek high quality so-9

lutions within each reduced sub-problem, IHEA employs a dedicated tabu10

search procedure which is able to tunnel through infeasible regions to facili-11

tate transition between structurally different feasible solutions. An informed12

perturbation strategy is also applied to establish a global form of diversifi-13

cation and thereby to allow examining additional unexplored hyperplanes.14

• From the perspective of computational results, the proposed IHEA approach15

displays very competitive performances on three groups of 220 benchmark16

instances. Particularly, it is able to attain easily all the optimal solutions17

with a 100% success rate for the first group of 100 instances with up to18

300 objects. For the second group of 80 larger instances with 1000 to 200019

objects, IHEA provides improved best results for 6 instances (new lower20

bounds) and attains the best known results for the remaining cases. We21

also report results for a third group of very large instances with up to 600022

variables for which our approach achieves an average gap of less than 1.359%23

between the best lower bound and the well-known upper bound Û2
CPT [6].24

The rest of the paper is organized as follows. Section 2 describes the proposed25

approach. Section 3 presents an extensive computational assessment in com-26

parison with the state-of-the-art approaches and reports new results for a set27

of very large-sized instances. Section 4 studies some key ingredients of the28

proposed approach. Conclusions are drawn in Section 5.29

2 Iterated “hyperplane exploration” algorithm for QKP30

In this section, we present our iterated “hyperplane exploration” algorithm for31

QKP. We begin with some useful notations and definitions, and then present32

the main components of the proposed approach.33

4

2.1 Basic notations and definitions 1

For a precise presentation of the IHEA algorithm, the following notations and 2

definitions are first introduced. 3

- Given a solution x ∈ {0, 1}n of a QKP instance P , I1(x) and I0(x) denote 4

respectively the index set of variables receiving the value of 1 and 0 in x; 5

- Given a solution x ∈ {0, 1}n of a QKP instance P , σ(x) denotes the sum of 6

the values of all variables in x (i.e., σ(x) = |I1(x)|). 7

- Given two solutions x ∈ {0, 1}n and x
′ ∈ {0, 1}n, |x, x′| =

n∑
j=1
|xj − x

′
j| 8

denotes the Hamming distance between x and x
′
. 9

- Function fr(x) calculates a raw objective value of solution x ∈ {0, 1}n which 10

could be either feasible or infeasible with respect to the capacity constraint. 11

Definition 1 Given a solution x ∈ {0, 1}n, the contribution of object i (i ∈ 12

N) to the objective value with respect to x is given by: 13

C(i, x) = pii +
∑

j∈I1(x),j ̸=i

pij (4)

Definition 2 Given a solution x ∈ {0, 1}n, the density of object i (i ∈ N) 14

with respect to x is given by: 15

D(i, x) = C(i, x)/wi (5)

Definition 3 A constrained QKP with a k dimensional hyperplane constraint 16

is defined as: 17

CQKP [k] =



max
n∑

i=1

n∑
j=i

pijxixj

s.t.
n∑

j=1
wjxj ≤ c

n∑
j=1

xj = k

x ∈ {0, 1}n

(6)

where
n∑

j=1
xj = k is a hyperplane constraint which restricts the solution space 18

of QKP in the k dimensional hyperplane. Each feasible solution of problem 19

CQKP [k] has exactly k selected objects. 20

5

Note that the notion of contribution C(i, x) (Definition 1) is related to the1

upper planes of [14] with two notable differences. First, C(i, x) involves both2

a problem instance and a solution x while an upper plane only depends on3

the problem instance (and is independent of any solution). Second, an upper4

plane can be used to produce an upper bound for QKP while C(i, x) does not5

have such a utility. In our work, C(i, x) is used as an indicator to evaluate6

the contribution of a particular item i to the total profit with respect to the7

given solution x. This indicator allows us to dynamically identify the most8

profitable item (according to the search state) to be included into the current9

solution in order to maximize the total profit.10

2.2 General idea of the “hyperplane exploration” algorithm11

Let CQKP [k] (1 ≤ k ≤ n) be a constrained QKP (see Definition 3), it is12

obvious that its solution space is a subspace of the original QKP. Therefore,13

any feasible solution of the CQKP [k] (1 ≤ k ≤ n) is also a feasible solution14

of the original QKP. Let ΩF be the feasible solution space of a QKP instance15

such that:16

ΩF = {x ∈ {0, 1}n :
n∑

j=1
wjxj ≤ c},17

Then the feasible solution space of the constrained QKP with a k dimensional18

hyperplane constraint (CQKP [k]) is given by:19

Ω[k] = {x ∈ ΩF : σ(x) = k}.20

QKP can be decomposed into n independent sub-problems (constrained QKPs):21

CQKP [1], CQKP [2], ..., CQKP [n]. These n sub-problems represent n disjoint22

subspaces and the feasible solution space of QKP is the union of the solution23

space of all its sub-problems, i.e., ΩF = ∪n
k=1Ω[k].24

For QKP, if items are sorted in non-decreasing order according to their weight25

wj (j ∈ N), there must exist only one positive integer kUB simultaneously ver-26

ifying the following two constraints: 1)
kUB∑
j=1

wj ≤ c, 2)
kUB+1∑
j=1

wj > c; similarly, if27

items are sorted in non-increasing order according to their weight wj (j ∈ N),28

there must be only one positive integer kLB simultaneously verifying the fol-29

lowing two constraints: 1)
kLB∑
j=1

wj ≤ c, 2)
kLB+1∑
j=1

wj > c. Following the literature30

like [1, 2, 6, 14, 28, 29], we assume non-negative entries in the profit matrix.31

Notice that the existing QKP benchmark instances follow this assumption.32

This leads to the following proposition.33

Proposition 1. There must exist optimal solutions of QKP in hyperplanes34

6

whose dimensions satisfy: kLB ≤ k ≤ kUB . 1

Proof. Given a feasible solution x1 ∈ Ω[k1] (0 < k1 < kLB), and a feasible 2

solution x2 ∈ Ω[k2] (kLB ≤ k2 ≤ kUB , k1 < k2) which is obtained by including 3

another (k2−k1) unselected items to x1. Then x2 and x1 have k1 selected items 4

in common. Since (k2−k1) ≥ 1, and the contribution of any selected item in x2
5

is greater than or equal to 0, we have: f(x2) ≥ f(x1). Consequently, there must 6

exist solutions in ∪kUB
k=kLB

Ω[k] whose objective value is greater than or equal to 7

the objective value of the best solution in ∪kLB−1
k=1 Ω[k]. On the other hand, 8

kUB is the maximum number of items that can be contained in the knapsack 9

which means any solution in hyperplanes with a dimension greater than kUB 10

is infeasible. Therefore, no feasible solution in ∪n
k=kUB+1Ω[k] has an objective 11

value better than the objective value of the best solution in ∪kUB
k=kLB

Ω[k]. 2 12

To make an effective search, we can focus on hyperplanes with a dimension 13

k within the interval [kLB , kUB] and definitely discard other subspaces 1 . This 14

leads to a first (and large) reduction of the solution space from ∪n
k=1Ω[k] to 15

∪kUB
k=kLB

Ω[k]. 16

However, the remaining search space ∪kUB
k=kLB

Ω[k] could still be too large to 17

be explored efficiently, especially when the gap between kLB and kUB is large 18

which is typically the general case (see Section 4.1). In order to further prune 19

some less-promising solution spaces, we explore the hypothesis that high qual- 20

ity solutions are located in a set of “promising” hyperplanes whose dimensions 21

are close to kUB. This hypothesis is confirmed by the experimental results pre- 22

sented in Section 3 and Section 4.1. 23

Based on the above hypothesis, the general idea of our IHEA approach is to 24

progressively and intensively explore a small number of “interesting” hyper- 25

planes whose dimensions are close to kUB so that a large subspace is effectively 26

pruned and the search effort is more focused. We carry out the hyperplane ex- 27

ploration in increasing order of their dimensions aiming to identify solutions 28

of increasing quality, and restart this process with a perturbation when no 29

improvement can be found. When the search seems to stagnate in one hyper- 30

plane, we seek better solutions in a higher dimensional hyperplane. To explore 31

a given hyperplane, additional variable fixing techniques are applied to fix a 32

number of variables so as to further shrink the subspace to be examined. 33

1 In case an optimal solution exists in a hyperplane with a dimension k < kLB , an
optimal solution x∗ identified in k ∈ [kLB , kUB] must include items with zero con-
tribution. In a practical situation where the (positive) weight of an item represents
a cost, an additional step is required to remove from x∗ the zero contribution items.

7

2.3 General procedure of the “hyperplane exploration” algorithm1

Our iterated “hyperplane exploration” approach is composed of three steps:2

(1) Construct an initial high quality solution x0 and use σ(x0) to deter-3

mine the starting dimension of the “promising” hyperplanes; (σ(x0) ∈4

[kLB, kUB] and σ(x0) is close to kUB)5

(2) For each hyperplane dimension k = σ(x0), σ(x0)+ 1, σ(x0)+ 2..., execute6

the following three steps:7

a. Construct a constrained problem CQKP [k];8

b. Identify some variables that are very likely to be part of the optimal9

solution, fix these variables to 1 and remove them from CQKP [k],10

leading to a reduced constrained problem CQKP
′
[k];11

c. Run a hyperplane exploration algorithm to solve CQKP
′
[k]. In our12

case, we employ a search procedure based on tabu search [16] to find a13

high quality solution within the current search space Ω[k]. If this solution14

improves on the best feasible solution found in previous hyperplanes,15

we move to the next hyperplane; otherwise we skip to step (3).16

(3) Apply a perturbation to restart the search from a new starting point.17

This perturbation (removing some specifically selected items) typically18

displaces the search from the current hyperplane to a lower dimensional19

hyperplane which introduces a possibility to visit more not-explored-yet20

search spaces (e.g., hyperplanes with a dimension lower than σ(x0)) where21

high quality solutions might exist (though with a small probability).22

Algorithm 1 shows the pseudo-code of the IHEA algorithm for QKP, whose23

components are detailed in the following sections. At the very beginning, an24

initial solution is generated by a greedy randomized construction procedure25

(Section 2.4.1) and is further improved by a descent procedure (Section 2.4.2).26

Then, the initial dimension of the hyperplane as well as the first constrained27

problem are determined from the initial solution. From this point, the al-28

gorithm enters the “hyperplane exploration” phase which examines a series29

of hyperplane constrained QKP problems. At each iteration of the ‘while’30

loop, IHEA first applies specific variable fixing rules to construct a reduced31

constrained problem RCP (Vfixed, CQKP [k], x
′
) where Vfixed contains a set32

of fixed variables (Section 2.5). RCP (Vfixed, CQKP [k], x
′
) is then solved by33

the tabu search procedure (Section 2.6). Each time a better solution x∗
[k] is34

discovered (i.e., f(x∗
[k]) > f(xb)) by tabu search, IHEA updates the best solu-35

tion found xb and moves on to solve another constrained problem in a higher36

dimensional hyperplane. To do this, the algorithm increments k by one and37

reinitializes x
′
by randomly adding one unselected item to xb. The ‘while’ loop38

terminates when no improving solution can be found. The global best solution39

is updated at the end of the ‘while’ loop. IHEA then makes some dedicated40

changes (perturbations) to xb , improves the perturbed solution (with the de-41

8

scent procedure) to a local optimum, and use the local optimum to start a new 1

round of the “hyperplane exploration” procedure. The above whole procedure 2

continues until a maximum number of allowed iterations is reached. 3

Algorithm 1 Pseudo-code of the IHEA algorithm for QKP.
1: Input: P : an instance of the QKP ; L: size of running list; rcl: max allowed size of

restricted candidate list; MaxIter: max number of iterations;
2: Output: the best solution x∗ found so far
3: x0 ← Greedy Randomized Construction(rcl)
4: x0 ← Descent(x0)

5: x
′ ← x0 /* x

′
represents the current solution */

6: Iter ← 0 /* Iteration counter */

7: xb ← x
′
/* xb records the best solution found in current iteration */

8: x∗ ← xb /* x∗ records the global best solution */
9: repeat
10: SolutionImproved← true
11: k ← σ(x

′
)

12: Construct constrained problem CQKP [k]
13: /* “hyperplane exploration” phase */
14: while SolutionImproved do
15: Vfixed ← Determine F ixed V ariables(k, x

′
)

16: Construct reduced constrained problem RCP (Vfixed, CQKP [k], x
′
)

17: Run TabuSearch Engine(L, x
′
, xb) to solveRCP (Vfixed, CQKP [k], x

′
) and

keep a best solution x∗[k]
18: if f(x∗[k]) > f(xb) then

19: xb ← x∗[k]
20: k ← k + 1
21: x

′ ← Randomly add one item to xb

22: Construct constrained problem CQKP [k]
23: else
24: SolutionImproved← false
25: end if
26: end while
27: if f(xb) > f(x∗) then
28: x∗ ← xb
29: end if
30: /* Perturbation phase */

31: x
′ ← Perturbation(xb, Iter)

32: x
′ ← Descent(x

′
)

33: xb ← x
′

34: Iter ← Iter + 1
35: until Iter ≥MaxIter

2.4 Initial solution 4

IHEA constructs an initial solution according to a greedy randomized con- 5

structive heuristic. In order to place the initial solution in a “good” hyperplane, 6

we additionally improve the constructed solution with a descent procedure. In 7

this section, we explain these two procedures. 8

9

2.4.1 Greedy randomized construction procedure1

Our greedy randomized construction procedure follows the spirit of the GRASP2

approach [10] which has been investigated in [37] to solve QKP. Different3

from [37] where the construction procedure is used as the main search al-4

gorithm, our IHEA algorithm uses this construction procedure to obtain an5

initial solution.6

Starting from a partial solution x where all items are set unselected initially,7

the construction procedure iteratively and adaptively selects some items to be8

included in x (i.e., the corresponding variables receive the value of 1) while9

maintaining the solution feasibility. At each iteration, we randomly select one10

unselected item from a restricted candidate list RCL and add the item to the11

partial solution.12

Let R(x) = {i ∈ I0(x) : wi +
∑

j∈I1(x) wj ≤ c} be the set of unselected items13

that can fit into the knapsack with respect to x. Let rcl be the maximum size of14

the restricted candidate list. Then RCL contains min{rcl, |R(x)|} unselected15

items which have the largest density values (Section 2.1) and do not violate16

the capacity constraint when any of them is included to the current partial17

solution x. Formally, ∀i ∈ RCL, the following two conditions hold: 1) i ∈ R(x),18

2) D(i, x) ≥ D(j, x) (∀j ∈ I0(x)\RCL).19

The items in RCL are ranked according to their density values and the rth20

(1 ≤ r ≤ |RCL|) ranked item is associated with a bias br = 1/er. Thus,21

the rth item is selected with a probability p(r) which is calculated as: p(r) =22

br/
∑|RCL|

j=1 bj. Once an item is selected and added to the partial solution x,23

RCL is updated as well as the objective value of the partial solution. This24

procedure repeats until RCL becomes empty.25

One notices that the initial solution constructed by this greedy randomized26

procedure must be in a hyperplane whose dimension is not smaller than kLB27

since it is a tight packing plan that cannot include any more unselected item,28

and not greater than kUB since it is a feasible solution. Also, this dimension29

is experimentally proved to be close to kUB (see Section 4.1). The underlying30

reason is that items with a small weight are biased towards being selected to31

join the knapsack.32

2.4.2 Descent procedure33

Starting from a solution generated through the greedy randomized construc-34

tion procedure, IHEA uses a descent procedure to reach a local optimum (The35

descent procedure is also applied after a perturbation, see Section 2.7). This36

descent procedure helps: 1) to generate a promising hyperplane which may37

contain high quality solutions; 2) to improve the quality of the initial solution38

10

which allows the hyperplane exploration to start from a high platform. 1

Our descent procedure jointly employs two different neighborhoods defined by 2

two basic move operators: ADD and SWAP . 3

- ADD(i): This move operator adds an unselected item i (i ∈ I0(x)) to a 4

given solution x. It can be considered as a special case of FLIP used in [37] 5

by restricting the flipped variables to those having the value of 0 in the given 6

solution. NA denotes the neighborhood induced by the ADD operator, and 7

NF
A is a subset of NA that contains only feasible neighbor solutions. 8

- SWAP(i , j): Given a solution x, SWAP(i , j) exchanges an unselected item 9

i (i ∈ I0(x)) with a selected item j of x (j ∈ I1(x)). This operator is 10

commonly used in the existing QKP approaches [1,37]. A SWAP operation 11

can be realized as two consecutive FLIP operations where one is to flip a 12

variable from 0 to 1 and the other is to flip another variable from 1 to 0. 13

NS denotes the neighborhood induced by the SWAP operator, and NF
S is a 14

subset of NS that contains only feasible neighbor solutions. 15

The aim of the descent procedure is to attain a local optimum (as good as 16

possible) in both neighborhoods NF
A and NF

S starting from a solution x (either 17

obtained by the construction procedure or the perturbation procedure). To 18

this end, the algorithm iteratively explores NF
A and NF

S in a token-ring way 19

NF
A → NF

S → NF
A → NF

S For each iteration, a feasible neighbor solution x′
20

is picked at random from the neighborhood under consideration and replaces 21

the incumbent solution x if x′ is better than x (i.e., f(x′) > f(x)). 22

It should be noted that our descent procedure is different from the “fill-up 23

and exchange” procedure of [14] which also relies on ADD and SWAP. Our 24

descent procedure examines neighbor solutions in random order and accepts 25

the first encountered improving neighbor while the “fill-up and exchange” 26

procedure checks neighbor solutions in a deterministic way. Moreover, our 27

descent procedure explores NF
A and NF

S in a token-ring way while the “fill-up 28

and exchange” process explores these neighborhoods in a sequential way. 29

2.5 Variable fixing and problem reduction 30

By adding a hyperplane constraint σ(x) = k to QKP, the induced con- 31

strained problem CQKP [k] removes a large part of the solution space (of 32

order O(2n − Ck
n)) from the original QKP. However, the solution space of 33

the constrained problem CQKP [k] might still be too large to be efficiently 34

searched by an algorithm. Indeed, as we employ a search algorithm which ex- 35

plores both feasible and infeasible solutions (see Section 2.6), CQKP [k] has 36

a search space of 2k where k, though smaller than n, could still be large. To 37

further reduce the search space to explore, we fix some variables in CQKP [k]. 38

11

Recall that in Algorithm 1, the starting solution x
′
of TabuSearch Engine for1

solving each constrained problem CQKP [k] is modified from the best solution2

xb such that x
′
and xb are either the same in the first hyperplane (see Line3

7 of Algorithm 1) or different only in one variable (see Line 21 of Algorithm4

1). For each CQKP [k], based on x
′
, our variable fixing step tries to identify a5

set of variables Vfixed that are highly likely to be part of the optimal solution6

and fixes them to the value of 1. We then remove these variables (these vari-7

ables are said fixed) from CQKP [k], leading to a reduced constrained problem8

RCP (Vfixed, CQKP [k], x
′
).9

In order to limit the risk of fixing wrong variables, we follow the general idea10

of identifying a set of “strongly determined” variables [15]. For this purpose,11

we make use of information from the density value associated with each item.12

According to the definition presented in Section 2.1, for those selected items13

in a given solution, the density of an item represents its contribution (profit)14

per weight unit. Thus, the density value is a good indicator of the importance15

of a selected item. Given a QKP solution x
′ ∈ {0, 1}n, our variable fixing rules16

can be summarized as a three-step method:17

(1) For each variable x
′
i such that i ∈ I1(x

′
), calculate its density value18

D(i, x
′
);19

(2) Sort all variables in I1(x
′
) in non-increasing order according to their20

density values D(i, x
′
) (i ∈ I1(x

′
)), leading to a sorted index set SI1(x

′
);21

(3) Extract the first nf variables in SI1(x
′
) to form the fixed variable set22

Vfixed (nf is the number of fixed variables, i.e., nf = |Vfixed|). Fix the23

variables in Vfixed with the value of 1, leading to a reduced constrained24

problem RCP (Vfixed, CQKP [k], x
′
) whose variable set is (I1(x

′
)\Vfixed)∪25

I0(x
′
).26

In the last step, nf is determined using the following empirical formula:27

nf = kLB +max{(|I1(x
′
)| − kLB) ∗ (1− 1/(0.008 ∗ n)), 0} (7)

where kLB is the minimum number of items that can be contained in the28

knapsack. Typically, |I1(x
′
)| is larger than kLB. It is easy to understand that29

a solution with only kLB selected items is unlikely to be a good solution since30

the packing plan is not tight enough. The number of items that can be fixed31

(nf) is specified by formula (7).32

Formula (7) was identified in the following manner. We first obtained optimal33

solutions for a set of instances of different sizes (ranging from n = 100 to 500)34

with the exact solver of [6]. We also obtained a set of near-optimal solutions35

provided by our solution initialization procedure of Section 2.4. We sorted36

the selected items of the near-optimal solutions according to their density37

12

values, and then compared them to the optimal solutions. Finally, we arrived 1

at the following observations: 1) the number of items that can be fixed (nf) 2

is somewhere between kLB and |I1(x
′
)|; 2) the number of items that can be 3

fixed enlarges as the size of the instance increases. The design of formula (7) 4

basically integrates these observations. 5

Note that different strategies for temporary or definitive variable fixing were 6

explored in [2] for QKP and studied in other contexts like 0-1 mixed integer 7

programming, integer linear programming and binary quadratic programming 8

[7, 33, 34]. Moreover, the notion of item density was previously used in other 9

construction procedures [5, 37]. For instance, from the set of given items, the 10

greedy construction procedure in [5] drops iteratively the “lightest” items one 11

by one until the remaining items form a feasible solution (i.e., the knapsack 12

constraint becomes satisfied). Furthermore, unlike our procedure where the 13

density of each item is calculated only once, the procedure of [5] updates, 14

after each iteration, the density value of each remaining item. 15

2.6 Hyperplane exploration with tabu search 16

The tabu search procedure (TabuSearch Engine) described in this section is 17

designed to solve the reduced constrained problem RCP (Vfixed, CQKP [k], x
′
), 18

i.e., identify feasible solutions that are better than xb which is the current best 19

solution found in the current course of the “hyperplane exploration” proce- 20

dure. The key ingredients of TabuSearch Engine are described as follows. 21

• Neighborhood: It is known that allowing a controlled exploration of in- 22

feasible solutions may enhance the performance of a heuristic search al- 23

gorithm, by facilitating transitions between structurally different feasible 24

solutions [17]. Following this idea, we employ the NS neighborhood (de- 25

fined in Section 2.4.2) which contains both feasible and infeasible neighbor 26

solutions. In order to explore effectively the search space of a given hy- 27

perplane, we restrict our tabu search procedure to visit solutions that are 28

considered better than the best feasible solution found so far, leading to 29

a restricted SWAP neighborhood NR
S . Precisely, given the objective value 30

of the current best feasible solution with objective value fmin, the neigh- 31

borhood NR
S (x) of a solution x (either feasible or infeasible) is defined as: 32

NR
S (x) = {x

′ ∈ NS(x) : fr(x
′
) > fmin} where fr is the raw objective value. 33

• Tabu list management: We use the reverse elimination method (REM) 34

introduced in [16] for our tabu list management. REM defines an exact tabu 35

mechanism which prevents any visited solution from being revisited. REM 36

uses a running list to store the attributes of all implemented moves. One can 37

trace back the running list to identify the tabu status of a move by making 38

use of another list called residual cancellation sequence (RCS) where an 39

13

attribute is either added if it is not yet in the RCS or removed from RCS1

otherwise. Interested readers are referred to [8,16,32] for more details on this2

method. For the SWAP operator used by TabuSearch Engine, when there3

are only two attributes left in RCS (i.e., |RCS| = 2), the move composed4

of these two attributes is declared tabu in the next iteration. The procedure5

of updating the tabu status is described in Algorithm 2.6

• Evaluation function: The evaluation function used by TabuSearch Engine7

considers two factors to assess a solution x: 1) raw objective value fr(x), 2)8

capacity violation vc(x) = c−
n∑

j=1
wjxj. A transition is made from the current9

solution x to a neighbor solution x
′ ∈ NR

S (x) if ∀x
′′ ∈ (NR

S (x)\{x
′}), x′

veri-10

fies one of the following two conditions: 1) vc(x
′
) < vc(x

′′
), 2) vc(x

′
) = vc(x

′′
)11

and fr(x
′
) ≥ fr(x

′′
).12

Algorithm 2 presents the pseudo-code of TabuSearch Engine which takes13

three elements as its input: 1) the max size of the running list which serves as14

the termination condition; 2) an initial solution (feasible or unfeasible) which15

serves as its starting point; 3) a reference feasible solution xref which restricts16

the search to visit solutions whose objective value is better than that of xref .17

At each iteration, the algorithm identifies the best non-tabu SWAP move18

relative to the above evaluation function, and applies the move to obtain a19

new solution. Each time a feasible solution is discovered (i.e., vmin = 0), the20

running list is reset and fmin is updated. TabuSearch Engine terminates if21

one of the following two conditions is verified: 1) all moves are tabu, i.e.,22

vmin =∞; 2) the running list is full, i.e., erl ≥ L.23

Note that tabu search was also used in [37] to enhance a GRASP procedure.24

However, these two studies are quite different. First, our general IHEA ap-25

proach focuses on decomposing the initial solution space into a set of hyperplane-26

constrained and reduced solution spaces while GRASP+tabu of [37] explores27

the original solution space. Second, our tabu search procedure is dedicated to28

effectively explore the solution space of a hyperplane-constrained sub-problem.29

As such, its design (in terms of neighborhood, tabu list management and eval-30

uation function) is different from GRASP+tabu. Third, our tabu search ex-31

plores both feasible and infeasible solutions while GRASP+tabu only visits32

feasible solutions. Compared to the approach of [18], their tabu search al-33

gorithm was dedicated to the unconstrained binary quadratic problem and34

operates with the “one-flip” move operator (called “shift” in [37]) which adds35

or removes an item (SWAP was not used).36

14

Algorithm 2 Pseudo-code of TabuSearch Engine

1: Input: L: max size of running list; xin: an initial solution; xref : a reference
feasible solution

2: Output: the best feasible solution found so far x∗

3: |RL| ← L /* Initialize the size of running list to L */
4: fmin ← f(xref) /* fmin records the objective value of the current best feasible

solution */
5: x∗ ← xref /* x∗ records the best feasible solution found so far */
6: erl← 0
7: x← xin
8: while vmin ̸=∞∨ erl < L do
9: (vmin, fmax)← (∞,−∞)
10: for each i ∈ I0(x) do
11: for each j ∈ I1(x) do
12: if tabu[i][j] ̸= iter then
13: (xi, xj)← (1, 0)
14: if (fr(x) > fmin)∧((vc(x) < vmin)∨((vc(x) = vmin)∧(fr(x) ≥ fmax)))

then
15: (i∗, j∗)← (i, j); (vmin, fmax)← (vc(x), fr(x))
16: end if
17: (xi, xj)← (0, 1)
18: end if
19: end for
20: end for
21: if vmin ̸=∞ then
22: (xi∗ , xj∗)← (1, 0)
23: if vmin = 0 then
24: erl← 0; fmin ← fr(x); x

∗ ← x
25: else
26: iter ← iter + 1; RL← RL ∪ {i∗} ∪ {j∗}; erl← erl + 2

/*UPDATE TABU STATUS*/
27: i← (erl − 1)
28: while i ≥ 0 do
29: j ← RL[i]
30: if j ∈ RCS then
31: RCS ← RCS\{j}
32: else
33: RCS ← RCS ∪ {j}
34: end if
35: if |RCS| = 2 then
36: tabu[RCS[0]][RCS[1]]← iter; tabu[RCS[1]][RCS[0]]← iter
37: end if
38: i← i− 1
39: end while
40: end if
41: end if
42: end while

2.7 Perturbation 1

To establish a global form of diversification and reinforce the capacity of the 2

algorithm to visit unexplored “promising” hyperplanes, we employ a perturba- 3

tion strategy to restart the search from a new starting point (usually in a lower 4

dimensional hyperplane w.r.t. the current hyperplane). A perturbation is ap- 5

plied when the hyperplane-based search stagnates, i.e., the local optimum x∗
[k] 6

15

of the current constrained problem CQKP [k] does not improve the best solu-1

tion found in the current hyperplane exploration phase xb. This best solution2

xb could be either the local optimum obtained by the initializing construction3

procedure (or perturbation procedure) followed by the descent procedure, or4

the local optimum of the last constrained problem CQKP [k − 1] (x∗
[k−1]).5

Given a feasible solution x, the general idea of our perturbation strategy is to6

remove a small number (say s, s > 0) of items which are chosen from t (s ≤7

t ≤ (I1(x)−nf)) selected items with the lowest densities and then replace the8

removed items with some other unselected items. To do this, we first sort all the9

selected items in x according to the ascending order of their densities D(x, i)10

(i ∈ I1(x)). We then remove s items which are selected from the first t sorted11

items and re-construct the solution using the greedy randomized construction12

procedure of Section 2.4.1, leading to a perturbed solution. This perturbed13

solution is further improved by using the descent procedure of Section 2.4.2.14

The calibration of the parameters t and s is discussed in Section 3.2.15

To improve the diversification effect of the perturbation, we employ a short-16

term memory to prevent recently removed items from being added back to17

the solution in subsequent iterations. Each time an item is removed from the18

solution, it is not allowed to be inserted to the solution in next rand(1, s)19

iterations where rand(1, s) takes a random value between 1 and s.20

2.8 Implementation improvement21

A fast incremental evaluation technique was introduced in [14] to determine22

rapidly the effect of the ADD and SWAP moves for their “fill-up and ex-23

change” procedure which explores only feasible regions. We slightly extend24

this technique to make it applicable to evaluate the raw objective values of25

the new solutions encountered in either feasible or infeasible solution spaces.26

In addition, we also introduce a fast feasibility checking technique.27

Given a solution x, which may be either feasible or infeasible, flipping a vari-28

able xi produces a new solution x
′
whose raw objective value can be con-29

veniently calculated in O(1) time as: fr(x
′
) = fr(x) + (1 − 2 ∗ xi) ∗ C(i, x),30

where C(i, x) is the contribution of variable xi. Therefore, any solution gen-31

erated by a move operator which can be realized with constant times of flip32

operations can be evaluated in O(1) time as well. This is the case for the33

ADD and SWAP operators which can be realized with one and two flip oper-34

ations respectively. Using this fast evaluation technique leads to a significant35

acceleration compared to a complete evaluation which requires O(n2) time.36

To achieve this saving, we maintain a memory structure ∆ to store the current37

contribution value of each variable ∆i (corresponding to C(i, x) for a given38

16

solution x) which is updated each time a flip operation is performed. Given an 1

empty solution where all variables are assigned the value of 0, the contribution 2

of flipping any variable is initialized to its profit value, i.e., ∆i ← pi, i ∈ N . 3

Thereafter, once a move is performed, the contribution value of each variable 4

after flipping a variable xi can be efficiently updated as follows: 5

∆j =


∆j, if j = i

∆j + qij, if xi = 1 and j ∈ N\{i}
∆j − qij, if xi = 0 and j ∈ N\{i}

(8)

The total time of updating the structure ∆ is bounded by O(n). Using this 6

memory structure, a new solution x
′
transitioned from the current solution x 7

by adding an unselected item xi can be evaluated using the following equation: 8

fr(x
′
) = fr(x) + ∆i (9)

Similarly, a new solution x
′
produced by swapping items xi (xi = 1) and xj 9

(xj = 0) of the current solution x can be evaluated by the following equation: 10

fr(x
′
) = fr(x)−∆i +∆j − pij (10)

In addition to ∆, we maintain another memory structure which stores the sum 11

of weights of all the selected items in the current solution, which is updated 12

accordingly after an operation is performed. This memory structure allows the 13

capacity constraint checking to be achieved with a time complexity of O(1). 14

3 Computational Experiments 15

This section is dedicated to a computational assessment of the proposed algo- 16

rithm and comparisons with the state-of-the-art QKP approaches. 17

3.1 Experimental protocol 18

To evaluate the efficiency of the proposed algorithm, we carry out extensive 19

experiments on a set of 220 instances ranging from small to very large sizes. 20

These instances can be divided into three groups: 21

17

• Group I. This group is composed of 100 small and medium sized benchmark1

instances generated by Billionnet and Soutif [2]. These instances, generated2

in the same way as in [5, 6, 14, 20], are very popular and used to test many3

QKP algorithms. These instances are characterized by their number of ob-4

jects n ∈ {100, 200, 300}, density d ∈ {25%, 50%, 75%, 100%} (i.e., number5

of non-zero coefficients of the objective function divided by n(n+1)/2). Each6

(n, d) combination involves 10 different instances distinguished by their la-7

bels except for (300,75%) and (300,100%) where instances are missing. Op-8

timal solutions are known for these instances. The instance data files can9

be downloaded at http://cedric.cnam.fr/~soutif/QKP/QKP.html.10

• Group II. The second group includes 80 large-sized benchmark instances11

which are recently generated by Yang et al. [37]. These instances have a num-12

ber of objects from 1000 to 2000, a value of density from 25% to 100%. Due13

to their large size, optimal solutions are still unknown for these instances.14

The instance data files are available at http://www.info.univ-angers.15

fr/pub/hao/QKP.html16

• Group III. This group is composed of 40 new instances of very large sizes17

that we propose for this study. They are characterized by their number of18

objects n ∈ {5000, 6000} and density d ∈ {25%, 50%, 75%, 100%}. For each19

(n, d) combination, 5 instances were proposed. These instances are available20

from the authors of this work (they are too large to be put on our web).21

The above three groups of instances were all generated using the same gener-22

ator that was very popular and commonly used in QKP literature [1,6,14,20].23

The parameter settings for the generator are the same as well: the coefficients24

pij of the objective function are integers that are uniformly distributed in the25

interval [0,100]; each weight wj is uniformly distributed in [1,50]; the capacity c26

is randomly selected from [50,
∑n

j=1wj]. However, to ensure the hardness of the27

new instances of Group III, we have performed the following selection process.28

For each instance, we attained the best objective value of ten feasible solu-29

tions, each of which was built by randomly filling the knapsack. A gap between30

the objective value of the random solution and the best objective value from31

our IHEA algorithm was then calculated. We denote this gap as randGap.32

For each (n, d) combination, we generated 10 instances, 5 of which having33

the largest randGaps were selected to join Group III. The average randGap34

(in percentage) of all instances in Group III is 69.36% which indicates that a35

randomly generated solution is rather poor. From this perspective, finding a36

high quality solution for these instances is a non-trivial task.37

Our IHEA algorithm was coded in C++ 2 and compiled by GNU gcc 4.1.238

with the ’-O3’ option. The experiments were conducted on a computer with39

an AMD Opteron 4184 processor (2.8GHz and 2GB RAM) running Ubuntu40

2 Our best solution certificates are available at: http://www.info.univ-angers.
fr/pub/hao/QKPResults.zip.

18

Table 1
Parameter settings of the IHEA algorithm

Para. Description V alue Section

rcl max allowed size of restricted candidate list 20 2.4.1

L size of the running list 300 2.6

t size of the least-density items for perturbation min{10, (I1(x)− nf)} 2.7

s number of items to be perturbed min{3, t} 2.7

MaxIter max number of iterations
√
n+65 2.3

12.04. When running the DIMACS machine benchmark program dfmax.c on 1

graphs r300.5, r400.5 and r500.5 (available at ftp://dimacs.rutgers.edu/ 2

pub/dsj/clique/) (compliled without optimization flag), the run time on our 3

machine is 0.40, 2.50 and 9.55 seconds respectively for these graphs. 4

3.2 Parameter calibration 5

Our IHEA algorithm relies on five parameters (see Table 1). To calibrate these 6

parameters, we employed an automatic configuration method called Iterated 7

F-race (IFR) [3] which was implemented in the irace package [25]. For each 8

parameter to be tuned, IFR requires a range of values as input. Based on 9

preliminary experiments, we used the range of values as follows: rcl ∈ [10, 30], 10

L ∈ [100, 400], p1 ∈ [5, 20], and p2 ∈ [1, 7]. p1 and p2 are two parameters 11

associated with t and s, i.e., t = min{p1, (I1(x) − nf)} and s = min{p2, t}. 12

We restricted the training set to 26 representative instances: one instance from 13

each (n, d) combination. To run IFR, we used the tuning budget of 3000 IHEA 14

runs, each run being given 50 iterations. Once the previous four parameters 15

are determined, the termination condition parameter MaxIter can be easily 16

tuned by taking into account the balance between quality and efficiency of 17

the IHEA algorithm. The parameter values shown in Table 1 were used in all 18

experiments in the following sections unless otherwise mentioned. 19

3.3 Comparative results on small and medium instances of Group I 20

Our first experiment was performed on the benchmark instances of Group 21

I. These instances were first solved to optimality by the exact algorithm of 22

[2], with hundreds or thousands of CPU seconds on a 300 MHz Pentium II 23

Processor. Several recent heuristic approaches are able to attain these optimal 24

solutions with much less computing efforts (typically a few seconds) [35, 37]. 25

To evaluate the performance of our IHEA algorithm, three leading heuristic 26

methods were considered for our comparison: 27

- A Mini-Swarm approach [35]. The experiments reported in [35] were per- 28

19

Table 2
Scaling factors for the computers used in the reference algorithms. Our computer
(AMD Opteron 4184) serves as the basis.

Algorithm Reference Processor type Frequency (GHz) Factor

IHEA - AMD Opteron 4184 2.8 1.0

Min-Swarm [35] Pentium IV 3.06 1.09

GRASP+tabu [37] Pentium 1.73 0.62

formed on a computer with a 3.06 GHz P4 processor.1

- A recent Dynamic Programming heuristic approach [12]. Among all algo-2

rithm variants studied in [12], the best performance was achieved by the3

version using π̃3
i /wi as the item ordering rule coupled with the “fill-up and4

exchange” procedure proposed in [14]. This algorithm version, denoted as5

DP+FE, was included for our comparative study. The results of DP+FE6

in this study were obtained by running the source code (which was kindly7

given to us by the authors of [12]) on our machine. Since DP+FE is a8

deterministic heuristic algorithm, it was executed for a single run.9

- A GRASP-tabu approach [37]. This approach includes two algorithm vari-10

ants (GRASP and GRASP+tabu). We used the results of GRASP+tabu11

for our comparative study since it dominates GRASP alone. The reported12

results were obtained on a Pentium 1.73 GHz processor with 2 GB RAM.13

It is not a straightforward task to make a fully fair comparative analysis14

with the reference approaches due to the differences in computing hardware,15

termination criterion, etc. This is particularly true for the computing times.16

For this reason, we focus our study on the quality criterion of the solutions17

found. Nevertheless, we include information on computing time for indicative18

purposes. Following [26, 31], we used the CPU frequency of our computer19

(AMD Opteron 4184 2.8 GHz) as a basis to scale the times of the reference20

algorithms reported in [35,37] (see Table 2 for the scaling factors).21

Like the two reference randomized algorithms (Min-Swarm and GRASP+tabu),22

we ran our IHEA algorithm 100 times to solve each problem instance. To show23

a general picture and simplify the presentation, we divide the whole instance24

set into 8 classes according to the (n, d) combination. Table 3 displays for each25

instance class and for each randomized algorithm, the average value of three26

indicators: 1) success rate (SR), i.e., the number of the trials over 100 runs27

hitting the known optimal solution; 2) relative percentage deviation (RPD),28

the average gap between the best lower bound (fLB) and the best solution29

value (fbest) in percentage over 100 trials where the gap is calculated by ((fLB30

- fbest)/fLB × 100); 3) the average CPU time in seconds for one trial (t(s)).31

Note that for the single-run deterministic algorithm (DP+FE), the average32

values over multiple runs are not needed. For our IHEA algorithm, we also33

report the average time when the algorithm first encounters the best solution34

(tb(s)) over 100 trials. Since our proposed algorithm as well as the reference35

algorithms can easily attain the optimal results for all the benchmark in-36

20

Table 3
Comparative results of IHEA with 3 state-of-the-art algorithms on the 100 bench-
mark instances of Group I [2]. The values in bold indicate the improved results of
IHEA.

Min-Swarm [35] DP+FE [12] GRASP+tabu [37] IHEAINST.
SR(%) RPD t(s) SR(%) RPD t(s) SR(%) RPD t(s) SR(%) RPD t(s) tb(s)

100 25 93.900 0.012 0.482 40.000 0.319 0.697 100.000 0.000 0.060 100.000 0.000 0.325 0.004

100 50 94.200 0.004 0.442 80.000 0.018 0.708 100.000 0.000 0.057 100.000 0.000 0.253 0.002

100 75 97.500 0.001 0.396 80.000 0.008 0.704 100.000 0.000 0.052 100.000 0.000 0.334 0.003

100 1001 100.000 0.000 0.224 77.777 0.005 0.657 100.000 0.000 0.048 100.000 0.000 0.248 0.002

200 25 90.300 0.009 1.559 60.000 0.056 7.341 100.000 0.000 0.286 100.000 0.000 0.714 0.029

200 50 92.400 0.001 1.967 50.000 0.009 8.239 99.900 9.4E-6 0.301 100.000 0.000 0.827 0.035

200 75 90.900 0.003 2.361 60.000 0.010 7.055 100.000 0.000 0.318 100.000 0.000 0.946 0.010

200 100 100.000 0.000 1.305 60.000 0.004 6.683 100.000 0.000 0.251 100.000 0.000 0.722 0.005

300 252 - - - 33.333 0.061 28.341 99.667 0.001 0.735 100.000 0.000 1.122 0.018

300 50 - - - 50.000 0.003 31.324 100.000 0.000 0.763 100.000 0.000 1.156 0.015
1 Instance 100 100 4 is not available and is not considered when we calculate the average value for the instance class 100 100.
2 Instance 300 25 3 is not available and is not considered when we calculate the average value for the instance class 300 25.

stances under consideration, these optimal results are not listed in the table 1

(see [2,35,37] for these optimal results). The results of the reference algorithms 2

are extracted from the corresponding papers [35,37] (the code of the reference 3

algorithms are not available). 4

From Table 3, we observe that our IHEA algorithm attains the known optimal 5

values with a successful rate of 100% for all these instances with an average 6

computing time of no more than 1.156 seconds. The average best solution 7

time tb(s) of IHEA is even more interesting since the maximum time is only 8

0.035 seconds (for 200 50). IHEA outperforms the Min-Swarm approach in 9

the success rate and the relative percentage deviation by consuming typically 10

less CPU seconds. Meanwhile, IHEA dominates the deterministic DP+FE 11

algorithm in terms of both solution quality and computational efficiency for 12

all instance classes. Compared to GRASP+tabu which is one of the current 13

best performing heuristic algorithms, IHEA remains very competitive since it 14

solves all these instances to optimality with a 100% success rate while there 15

are 2 instances for which GRASP+tabu is not able to achieve a success rate 16

of 100%. Another interesting feature of IHEA is that its average computing 17

time is approximately linear relative to the size of the instance which was not 18

observed for the reference algorithms. 19

3.4 Comparative results on large instances of Group II 20

In this section, we investigate the behavior of our algorithm on the second 21

group of 80 large instances (n = 1000 or 2000) with unknown optima. Like 22

GRASP+tabu of [37], our IHEA algorithm was executed 100 times for each in- 23

stance. As reference algorithms, we again used GRASP+tabu (which reported 24

the current best known lower bounds for these instances) and DP+FE. The 25

results of DP+FE were obtained by executing a single run of its source code 26

21

on our machine while the results of GRASP+tabu were extracted from [37].1

Table 4 (for instances with 1000 objects) and Table 5 (for instances with 20002

objects) summarize the comparative results. The listed indicators include the3

best lower bound discovered (column Best), the success rate (column SR) to4

attain the best lower bound, the relative percentage deviation (column RPD)5

and the average computing time for one trial (t(s)). We also report the av-6

erage best time over 100 trials for our IHEA algorithm (column tb(s)). The7

best known results are indicated in italic and the new improved results are8

highlighted in bold. In the last two rows, #Bests indicates the number of9

italic and bold values, and Avg. denotes the average value for each column.10

Table 4 and 5 disclose that our IHEA algorithm outperforms both GRASP+tabu11

and DP+FE in terms of all indicators. Firstly, IHEA attains the best known12

lower bounds or improves these lower bounds for all 80 instances. Specifically,13

it discovers improved best lower bounds for 6 instances and attains the previ-14

ous best known lower bounds for the remaining 74 instances. Secondly, the suc-15

cess rate and relative percentage deviation achieved by IHEA are consistently16

better than or equal to those achieved by the randomized GRASP+tabu. In17

particular, IHEA performs better in these two indicators for 24 out of 80 cases18

and is equal for the remaining 56 cases. GRASP+tabu has 24 cases for which19

the success rate is under 100% while IHEA has only 3 such cases. Moreover,20

IHEA is better both in its lowest success rate (95% vs. 6%) and in its aver-21

age success rate (99.9% vs. 91.63%) compared to GRASP+tabu. Notice that22

the success rate of IHEA can be further improved by simply extending the23

max iteration parameter (MaxIter). For example, when we set the MaxIter24

to (
√
n+130), IHEA achieves a 100% success rate for all these instances but25

at the expense of more computing time. Thirdly, IHEA always needs much26

less computing effort to achieve a similar or better performance compared to27

GRASP+tabu and DP+FE.28

To solve instances with 1000 variables and 2000 variables respectively, IHEA29

consumes an average computing time of 6.0 seconds and 22.73 seconds while30

these values are 27.96 seconds and 329.65 seconds for GRASP+tabu, 2917.7031

seconds and 51695.75 seconds for DP+FE. This implies that IHEA scales very32

well with a weak increasing ratio of its average computing time (i.e., 22.73/6.033

≈ 3.79) when the problem size grows from 1000 to 2000 objects while this34

ratio is much higher for GRASP+tabu (329.65/27.96 ≈ 11.79) and DP+FE35

(51695.75/2917.70 ≈ 17.72). Notice also that compared to the average time36

which is proportional to the MaxIter parameter, the average best solution37

time (column tb(s)) is even much shorter (i.e., 0.47 seconds) across the whole38

instance set. Given this fact, it is easy to see that the large gap between the39

average tb(s) and t(s) is consumed by the algorithm only to complete its run,40

but useless for improving the best solution. Finally, comparing GRASP+tabu41

with DP+FE, the former outperforms the latter by achieving significantly42

more best known lower bounds (74 vs. 11) with much less average computing43

22

Table 4
Comparative results of IHEA with two state-of-the-art algorithms on the 40 in-
stances with 1000 objects of Group II. The best known results are in italic and the
new best known results are in boldface.

DP+FE [12] GRASP+tabu [37] IHEAINST.
Best t(s) Best SR(%) RPD t(s) Best SR(%) RPD t(s) tb(s)

1000 25 1 6172407 1682.280 6172407 100.000 0.000 18.234 6172407 100.000 0.000 2.765 0.094

1000 25 2 229833 2103.290 229941 66.000 0.008 20.448 229941 100.000 0.000 5.390 0.091

1000 25 3 172418 1919.350 172418 100.000 0.000 13.429 172418 100.000 0.000 5.892 0.050

1000 25 4 367365 2537.720 367426 100.000 0.000 16.188 367426 100.000 0.000 7.293 0.068

1000 25 5 4885569 2626.970 4885611 100.000 0.000 23.368 4885611 100.000 0.000 5.543 0.144

1000 25 6 15528 608.550 15689 100.000 0.000 5.072 15689 100.000 0.000 1.635 0.020

1000 25 7 4945741 2725.220 4945810 100.000 0.000 22.636 4945810 100.000 0.000 4.804 0.306

1000 25 8 1709954 3762.890 1710198 100.000 0.000 44.150 1710198 100.000 0.000 7.104 0.416

1000 25 9 496315 2839.990 496315 100.000 0.000 18.619 496315 100.000 0.000 6.891 0.060

1000 25 10 1173686 3607.270 1173792 100.000 0.000 36.537 1173792 100.000 0.000 7.573 0.148

1000 50 1 5663517 3722.470 5663590 100.000 0.000 31.459 5663590 100.000 0.000 6.870 0.108

1000 50 2 180831 1450.870 180831 100.000 0.000 0.893 180831 100.000 0.000 3.692 0.045

1000 50 3 11384139 2071.250 11384283 100.000 0.000 19.753 11384283 100.000 0.000 3.338 0.088

1000 50 4 322184 1868.860 322226 100.000 0.000 13.677 322226 100.000 0.000 5.433 0.059

1000 50 5 9983477 2570.760 9984247 86.000 1.5E-4 25.315 9984247 98.000 6.0E-6 3.662 0.541

1000 50 6 4106186 3801.720 4106261 100.000 0.000 36.010 4106261 100.000 0.000 7.691 0.113

1000 50 7 10498135 2322.160 10498370 84.000 1.3E-4 20.727 10498370 100.000 0.000 3.584 0.271

1000 50 8 4981017 3826.980 4981146 20.000 0.012 72.100 4981146 99.000 1.0E-6 9.155 1.648

1000 50 9 1727727 3382.020 1727861 100.000 0.000 32.717 1727861 100.000 0.000 9.381 0.847

1000 50 10 2340590 3605.070 2340724 94.000 2.3E-4 59.074 2340724 100.000 0.000 7.416 0.163

1000 75 1 11569498 3334.210 11570056 65.000 7.6E-5 39.680 11570056 100.000 0.000 4.892 0.514

1000 75 2 1901119 3094.560 1901389 100.000 0.000 20.131 1901389 100.000 0.000 6.492 0.129

1000 75 3 2096415 3208.980 2096485 100.000 0.000 24.713 2096485 100.000 0.000 8.742 0.107

1000 75 4 7305195 3821.020 7305321 100.000 0.000 34.156 7305321 100.000 0.000 6.846 0.119

1000 75 5 13969705 2887.190 13970240 93.000 4.0E-4 23.182 13970842 100.000 0.000 6.022 0.130

1000 75 6 12288299 3178.950 12288738 100.000 0.000 20.733 12288738 100.000 0.000 4.463 0.161

1000 75 7 1095837 2580.270 1095837 100.000 0.000 14.359 1095837 100.000 0.000 7.119 0.099

1000 75 8 5575592 3804.420 5575813 100.000 0.000 42.451 5575813 100.000 0.000 7.833 0.142

1000 75 9 695595 2171.330 695774 100.000 0.000 14.062 695774 100.000 0.000 4.624 0.126

1000 75 10 2507627 3349.440 2507677 100.000 0.000 29.338 2507677 100.000 0.000 6.863 0.074

1000 100 1 6243330 3849.500 6243494 100.000 0.000 44.646 6243494 100.000 0.000 7.018 0.116

1000 100 2 4853927 3627.050 4854086 61.000 0.001 52.601 4854086 100.000 0.000 7.092 0.193

1000 100 3 3171955 3320.520 3172022 100.000 0.000 29.177 3172022 100.000 0.000 6.391 0.096

1000 100 4 754542 1990.800 754727 100.000 0.000 14.651 754727 100.000 0.000 5.207 0.075

1000 100 5 18646607 2829.350 18646620 99.000 6.9E-7 24.273 18646620 100.000 0.000 4.070 0.289

1000 100 6 16019697 3247.810 16018298 96.000 4.2E-6 25.780 16020232 100.000 0.000 5.204 0.117

1000 100 7 12936205 3587.160 12936205 100.000 0.000 27.590 12936205 100.000 0.000 5.533 0.129

1000 100 8 6927342 3850.890 6927738 100.000 0.000 59.551 6927738 100.000 0.000 7.298 0.113

1000 100 9 3874959 3463.920 3874959 100.000 0.000 32.414 3874959 100.000 0.000 7.085 0.067

1000 100 10 1334389 2474.890 1334494 100.000 0.000 14.651 1334494 100.000 0.000 6.270 0.094

#Bests 7 - 38 30 30 - 40 40 40 - -

Avg. 5128111 2917.699 5128228 94.100 6E-4 27.964 5128291 99.925 0.000 6.005 0.204

time (178.87 seconds vs. 27306.73 seconds) across 80 instances of Group II. 1

This observation confirms a safe ranking of the three compared algorithms in 2

decreasing order of their performance: IHEA, GRASP+tabu and DP+FE. 3

23

Table 5
Comparative results of IHEA with two state-of-the-art algorithms on the 40 in-
stances with 2000 objects of Group II. The best known results are in italic and the
new best known results are in boldface.

DP+FE [12] GRASP+tabu [37] IHEAINST.
Best t(s) Best SR(%) RPD t(s) Best SR(%) RPD t(s) tb(s)

2000 25 1 5268004 57726.920 5268188 100.000 0.000 320.273 5268188 100.000 0.000 22.264 0.479

2000 25 2 13293940 51050.130 13294030 100.000 0.000 205.053 13294030 100.000 0.000 24.917 2.191

2000 25 3 5500323 57419.270 5500433 56.000 4.5E-4 496.081 5500433 100.000 0.000 28.933 0.780

2000 25 4 14624769 46620.160 14625118 100.000 0.000 215.072 14625118 100.000 0.000 17.050 0.766

2000 25 5 5975645 57416.960 5975751 100.000 0.000 457.765 5975751 100.000 0.000 28.102 0.502

2000 25 6 4491533 56155.800 4491691 100.000 0.000 294.252 4491691 100.000 0.000 23.442 0.767

2000 25 7 6388475 57116.940 6388756 100.000 0.000 346.090 6388756 100.000 0.000 25.178 0.671

2000 25 8 11769395 52832.060 11769873 100.000 0.000 277.109 11769873 100.000 0.000 22.584 0.718

2000 25 9 10959388 54258.650 10960328 100.000 0.000 278.882 10960328 100.000 0.000 22.420 0.564

2000 25 10 139233 14686.960 139236 100.000 0.000 68.070 139236 100.000 0.000 7.551 0.087

2000 50 1 7070736 52860.690 7070736 39.000 0.027 294.078 7070736 100.000 0.000 28.016 0.441

2000 50 2 12586693 57518.440 12587545 100.000 0.000 331.619 12587545 100.000 0.000 23.943 1.349

2000 50 3 27266846 48397.300 27268336 100.000 0.000 191.506 27268336 100.000 0.000 22.691 0.359

2000 50 4 17754391 57376.090 17754434 100.000 0.000 485.249 17754434 100.000 0.000 24.506 0.447

2000 50 5 16804699 57563.580 16805490 90.000 9.3E-4 923.936 16806059 100.000 0.000 32.057 0.538

2000 50 6 23075693 52613.210 23076155 50.000 5.1E-4 285.256 23076155 100.000 0.000 21.579 0.631

2000 50 7 28757657 46437.960 28759759 6.000 0.008 442.792 28759759 100.000 0.000 25.365 0.525

2000 50 8 1580242 32416.870 1580242 100.000 0.000 102.412 1580242 100.000 0.000 13.937 0.169

2000 50 9 26523637 48529.930 26523791 100.000 0.000 212.114 26523791 100.000 0.000 19.695 0.438

2000 50 10 24746249 50565.420 24747047 100.000 0.000 253.202 24747047 100.000 0.000 20.613 0.377

2000 75 1 25121327 57579.990 25121998 100.000 0.000 500.371 25121998 100.000 0.000 22.721 0.529

2000 75 2 12663927 54629.120 12664670 89.000 4.7E-4 316.231 12664670 100.000 0.000 21.584 0.401

2000 75 3 43943294 45151.420 43943994 100.000 0.000 171.362 43943994 100.000 0.000 18.723 0.763

2000 75 4 37496414 50255.520 37496613 100.000 0.000 219.561 37496613 100.000 0.000 19.901 0.434

2000 75 5 24835254 56840.030 24834948 73.000 2.1E-4 424.285 24835349 100.000 0.000 27.439 0.533

2000 75 6 45137702 44437.730 45137758 100.000 0.000 190.011 45137758 100.000 0.000 20.862 0.345

2000 75 7 25502503 57480.680 25502608 100.000 0.000 303.887 25502608 100.000 0.000 21.848 0.402

2000 75 8 10067752 52566.820 10067892 100.000 0.000 213.795 10067892 100.000 0.000 21.560 0.333

2000 75 9 14177079 55684.210 14171994 97.000 1.6E-5 329.877 14177079 100.000 0.000 32.008 0.482

2000 75 10 7815419 48717.480 7815755 78.000 8.7E-5 201.636 7815755 100.000 0.000 20.537 1.730

2000 100 1 37929562 57195.970 37929909 100.000 0.000 270.140 37929909 100.000 0.000 21.622 0.418

2000 100 2 33665281 57844.250 33647322 95.000 8.2E-5 490.736 33665281 100.000 0.000 34.322 0.548

2000 100 3 29951509 57198.420 29952019 34.000 0.003 923.360 29952019 100.000 0.000 23.249 0.436

2000 100 4 26948234 57484.560 26949268 100.000 0.000 440.690 26949268 100.000 0.000 23.800 0.542

2000 100 5 22040523 58316.780 22041715 70.000 3.0E-4 466.252 22041715 95.000 1.1E-5 23.346 6.286

2000 100 6 18868630 56282.860 18868887 100.000 0.000 339.878 18868887 100.000 0.000 22.315 0.387

2000 100 7 15850198 54333.570 15850597 100.000 0.000 358.472 15850597 100.000 0.000 22.555 0.399

2000 100 8 13628210 52206.350 13628967 100.000 0.000 231.923 13628967 100.000 0.000 22.250 0.356

2000 100 9 8394440 45817.310 8394562 97.000 2.2E-4 188.672 8394562 100.000 0.000 18.686 0.361

2000 100 10 4923413 38243.750 4923559 92.000 1.4E-4 124.031 4923559 100.000 0.000 15.041 0.913

#Bests 4 - 36 26 26 - 40 40 40 - -

Avg. 18088455 51695.754 18088299 89.150 0.001 329.650 18088900 99.875 0.000 22.730 0.735

3.5 Computational results on very large instances of Group III1

We now present the last experiment on the 40 very large instances of Group III2

with 5000 to 6000 variables with unknown optima. In addition to their size, the3

hardness of these instances is also ensured through the selection process when4

they were created (see Section 3.1). To measure the solution quality obtained5

24

by our IHEA algorithm, we used the method proposed in [6] to calculate upper 1

bounds Û2
CPT (the current tightest bounds), which was previously used in [37] 2

to evaluate their algorithms. The results of DP+PE [12] on these instances 3

are not reported since DP+PE requires intolerable amount of computing time 4

(indeed, we did not obtain any result with a time limit of one week). 5

Our IHEA algorithm was executed 100 times for each instance. Table 6 sum- 6

marizes the results: the best lower bound (column Best), the gap between the 7

upper bound Û2
CPT and the best lower bound in percentage (column GAP, 8

calculated by (Û2
CPT - Best)/Best × 100), success rate (column SR), relative 9

percentage deviation (column RPD), the average computational time for one 10

trial (column t(s)) and the average best solution time aver 100 trials (column 11

tb(s)). The last row (Avg.) indicates the average value of each column. From 12

Table 6, we observe that IHEA is able to attain high quality lower bounds for 13

all these large and difficult instances. These lower bounds are typically very 14

close to the corresponding upper bounds. Indeed, the average gap between the 15

best lower bound and the upper bound Û2
CPT is 1.359% for the whole instance 16

set. Moreover, IHEA achieves a success rate of 100% for 30 out of 40 instances 17

(75%). The average success rate across all instances is 87.675%. When we ex- 18

amine the computing time, the results are quite acceptable. Specifically, the 19

average run time for one trial is 174.075 seconds. The best solution time is 20

much shorter with an average value of 14.456 seconds. 21

4 Discussion 22

The computational outcomes and comparisons with state-of-the-art algorithms 23

presented in Section 3 demonstrated the effectiveness of the proposed IHEA 24

approach. In this section, we provide additional information to gain more in- 25

sights into the “hyperplane exploration” component (Section 4.1), and further 26

investigate two other important ingredients of the IHEA algorithm: the vari- 27

able fixing strategy (Section 4.2) and the perturbation strategy (Section 4.3). 28

To simplify the presentation of Sections 4.1 and 4.2, we used a subset of 8 rep- 29

resentative instances (see Table 7-8) from the 80 benchmarks of Group II [37]. 30

These instances cover all sizes and all densities of Group II. We denote this 31

subset of instances as Group ii. 32

4.1 Insight into the “hyperplane exploration” phase 33

To show the influence of the “hyperplane exploration” component on the ef- 34

ficiency of IHEA, we provide additional information on the 8 representative 35

instances of Group ii in Table 7 (complementary to Tables 4 and 5) includ- 36

25

Table 6
Computational results of IHEA on the 40 very large instances of Group III

INST. Best Gap(%) SR(%) RPD t(s) tb(s)

5000 25 1 23667450 2.729 100.000 0.000 130.664 1.973

5000 25 2 37914560 3.323 100.000 0.000 143.679 2.843

5000 25 3 68295820 1.718 100.000 0.000 126.904 2.668

5000 25 4 33866053 2.292 100.000 0.000 139.453 3.374

5000 25 5 9533115 5.409 100.000 0.000 111.366 3.227

5000 50 1 45194685 2.432 100.000 0.000 144.125 2.503

5000 50 2 88355678 0.830 100.000 0.000 143.188 2.488

5000 50 3 152447303 0.376 100.000 0.000 143.813 2.960

5000 50 4 171000228 0.915 100.000 0.000 148.015 3.392

5000 50 5 1187339 6.570 100.000 0.000 61.106 0.326

5000 75 1 28170819 1.230 100.000 0.000 105.745 1.674

5000 75 2 195434758 0.406 100.000 0.000 149.977 2.834

5000 75 3 64324704 0.970 76.000 3.9E-5 141.571 36.113

5000 75 4 247348595 0.796 100.000 0.000 144.213 2.942

5000 75 5 46462750 0.478 4.000 1.0E-4 136.119 45.054

5000 100 1 214425886 0.083 100.000 0.000 150.076 2.974

5000 100 2 18783132 0.367 100.000 0.000 76.661 1.164

5000 100 3 10784650 0.203 100.000 0.000 61.450 0.648

5000 100 4 160539947 0.065 100.000 0.000 153.082 2.780

5000 100 5 33166524 0.552 67.000 9.0E-5 105.708 38.976

6000 25 1 69832542 1.788 100.000 0.000 204.230 5.621

6000 25 2 3697236 5.232 100.000 0.000 123.770 2.797

6000 25 3 79300092 1.964 100.000 0.000 246.285 3.490

6000 25 4 191531304 0.276 87.000 1.2E-5 238.917 9.093

6000 25 5 36121510 1.423 100.000 0.000 208.762 3.447

6000 50 1 194344567 1.622 100.000 0.000 214.187 4.060

6000 50 2 323753804 0.376 66.000 9.6E-5 272.235 4.864

6000 50 3 31913824 2.502 100.000 0.000 220.343 3.015

6000 50 4 225556641 0.999 100.000 0.000 198.893 5.776

6000 50 5 40931924 1.885 100.000 0.000 186.351 6.849

6000 75 1 204512250 0.999 12.000 5.2E-5 267.433 86.722

6000 75 2 42422207 1.187 100.000 0.000 182.990 2.754

6000 75 3 524508156 0.477 60.000 3.4E-3 177.873 24.377

6000 75 4 197004931 1.083 100.000 0.000 220.513 4.100

6000 75 5 74350712 0.344 100.000 0.000 282.668 3.822

6000 100 1 292257056 0.069 100.000 0.000 219.599 4.054

6000 100 2 219791358 0.149 1.000 9.7E-4 257.679 122.758

6000 100 3 376967122 0.087 96.000 1.0E-6 266.202 46.105

6000 100 4 355609720 0.058 100.000 0.000 245.857 3.710

6000 100 5 686364195 0.100 38.000 4.2E-5 211.295 69.904

Avg. - 1.359 87.675 1.2E-4 174.075 14.456

ing the best hyperplane where IHEA locates the best solution (column k∗),1

the average dimension of the initial hyperplane (Avg.k0), the hyperplane di-2

mension lower bound (kLB), the hyperplane dimension upper bound (kUB)3

and the average number of hyperplanes explored (Avg.k). Table 7 shows that4

the average number of hyperplanes that IHEA explores is always less than 35

for these instances. There is one case where Avg.k is exactly 2 which means6

TabuSearch Engine finds improved solutions in the first hyperplane but not7

in the second. For the other 7 cases, TabuSearch Engine sometimes discov-8

ers improved solutions in the second hyperplane, which explains why their9

26

Table 7
Additional information of IHEA on the 8 representative instances of Group ii

INST. k∗ Avg.k0 kLB kUB Avg.k

1000 25 5 880 879.010 520 881 2.904

1000 50 8 627 626.000 242 627 2.928

1000 75 5 858 857.000 490 858 2.924

1000 100 6 796 796.000 397 796 2.000

2000 25 3 929 928.010 236 931 2.896

2000 50 5 1153 1152.000 378 1153 2.969

2000 75 9 864 863.000 207 864 2.967

2000 100 2 1154 1153.000 387 1154 2.970

Avg. 907.63 906.75 357.13 908.00 2.82

Avg.k value is more than 2 but less than 3. Based on this observation, we 1

conclude that each iteration of the “hyperplane exploration” phase of IHEA 2

typically explores a very limited number of hyperplanes which contributes to 3

its performance. To understand why such a small number of hyperplanes is 4

explored, we examine the initial hyperplane (Avg.k0). It can be seen that the 5

initial hyperplane is always equal or very close to the best hyperplane (see 6

column k∗). Indeed, there is 1 out of 8 cases where the initial hyperplane 7

is exactly the best hyperplane where the best solution is found, and 7 cases 8

where the initial hyperplane is only one dimension away from the best hyper- 9

plane. Moreover, Table 7 indicates that the dimension of the initial hyperplane 10

(column Avg.k0), which is always within the interval [kLB, kUB], is very close 11

to kUB. The difference between the average values of Avg.k0 and kUB is only 12

908.00-906.75.00=1.25. Similar observations can be made for other instances 13

of Group II. 14

4.2 Impact of the variable fixing strategy 15

As shown in Section 2.5, for a given hyperplane, IHEA has a “high quality” 16

solution as its input. Before exploring the hyperplane with tabu search, we 17

use the density criterion to fix a number of selected items (to the value of 18

1) and thus generate a reduced problem for tabu search. This variable fixing 19

strategy is motivated by the idea that selected items with high density in a 20

high quality solution are strongly determined and should not be destroyed 21

during tabu search. To verify the usefulness of this variable fixing strategy, 22

we conducted an experiment to compare IHEA with a variant IHEANoV F 23

where the variable fixing strategy is disabled (i.e., removing lines 15-17 from 24

Algorithm 1). As such TabuSearch Engine explores directly the search space 25

of CQKP [k] instead of RCP (Vfixed, CQKP [k], x
′
) (see Section 2.3). 26

We ran IHEA and IHEANoV F 100 times to solve all instances of Group II under 27

the same condition as before. We divide the whole instance set into 8 classes ac- 28

cording to the (n, d) combination. Table 8 summarizes the results. In addition 29

of the average best solution value (Avg.Best), average success rate (Avg.SR) 30

27

Table 8
Comparative results of IHEA and IHEANoV F on the benchmarks of Group II

IHEA IHEANoV FINST.
Avg.Best Avg.SR t(s) Avg.%FV Avg.%WFV Avg.Best Avg.SR t(s)

1000 25 2016960.700 100.000 5.489 0.928 0.000 2016960.700 99.400 101.332

1000 50 5118953.900 99.700 6.022 0.938 0.000 5118953.900 90.900 114.268

1000 75 5900793.200 100.000 6.390 0.932 0.000 5900793.200 83.100 120.730

1000 100 7476457.700 100.000 6.117 0.932 0.000 7476457.700 99.400 102.621

2000 25 7841340.400 100.000 22.244 0.964 0.000 7841340.400 99.400 591.328

2000 50 18617410.400 100.000 23.240 0.967 0.000 18617410.400 99.900 617.926

2000 75 24676371.600 100.000 22.718 0.967 0.000 24676368.000 88.600 546.975

2000 100 21220476.400 99.500 22.719 0.963 0.000 21220453.500 80.000 466.538

Avg. 11608595.538 99.900 14.367 0.949 0 11608592.225 92.587 332.715

and average total computing time (Avg.t(s)), we also list for IHEA the aver-1

age percentage of fixed variable (Avg.%FV) and average percentage of wrongly2

fixed variable (Avg.%WFV), where the percentage of the fixed variables is3

calculated by: #fixed variable/k × 100 and the percentage of wrongly fixed4

variable is calculated by: #wrongly fixed variable/#fixed variable × 100. The5

wrongly fixed variables are identified by comparing the fixed variables to the6

best known solution reported in Tables 4 and 5. The last row (Avg.) indicates7

the average value of some columns.8

Table 8 shows that IHEA performs better than IHEANoV F in terms of both9

average best solution value (Avg.Best) and average success rate (Avg.SR)10

for 2 out of 8 instance classes. For the remaining 6 instance classes where11

both algorithms achieve the same best results, IHEA always attains a higher12

average success rate than IHEANoV F . A Wilcoxon signed rank test with a13

significance factor of 0.05 was applied to these two groups of success rates14

and the resulting p-value of 0.001602 clearly shows that IHEA is significantly15

better than IHEANoV F . Moreover, when we examine the average computing16

time, we find that IHEA is 23 times faster than IHEANoV F (14.376 vs 332.71517

seconds). Such a drastic speed-up is achieved thanks to the fact that a large18

number of variables are fixed and few of them are wrongly fixed. Indeed,19

the average value of the average number of fixed variables in percentage (see20

column Avg.%FV) is 94.9% which means that 94.9% of the search space is21

eliminated on average, and the average number of wrongly fixed variables (see22

column Avg.%WFV) is always 0 which means no variable is wrongly fixed for23

these instances.24

4.3 Impact of the perturbation strategy25

IHEA uses a density based perturbation strategy to introduce a form of global26

diversification for a better exploration of the solution space (Section 2.7). To27

assess the impact of the adopted perturbation strategy, we conducted an ex-28

periment to compare the performance of IHEA with two variants IHEARDPT29

28

Table 9
Comparative results of IHEA with IHEARDPT and IHEANOPT on the 80 large
instances of Group II [37]. The values in bold denote the best results of row Sum.

IHEA IHEARDPT IHEANOPTINST.
Avg.Best Avg.SR Avg.t(s) Avg.Best Avg.SR Avg.t(s) Avg.Best Avg.SR Avg.t(s)

1000 25 2016960.700 100.000 5.489 2016960.700 96.200 7.649 2016958.100 78.300 0.134

1000 50 5118953.900 99.700 6.022 5118953.900 78.200 8.327 5118885.300 61.100 0.144

1000 75 5900793.200 100.000 6.390 5900793.200 98.400 9.218 5900733.000 75.700 0.149

1000 100 7476457.700 100.000 6.117 7476457.700 93.600 9.010 7476457.700 79.900 0.146

2000 25 7841340.400 100.000 22.244 7841340.400 89.900 31.684 7841340.400 57.900 0.569

2000 50 18617410.400 100.000 23.240 18617410.400 97.600 32.179 18617161.000 88.300 0.576

2000 75 24676371.600 100.000 22.718 24676371.600 97.500 31.554 24675823.000 81.100 0.563

2000 100 21220476.400 99.500 22.719 21220476.400 100.000 31.750 21218753.400 77.800 0.533

Avg. 11608595.538 99.900 14.367 11608595.538 93.925 20.171 11608263.988 75.012 0.352

and IHEANOPT . IHEARDPT randomly removes s selected items without con- 1

sidering their densities while IHEANOPT eliminates the perturbation phase 2

from IHEA. This experiment was also performed on the 80 instances of Group 3

II. As usual, each algorithm was executed 100 times on each instance. 4

Table 9 summarizes the results based on three indicators: 1) average best solu- 5

tion value (Avg.Best); 2) average success rate (Avg.SR); 3) average computing 6

time for one trial (Avg.t(s)). The last row of the table (Avg.) indicates the 7

average of the listed values of each column. From Table 9, we observe that 8

eliminating the perturbation phase from the IHEA algorithm causes a great 9

deterioration of its performance in terms of both best solution value and suc- 10

cess rate. Indeed, compared to IHEA and IHEARDPT , IHEANOPT achieved a 11

smaller average best solution (Avg.Best) value for 6 out of 8 instance classes 12

and even a smaller average success rate (Avg.SR) for all 8 classes. When com- 13

paring IHEARDPT with IHEA, one observes that, although IHEARDPT does 14

not deteriorate the best solution value, it is less stable than IHEA by achieving 15

a smaller average success rate for 7 out of 8 instance classes. A Wilcoxon signed 16

rank test with a significance factor of 0.05 was applied to compare the success 17

rates of IHEARDPT and IHEA, and the resulting p-value of 0.001602 discloses 18

that IHEARDPT is significantly worse than IHEA. Moreover, IHEARDPT re- 19

quired on average more computing time than IHEA (20.171 seconds v.s. 14.367 20

seconds). This experiment confirms that the perturbation phase of IHEA is 21

useful and the adopted density based strategy is effective. 22

5 Conclusions 23

This paper deals with the NP-hard Quadratic Knapsack Problem which is 24

a highly useful model in practice. To approximate this hard combinatorial 25

problem, we developed an iterated “hyperplane exploration” approach mixing 26

problem reduction techniques and local optimization with tabu search. The 27

proposed approach introduces a hyperplane constraint to the original QKP 28

29

model to generate a series of “interesting” hyperplane-constrained problems1

whose solution space represents a small subset of the original solution space2

of QKP. To further reduce the hyperplane-constrained problem, we employ3

specific variable fixing rules based on item density information to fix “strongly4

determined” variables. The dedicated tabu search procedure is then used to5

explore the reduced hyperplane-constrained problem. Finally a perturbation6

strategy is applied to help the search to escape from deep local optima.7

We assessed the performance of the proposed approach and presented com-8

parisons with three best performing methods on two sets of 180 well-known9

benchmark instances (up to 2000 items) and a set of 40 new instances (with10

5000 and 6000 items). The computational experiments showed that the pro-11

posed approach competes very favorably with the state-of-the-art algorithms.12

Specifically, IHEA consistently attained the known optimal solution with a13

100% success rate for all 100 small-sized benchmarks (with 100 to 300 ob-14

jects). For the set of 80 large benchmarks with 1000 and 2000 objects, IHEA15

discovered 6 improved results (new best lower bounds) and attained the re-16

maining 74 best known results. Encouraging results on 40 new very large in-17

stances (with 5000 and 6000 objects) additionally confirmed the effectiveness18

of our approach where the average gap between the best lower bound and the19

well known upper bound Û2
CPT is bounded by 1.359%. The experiments also20

showed that the proposed approach is more computationally effective than21

the existing heuristics. Furthermore, we performed additional experiments to22

gain insight into the “hyperplane exploration” component of the proposed ap-23

proach, and investigate the beneficial role of two key strategies of the proposed24

approach: the variable fixing strategy and the perturbation strategy.25

We comment that even if IHEA follows the common assumption of non-26

negative profits (see Section 2.2, Proposition 1), this is not a necessary condi-27

tion to apply it. Indeed, in the case of negative profits, Proposition 1 does not28

hold necessarily and as such the hyperplanes containing the optimal solutions29

can no more be bounded correctly. Nevertheless, IHEA can still be applied to30

locate high quality solutions within a set of promising hyperplanes which can31

be identified by any specific means. In this sense, the proposed IHEA approach32

is general and applicable to any QKP instance even though its performance33

may decrease for instances with negative profits.34

For future work, there are several interesting directions that could be inves-35

tigated. First, given the current IHEA algorithm, we can improve the hyper-36

plane exploration (tabu search) by introducing adaptive memory techniques37

based on recency and/or frequency information projection [19]. Some advanced38

search frameworks like path relinking and scatter search [16] could also be39

integrated to reinforce the tabu search engine. Generally, under the IHEA ap-40

proach, the task of hyperplane exploration can be performed by any effective41

search algorithm which can be either a heuristic or an exact solver. Second,42

30

it would be useful to investigate additional methods able to identify the most 1

“promising” hyperplanes and thus reduce the number of hyperplanes to be 2

explored. Finally, given that the idea of hyperplane decomposition is quite 3

general, it would be interesting to investigate its merit for solving other knap- 4

sack and related problems. 5

Acknowledgment 6

We are grateful to the reviewers for their insightful comments which helped 7

us to improve the paper. We would also like to thank Dr. Letchford and 8

Dr. Fomeni for providing us with their source code of [12]. The work was 9

partially supported by the LigeRo project (2009-2013, No. 012, Region of Pays 10

de la Loire, France) and the PGMO project (2014-0024H, Jacques Hadamard 11

Mathematical Foundation Paris). Support for Yuning Chen from the China 12

Scholarship Council is also acknowledged. 13

References 14

[1] Billionnet A, Calmels F. Linear programming for the 0-1 quadratic knapsack 15

problem. European Journal of Operational Research 1996; 92: 310-325. 16

[2] Billionnet A, Soutif E. An exact method based on Lagrangian decomposition for 17

the 0-1 quadratic knapsack problem. European Journal of Operational Research 18

2004; 157: 565-575. 19

[3] Birattari M., Yuan Z., Balaprakash P., Sttzle T. F-Race and iterated F-Race: 20

An overview. Experimental methods for the analysis of optimization algorithms 21

2010; Berlin, Germany: Springer, pp. 311-336. 22

[4] Boussier S., Vasquez M., Vimont Y., Hanafi S., Michelon P. A multi-level 23

search strategy for the 0-1 multidimensional knapsack problem. Discrete Applied 24

Mathematics 2010; 158(2): 97-109. 25

[5] Chaillou P., Hansen P., Mahieu Y. Best network flow bound for the quadratic 26

knapsack problem. Lecture Notes in Mathematics 1983; 1403:226-235. 27

[6] Caprara A, Pisinger D, Toth P. Exact solution of the quadratic knapsack 28

problem. INFORMS Journal on Computing 1999; 11: 125-137. 29

[7] Chen Y., Hao J.K. A “reduce and solve” approach for the multiple-choice 30

multidimensional knapsack problem. European Journal of Operational Research 31

2014; 239(2): 313-322. 32

[8] Dammeyer F., Voβ S. Dynamic tabu list management using the reverse 33

elimination method. Annals of Operations Research 1993; 41: 31-46. 34

31

[9] Dijkhuizen G, Faigle U. A cutting-plane approach to the edge-weighted maximal1

clique problem. European Journal of Operational Research 1993; 69: 121-30.2

[10] Feo T, Resende M.G.C. Greedy randomized adaptive search procedures. Journal3

of Global Optimization 1995; 2: 1-27.4

[11] Fleszar K., Hindi K.S. Fast, effective heuristics for the 0-1 multi-dimensional5

knapsack problem. Computers & Operations Research 2009; 36(5): 1602-1607.6

[12] Fomeni F.D., Letchford A.N. A dynamic programming heuristic for the7

quadratic knapsack problem. INFORMS Journal on Computing 2014; 26(1): 173-8

182.9

[13] Foster B.A., Ryan D.M. An integer programming approach to scheduling.10

Computer Scheduling of Public Transport (A. Wren, ed.). North-Holland11

Publishing Company 1981; 269-280.12

[14] Gallo G., Hammer P., Simeone B. Quadratic knapsack problems, Mathematical13

Programming Studies 1980; 12: 132-149.14

[15] Glover F. Heuristics for integer programming using surrogate constraints.15

Decision Sciences 1977; 8(1): 156-166.16

[16] Glover F., Laguna M. Tabu Search. Kluwer Academic Publishers, Boston, 1997.17

[17] Glover F., Hao J.K. The case for strategic oscillation. Annals of Operations18

Research 2011; 183(1): 163-173.19

[18] Glover F., Kochenberger G., Alidaee B., Amini M. Solving quadratic knapsack20

problems by reformulation and tabu search. single constraint case. Series on21

Applied Mathematics 2002; (14): 111-122, World Scientific Publishing Company.22

[19] Glover F., Lü Z.P., Hao J.K. Diversification-driven tabu search for23

unconstrained binary quadratic problems. 4OR - A Quarterly Journal of24

Operations Research 2010; 8(3): 239-253.25

[20] Hammer P.L., Rader D.J. Efficient methods for solving quadratic 0-1 knapsack26

problem. INFOR 1997; 35: 170-182.27

[21] Helmberg C, Rendl F, Weismantel R. A semidefinite programming approach to28

the quadratic knapsack problem. Journal of Combinatorial Optimization 2000; 4:29

197-215.30

[22] Johnson E, Mehrotra A, Nemhauser G. Min-cut clustering. Mathematical31

Programming 1993; 62: 133-151.32

[23] Julstorm B.A. Greedy, genetic, and greedy genetic algorithms for the33

quadratic knapsack problem. Genetic and Evolutionary Computation Conference,34

Washington DC, USA; 2005. pp. 607-614.35

[24] Kellerer H, Strusevich V.A. Fully polynomial approximation schemes for36

a symmetric quadratic knapsack problem and its scheduling applications.37

Algorithmica 2010; 57(4): 769-795.38

32

[25] López-Ibáñez M., Dubois-Lacoste J., Stützle T., Birattari M. The irace 1

package, iterated race for automatic algorithm configuration. Technical Report 2

TR/IRIDIA/2011-004, IRIDIA, Universit Libre de Bruxelles, Belgium. 3

[26] Martinelli R., Poggi M., Subramanian A. Improved bounds for large scale 4

capacitated arc routing problem. Computers & Operations Research 2013; 40(8): 5

2145-2160. 6

[27] Park K., Lee K., Park S. An extended formulation approach to the edge- 7

weighted maximal clique problem. European Journal of Operational Research 8

1996; 95: 671-82. 9

[28] Pisinger D. The quadratic knapsack problem-a survey. Discrete Applied 10

Mathematics 2007; 155: 623-648. 11

[29] Pisinger D, Rasmussen A.B., Sandvik R. Solution of large-sized quadratic 12

knapsack problems through aggressive reduction. INFORMS Journal on 13

Computing 2007; 19(2): 280-290. 14

[30] Sil M. Column generation techniques for pickup and delivery problems. Ph.D. 15

thesis, Technische Universiteit Eindhoven 1994. 16

[31] Usberti F.L., Frana P.M., Frana A.L.M. GRASP with evolutionary path- 17

relinking for the capacitated arc routing problem. Computers & Operations 18

Research 2013; 40(12): 3206-3217. 19

[32] Vasquez M., Hao J.K. An hybrid approach for the 0-1 multidimensional 20

knapsack problem. Proc. of the 17th International Joint Conference of Artificial 21

Intelligence (IJCAI-2001), Morgan Kaufmann, San Francisco, pp. 328-333. 22

[33] Wang Y., Lü Z.P., Glover F., Hao J.K. Backbone guided tabu search for solving 23

the UBQP problem. Journal of Heuristics 2013; 19(4): 679-695. 24

[34] Wilbaut C., Hanafi S. New convergent heuristics for 0-1 mixed integer 25

programming. European Journal of Operational Research 2009; 195(1): 62-74. 26

[35] Xie X., Liu J. A Mini-Swarm for the quadratic knapsack problem. IEEE Swarm 27

Intelligence Symposium, Honolulu, HI, USA; 2007. pp. 190-197. 28

[36] Xu Z. A strongly polynomial FPTAS for the symmetric quadratic knapsack 29

problem. European Journal of Operational Research 2012; 218(2): 377-381. 30

[37] Yang Z., Wang G., Chu F. An effective GRASP and tabu search for the 0-1 31

quadratic knapsack problem. Computers & Operations Research 2013; 40: 1176- 32

1185. 33

33

