

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/151047

Pan, Q.; Ruiz García, R.; Alfaro-Fernandez, P. (2017). Iterated search methods for earliness
and tardiness minimization in hybrid flowshops with due windows. Computers & Operations
Research. 80:50-60. https://doi.org/10.1016/j.cor.2016.11.022

https://doi.org/10.1016/j.cor.2016.11.022

Elsevier

Iterated search methods for earliness and tardiness
minimization in hybrid flowshops with due windows

Quan-Ke Pana, Rubén Ruizb,∗, Pedro Alfaro-Fernándezb

aState Key Laboratory of Digital Manufacturing Equipment & Technology in Huazhong
University of Science & Technology, Wuhan, 430074, P. R. China

bGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,
Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de

València, Camino de Vera s/n, 46021, València, Spain.

Abstract
In practice due dates usually behave more like intervals rather than specific
points in time. This paper studies hybrid flowshops where jobs, if completed
inside a due window, are considered on time. The objective is therefore the
minimization of the weighted earliness and tardiness from the due window.
This objective has seldom been studied and there are almost no previous works
for hybrid flowshops. We present methods based on the simple concepts of
iterated greedy and iterated local search. We introduce some novel operators
and characteristics, like an optimal idle time insertion procedure and a two
stage local search where, in the second stage, a limited local search on a exact
representation is carried out. We also present a comprehensive computational
campaign, including the reimplementation and comparison of 9 competing
procedures. A thorough evaluation of all methods with more than 3000
instances shows that our presented approaches yield superior results which
are also demonstrated to be statistically significant. Experiments also show
the contribution of the new operators in the presented methods.
Keywords: hybrid flowshop, due date window, heuristics, iterated local
search, iterated greedy

∗Corresponding author. Tel: +34 96 387 70 07. Fax: +34 96 387 74 99
Email addresses: 2281393146@qq.com (Quan-Ke Pan), rruiz@eio.upv.es (Rubén

Ruiz), pedro.al.fe@gmail.com (Pedro Alfaro-Fernández)

Preprint submitted to Computers & Operations Research June 22, 2016

1. Introduction1

Production scheduling is a very important step for manufacturing in-2

dustries. Production schedules obtained by manual methods or without op-3

timization techniques are known to have ample room for improvement as4

commented in Framinan et al. (2014). Therefore, using optimization methods5

results in large gains (McKay et al., 2002; Pinedo, 2012, among others). As a6

result, scheduling is a very active field inside operations research. Since the7

mid-fifties, thousands of papers have been published. However, the application8

of such research developments in real industry remains rare, or at least the9

proportion of papers tackling with realistic production settings is much lower10

that those papers dealing with simplified problem settings (MacCarthy and11

Liu, 1993; McKay et al., 2002; Ruiz and Maroto, 2006).12

Among the different types of scheduling problems, we are interested in13

what is probably the most commonly found situation in many industries,14

which is the combination of the parallel machines and flowshop problems.15

The addition of the two is usually referred to as hybrid flowshop and can16

be defined as follows: There is a set M of m ≥ 2 production stages where17

M = {1, . . . ,m}. The stages are disposed in series. At each stage i, i ∈M we18

have a set Mi of mi identical parallel machines where Mi = {1, . . . ,mi} and19

mi ≥ 1,∀i ∈ M and ∃i ∈ M,mi > 1. A set N of n jobs has to be processed20

on the stages. More precisely, each job j, j ∈ N visits first stage 1, then stage21

2 and so on until stage m. At each stage i, each job is to be processed by22

exactly one of the available mi parallel machines. As a result, a job is made23

up of m different tasks, one per stage. The processing time of any job j at24

any stage i is a positive integer denoted by pij. Jobs are processed without25

interruptions.26

The hybrid flowshop or HFS in short has attracted a lot of interest in27

the literature, given its potential practical applications. As such, there are28

several reviews published. Some of them are Linn and Zhang (1999), Vignier29

et al. (1999), Wang (2005), Quadt and Kuhn (2007) and more recently Ribas30

et al. (2010) and Ruiz and Vázquez-Rodríguez (2010). According to these last31

two most recent hybrid flowshop reviews, by far the most commonly studied32

optimization criterion is the minimization of the makespan or (Cmax), defined33

as Cmax = maxnj=1 Cj where Cj is the time at which job j is finished at stage34

m. Cj is commonly referred to as the completion time of job j. The HFS with35

makespan criterion can be represented as ((PM (i))mi=1)//Cmax, following the36

well known and accepted three field notation of Graham et al. (1979) and37

2

the extension for hybrid flowshops proposed by Vignier et al. (1999). Note38

that there are further assumptions stemming from the flowshop nature of39

the problem, these are well known and are detailed elsewhere, for example40

in Naderi et al. (2010) or in Framinan et al. (2014). In the HFS for each job41

and stage we have to decide to which machine the job is assigned. Then, for42

each machine at each stage, a sequence for the processing of the assigned43

jobs has to be determined. The simplest possible HFS with only two stages44

where one stage has one single machine and the other has just two parallel45

machines was shown to be NP-Hard by Gupta (1988). As a result, the best46

state-of-the-art exact techniques can only cope with small problems with47

few stages, machines and jobs. For real-sized problems metaheuristics are48

currently the most promising solution approach.49

While makespan minimization is the most studied objective in the schedul-50

ing literature, accounting for more than 60% of the published papers in51

the HFS according to the study of Ruiz and Vázquez-Rodríguez (2010), it52

is not the most appropriate objective to study nowadays. As explained in53

Framinan et al. (2014), makespan minimization increases machine utilization,54

which made sense in the early days of manufacturing where costs had to55

be minimized and production used to be the bottleneck. Presently, service56

level objectives are much more important. We define by dj the due date of57

job j, j ∈ J . If Cj > dj then job j is tardy by Cj − dj units of time. The58

tardiness of job j is Tj = max{Cj − dj, 0} and the total tardiness objective59

is TT = ∑n
j=1 Tj. About 6% of the published research in HFS considers this60

objective. Additionally, not all jobs are equally important. Therefore, we can61

use a weighted tardiness version by defining wj as the weight of job j, j ∈ J62

and the total weighted tardiness objective as TWT = ∑n
j=1 wjTj. About 2%63

of the reviewed literature in Ruiz and Vázquez-Rodríguez (2010) consider this64

objective. Note that when Cj < dj the tardiness is always 0 regardless of how65

small Cj is. In real problems, finishing products early results in tied up inven-66

tory and financial burden. A possibility is to account for the earliness as well,67

defined as Ej = max{dj − Cj, 0} or TWE = ∑n
j=1 w

′
jEj with weights. Note68

the different weight for earliness w′j and tardiness wj. Minimizing earliness69

only potentially negates the tardiness and the solution is to minimize the70

total earliness and tardiness or TWET = ∑n
j=1

(
w′jEj + wjTj

)
. Only 1% of71

the reviewed literature reviewed in Ruiz and Vázquez-Rodríguez (2010) deal72

with this objective and most of the time without weights. Furthermore, the73

introduction of earliness into the objective results in a non-regular function74

3

with enormous implications as the objective function value can be improved75

by arbitrarily delaying the start or completion time of jobs at machines and76

semi-active schedules no longer contain the optimal solution.77

Due dates that represent a specific point in time are not realistic (Sabun-78

cuoglu and Lejmi, 1999). Real due dates are actually due windows. Within79

the window the job is considered to be delivered on time. Therefore, we80

define job’s j due window as
[
d−j , d

+
j

]
. Earliness and tardiness are redefined to81

consider this window as T dwj = max{Cj − d+
j , 0} and Edw

j = max{d−j −Cj, 0},82

respectively. The objective function that we consider is therefore the min-83

imization of the weighted earliness and tardiness from a distinct due date84

window for each job, with different weights for earliness and tardiness or85

TWET dw = ∑n
j=1

(
w′jE

dw
j + wjT

dw
j

)
. The full problem studied is then de-86

noted as ((PM (i))mi=1)//TWET dw and we will refer to it as HFSDW in short.87

The result is a more realistic problem that might capture more easily industrial88

practice with the consideration of a more real objective function where not89

only the tardiness is considered but also earliness to avoid stocking product90

way before due dates. Distinct due dates for each job and different weights91

for earliness and tardiness allow practitioners to transfer to the objective92

priorities, rush orders and many other situations. Additionally, the important93

consideration of due windows also captures the reality where some jobs might94

have a tight due window of only one morning during the week whereas other95

jobs might be finished without penalties in longer time frames of several days.96

From the complexity hierarchies of objective functions given in Pinedo (2012)97

we conclude that the studied problem in this paper is NP-Hard since the98

makespan version already belongs to this complexity class. Note that we99

could reach the same conclusion by considering that single machine problems100

with due-windows are already NP-Hard. To the best of our knowledge, the101

problem studied in this paper with the TWET dw objective function has102

not been considered in the literature to this date. In this paper we propose103

simple methods based on Iterated Local Search and on Iterated Greedy for104

solving the problem. The choice of simple methods is mainly due to reasons:105

First, simple methods are easier to understand, implement and extend to106

other problem variants. They have fewer parameters and the results are easy107

to replicate. Second, recent studies in many different scheduling problems108

(Urlings et al., 2010b; Naderi et al., 2010; Framinan et al., 2014) indicate109

that simple methods give state-of-the-art results when compared to more110

complex approaches. As a result, these simple methods are easily transferable111

4

to industries.112

The remainder of this paper is organized as follows. In the next section113

we briefly review the related literature. Sections 3 and 4 describe in detail114

the proposed methods, which are later comprehensively tested in Section 5.115

Finally, section 6 gives some concluding remarks and further research.116

2. Literature review117

Only 1% of the papers reviewed by Ruiz and Vázquez-Rodríguez (2010)118

dealt with hybrid flowshop problems and earliness tardiness objectives (not119

considering due windows). This includes Chang and Liao (1994) and Liu and120

Chang (2000) where a TWET objective is considered in a linear combination121

with other objectives. Janiak et al. (2007) also combine earliness and tardiness122

(ET) with other functions. Finke et al. (2007) presented Tabu Search methods123

to solve the HFS problem with ET objectives in a simplified setting where124

job to machine assignments are given. Khalouli et al. (2010) presented an125

Ant Colony Optimization (ACO) method for the HFS with TWET objective.126

Behnamian et al. (2010a) presented a complex hybrid of population based127

methods, ACO, Simulated Annealing and Variable Neighborhood Search128

for the same problem but with the addition of sequence dependent setup129

times. A similar work is that of Behnamian et al. (2010b) where in this case130

Particle Swarm Optimization is used for a related problem of group scheduling.131

More recently, Behnamian and Zandieh (2013) have included learning effects132

into the problem. To the best of our knowledge, no other studies deal with133

ET in HFS. Other less closely related works are those of Jolai et al. (2009)134

where a no-wait hybrid flowshop with a common due date window is studied135

with maximization of the profit for processing jobs. Sheikh (2013) adds the136

earliness-tardiness criterion to the previous problem. Lastly, Pan et al. (2013)137

studies a real problem in the steelmaking industry considering, among other138

things, earliness an tardiness criterion. Most existing research in the hybrid139

flowshop literature considers, as mentioned, makespan or tardiness objectives,140

as in Jun and Park (2015) but not earliness-tardiness.141

As regards due windows, most existing research has been carried out142

on single machine problems. Starting with the work of Cheng (1988) where143

the single machine with a common due window for all jobs is studied. Two144

machine flowshop problems with common due windows are studied in Yeung145

et al. (2004). The combination of hybrid flowshops and due windows, as stated146

previously is almost non-existent in the literature. We only find recent related147

5

papers, the first one by Huang and Yu (2013) which study a two stage hybrid148

flowshop with distinct due windows and an objective function which is a linear149

combination of makespan, ET without weights. In the second paper, the150

same authors Huang et al. (2014) introduce reentry of jobs into the problem.151

These two papers disregard different weights for the jobs and for the earliness152

and tardiness and only consider two stages in the hybrid flowshop. Therefore153

and as we can see, the general hybrid flowshop with m stages and TWET dw154

objective has not been yet considered in the literature.155

3. Iterated Local Search method156

Iterated Local Search (ILS) is, as the name implies, an iterative method157

that, starting from an initial solution, applies a local search to obtain a local158

optimum. Then a perturbation is applied to escape from it. The process iterates159

with the application of local search again to obtain a new local optimum.160

The procedure is simple to code. This is ideal for scheduling problems as161

there are many potential variations and objectives. ILS is a natural choice162

for scheduling problems given its past achievements. For example, for the163

flowshop problem with makespan criterion, the ILS of Stützle (1998) is one164

of the best methods according to the evaluation of Ruiz and Maroto (2005)165

and as detailed in Lourenço et al. (2010) for problems like the single machine166

with total weighted tardiness criterion, parallel machines, jobshop, graph167

bipartitioning and MAX-SAT, etc. Lastly, Naderi et al. (2010) obtained the168

best results for a type of HFS problem with a variant of ILS. As a result,169

ILS is a promising approach to be applied to the HFSDW problem studied170

in this paper. We choose the simplest memory-less ILS variant, outlined171

in Figure 1. Basically all we need is a way to represent a solution for the

procedure ILS
π0 := GenerateInitialSolution
π := LocalSearch(π0)
while (termination criterion not satisfied) do
π′ := Perturbation(π)
π′′ := LocalSearch(π′)
π := AcceptanceCriterion(π′′, π)

endwhile
end

Figure 1: Iterated Local Search (ILS) method (Lourenço et al., 2010).
172

HFSDW problem, an initialization procedure, local search, perturbation and173

acceptance criterion. These components are detailed in the following sections.174

6

3.1. Solution representation175

As discussed in Ruiz and Maroto (2006) there are several possible solution176

representations for the HFS. The most direct representation would be to177

have a list of jobs for every machine at each stage and then to decide the178

start and completion times of each job at each machine. Of course, such179

an exact representation would result in a very large search space and more180

compact approaches are desirable. Different representations for complex HFS181

problems were explored by Urlings and Ruiz (2007) and by Urlings et al.182

(2010a) where it was demonstrated that the more detailed the representation,183

the worse the results. Indirect representations employ surrogate heuristics as184

decoding procedures for completing the solution and the outcome is usually185

a much better solution than with a direct representation. As a result, the186

vast majority of the literature uses an indirect permutation representation.187

This job permutation indicates the order in which the jobs are going to be188

processed in the first stage of the HFS. The machine assignment decision is189

left for a dispatching rule. Many rules are proposed in Urlings et al. (2010a),190

however, for the HFS with identical parallel machines, the most common is191

the well known First Available Machine of FAM. Let us suppose we have a192

solution represented by a permutation of jobs π = (π1, π2, . . . , πn), where πj193

denotes the job occupying position j in the permutation. At the first stage194

we have to decide to which machine we assign job π1. Since all machines are195

free, we assign it to machine 1 at the first stage. Then jobs π2 through πn are196

assigned to the machine that is available at the earliest time. When all jobs197

have been completed at stage 1 we proceed with stage 2 through stage m.198

Note that jobs can finish at different times so instead of using permutation199

π to decide the launch order of jobs for the remaining stages we order the200

jobs according to their completion times at the previous stage. Therefore,201

π(i) =
(
π

(i)
1 , π

(i)
2 , . . . , π(i)

n

)
is the permutation that indicates the order in which202

the jobs will be processed at stage i. This order is obtained by sorting the203

jobs in ascending completion times at stage i− 1, where π(1) = π. After the204

jobs are sorted, the FAM rule is applied again for machine assignment. It is205

important to note that during sorting, ties might occur with jobs having the206

same completion time at a given stage. To break ties, we favor the job with207

the smallest slack in the due date: d+
j −Ci−1,j . The computational complexity208

of this decoding method is O(n∑m
i=1 mi +m log(n)). Note that ∑m

i=1 mi > m209

or otherwise we would not have a HFS problem so the complexity is then210

O(n∑m
i=1 mi).211

212

7

Let us give an example of the decoding method. We have a HFSDW
problem with five jobs and two stages, where each stage contains two machines.
The processing times, due windows and earliness and tardiness weights are
the following:

(pi,j)2×5 =
(

4 3 6 2 1
5 4 1 1 4

)
,

(
d−j
d+
j

)
1×5

=
(

8 7 10 7 9
10 9 11 10 11

)
,(

w′j
wj

)
1×5

=
(

1 2 1 3 1
2 1 2 1 3

)

Now let us decode solution π = (1, 2, 3, 4, 5). At the first stage job 1 is assigned213

to machine 1 with completion time C1,1 = 4, job 2 to machine 2 with C1,2 = 3.214

Job 3 is assigned to the first available machine (2), so C1,3 = 3 + 6 = 9. For215

job 4 the first available machine is 1 and C1,4 = 4 + 2 = 6. For job 5 we216

have C1,5 = 6 + 1 = 7. For the second stage jobs do not finish in the same217

order in which they were launched and after ordering the jobs by increasing218

completion times the permutation is π(2) = (2, 1, 4, 5, 3). Applying the same219

process and considering the completion times at the previous stage, job 2 is220

assigned to machine 1 with C2,2 = 7, job 1 to machine 2 (C2,1 = 9), job 4 to221

machine 1 (C2,4 = 8), job 5 to machine 1 (C2,5 = 12) and job 3 to machine 1222

(C2,3 = 10). We calculate the earliness and tardiness with the job completion223

times (C1 = 9, C2 = 7, C3 = 10, C4 = 8 and C5 = 12). Jobs 1 through 4224

complete within their respective due windows and the only tardy job is 5225

with one unit of tardiness. Given that w5 = 3 the objective function value226

for this solution π is ∑n
j=1

(
w′jE

dw
j + wjT

dw
j

)
= 3. The Gantt chart for this227

solution is given in Figure 2.228

3.2. Idle time insertion method229

After decoding, jobs are scheduled as soon as possible in all machines in a230

semi-active schedule and many jobs will potentially complete way before their231

due windows, resulting in high earliness penalties. Therefore, a procedure232

to schedule the different tasks closer to their due windows is needed. The233

insertion of idle times is common in the earliness-tardiness literature. However,234

as we have seen from Section 2, little has been done in the HFS in this235

regard. We present an idle time insertion procedure that is applied after236

the decoding method. We will show that the proposed procedure results in237

optimal completion times once the sequence of jobs for each machine is given.238

Note that there are other exact methods to insert idle time in scheduling239

8

1

2

l

1

2

3

3

4

4

C1,1 = 4

5

1

2

1

i

2

2

1

0

1 2 3 4 5 6 7 8 9 10 11 12

C1,2 = 3

C1,4 = 6

C1,3 = 9

C1,5 = 7

5

C2,2 = 7

C2,4 = 8

C2,5 = 12

C2,3 = 10C2,1 = 9

Figure 2: Gantt chart for permutation π = (1, 2, 3, 4, 5) in the example.

problems with earliness and tardiness, most notably the one proposed by240

Hendel and Sourd (2007). This kind of methods are commonly referred to as241

timing algorithms (Sakuraba et al., 2009). However, most of these methods242

are not fast enough to be used for solution decoding. The procedure is loosely243

inspired by the Net Benefit of Movement (NBM) by Tseng and Liao (2008) on244

a type of flowshop lot-streaming problem and is an extension of the right sub-245

block move of Kedad-Sidhoum and Sourd (2010) that was initially proposed246

for the single machine earliness-tardiness minimization problem without due247

windows.248

The procedure is applied to all machines in the last stage of the hybrid249

flowshop. Since jobs have been scheduled as soon as possible, only by forward250

movements or by right shifting we can improve the objective function, i.e., by251

the insertion of idle time before starting jobs. Given any machine in the last252

stage we will have jobs or blocks of consecutive jobs separated by idle times.253

Let us refer to any of these blocks of jobs as SM . Now we divide the jobs in SM254

into three different subsets: Jobs that are early or SE = {j|Ej > 0, j ∈ SM},255

jobs that are tardy or ST = {j|Tj ≥ 0, j ∈ SM} and jobs that are on time,256

finishing within the due window or SD =
{
j|Cj ≥ d−j , Cj < d+

j , j ∈ SM
}
. Note257

that the minimum idle time insertion is one unit, that is why a job j with258

Cj = d+
j while on time and not tardy, is included in ST since it would be259

tardy after inserting just one unit of idle time. Now if all the jobs in SM are260

moved forward one unit, the earliness will decrease by ∑j∈SE
w′j . At the same261

time, the tardiness will increase by ∑j∈ST
wj. Therefore, we have a simple262

way of deciding if idle time should be inserted before SM which is if the gains263

in earliness are greater than looses in tardiness, i.e., ∑j∈SE
w′j >

∑
j∈ST

wj.264

9

Actually we can keep inserting idle time until either the sets SE or ST change.265

Instead of inserting units one by one we can calculate the maximum possible266

idle time insertion for SM as ∆1 = min
{

minj∈SE
{Ej} ,minj∈SD

{
d+
j − Cj

}}
.267

Insertion of more than ∆1 units of idle time results in either a job moving268

from SD to ST and/or a job moving from SE to SD. Additionally, there might269

be another block of jobs after SM so we denote by ∆2 the idle time in between270

both blocks. Considering all of the above, the maximum idle time insertion271

before a block SM is ∆ = min {∆1,∆2}. This procedure is applied to all272

blocks of jobs at all machines in the last stage, starting from the last job273

and considering one job at a time. Let us now formalize it. We denote nl274

to the number of jobs assigned to machine l inside the last stage m. Also,275

γl = {γ1,l, γ2,l, . . . , γnl,l} is the partial permutation of the jobs assigned to276

machine l. The pseudocode of the idle time insertion procedure is given in277

Figure 3. While the procedure looks intricate, it is actually very efficient.

procedure IdleTimeInsertion(π)
for l := 1 to mm do
j := nl
while j > 0 do
Construct a block of jobs SM starting from job γj,l
if there is a job to the right of SM then Calculate idle time ∆2
else ∆2 := +∞
Generate SE , SD and ST from SM
if
∑
j∈SE

w′j >
∑
j∈ST

wj then
Calculate ∆1 = min

{
minj∈SE

{Ej} ,minj∈SD

{
d+
j − Cj

}}
Insert ∆ = min {∆1,∆2} time units before SM
Set Cm,k = Cm,k + ∆,∀k ∈ SM
Set Ek = Ek −∆,∀k ∈ SE
Set Tk = Tk + ∆,∀k ∈ ST

else j := j − 1
endwhile

endfor
end

Figure 3: Idle time insertion procedure.
278

The outer loop goes for all machines in the last stage and the inner loop for279

all jobs assigned to each machine. In total there are n jobs assigned to the280

different machines. The calculation of ∆1 also requires traversing all jobs so281

in the worst case the computational complexity of the idle time insertion282

heuristic is O(n2).283

The previous procedure can be trivially extended to insert idle times into
all stages. However, for simplicity and as this would not improve the objective

10

function value and would increase the computational times, it is not carried
out in this paper. This idle time insertion procedure is a significant extension
to parallel machines and due windows of the Net Benefit of Movement (NBM)
of Tseng and Liao (2008). The authors proved NBM to be optimal for inserting
idle time in the last machine of a lot-streaming flowshop. Since we apply the
same principle to all machines in the last stage of the HFS, it follows that it
is also optimal. We proceed now with an example with eight jobs focused on
only one machine among the mm parallel machines at the last stage m:

(Cj)1×8 = (61, 65, 69, 75, 82, 86, 92, 97) ,(
d−j
d+
j

)
1×8

=
(

62 67 70 74 79 88 93 97
64 68 72 76 81 90 95 99

)
,(

w′j
wj

)
1×8

=
(

1 2 1 3 1 2 1 4
2 1 2 1 2 1 2 3

)

The initial schedule is shown in Figure 4a where π = (1, 2, 3, 4, 5, 6, 7, 8). Jobs284

1, 2, 3, 6 and 7 are early (E1 = 1, E2 = 2, E3 = 1, E6 = 2, E7 = 1). Jobs 4 and285

8 finish on time and job 5 is tardy (T5 = 1). Therefore, TWET dw = 13. The286

procedure starts with the last job. Job 8 finishes on time, therefore j := j − 1287

and job 7 is considered. Job 8 is to the right of this SM and the idle time288

is ∆2 = 1. Job 7 is early so we insert one unit of idle time before it. SM is289

recalculated. Jobs 7 and 8 form a block and SM = {7, 8}. Now both jobs290

7 and 8 are on time. Job 6 is now considered. It is 2 units early. ∆2 = 1291

due to jobs 7 and 8. After inserting one unit of idle time before job 6 we292

recalculate completion times, earliness and tardiness. The resulting schedule293

is shown in Figure 4b with an improvement in the TWET dw of 3 units. Now294

SM has changed to SM = {6, 7, 8}. There is no job/block to the right of this295

SM so ∆2 = +∞. From the jobs in SM , SE = {6} and SD = {7, 8} and296

there are no tardy jobs. ∆1 = min {min {1} ,min {95− 93, 99− 97}} = 1, so297

∆ = 1 which is what we insert before job 6, resulting in the schedule shown298

in Figure 4c. The solution is further improved by 2 units. After this all three299

jobs in the block are on time. Then we consider job 5, which is late. The300

next job is 4, forming a block with 5. As job 4 is on time, delaying this block301

is not advisable. We deal with job 3, forming a block with 4 and 5. Now302

SM = {3, 4, 5}, SE = {3}, SD = {4} and ST = {5} so we calculate if inserting303

idle time is profitable: ∑j∈SE
w′j = 1 and ∑j∈ST

wj = 2 so there is no gain.304

We include job 2 in the block which is early and its earliness weight is 2 so,305

11

together with job 3 makes the movement advisable. The procedure continues306

in a similar way until all jobs are considered.307

The final schedule is given in Figure 4d.308

1 2 3 4

62 64 67 68 70 72 74 76 79 81 88 90 93 95 97 99

d1 d6d1 + d2 d2 + - d3 d3 - + d4 d4 - + d5 d5 - + d6 d7 d7 d8 d8 - + - + - +

5 6 7 8

56 61 65 69 75 82 84 86 92 9793

(a) Initial schedule. TWET dw = 13.

1 2 3 4

62 64 67 68 70 72 74 76 79 81 88 90 93 95 97 99

d1 d6d1 + d2 d2 + - d3 d3 - + d4 d4 - + d5 d5 - + d6 d7 d7 d8 d8 - + - + - +

5 6 7 8

56 61 65 69 75 82 85 87 9793

(b) Insertion of 1 unit of idle time before job 7 and then 6. TWET dw = 10.

1 2 3 4

62 64 67 68 70 72 74 76 79 81 88 90 93 95 97 99

d1 d6d1 + d2 d2 + - d3 d3 - + d4 d4 - + d5 d5 - + d6 d7 d7 d8 d8 - + - + - +

5 6 7 8

56 61 65 69 75 82 86 88 9894

(c) After inserting 1 unit of idle time before jobs 6, 7 and 8. TWET dw = 8.

1 2 3 4

62 64 67 68 70 72 74 76 79 81 88 90 93 95 97 99

d1 d6d1 + d2 d2 + - d3 d3 - + d4 d4 - + d5 d5 - + d6 d7 d7 d8 d8 - + - + - +

5 6 7 8

57 62 66 70 76 83 86 88 9894

(d) After inserting 1 unit of idle time before jobs 1 to 5. TWET dw = 6.

Figure 4: Gantt charts for the example application of the idle time insertion procedure.

3.3. Initialization309

We select quick and reasonable heuristics for the initialization of the310

proposed methods. For problems with earliness and tardiness criterion, three311

dispatching rules are commonly used. The first one is the well known Earliest312

Due Date or EDD where jobs are simply sorted in increasing order of their due313

dates, i.e., the EDD produces a permutation of jobs π = {π1, π2, . . . πn} so that314

d+
π(j)
≤ d+

π(j+1)
, j = 1 . . . , n− 1 where π(j) denotes the job occupying the j-th315

position in the permutation. The second dispatching rule is the smallest slack316

on the last machine or LSL. Here we consider the processing times of the jobs at317

the last stage and sort them according to d+
π(j)
− pm,π(j) ≤ d+

π(j)
− pm,π(j+1) , j =318

12

1 . . . , n − 1. The third and last rule is the overal slack time or OSL. It319

is a generalization of the previous rule in which the slack is calculated320

with respect to the processing times at all stages, i.e., d+
π(j)
−∑m

i=1 pi,π(j) ≤321

d+
π(j)
−∑m

i=1 pi,π(j+1) , j = 1 . . . , n− 1. All these heuristics are very fast needing322

only O(n log n) steps. We calculate all three given permutations and after323

decoding and idle time insertion we keep the best solution as an initial schedule324

for the proposed methods.325

3.4. Local Search326

After initialization (and also after the perturbation phase inside the main327

loop, which is explained in next Section), a local search is carried out. We apply328

a two stage local search. The first one works over the indirect representation329

of a solution in the insertion and interchange neighborhoods. These two330

neighborhoods are explored inside a simple Variable Neighborhood Descent331

(VND) method. The application of VND with these two neighborhoods has332

produced state-of-the-art performance in a number of flowshop and hybrid333

flowshop problems as detailed in Tasgetiren et al. (2007) and Naderi and334

Ruiz (2010). The procedure is simple, we take a solution π and apply a335

single insertion movement, i.e., a job is randomly selected, extracted from its336

position and inserted in another random position in the sequence. The new337

permutation is decoded and the idle time insertion procedure is applied. If338

the solution is not improved, in the next iteration a random interchange of339

jobs is carried out. If improvements are found we go back to the insertion340

movement as depicted in the simple VND procedure of Figure 5. Note that we

procedure VND(π, loopmax)
loop := 1
while loop < loopmax do
Ncounter := 1
while Ncounter < 3 do
if Ncounter = 1 then π′ =InsertionMovement(π)
if Ncounter = 2 then π′ =InterchangeMovement(π)
if TWET dw(π′) < TWET dw(π) then
π = π′

Ncounter := 1
else Ncounter := Ncounter + 1

endwhile
loop := loop+ 1

endwhile
end
Figure 5: Variable Neighborhood Descent sampling local search in the permutation space.

13

341

do not explore the whole insertion and interchange neighborhoods, as doing342

so, together with the solution decoding and idle time insertion procedure,343

would result in a very slow local search mechanism. Alternatively, both344

neighborhoods are iteratively explored until no improvements are found for345

loopmax iterations, this being a parameter of the local search.346

As we mentioned in Section 3.1, an indirect representation gives better347

results. Still, with an indirect representation some potentially good solutions348

are left unexplored. This fact was examined by Urlings and Ruiz (2007)349

in their shifting representation search method. For our research, instead of350

changing the representation we propose a second stage local search procedure351

that works in the exact or complete representation. A similar local search352

was presented by Pan et al. (2014) but for a problem with makespan criterion353

and no due windows.354

An exact or complete representation is an ordered list of jobs for each355

machine at each stage. The neighborhood to explore is the result of extracting356

a job from a position at a given machine and inserting it into all other positions357

of that machine and all positions of the other machines in the same stage. In358

total this means there are ∏m
i=1 n(n− 1)(mi− 1) neighbors of a given solution359

considering all stages, which is challenging to explore effectively. Instead we360

focus on a characteristic of the HFS problem at hand. Let us picture the361

schedule given for the example in Figure 2. Machine 1 at stage 2 completes362

job 2 at time 7 (C2,2 = 7). The decoding procedure schedules job 4 afterwards363

since that machine is free before machine 2 (which is processing job 1) and also364

because jobs are selected according to the completion times at the previous365

stage, i.e., π(2) = (2, 1, 4, 5, 3). However, we observe that at time 7, when we366

schedule job 4 according to π(2), job 5 was already finished at the first stage367

and could have been scheduled as well. If we had done so, job 5 would have368

been scheduled after job 2 on machine 1 of stage 2, with a completion time of369

C2,5 = 11. Then jobs 4 and 3 are assigned, following the decoding procedure,370

to machine 2 of stage 2 with completion times C2,4 = 10 and C2,3 = 11,371

respectively. This schedule does not generate any idle time (which would372

cause problems in downstream stages) and considering these new completion373

times all jobs finish within their due windows and TWET dw = 0. Therefore,374

the idea to exploit is not to examine the complete neighborhood, but only375

these situations where several jobs are ready to be scheduled and different376

solutions can be obtained by making different choices of which job should be377

scheduled first, without incurring in additional idle times. Let us now define378

14

procedure FindLimitedNeighbors(i, π(i))
M := ∅
for j := 1 to n− 1 do
Find first available machine l∗ =

m
argmin
l=1

{εl} at stage i

h := j + 1
while C

i−1,π(i)
h

≤ εl∗ do
δ(i) := exchange jobs π(i)

j and π(i)
h in permutation π(i)

M := M ∪
{
δ(i)}

h := h+ 1
endwhile
Assign job π(i)

j to machine l∗

C
i,π

(i)
j

= max
{
εl∗ , Ci−1,π(i)

j

+ p
i,π

(i)
j

}
εl∗ = C

i,π
(i)
j

endfor
end

Figure 6: Procedure to find limited neighbors used in the decoding.

this limited neighborhood structure. As stated, π(i) =
(
π

(i)
1 , π

(i)
2 , . . . , π(i)

n

)
379

is the job permutation generated for stage i after sorting the jobs by their380

completion times at stage i − 1, where i ≥ 2. Recall that the decoding381

procedure will assign jobs to the first available machine at stage i following382

permutation π(i). We define by εl the availability time of machine l inside383

stage i (the time at which it completed its last assigned job). Therefore, the384

machine with the earliest availability time is l∗ =
m

argmin
l=1

{εl}. Let us assume385

that from this permutation and at the earliest availability time among all386

machines, jobs π(i)
j , π

(i)
j+1, . . . , π

(i)
j+k were completed in stage i − 1 before εl∗ ,387

i.e., C
i−1,π(i)

h

≤ εl∗ ,∀h ∈ j, j + 1, . . . , j + k. Then a neighboring solution of π(i)
388

is the one that results from exchanging jobs π(i)
j and π(i)

j+k,∀j ∈ 1, . . . , k in389

the permutation π(i). All these neighbors can be extracted easily during the390

decoding method by using the algorithm depicted in Figure 6. The second391

stage local search based on this neighborhood consists of extracting and392

evaluating all M neighbors stage by stage. The complete procedure is detailed393

in Figure 7. The limited local search is applied only once after the VND394

search has obtained a complete solution. At every step, the idle time insertion395

procedure is applied. The local search step given in the pseudocode of Figure 1396

is just the consecutive application of the VND given in Figure 5 and the local397

search based on the limited exact representation of Figure 7.398

15

procedure LimitedLocalSearch(π)
for i := 2 to m do
M :=FindLimitedNeighbors(i, π(i))
while |M | > 0 do
δ(i) := extract permutation from M
Schedule stage i according to δ(i)

Schedule stages i+ 1, i+ 2, . . . ,m using the decoding method
if TWET dw(δ(i)) < TWET dw(π) then π(i) = δ(i)

endwhile
endfor

end
Figure 7: Second stage local search based on the limited exact representation space.

3.5. Perturbation399

The perturbation step is central to the ILS procedure (Lourenço et al.,400

2010). The perturbation disrupts the solution, moving it away in the solution401

space, to a new region, with the hope of finding a higher quality solution.402

We combine the simplicity of the random movements presented in Stützle403

(1998) with the enhancements given in Naderi et al. (2010). More precisely,404

we carry out a random number ω of job insertions and interchanges in the405

permutation of a given solution. As a result, the new perturbed solution406

is usually worse than the original solution. In order to avoid this problem407

we direct the perturbation. The previous operator is performed $ times,408

henceforth obtaining $ different solutions. All of them are decoded and the409

idle time insertion procedure is applied. The perturbed solution with the best410

TWET dw value is chosen for the next iteration. As shown in Naderi et al.411

(2010), this perturbation operator resulted in a much more effective algorithm.412

Increasing the value of $ too far has a strong effect on computational time.413

Furthermore, it is expected that $ will interact with the number of movements414

ω. Therefore, both factors will be calibrated in later sections.415

3.6. Acceptance Criterion416

At each loop the incumbent solution is perturbed and improved by a local417

search. This improved solution, referred to as π′′ in Figure 1, might be better418

or worse than the incumbent solution π. Accepting only better solutions419

results in algorithms that get easily stuck in strong local optima. The simplest420

acceptance criterion for ILS is the one presented in Stützle (1998) where421

worse solutions are accepted according to a simplified constant temperature422

simulated annealing-like function. This temperature depends on the processing423

16

times and number of machines as follows: Temp = T

∑n

j=1

∑m

i=1 pij

10·
∑m

i=1 mi
where T is a424

parameter to calibrate. Many studies, like Stützle (1998) or more recently Pan425

and Ruiz (2014) have demonstrated in statistical experiments, the robustness426

of the T parameter for different scheduling problems.427

We introduce a new improved operator. The importance of the acceptance428

criterion should not be underrated. After a number of improvement moves,429

every iterative method spends a large percentage of the CPU time with430

non-improving solutions. The new operator is based on tournament selection.431

We keep a list of historical solutions which at first contains the initial one432

(after local search). Then if π′′ is better than the best solution found so far,433

the list is cleared. If π′′ is worse than the incumbent π, it is appended at434

the end of the list. Then, using a parameter θ we randomly select, without435

repetition, θ solutions from this list and carry out a θ-tournament for selecting436

the incumbent solution for the next iteration, i.e., the best solution among437

the θ randomly picked ones from the historical list is selected. As we can see,438

the value of θ is a direct parameter for controlling the intensification since439

a very large value of θ is similar to only accepting better solutions. If at a440

given moment the list of historical solutions contains less than θ elements, the441

selection operator always results in the best solution found so far. As with442

the other parameters, the value of θ will be calibrated.443

4. Iterated Greedy approach444

In this paper we also propose an adaptation of the Iterated Greedy (IG)445

method of Ruiz and Stützle (2007) for the problem studied. Very few studies,446

apart from Urlings and Ruiz (2007), Urlings et al. (2010a) and a few more447

have studied IG as a methodology for solving HFS problems. IG is similar to448

ILS. The main difference is that instead of a perturbation operation, IG has449

a destruction and reconstruction operator. Therefore, it suffices to explain in450

detail just this difference, as all other steps are identical to those of ILS. In451

the destruction a complete solution has some of its elements removed. In the452

reconstruction, these elements are reintroduced, one at a time, following a453

high performance greedy heuristic, back into the solution. All other steps are454

identical to ILS. IG has been successfully applied to many different scheduling455

problems, often resulting in state-of-the-art performance. Apart from the456

already cited results in the permutation flowshop with makespan criterion457

of Ruiz and Stützle (2007) and complex hybrid flowshops of Urlings and458

17

Ruiz (2007) and Urlings et al. (2010a), IG has also demonstrated excellent459

performance in parallel machines problems (Fanjul-Peyro and Ruiz, 2010),460

flowshops with blocking (Ribas et al., 2011), no-wait (Pan et al., 2008)461

amongst others. In this paper we propose a straightforward IG procedure. In462

the destruction operator, d jobs from the permutation are randomly selected463

and removed form the sequence. In the reconstruction, removed jobs are464

considered in the order in which they were eliminated and are reinserted,465

one by one, into all possible positions in the sequence. For each position the466

partial sequence is evaluated (and idle time inserted) and each removed job467

is finally placed in the position resulting in the lowest TWET dw value. The468

procedure ends when all jobs have been reinserted into the sequence.469

5. Computational evaluations470

We proceed with the details of the generated benchmark and the experi-471

mental setting for the computational evaluation. We will detail the competing472

methods that have been reimplemented and adapted to the HFSDW problem.473

All algorithms (proposed and competing) are calibrated and then evaluated474

in a complete computational campaign.475

5.1. Benchmark, competing methods and experimental setting476

While there exist benchmarks for HFS problems, the special feature of477

the HFSDW problem considered in this paper (the due windows) calls for478

special attention as regards due dates. Therefore, we have generated a large479

benchmark with four sets of instances. The first two are the small and large480

instance sets. The last two are the corresponding small and large calibration481

instances. We separate between test and calibration in order to avoid bias in482

the calibration. We control five factors in the instance generation: number of483

jobs n, number of stagesm, number of identical parallel machines per stagemi,484

Tardiness Factor (T), Due Date Range (R) and the width of the due window485

with respect to the due date (W). Processing times are uniformly distributed486

in the range U [1, 99] and earliness and tardiness weights in the range U [1, 9] as487

it is common in the scheduling literature. Following Potts and Van Wassenhove488

(1982), the due dates are generated with a random uniform distribution as489

dj = max
(

0, U
[
bP (1− T −R/2)e, bP (1− T +R/2)e

])
where, bxe indicates490

that x is rounded to the nearest integer. This procedure is common in the491

scheduling literature with due date based criteria, as shown in Vallada et al.492

18

(2008). Depending on the values of T and R, the generated due dates range493

from easy to satisfy to hard to meet. P is a makespan lower bound. We have494

used the existing state-of-the-art bounds for the HFS, which are proposed495

by Hidri and Haouari (2011). In that paper the authors review and compare496

all effective bounds for the HFS and propose new ones. We use all these497

bounds for generating the makespan lower bound, i.e., LB1, LB2, . . . , LB7,498

LBV HHL and LBRER. Note that this last bound uses a complex revisited499

energetic reasoning procedure which needs a substantial CPU time in the500

large instances. The final lower bound is the maximum among these 9. With501

the due date we generate the due window as: d−j = max (0, bdj − dj ·H/100e)502

and d+
j = max (0, bdj + dj ·H/100e) where H = U [1,W], i.e., the due window503

is centered around dj and has a maximum width that is W% the dj.504

The combinations of the factors used for the small instances set are: n =505

{10, 15, 20}, m = {2, 3, 4}, mi = {2, 3}, T = {0.2, 0.4, 0.6}, R = {0.2, 0.6, 1.0}506

and W = {10, 20}. We generate 5 replicates per combination with different507

seeds resulting in a total of 3 · 3 · 2 · 3 · 3 · 2 · 5 = 1620 small instances.508

For the large instances, the factors T , R and W are used with the same509

combinations, however, the values of the other three factors are changed as:510

n = {50, 100, 150, 200}, m = {5, 10} and mi = {5, 10}. with 5 replicates so511

the total number of large instances is 4 · 2 · 2 · 3 · 3 · 2 · 5 = 1440.512

The calibration benchmarks are simply generated by selecting, at random,513

one value of n,m, T , R andW from the sets of values above and creating a new514

different instance. This is repeated 10% of times the size of each set. Therefore,515

there are 162 small calibration instances and 144 large calibration instances.516

All instances, along with the best complete solutions found in this paper and517

makespan bounds are available to download at http://soa.iti.es.518

From the literature on HFS we have selected the best 9 existing algorithms:519

1) the Artificial Immune System of Engin and Döyen (2004) (AIS), 2) the520

Genetic Algorithm of Ruiz and Maroto (2006) (GAR), 3) the Ant Colony521

Optimization of Alaykýran et al. (2007) (ACO), 4) the Genetic Algorithm522

of Kahraman et al. (2008) (GAK), 5) The Improved Simulated Annealing of523

Naderi et al. (2009) (HSA), 6) Ant Colony Optimization of Khalouli et al.524

(2010) (ACOK), the 7) the Iterated Local Search of Naderi et al. (2010)525

(ILSN), 8) The Discrete Colonial Competitive Algorithm of Behnamian and526

Zandieh (2011) (DCCA) and 9) The Artificial Bee Colony of Pan et al. (2013)527

(ABCP). The selection of these methods has several motivations. First of528

all they are all recent and competitive methods. Second, they represent the529

best performance from different and varied techniques. Lastly, they have not530

19

http://soa.iti.es

been compared (at least not all of them) before. All these methods have been531

carefully reimplemented. They have been adapted to the HFSDW problem. It532

is important to note that all methods include the proposed idle time insertion533

procedure. Together with these methods we will test the proposed ILS and534

IG procedures in two versions: the ones with the existing acceptance criterion535

(ILS and IG) and the ones with the θ-tournament alternative (ILST and536

IGT).537

All methods are coded in C++ and compiled with Visual Studio 2013.538

The methods share most important functions in the code. The calibration539

experiments in this paper are performed on Virtual Windows XP machines540

with 1 virtual processor and 1 GByte of RAM memory. A virtualization server541

composed of 30 blades is employed. Each blade runs two Intel XEON E5420542

processors running at 2.5 GHz. and 16 GBytes of RAM memory. For the543

final experiments where the calibrated methods are compared, we switched544

to Virtual Windows 7 machines with 1 virtual processor and 2 GBytes of545

RAM memory. An updated virtualization server of 8 blades, each one with546

four AMD Opteron Abu Dhabi 6344 processors running at 2.6 GHz. and 256547

GBytes or RAM is used. The reason behind this machine change is just a548

migration of servers while this research was being carried out.549

5.2. Calibration of the proposed and competing methods550

The 9 competing methods and the 4 proposed algorithms are calibrated.551

For the proposed ILS, ILST, IG and IGT the common factors to calibrate552

are the maximum number of iterations in the VND local search loopmax553

tested at 3 levels {100, 200, 300} and the usage of the second stage local554

search. We call this second factor 2LS and it is tested at 2 variants, yes555

and no. ILS and ILST share the factors ω at 3 levels {100, 200, 300} and $556

at 4 levels {1, 10, 30, 50}. On the other hand, IG and IGT share only the557

number of destructed jobs d which is tested at 4 levels {1, 2, 3, 4}. Finally,558

the proposed methods with the usual temperature based acceptance criterion559

(ILS and IG) share T tested at levels {1, 3, 5, 7} and the two methods with560

the tournament acceptance (ILST and IGT) share θ at 4 levels {2, 3, 4, 5}.561

Therefore, ILS and ILST have 288 combinations and IG and IGT 96. We562

employ the Design of Experiments (DOE) methodology. The setting is four563

full factorial experiments, one per algorithm. We separate the results for564

the small and large calibration sets so there are 8 experiments in total. The565

instance factors (n, m, T , R and W) are not controlled in order to have an566

overall picture of performance and to avoid instance-specific calibration. We567

20

run each treatment five different times with each instance. The total number568

of results is therefore 288 · (162 + 144) · 5 = 440, 640 for ILS and ILST and569

96 · (162 + 144) · 5 = 146, 880. The grand total of results is 1, 175, 040 among570

all four proposed methods.571

The response variable is the Relative Deviation Index (RDI) calculated as572
Methodsol−Bestsol

Worstsol−Bestsol
· 100, where Bestsol and Worstsol are the best and the worst573

solutions obtained throughout the calibrations for any instance respectively,574

andMethodsol is the solution given by a particular combination of parameters575

of an algorithm. An RDI between 0 and 100 is obtained. If there is a case where576

Worstsol = Bestsol then RDI is replaced by 0 since it means that all methods577

in all replicates resulted in the same value. All results are examined with the578

Analysis of Variance (ANOVA) procedure which is a powerful parametric579

statistical tool. As such, all hypotheses were checked and met. ANOVA has580

been extensively used in the last 10 years in the scheduling literature to581

calibrate methods with success. Finally, even though ANOVA is a powerful582

technique and we are using a large number of results, the process is by no583

means a fine calibration. After all, a full factorial is no more than a type of584

screening design. Far more exhaustive techniques for algorithm calibration585

are explained in Bartz-Beielstein et al. (2010).586

All methods included in this paper need a stopping criterion. While many587

authors stop algorithms after a number of iterations have elapsed (also588

generations, or solution evaluations) we think it is much more precise to stop589

after a predefined CPU time has elapsed. After all, the CPU time is the590

budget that a method has for spending. Stating that a given algorithm or591

configuration A is better than B if at the same time A needs much more CPU592

time is at best, inconclusive. The real question is, if given the same CPU time,593

is A still better than B? Therefore, we stop the methods in the calibration after594

a predefined CPU time that is equal to t = 30nm milliseconds. Note that this595

CPU time also adjusts with the instance size so that larger instances have more596

time than smaller ones. We will not show the full ANOVA tables due to space597

constraints. The full calibration details of the proposed methods are available598

as on-line materials. Some means plots with 95% Tukey’s Honest Significant599

Difference (HSD) confidence intervals are shown in Figure 8 for the large600

instances. Overlapping confidence intervals indicate statistical insignificance601

in the observed differences of the response variable among the overlapped602

averages. As we expected, the number of perturbations ω strongly interacts603

with the number of solutions generated and perturbed ($). We see that small604

perturbations of ω = 1 or large perturbations of ω = 3 do not yield good605

21

ϖ

24

29

34

39

44

49

54

R
el

at
iv

e
D

ev
ia

tio
n

In
de

x
(R

D
I)

1 10 30 50

ω

3

loopmax

100 200 300

2LS

1 2 3 4
d

01
2 1

Figure 8: Means plot for the ANOVA large calibration experiment. All means have Tukey’s
Honest Significant Difference (HSD) 95% confidence intervals. To the left the interaction
between ω and $ for ILST. At the center the interaction between 2LS and loopmax for IG
and to the right the factor d for IGT.

results. Also, we see that when ω = 1 generating many perturbed solutions606

($ = 30) only wastes CPU time. The best is a combination of two movements607

and generating 30 perturbed solutions to explore around the current solution.608

The plot is very similar for ILS. Also we see in the middle plot of Figure 8609

how the second stage local search (2LS= 1 or “yes”) improves solutions610

considerably. However, it needs a large loopmax value of 200 or 300 since611

for a value of 100 the effect of the second stage local search is small. The612

fine local search is expensive and should only be applied to solutions that613

have already been improved by the VND procedure. From these plots we see614

that the improved perturbation for the ILS and the two stage local search,615

provide very good results. Lastly, the plot on the right of Figure 8 shows that616

destroying only one element in the IG methods results in bad performance. A617

value of d = 2 seems better, which is in line with the perturbation value in618

the ILS. Similar to most related studies (Ruiz and Stützle, 2007), the factor619

T is not statistically significant. As a final note, the selected factor levels620

after the calibration are for ILS: ω = 2/2, $ = 10/30, loopmax = 100/300,621

2LS=yes/yes and T = 7/7 where the / separates the selected values for small622

and large bechmarks, respectively. The sets of values for ILST, IG and IGT623

are (ω = 2/2, $ = 10/30, loopmax = 100/300, 2LS=yes/yes and θ = 4/3),624

(loopmax = 100/300, 2LS=yes/yes, T = 7/7, d = 4/3) and (loopmax = 100/300,625

2LS=yes/yes, d = 4/2, θ = 4/2), respectively.626

As for the competing methods we have comprehensively calibrated each627

one of them following an identical procedure. However, no details are given628

22

here due to space considerations. Instead, we have put together the results629

of the calibration as on-line materials. In these materials all experiments630

and results are detailed. For example, the GAR of Ruiz and Maroto (2006)631

was calibrated with a full factorial design of 240 treatments and the GAK632

of Kahraman et al. (2008) with 192. In total, also considering the proposed633

methods, we have tested 1,236 treatments for small and the same number for634

the large calibration benchmark. All this required a total of almost 342 CPU635

days of computation.636

5.3. Evaluation of results and statistical analyses637

For the final evaluation we use the test benchmark with 1620 small and638

1440 large instances. All 13 methods are run 10 different times with different639

random seeds with each instance. In order to have a broader picture of640

performance, we use three different stopping times as ρnm milliseconds where641

ρ = {30, 60, 90}. This translates into 0.6 seconds in the smallest instances of642

10 jobs and 2 stages when ρ = 30 to 180 seconds for the largest instances of643

200 jobs and 10 stages if ρ = 90. To avoid self-correlation in the results, for644

each stopping time each method is run independently from the beginning. All645

methods have been coded in the same programming language, share identical646

operating environments and most important functions, like objective function647

evaluation and idle insertion and are run for the same CPU time on the648

same computer. As a result, the comparison is fair and the results completely649

comparable.650

Considering that each one of the 13 test methods is run with 1620 small651

and 1440 large instances, 10 different times and with 3 different CPU time652

limits we have a total of 13 · (1620 + 1440) · 10 · 3 = 1, 193, 400 experimental653

results. Very strong conclusions can be drawn from such a large dataset. The654

CPU time needed for all experimentation was almost 387 CPU days. The655

average relative deviation index, grouped by CPU time ρ, number of jobs n656

and number of stages m is given in Table 1 for the small instances. The same657

table but for the large instances is given in Table 2. In both tables each cell is658

the average RDI over 1,800 results (combinations of mi, T , R, W , instance659

replicate and 10 replicates per algorithm). The complete spreadsheets with660

all detailed results are available upon request from the authors.661

Some of the adapted methods do not produce good results, despite cal-662

ibration and insertion of idle times. This is the case for ACO and ACOK .663

DCCA and AIS are also far from the best results. GAR, despite being among664

the oldest methods tested, shows a relatively good performance. The recent665

23

ρ n m ABCP ACO ACOK AIS DCCA GAK GAR HSA ILSN IG IGT ILS ILST

30 10 2 1.67 85.18 25.91 3.26 4.59 2.86 1.95 1.60 1.59 0.76 0.76 0.82 0.81
3 2.60 83.06 43.40 5.05 5.81 4.10 3.00 2.50 2.43 1.11 1.11 1.14 1.11
4 1.54 70.72 58.98 3.78 4.68 3.18 2.02 1.61 1.46 0.70 0.70 0.69 0.70

15 2 1.56 87.81 39.85 4.19 6.33 2.81 2.36 1.00 0.95 0.36 0.36 0.36 0.38
3 1.71 77.19 68.32 4.90 6.96 3.53 2.57 1.03 1.00 0.42 0.41 0.41 0.42
4 1.36 57.73 80.72 4.38 5.69 3.23 2.35 0.81 0.80 0.32 0.30 0.32 0.29

20 2 2.54 89.78 46.27 5.99 7.82 3.68 2.87 0.84 0.83 0.44 0.41 0.46 0.46
3 2.31 76.57 72.80 5.85 7.09 3.82 3.01 1.02 1.06 0.57 0.55 0.63 0.59
4 2.04 52.98 84.34 5.15 5.76 3.15 2.91 0.91 0.96 0.54 0.51 0.57 0.54

60 10 2 1.66 83.74 22.35 3.14 4.26 2.72 1.82 1.55 1.55 0.70 0.73 0.74 0.72
3 2.57 82.01 37.10 4.88 5.48 4.16 2.78 2.46 2.43 1.05 1.06 1.07 1.08
4 1.51 69.32 51.91 3.54 4.37 3.04 1.86 1.52 1.45 0.63 0.63 0.65 0.65

15 2 1.32 87.23 36.26 3.58 5.70 2.66 2.06 0.86 0.86 0.25 0.26 0.23 0.25
3 1.48 76.65 63.30 4.30 6.72 3.27 2.23 0.96 0.92 0.31 0.30 0.30 0.31
4 1.18 57.16 74.97 3.87 5.50 2.99 2.01 0.72 0.71 0.21 0.22 0.20 0.20

20 2 1.95 89.37 43.00 5.01 6.40 3.09 2.33 0.65 0.64 0.27 0.26 0.27 0.29
3 1.87 76.21 68.30 5.09 6.54 3.27 2.53 0.81 0.84 0.39 0.36 0.42 0.40
4 1.68 52.49 79.27 4.42 5.45 2.66 2.51 0.75 0.79 0.39 0.36 0.40 0.39

90 10 2 1.65 83.11 20.54 3.01 4.14 2.77 1.82 1.52 1.54 0.67 0.68 0.70 0.68
3 2.53 81.27 34.02 4.72 5.35 4.07 2.73 2.43 2.43 1.02 1.04 1.03 1.06
4 1.50 68.54 47.69 3.42 4.28 3.08 1.79 1.49 1.45 0.58 0.59 0.61 0.60

15 2 1.23 86.70 34.40 3.32 5.61 2.47 1.88 0.81 0.82 0.21 0.22 0.19 0.19
3 1.36 76.23 60.56 4.10 6.64 3.16 2.09 0.92 0.89 0.24 0.25 0.25 0.25
4 1.11 56.78 72.04 3.71 5.43 2.72 1.87 0.69 0.68 0.17 0.19 0.16 0.17

20 2 1.68 89.11 41.41 4.57 6.18 2.90 2.10 0.57 0.58 0.21 0.20 0.20 0.23
3 1.66 75.93 65.79 4.67 6.41 2.97 2.32 0.73 0.77 0.31 0.29 0.33 0.32
4 1.53 52.28 76.87 4.11 5.37 2.45 2.34 0.68 0.72 0.31 0.30 0.32 0.32

Average 1.73 75.01 53.72 4.30 5.72 3.14 2.30 1.16 1.15 0.49 0.48 0.50 0.50

Table 1: Average Relative Deviation Index (RDI) for small instances. Best results in bold.

24

methods ABCP , HSA and ILSN show good results. We see that the four666

proposed approaches clearly dominate all other proposals in the small in-667

stances and also dominate all other methods, except possibly HSA in the668

large instances. Looking at average results for the large instances, the best669

proposed method is ILST with an overall RDI of 0.31. The closest competing670

method is HSA with 0.41, this means that ILST is approximately 32% better671

than HSA. Furthermore, the ILST approach is much simpler and has less672

calibration parameters than HSA. Finally, from the 43,200 results given in673

the large instances (1440 instances, 3 termination criteria and 10 replicates)674

ILST gives a better solution than HSA in 28,040 cases, HSA is better than675

ILST in 15,129 and both tie in 31 cases.676

ρ n m ABCP ACO ACOK AIS DCCA GAK GAR HSA ILSN IG IGT ILS ILST

30 50 5 2.54 22.75 92.21 15.34 5.55 3.28 2.54 0.85 0.99 0.65 0.73 0.69 0.64
10 1.38 6.54 94.88 5.31 2.15 1.35 1.23 0.43 0.50 0.37 0.38 0.39 0.35

100 5 2.93 14.93 94.58 12.53 4.39 3.25 1.86 0.65 0.75 0.61 0.64 0.52 0.51
10 1.26 4.66 96.84 4.18 1.63 1.14 0.88 0.25 0.29 0.25 0.27 0.26 0.24

150 5 2.85 12.22 95.78 11.08 4.09 3.65 1.65 0.80 0.89 0.78 0.77 0.60 0.59
10 1.11 4.00 97.64 3.82 1.53 1.17 0.72 0.21 0.24 0.27 0.29 0.25 0.24

200 5 2.63 10.92 96.44 10.02 4.10 3.96 1.53 0.96 1.07 0.75 0.76 0.60 0.60
10 1.04 3.68 97.97 3.55 1.55 1.27 0.67 0.25 0.28 0.35 0.36 0.30 0.29

60 50 5 1.83 22.67 88.91 14.44 5.30 2.47 2.21 0.71 0.86 0.47 0.50 0.53 0.46
10 1.07 6.53 92.85 5.07 2.05 1.04 1.12 0.37 0.45 0.29 0.27 0.31 0.26

100 5 2.04 14.89 92.24 12.01 4.24 2.24 1.61 0.42 0.50 0.41 0.41 0.36 0.33
10 0.93 4.65 95.57 4.03 1.57 0.85 0.80 0.20 0.23 0.18 0.17 0.19 0.16

150 5 2.20 12.18 94.11 10.87 3.99 2.49 1.42 0.45 0.55 0.56 0.55 0.39 0.36
10 0.86 3.99 96.63 3.75 1.47 0.84 0.65 0.14 0.17 0.18 0.18 0.17 0.15

200 5 2.11 10.89 95.03 9.87 4.01 2.74 1.26 0.56 0.64 0.57 0.56 0.40 0.39
10 0.83 3.67 97.12 3.49 1.50 0.89 0.60 0.14 0.17 0.25 0.26 0.20 0.19

90 50 5 1.57 22.60 87.14 13.98 5.03 2.17 2.06 0.65 0.79 0.40 0.40 0.45 0.39
10 0.93 6.52 91.56 4.93 1.95 0.93 1.07 0.34 0.42 0.25 0.22 0.27 0.22

100 5 1.59 14.87 91.05 11.70 4.08 1.82 1.51 0.34 0.41 0.31 0.29 0.28 0.24
10 0.77 4.65 94.81 3.95 1.51 0.73 0.76 0.17 0.21 0.14 0.13 0.16 0.13

150 5 1.82 12.16 93.06 10.77 3.87 1.96 1.31 0.31 0.39 0.44 0.42 0.29 0.25
10 0.72 3.99 96.06 3.70 1.42 0.70 0.62 0.11 0.14 0.14 0.14 0.14 0.12

200 5 1.80 10.87 94.17 9.78 3.89 2.15 1.15 0.36 0.44 0.46 0.45 0.30 0.28
10 0.71 3.67 96.67 3.46 1.45 0.72 0.56 0.10 0.13 0.20 0.20 0.16 0.14

Average 1.56 9.94 94.31 7.98 3.01 1.83 1.24 0.41 0.48 0.39 0.39 0.34 0.31

Table 2: Average Relative Deviation Index (RDI) for large instances. Best results in bold.

Finally, we mention the effect of the proposed θ-tournament operator. The677

versions with this operator (IGT and ILST) seem to either give the same678

results, or, in the case of the large instance and ILST, better results than679

those with the regular temperature based acceptance criterion (IG and ILS)680

but the difference is not large. This needs careful examination. We are going681

25

to check for statistical relevance of the averages shown in Tables 1 and 2. We682

carry out a multi-factor ANOVA where all the instance factors, as well as683

ρ and the type of algorithm are controlled. In the experiment for the small684

instances the methods ACO and ACOK had to be removed as their deviations685

were so large that they were creating normality problems. Similarly, for the686

large instances, ACO, ACOK and AIS were removed as well. The results of687

the experiment are sound. For the small instances, the differences observed688

in the four proposed methods IG, IGT, ILS and ILST are not statistically689

significant and all have a statistically equivalent performance. However, all of690

them are statistically better than the closest competitors HSA and ILSN .691

The average RDI values are statistically different for all the algorithms692

in the large instances. . Figure 9 shows the interaction between the four693

proposed algorithms and ρ on the left and a zoom for the four proposed694

methods on the right for the large instances. The statistical test confirms

0.21

0.31

0.41

0.51

0.61

R
el

at
iv

e
D

ev
ia

tio
n

In
de

x
(R

D
I)

HSA IG IGT ILS ILST

 ρ
30
60
90

Figure 9: Interaction between the proposed methods, HSA and stopping criterion (ρ). All
means with Tukey’s Honest Significant Difference (HSD) 95% confidence intervals. Large
instances.

695

that the closest competitor gives results that are statistically worse than the696

presented methods. As a matter of fact, it should be stressed that any of our697

proposed methods with the shortest processing time of ρ = 30 give better698

solutions than HSA with the largest time of ρ = 90. We can also observe in699

the zoom that the effect of the θ-tournament becomes statistically significant700

for the largest CPU times of ρ = 90. As a conclusion, ILS is slightly better701

than IG and in turn the θ-tournament also provides an advantage for large702

CPU times. Therefore, ILST is the best proposed method.703

26

6. Conclusions and future research704

In this paper we have studied hybrid flowshop problems with due windows705

with the minimization of the total weighted earliness and tardiness from the706

due window. The literature review has shown that this problem has scarcely707

been studied. After presenting and formalizing the problem we have proposed708

an Iterated Local Search and Iterated Greedy procedures. These methods709

are simple and have few parameters. Specific to earliness tardiness objectives710

is the insertion of idle time before tasks. We have also devised an optimal711

procedure that delays the completion of tasks by the exact amount necessary.712

We have also presented a key procedure, which is a two stage local search. In713

the first stage, a VND works with an indirect representation of a solution. In714

the second stage, we identify the most promising movements and work over715

the exact representation. This proposal, together with improvements in the716

acceptance criterion and perturbation constitute the core of our algorithmic717

contribution. In our opinion, experimentation should be complete and thor-718

ough. In order to compare our proposed methods we have reimplemented and719

adapted 9 high performing competing methods. Then, all procedures have720

been calibrated using the DOE approach. A comprehensive benchmark of721

more than 3000 instances has been used in a complete computational and722

statistical evaluation to analyze the effect of the proposed contributions and723

to compare with existing algorithms. Results have shown that the proposed724

methods, particularly those with the new θ-tournament acceptance criterion,725

produce the best results. There are several future research avenues. Introduc-726

ing more realistic elements into the problem, like setup times, release dates, or727

unrelated parallel machines at each stage is a possibility. Further exploration728

of the effect of the different possible representations on other objectives seems729

also promising. Finally, we would like to call the attention of the scheduling730

community as to how earliness penalties are usually calculated. Delaying the731

last manufacturing stage (and therefore the completion time) of a job that732

was started at a given point in time does not reduce earliness costs in most733

real cases. What usually counts in when the job was started in the first stage734

as at that moment resources are mobilized, raw materials used, etc. Therefore,735

more sensible earliness costs penalties must be considered in order to make736

the objective function more realistic.737

27

Acknowledgments738

The authors would like to thank Professors Lofti Hidri and Mohamed739

Haouari for sharing with us the source codes and explanations of the lower740

bounds. Quan-Ke Pan is supported by the National Natural Science Foun-741

dation of China (Grant No. 51575212), Program for New Century Excellent742

Talents in University (Grant No. NCET-13-0106), Science Foundation of Hubei743

Province in China (Grant No. 2015CFB560), Specialized Research Fund for744

the Doctoral Program of Higher Education (Grant No. 20130042110035), Key745

Laboratory Basic Research Foundation of Education Department of Liaon-746

ing Province (LZ2014014), Open Research Fund Program of the State Key747

Laboratory of Digital Manufacturing Equipment and Technology, Huazhong748

University of Science and Technology, China. Rubén Ruiz and Pedro Alfaro-749

Fernández are supported by the Spanish Ministry of Economy and Com-750

petitiveness, under the project “SCHEYARD – Optimization of Scheduling751

Problems in Container Yards” (No. DPI2015-65895-R) financed by FEDER752

funds.753

References754

Alaykýran, K., Engin, O., and Döyen, A. (2007). Using ant colony optimization to solve hybrid755
flow shop scheduling problems. International Journal of Advanced Manufacturing Technology,756
35(5-6):541–550.757

Bartz-Beielstein, T., Chiarandini, M., Paquete, L., and Preuss, M., editors (2010). Experimental758
Methods for the Analysis of Optimization Algorithms. Springer, New York.759

Behnamian, J., Fatemi Ghomi, S. M. T., and Zandieh, M. (2010a). Development of a hybrid760
metaheuristic to minimise earliness and tardiness in a hybrid flowshop with sequence-dependent761
setup times. International Journal of Production Research, 48(5):1415–1438.762

Behnamian, J. and Zandieh, M. (2011). A discrete colonial competitive algorithm for hybrid763
flowshop scheduling to minimize earliness and quadratic tardiness penalties. Expert Systems764
with Applications, 38(12):14490–14498.765

Behnamian, J. and Zandieh, M. (2013). Earliness and tardiness minimizing on a realistic hy-766
brid flowshop scheduling with learning effect by advanced metaheuristic. Arabian Journal for767
Science and Engineering, 38(5):1229–1242.768

Behnamian, J., Zandieh, M., and Fatemi Ghomi, S. M. T. (2010b). Due windows group scheduling769
using an effective hybrid optimization approach. International Journal of Advanced Manufac-770
turing Technology, 46(5-8):721–735.771

Chang, S.-C. and Liao, D.-Y. (1994). Scheduling flexible flow shops with no setup effects. IEEE772
Transactions on Robotics and Automation, 10(2):112–122.773

Cheng, T. C. E. (1988). Optimal common due-date with limited completion time deviation.774
Computers and Operations Research, 15(2):91–96.775

Engin, O. and Döyen, A. (2004). A new approach to solve hybrid flow shop scheduling problems776
by artificial immune system. Future Generation Computer Systems, 20(6):1083–1095.777

Fanjul-Peyro, L. and Ruiz, R. (2010). Iterated greedy local search methods for unrelated parallel778
machine scheduling. European Journal of Operational Research, 207(1):55–69.779

28

Finke, D. A., Medeiros, D. J., and Traband, M. T. (2007). Multiple machine jit scheduling: a780
tabu search approach. International Journal of Production Research, 45(21):4899–4915.781

Framinan, J. M., Leisten, R., and Ruiz, R. (2014). Manufacturing Scheduling Systems: An Inte-782
grated View on Models, Methods and Tools. Springer, New York.783

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization784
and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete785
Mathematics, 5:287–326.786

Gupta, J. N. D. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the Opera-787
tional Research Society, 39(4):359–364.788

Hendel, Y. and Sourd, F. (2007). An improved earliness-tardiness timing algorithm. Computers789
and Operations Research, 34(10):2931–2938.790

Hidri, L. and Haouari, M. (2011). Bounding strategies for the hybrid flow shop scheduling problem.791
Applied Mathematics and Computation, 217(21):8248–8263.792

Huang, R.-H. and Yu, S.-C. (2013). Clarifying cutting and sewing processes with due windows793
using an effective ant colony optimization. Mathematical Problems in Engineering, 2013:1–12.794

Huang, R.-H., Yu, S.-C., and Kuo, C.-W. (2014). Reentrant two-stage multiprocessor flow shop795
scheduling with due windows. International Journal of Advanced Manufacturing Technology,796
71(5-8):1263–1276.797

Janiak, A., Kozan, E., Lichtenstein, M., and Oğuz, C. (2007). Metaheuristic approaches to the798
hybrid flow shop scheduling problem with a cost-related criterion. International Journal of799
Production Economics, 105(2):407–424.800

Jolai, F., Sheikh, S., Rabbani, M., and Karimi, B. (2009). A genetic algorithm for solving no-801
wait flexible flow lines with due window and job rejection. International Journal of Advanced802
Manufacturing Technology, 42(5-6):523–532.803

Jun, S. and Park, J. (2015). A hybrid genetic algorithm for the hybrid flow shop scheduling prob-804
lem with nighttime work and simultaneous work constraints: A case study from the transformer805
industry. Expert Systems with Applications, 42(15-16):6196–6204.806

Kahraman, C., Engin, O., Kaya, İ., and Yilmaz, M. K. (2008). An application of effective ge-807
netic algorithms for solving hybrid flow shop scheduling problems. International Journal of808
Computational Intelligence Systems, 1(2):134–147.809

Kedad-Sidhoum, S. and Sourd, F. (2010). Fast neighborhood search for the single machine810
earliness-tardiness scheduling problem. Computers and Operations Research, 37(8):1464–1471.811

Khalouli, S., Ghedjati, F., and Hamzaoui, A. (2010). A meta-heuristic approach to solve a JIT812
scheduling problem in hybrid flow shop. Engineering Applications of Artificial Intelligence,813
23(5):765–771.814

Linn, R. and Zhang, W. (1999). Hybrid flow shop scheduling: A survey. Computers and Industrial815
Engineering, 37(1-2):57–61.816

Liu, C.-Y. and Chang, S.-C. (2000). Scheduling flexible flow shops with sequence-dependent setup817
effects. IEEE Transactions on Robotics and Automation, 16(4):408–419.818

Lourenço, H. R., Martin, O. C., and Stützle, T. (2010). Iterated local search: Framework and819
applications. In Gendreau, M. and Potvin, J. Y., editors, Handbook of Metaheuristics, vol-820
ume 14 of International Series in Operations Research & Management Science, chapter 12,821
pages 363–397. Kluwer Academic Publishers, Norwell, MA, USA, second edition.822

MacCarthy, B. L. and Liu, J. (1993). Addressing the gap in scheduling research: a review of opti-823
mization and heuristic methods in production scheduling. International Journal of Production824
Research, 31(1):59–79.825

McKay, K. N., Pinedo, M., and Webster, S. (2002). Practice-focused research issues for scheduling826
systems. Production and Operations Management, 11(2):249–258.827

Naderi, B. and Ruiz, R. (2010). The distributed permutation flowshop scheduling problem. Com-828
puters and Operations Research, 37(4):754–768.829

Naderi, B., Ruiz, R., and Zandieh, M. (2010). Algorithms for a realistic variant of flowshop830

29

scheduling. Computers and Operations Research, 37(2):236–246.831

Naderi, B., Zandieh, M., Khaleghi Ghoshe Balagh, A., and Roshanaei, V. (2009). An improved832
simulated annealing for hybrid flowshops with sequence-dependent setup and transportation833
times to minimize total completion time and total tardiness. Expert Systems with Applications,834
36(6):9625–9633.835

Pan, Q.-K. and Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle836
permutation flowshop scheduling problem. OMEGA, the International Journal of Management837
Science, 44(1):41–50.838

Pan, Q.-K., Wang, L., Li, J.-Q., and Duan, J.-H. (2014). A novel discrete artificial bee colony839
algorithm for the hybrid flowshop scheduling problem with makespan minimisation. OMEGA,840
the International Journal of Management Science, 45:42–56.841

Pan, Q.-K., Wang, L., Mao, K., Zhao, J.-H., and Zhang, M. (2013). An effective artificial bee842
colony algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE843
Transactions on Automation Science and Engineering, 10(2):307–322.844

Pan, Q.-K., Wang, L., and Zhao, B. H. (2008). An improved iterated greedy algorithm for the no-845
wait flow shop scheduling problem with makespan criterion. International Journal of Advanced846
Manufacturing Technology, 38(7-8):778–786.847

Pinedo, M. (2012). Scheduling: Theory, Algorithms and Systems. Springer, New York, fourth848
edition.849

Potts, C. N. and Van Wassenhove, L. N. (1982). A decomposition algorithm for the single machine850
total tardiness problem. Operations Research Letters, 1(5):177–181.851

Quadt, D. and Kuhn, D. (2007). A taxonomy of flexible flow line scheduling procedures. European852
Journal of Operational Research, 178(3):686–698.853

Ribas, I., Companys, R., and Tort-Martorell, X. (2011). An iterated greedy algorithm for the flow-854
shop scheduling problem with blocking. OMEGA, The International Journal of Management855
Science, 39(3):293–301.856

Ribas, I., Leisten, R., and Framinan, J. M. (2010). Review and classification of hybrid flow857
shop scheduling problems from a production system and a solutions procedure perspective.858
Computers and Operations Research, 37(8):1439–1454.859

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop860
heuristics. European Journal of Operational Research, 165(2):479–494.861

Ruiz, R. and Maroto, C. (2006). A genetic algorithm for hybrid flowshops with sequence dependent862
setup times and machine eligibility. European Journal of Operational Research, 169(3):781–800.863

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permu-864
tation flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–865
2049.866

Ruiz, R. and Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European867
Journal of Operational Research, 205(1):1–18.868

Sabuncuoglu, I. and Lejmi, T. (1999). Scheduling for non regular performance measure under the869
due window approach. OMEGA, the International Journal of Management Science, 27(5):555–870
568.871

Sakuraba, C. S., Ronconi, D. P., and Sourd, F. (2009). Scheduling in a two-machine flowshop for872
the minimization of the mean absolute deviation from a common due date. Computers and873
Operations Research, 36(1):60–72.874

Sheikh, S. (2013). Multi-objective flexible flow lines with due window, time lag, and job rejection.875
International Journal of Advanced Manufacturing Technology, 64(9-12):1423–1433.876

Stützle, T. (1998). Applying iterated local search to the permutation flow shop problem. Technical877
Report AIDA-98-04, FG Itellektik, FB Informatik, TU Darmstadt.878

Tasgetiren, M., Liang, Y.-C., Sevkli, M., and Gencyilmaz, G. (2007). A particle swarm optimiza-879
tion algorithm for makespan and total flowtime minimization in the permutation flowshop880
sequencing problem. European Journal of Operational Research, 177(3):1930–1947.881

30

Tseng, C.-T. and Liao, C.-J. (2008). A discrete particle swarm optimization for lot-streaming882
flowshop scheduling problem. European Journal of Operational Research, 191(2):360–373.883

Urlings, T. and Ruiz, R. (2007). Local search in complex scheduling problems. In Stützle, T.,884
Birattari, M., and Hoos, H. H., editors, Engineering Stochastic Local Search Algorithms. De-885
signing, Implementing and Analyzing Effective Heuristics, volume 4638 of Lecture Notes in886
Computer Science, pages 202–206. Springer-Verlag, Brussels, Belgium.887

Urlings, T., Ruiz, R., and Sivrikaya-Şerifoğlu, F. (2010a). Genetic algorithms for complex hybrid888
flexible flow line problems. International Journal of Metaheuristics, 1(1):30–54.889

Urlings, T., Ruiz, R., and Stützle, T. (2010b). Shifting representation search for hybrid flexible890
flowline problems. European Journal of Operational Research, 207(2):1086–1095.891

Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total tardiness in the m-machine892
flowshop problem: a review and evaluation of heuristics and metaheuristics. Computers and893
Operations Research, 35(4):1350–1373.894

Vignier, A., Billaut, J.-C., and Proust, C. (1999). Les problèmes d’ordonnancement de type895

flow-shop hybride: État de l’art. RAIRO Recherche opérationnelle, 33(2):117–183. (in French).896

Wang, H. (2005). Flexible flow shop scheduling: optimum, heuristics and artificial intelligence897
solutions. Expert Systems, 22(2):78–85.898

Yeung, W. K., Oğuz, C., and Cheng, T. C. E. (2004). Two-stage flowshop earliness and tardiness899
machine scheduling involving a common due window. International Journal of Production900
Economics, 90(4):421–434.901

31

