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The Nurse Rostering Problem can be defined as assigning a series of shift sequences (schedules) to

several nurses over a planning horizon according to some limitations and preferences. The inherent

benefits of generating higher-quality schedules are a reduction in outsourcing costs and an increase

in job satisfaction of employees. In this paper, we present a hybrid algorithm, which combines

Integer Programming and Constraint Programming to efficiently solve the highly-constrained Nurse

Rostering Problem. We exploit the strength of IP in obtaining lower-bounds and finding an optimal

solution with the capability of CP in finding feasible solutions in a co-operative manner. To

improve the performance of the algorithm, and therefore, to obtain high-quality solutions as well

as strong lower-bounds for a relatively short time, we apply some innovative ways to extract useful

information such as the computational difficulty of instances and constraints to adaptively set the

search parameters. We test our algorithm using two different datasets consisting of various problem

instances, and report competitive results benchmarked with the state-of-the-art algorithms from

the recent literature as well as standard IP and CP solvers, showing that the proposed algorithm

is able to solve a wide variety of instances effectively.

Key words: Timetabling; Nurse Rostering; Hybrid Algorithm; Integer Programming; Constraint

Programming.

1. Introduction

In order to ensure the right staff is on the right duty at the right time, Nurse Rostering has drawn

significant attention during the last few decades, helping many health organisations to increase

their efficiency and productivity. Creating a high-quality roster raises the recruitment and retention

levels of nursing personnel, and maintains a reasonable overtime budget for nursing staff. From a

financial perspective, it can reduce outsourcing and planning costs due to hiring fewer bank nurses

to compensate gaps in rosters, and having flexible schedules [30, 25]. In terms of human resource
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perspective, it can increase job satisfaction and diminish fatigue and stress, and hence results in

improving caring services provided to patients [13, 33].

The Nurse Rostering Problem (NRP) aims to generate rosters for several nurses over a prede-

termined planning horizon. A roster consists of a sequence of different types of shifts (e.g. early,

late, vacations) spanning over the whole planning period. The patterns of shifts are generated

according to a set of requirements such as hospital regulations, and a number of preferences such

as fair distribution of shifts between nurses. Due to the complex and highly-constrained structure,

the real-world NRP is often computationally challenging, and many variants of this problem are

classified as NP -hard [15, 6]. In practice, the inherent nature of the problem usually leads us to

divide constraints into two categories: hard and soft constraints. Hard constraints must be satis-

fied to have a feasible roster, whereas soft constraints may be violated, albeit with a penalty. To

evaluate the quality of a roster, one can minimise the sum of all penalties incurred due to the soft

constraint violations. We refer the interested reader to [13] for further details on the NRP, and to

[16] for a thorough review of staff scheduling problems.

In the literature, there are two areas of general methods used to solve these problems: exact

and heuristic methods. Exact methods mostly include Integer Programming (IP) [19, 28, 30] and

Constraint Programming (CP) [18, 42], which are capable of finding the optimal solution, albeit

often resulting in unacceptable computational times. In order to address the computational limita-

tions of these methods, many heuristic methods have been proposed in the literature ranging from

rather general Variable Neighbourhood Search [27, 37] and Genetic Algorithms [8, 2] to stochastic

approaches [44] and tailor-made heuristics [5]. However, these methods sacrifice the guarantee of

an optimal solution (or even any information regarding the solution quality) in order to generate

good-quality solutions in acceptable computational times.

More recently, research in Operations Research and Artificial Intelligence communities, com-

bined with robust solvers such as IBM CP Optimiser [23] and Gurobi [20], have focused on using

these methods in hybrid settings such as CP and heuristics [43], IP and heuristics [45], and the less

well-investigated combination of IP and CP [35], in order to utilise the complementary strengths

of all methods together. In this paper, we propose a new hybrid algorithm integrating IP and

CP to solve the real-world NRP, utilising the strengths of IP in finding optimal solutions and of

CP in finding feasible solutions efficiently while exploiting problem-specific information. Due to

the exact nature of the proposed algorithm, it can also generate strong lower-bounds in contrast

to heuristic methods. Furthermore, the hybrid algorithm exploits problem-specific information to

reduce the search space, to fine tune the search parameters, and to improve the efficiency of the
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whole search process in a novel fashion. For instance, during the search process, we identify the

potential constraints which are computationally expensive to predict the performance of the IP

solver, and thus, setting the search parameters adaptively.

Our main purpose in this paper is to extend the reach of exact method through hybridisation

of exact methods. Indeed, using an IP approach as the core solution method, we employ a CP

approach and other algorithmic aids to improve the efficiency of the overall algorithm. We do not

intend to design a hybrid algorithm capable of generating the best result for challenging problem

instances, particularly in comparison with advanced hybrid meta-heuristics [41]. Instead, we aim

to develop a hybridisation of IP and CP which preserve the benefits of exact methods, and is

able to outperform each of them alone. Moreover, aiming to ease the implementation process and

to increase the applicability of the hybrid algorithm, we do not apply any low-level or convoluted

hybridisation settings. The proposed algorithm is designed to obtain the best result in a pre-defined,

relatively short computational time. In addition, the proposed algorithm does not depend on any

specific settings regarding the importance of constraints, hence each constraint can be defined as

hard or soft during the search process. We formulate the problem according to a general model

reported in the literature [10], and evaluate the proposed algorithm using two different datasets

exist in the literature.

The rest of this paper is organised as follows: problem definition and assumptions are presented

in Section 2. The IP and CP formulations are presented in Sections 3 and 4, respectively. In Section

5, we elaborate the proposed hybrid algorithm and the associated components. Computational

results are reported in Section 6, and conclusions and potential future research directions are

briefly discussed in Section 7.

2. Problem Definition

The NRP is defined as the process of assigning a number of nurses to some work shifts during a

planning horizon according to a set of requirements and constraints. The output of this process is

a roster consisting of the allocated shifts (e.g. early and late) to all the nurses within the planning

period. The constraints of the problem are often categorised as hard and soft constraints. In the

following, we define decision variables and constraints similar to the conceptual model described in

[10].

We define our decision variables for each nurse, day, and shift type. Although this approach to

model the problem is less flexible and contains more symmetry compared with the pattern-based

modelling, where often all possible weekly shift sequences (patterns) are generated [14], it allows
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us to better utilise the problem-specific structure in order to reduce the search space. We assume

that the current roster is modelled over a specified planning horizon in an isolated way, i.e. no

information (history) from the previous roster is used to construct the current one. In addition, a

day off is considered as a shift type for modelling purposes. We have observed in various health

settings that nurse rostering is performed in each hospital ward separately, and therefore, a single

skill set is more realistic in practice than multi skill set. Therefore, we make the assumption that

all nurses belong to the same skill category. For the sake of simplicity, we assume that all rosters

start from Monday and are made from a whole week (i.e. seven days with a two-day weekend).

The constraints of the model are:

1. Maximum one assignment per shift type per day for each nurse,

2. The number of shift types for each day must be fulfilled,

3. The minimum and maximum number of:

(a) shift assignments within the scheduling period,

(b) consecutive working days over the planning horizon,

(c) working hours within the scheduling period (and/or during a week),

(d) shift assignments within a week,

(e) shift assignments at the weekend,

(f) consecutive shift types over the planning period,

4. Minimum number of days off after a night shift or a series of night shifts,

5. Over the weekends, there should be either an assignment to all days of weekends or no

assignments at all,

6. No night shift before free weekends (i.e. no assignment at the weekend),

7. Maximum number of consecutive worked weekends, when there is at least one weekend as-

signment,

8. Requested shifts (days) on/off, where some user-defined shifts (days) must (not) be allocated

for a particular nurse within the planning horizon,

9. Forbidden shift type patterns (e.g. the ND pattern, where the shift type D is not allowed to

be assigned right after the shift type N).
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In the next two sections, i.e. Section 3 and 4, we formulate this problem using IP and CP, respec-

tively. For more details regarding the problem characteristics, we refer the reader to [10].

3. IP Formulation

Here, we present our mathematical formulation using IP based on the definitions and assumptions

provided in Section 2. For the sake of consistency, we also use the same numbering of the constraints

as in Section 2. We also note that the defined constraints can be considered hard or soft in different

settings and problem instances, reflecting inherently different natures of wards, hospitals or health

systems. However, the design of the hybrid algorithm is not dependent on a particular setting of

constraints, hence each constraint can be defined as hard or soft depending on the user preferences.

For demonstration purposes, we provide here a formulation assuming that some constraints are

soft, namely 3d, 7, and 8. In case one needs to consider any of our hard constraints as soft in their

IP model, they will need to introduce auxiliary (slack) variables for each family of constraints in

order to store the associated penalty, and also update the objective function, which is defined as

the weighted sum of all the associated auxiliary variables for soft constraints. Next, we present the

parameters, variables, and constraints of the IP model:

Sets and Parameters:

E Set of nurses.

D Set of days.

A Set of shift types.

A′ Set of all shift types except day off.

W Set of weeks.

Ha Set of shift types that cannot be assigned immediately after shift type a ∈ A.

Qad Set of pre-assigned nurses to shift type a ∈ A on day d ∈ D.

Mmin
e , Mmax

e Minimum and maximum number of shifts that can be assigned to nurse e ∈ E within

the planning period.

W min
w , W max

w Minimum and maximum number of shifts that can be assigned to a nurse within week

w ∈W .
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V min
d , V max

d Minimum and maximum number of shifts that can be assigned to nurses on day

d ∈ D.

Amin, Amax Minimum and maximum number of hours that can be assigned to each nurse during

the planning period.

Emin
w , Emax

w Minimum and maximum number of hours that can be assigned to each nurse during

week w ∈W .

Nmin, Nmax Minimum and maximum number of consecutive working days over the planning pe-

riod.

Hmin
a , Hmax

a Minimum and maximum number of consecutive shift type a ∈ A over the planning

period.

Kmin, Kmax Minimum and maximum number of worked weekends over the planning horizon.

Cmax Maximum number of consecutive worked weekends over the planning period.

Ua Total workloads (hours) of shift type a ∈ A within the planning period.

Uaw Total workloads (hours) of shift type a ∈ A during week w ∈W .

Bwa
ew The associated weight with the minimum and maximum number of shift assignments

for nurse e ∈ E within week w ∈W .

Bcwx
ew The associated weight with the maximum number of consecutive weekends for nurse

e ∈ E within week w ∈W .

Brso
ead The associated weight with requested shift a ∈ A within day d ∈ D for nurse e ∈ E.

Decision variables:

xead = 1 if shift type a ∈ A on day d ∈ D is assigned to nurse e ∈ E, = 0 otherwise.

ped = 1 if nurse e ∈ E works on day d ∈ D, = 0 otherwise.

kew = 1 if nurse e ∈ E is assigned to weekend w ∈W , = 0 otherwise.

yea Total number of times that shift type a ∈ A is assigned to nurse e ∈ E over the

planning period.
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zewa Total number of shift type a ∈ A assigned to nurse e ∈ E during week w ∈W .

vwam
ew , vwax

ew Total incurred penalty relevant to the minimum and maximum number of shift as-

signments for nurse e ∈ E within week w ∈W .

vcwx
ew Total incurred penalty relevant to maximum number of consecutive weekends for

nurse e ∈ E within week w ∈W .

vrso
ead Total incurred penalty relevant to requested shift a ∈ A within day d ∈ D for nurse

e ∈ E.

Constraints:

Next, we present the relevant IP constraints in the same order as the order of constraints presented

in Section 2:

∑
a∈A

xead = 1, ∀e ∈ E, d ∈ D (1)


ped =

∑
a∈A′

xead, ∀e ∈ E, d ∈ D

V min
d ≤

∑
e∈E

ped ≤ V max
d , ∀d ∈ D

(2)


yea =

∑
d∈D

xead, ∀e ∈ E, a ∈ A

Mmin
e ≤

∑
a∈A

yea ≤Mmax
e , ∀e ∈ E

(3a)



Nmin−1∑
i=1

pe(d+i) ≤ ped + pe(d+Nmin)

+ Nmin − 2,

∀e ∈ E, d ∈ {1 . . . |D| −Nmin}

Nmax+d∑
g=d

peg ≤ Nmax, ∀e ∈ E, d ∈ {1 . . . |D| −Nmax}

(3b)



Amin ≤
∑
a∈A

yeaUa ≤ Amax, ∀e ∈ E

zewa =
7w∑

d=7(w−1)+1
xead, ∀e ∈ E, a ∈ A, w ∈W

Emin
w ≤

∑
a∈A

zewaUaw ≤ Emax
w , ∀e ∈ E, w ∈W

(3c)

W min
w − vwam

ew ≤
∑
a∈A

zewa ≤W max
w + vwax

ew , ∀e ∈ E, w ∈W (3d)
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
kew ≤ pe(7w−1) + pe(7w) ≤ 2kew, ∀e ∈ E, w ∈W

Kmin ≤
∑

w∈W

kew ≤ Kmax, ∀e ∈ E (3e)



Hmin
a −1∑
i=1

xea(d+i) ≤ xead

+ xea(d+Hmin
a ) + Hmin

a − 2,

∀e ∈ E, a ∈ A, d ∈ {1 . . . |D| −Hmin
a }

Hmax
a +d∑
g=d

xeag ≤ Hmax
a , ∀e ∈ E, a ∈ A, d ∈ {1 . . . |D| −Hmax

a }

(3f)

{
xend ≤ xen(d+1) + 1− pe(d+1), ∀e ∈ E, d ∈ {1 . . . |D| − 1}
xend − pe(d+1) ≤ 1− pe(d+2), ∀e ∈ E, d ∈ {1 . . . |D| − 2}

(4)

xer(7w−1) = xer(7w), ∀e ∈ E, w ∈W (5)

xen(7w−2) ≤ pe(7w−1) + pe(7w), ∀e ∈ E, w ∈W (6)

Cmax∑
i=0

ke(w+i) ≤ Cmax + vcwx
ew , ∀e ∈ E, w ∈ {1 . . . |W | − Cmax} (7)

xead = 1− vrso
ead, ∀e ∈ Qad, a ∈ A, d ∈ D (8)

xead + xeh(d+1) ≤ 1, ∀e ∈ E, a ∈ A, h ∈ Ha, d ∈ {1 . . . |D| − 1} (9)

xead, ped, kew ∈ {0, 1}, yea, zewa ∈ Z, ∀e ∈ E, a ∈ A, d ∈ D, w ∈W

Objective function:

min
∑
e∈E

∑
w∈W

(Bwa
ew (vwam

ew + vwax
ew ) + Bcwx

ew vcwx
ew ) +

∑
e∈Qad

∑
a∈A

∑
d∈D

(Brso
eadvrso

ead)

The formulated constraints are very straightforward according to the problem definition, hence

only the non-trivial ones are further explained here. In constraint 3b, to take into account the

number of consecutive working days below the minimum, we count all the sequences individually

up to the minimum exclusively. However, for the maximum part, we only need to count all the

sequences which have a length of one day more than the maximum. Thus, all the sequences having

a length of more than the maximum are counted accordingly. Constraint 3f is similar to constraint

3b, but only sequences of a particular shift type are counted. In constraint 4, we assume that there
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should be two days off after a night shift or a series of night shift types. Furthermore, in constraints

2, 4, 5, and 6, n and r indicate night and rest shift types, respectively. The objective function is

the weighted sum of all the auxiliary variables associated with soft constraints 3d, 7, and 8, and

their relevant weights.

The proposed IP formulation is similar to the most IP formulations reported in the literature [38,

9]. However, there are often some differences in the softness of constraints (i.e. which constraints

are considered hard or soft), and therefore, the associated objective function. For example, [38]

proposed an IP formulation for the problem instances introduced in the first International Nurse

Rostering Competition (INRC-I) [22]. In their formulation, all constraints are considered soft,

except Constraint 2. That said, the objective function is also different, which is the weighted

sum of the associated penalties with the remaining soft constraints. In this paper, we are not

rely on a particular problem setting (i.e. softness of constraints) due to the particular design of

the proposed hybrid algorithm. In Section 6, we benchmark the algorithm by using two different

datasets including the instances introduced in INRC-I competition, which have different problem

settings. In fact, this is one of the strengths of the proposed hybrid algorithm which is not dependent

on a particular problem setting such as the softness of constraints, making it a proper option for

practical circumstances. For more information regarding the softness of constraints, we refer the

interested readers to [36]. It should be also noted that the presented formulation is based on the

single-skill requirement, which can be easily extended to a multi-skill formulation with some minor

adjustments similar to [38].

4. CP Formulation

Here, we present our CP formulation based on the Constraint Satisfaction Problem (CSP) model

using the definitions and assumptions provided in Section 2. To the best of our knowledge, we are

the first researchers presenting the CP formulation for the described problem. It is worth noting

that we only utilise CP for generating feasible solutions in the configuration of the proposed hybrid

algorithm, and thus, there is no need to incorporate the softness of constraints nor to define a

Constraint Optimisation Problem (COP). In this section, first, we concisely explain the two types

of global constraints, which are used in the CP model: Cardinality and Stretch global constraints.

For more information about global constraints in CP, we refer the interested readers to [26], [46],

and [3].

Cardinality constraints (aka. GCC or Generalised Cardinality) bounds the number of times
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that variables take a certain set of domain values. It is written as:

cardinality (x, v, l, u)

where x is a set of variables (x1, . . . , xn); v is an m-tuple of domain values of the variables x; l and

u are m-tuples of non-negative integers defining the lower and upper bounds of the times value v

being taken by variable x, respectively. The constraint defines that, for j = 1, . . . , m, at least lj

and at most uj of the variables x take value vj .

Stretch constraints bound the sequence of consecutive variables that take the same value

(stretch), i.e. xj−1 6= 1, xj , . . . , xk = v, xk+1 6= v. It is expressed as:

stretch (x, v, l, u, P )

where x is a set of variables (x1, . . . , xn); v is an m-tuple of possible domain values of x; l and u are

m-tuples of lower and upper bounds for x, respectively. P is a set of patterns, i.e. pairs of values

(vj , vk), requiring that when a stretch of value vj immediately precedes a stretch of value vk, the

pair (vj , vk) must be in P .

As we use the same parameters as defined in Section 3, we define any additional parameters as

well as the variables and constraints of the CP model next.

Sets and Parameters:

U The vector of total workloads (hours) of all the shift types within the planning period.

Uw The vector of total workloads (hours) of all the shift types during week w ∈W .

Decision variable:

sed Integer variable indicating the shift type assigned to nurse e ∈ E on day d ∈ D.

Constraints:

Having defined the required global constraints, we present the relevant CP constraints, where the

numbering of the constraints is the same as the constraints presented in Section 2:

cardinality

(⋃
e∈E

sed, A, V min
d , V max

d

)
, ∀d ∈ D (2)

cardinality

 ⋃
d∈D

sed, A, Mmin
e , Mmax

e

 , ∀e ∈ E (3a)
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stretch

 ⋃
d∈D

sed, A′, Nmin, Nmax, P

 , ∀e ∈ E, P = {} (3b)


Amin ≤ prod(

⋃
d∈D

sed, U) ≤ Amax, ∀e ∈ E

Emin
w ≤ prod(

7w⋃
d=7(w−1)+1

sed, Uw) ≤ Emax
w , ∀e ∈ E, w ∈W

(3c)

cardinality

 7w⋃
d=7(w−1)+1

sed, A, W min
w , W max

w

 , ∀e ∈ E, w ∈W (3d)

cardinality

( ⋃
w∈W

se(7w) + se(7w−1), r, |W | −Kmax, |W | −Kmin

)
, (3e)

∀e ∈ E

stretch

 ⋃
d∈D

sed, a, Hmin
a , Hmax

a , P

 , ∀e ∈ E, a ∈ A, P = {} (3f)

if sed = n, se(d+1) = r ∧ se(d+2) = r, ∀e ∈ E, d ∈ {1, . . . |D| − 2} (4)

se(7w−1) = se(7w), ∀e ∈ E, w ∈W (5)

if se(7w−2) = n, se(7w−1) 6= r ∨ se(7w) 6= r, ∀e ∈ E, w ∈W (6)

stretch

( ⋃
w∈W

se(7w) + se(7w−1), r, |W | − Cmax, |W | , P

)
, ∀e ∈ N, P = {} (7)

sed = a, ∀e ∈ Qad, a ∈ A, d ∈ D (8)

if sed = a, se(d+1) /∈ Ha, ∀e ∈ E, d ∈ {1, . . . |D| − 1} (9)

sed ∈ A, ∀e ∈ E, d ∈ D

Constraint 2 and 3a restrict the number of assigned shifts using the cardinality constraint

in vertical and horizontal dimensions, respectively. In constraint 3b, sequences of working shifts
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(a ∈ A′) using the stretch constraint are limited to Nmin and Nmax, where there is no need to any

specific pattern. Constraint 3c is very similar to its relevant IP form, where function prod(x, v) is

defined as the product of all the values of set x, and the relevant possible domain values in vector v.

Constraints 3d and 3e resemble to constraint 2. Constraint 3f is the same as constraint 3b, where

sequences of a particular shift type taken into account. In constraint 4, we assume that there should

be two days off after a night shift or a series of night shift types. Using the stretch global constraint,

constraint 7 restricts the sequences of rest shifts (instead of working shifts) to |W |−Cmax and |W |,

since it is easier to be counted in terms of modelling. The remaining constraints are straightforward,

where we use some simple reified (if-then) relations.

It should be noted that the first constraint is implicitly satisfied due to the inherent structure

of the CP model, which only a single shift type can be assigned to each nurse at a day. To resolve

some symmetry issues and increase the performance of the CP solver over the CSP model, we also

add some lexicographic ordering constraints [39, 17] to the main variable sed by taking into account

the “requested shifts on/off” constraints for each group of nurses working on the same working

contract in a similar way described in [40].

5. Integration of IP and CP

For small- to medium-size problems, IP solvers are often efficient to find the optimal solution and

to generate strong lower-bounds. Similarly, CP solvers are capable of finding feasible solutions

very efficiently. However, using these approaches on their own for solving large-scale problems, or

even small-scale problems with a highly-constrained structure often leads to poor performance. For

example, solving most of the benchmark instances using the model presented in Section 3 with a

standard IP approach, we were not able to obtain an optimal solution (and in some cases even a

good-quality solution) in a reasonable amount of time, where some instances took more than 24

hours to solve (e.g. see Table 3). Similarly, a standard CP approach results in poor performance,

since it often takes a long time to achieve an optimal solution. Therefore, it is intuitive to hybridise

them in order to utilise their strengths for efficiently solving the NRP. That said, we extend the

reach of IP and CP through a novel hybridisation setting. In fact, we combine the strength of IP in

obtaining lower-bounds and finding an optimal solution with the capability of CP in finding feasible

solutions in a novel way. Applying the IP approach as our core solution component, we use a CP

approach and other algorithmic modules to increase its efficiency. Moreover, IP and CP on their own

are quite efficient in solving some specific problem structures such as network flow and bin packing
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Figure 1: Schematic diagram of the proposed hybrid algorithm

problems [20, 23], which further motivates us to combine such strengths together in order to achieve

better overall performance. To improve the efficiency of the hybrid algorithm, we also exploit the

problem structure to provide some valuable information such as difficulty of constraints, thereby

setting the parameters of the proposed algorithm adaptively. Applying a high-level hybridisation

scheme of IP and CP, our contribution is a hybrid algorithm that can be implemented easily in

practice, and that efficiently generates good-quality solutions for a wide range of problem instances,

particularly within a relatively short computational time.

In the following, we provide a brief description of the performance of the hybrid algorithm,

and then elaborate on each associated component individually. After a quick pre-processing in

order to create appropriate data structures for the algorithm, at the first step, we employ an IP

solver to pre-solve the problem in order to identify any valuable information, which can be used to

adjust the parameters of other components accordingly. In the next step, we employ a CP solver to

iteratively solve various CSP models in order to generate a good-quality solution, and to identify

difficult constraints. Then, using the best-obtained solution provided in the CSP generation step,

we further improve the attained solution by an IP solver in the remaining time and report the

final solution to the user. We also add two more components to reinforce the search process using

the exploited problem-specific information: Softness adjustment and Lower-bound enhancement.

The former attempts to modify the softness of each constraint based on a pre-defined threshold in

order to tighten the problem formulation, thereby aiming to help the IP solver to generate better

bounds; and the latter aims to provide a stronger lower-bound for the IP solver by decomposing

the problem.

It should be noted that the proposed hybrid algorithm runs in a pre-defined time limit to solve
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the problem. Thus, the user is able to determine the running time of each component by setting

the relevant computational time parameter. It is noteworthy to mention that all the components

of the hybrid algorithm work with the IP model except the CSP generation step, for which the

CP model is employed. The schematic diagram of the proposed algorithm is depicted in Figure 1.

Next, we explain each component individually in more detail:

Pre-solve: In a nutshell, the duty of this step is to extract some information from the problem,

and to regulate the parameters of the main IP solver adaptively. In fact, this component is the first

step in most of the commercial solvers to analyse and simplify the problem structure, and also to

identify any specific structures such as network flow or assignment problems [20]. If the IP solver

can identify any particular structures, it is often led to better performance during the branch-and-

bound algorithm. Here, we only call the pre-solve step of an IP solver from the hybrid algorithm as

a black-box. We use the information obtained from this step including the obtained lower-bound

and relaxed objective function to predict if there are any specific structures, thereby setting the

parameters of the IP solver. According to our experiments, within the pre-solve step, if the IP

solver provides a stronger (bigger in our problem settings) lower-bound compared with the relaxed

objective function value (which is obtained by relaxing all the integer constraints), the employed

IP solver might be able to solve the problem in better performance due to the identification of a

specific data structure. That said, we switch on the relevant parameter for the pre-solve step of

the main IP solver to the highest degree (aggressive mode) (e.g. setting the presolve parameter

in Gurobi). Moreover, using the reported number of constraints and variables in this step, if they

are more than the user-defined threshold psThr, we call the problem “difficult”, thus, we set the

search strategy of the main IP solver to spend more efforts on obtaining a feasible solution rather

than on proving optimality. We do not change the default search strategy in case a problem is

not difficult to solve. In most of the modern solvers, the user can modify the search strategy by

setting a specific parameter defined therein. For example, in Gurobi IP solver, the user can tailor

the search strategy by setting the mipfocus parameter.

CSP generation: After we set some parameters of the main IP solver, a CP solver is employed

to generate a good-quality initial solution and to identify difficult constraints. This solver solves

the problem according to the CSP model presented in Section 4. However, in our preliminary

experiments on the benchmark instances, CP approach does not provide very good-quality or even

feasible solutions within a limited computational time (e.g. see Table 3). To address this issue,

we implement the following procedure: at each iteration i, we modify and then solve the CSP

model p considering all those constraints that have a weight higher than the user-defined threshold
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Solutions, p
′

i−1 = empty;
i = 1;
while true do

p
′

i = generateCSP(p, cspThr);
if p

′

i is feasible then
for j = 1 to numSols do

Solutions[p′i].add(solve(p
′

i));
end

if
∣∣∣∣1− best(Solutions[p

′
i−1])

best(Solutions[p′
i
])

∣∣∣∣ ≤ q then

break;
end

else
cspThr = cspThr - 1;
if p

′

i == p then
break;

end
end
i++;

end
return [best(Solutions)]

Algorithm 1: The pseudo code of CSP generation in the hybrid algorithm

cspThr. If the modified problem p′i is feasible, we generate a number of different solutions based on

p′i according to the user-defined parameter numSols. Otherwise, we decrease the threshold value

by one unit, and go to the next iteration. Therefore, on each threshold level or iteration, there

might be several feasible solutions, which are stored in the data structure Solutions. This process

continues until the quality gap between the best-obtained solutions in two consecutive levels is

less than q percent, or p′i is equal top. Finally, all the stored solutions are evaluated according

to p and the best-quality solution is reported. Then, the reported solution is imported to the IP

solver for further improvement. The pseudo code of this procedure is presented in Algorithm 1,

where p, p′i, cspThr, q, and numSols indicate the original problem, the new generated problem

in each iteration i, the user-defined threshold level to cut off the constraints, the maximum gap

between the quality of the best-obtained solutions in two consecutive threshold levels, and the user-

defined number of solutions required to be generated for each threshold level, respectively. In this

algorithm, Solutions is a data structure which stores a CSP and all the associated solutions, and

function best evaluates the quality of the input solution according to the original problem settings.

Indeed, the aim of this step is to construct a weak CSP and iteratively strengthen it until

some stopping criteria are met. Note that solving a CSP and generating a number of solutions

accordingly is done quite fast, often within a few seconds. Nevertheless, experimentally speaking,

the time limit of the CP solver is set to 10 seconds. Furthermore, it should be noted that although a
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stronger CSP (i.e. a CSP with more number of constraints) is generated while progressing through

lower threshold levels, and therefore, it is always expected to obtain better solutions afterwards,

the quality of generated solutions is varied within each level due to the internal mechanisms of the

applied CP solver.

Using the information obtained from a variety of threshold levels within the CSP generation step,

we can also find out an estimate for the computational difficulty of each constraint: if the difference

in solution times attained by removing a constraint from a problem in order to solve a new modified

problem is significant, we count it as a “difficult” constraint. In our preliminary experiments, we

concluded that 10 seconds is sufficient for most of the benchmark instances. Identifying difficult

constraints helps us in the Softness adjustment step to tighten the formulation of the problem.

IP Solver: In this component, we use an IP solver to solve the problem within the remaining

time, to which an initial solution generated from the CSP generation step is imported. Indeed, we

use the solution obtained from the CP solver as a warm start for the IP solver. To improve the

performance of the IP solver, we also apply two more techniques performed within the Softness

adjustment and Lower-bound enhancement steps as described next. According to our preliminary

experiments, these two steps are effective when either the problem instance is highly-constrained

or huge in size.

Softness adjustment: In order to improve the efficiency of the IP solver during the search

process, we modify the weights (e.g. see Bwa
ew and Brso

ead in Section 3) in the objective function due

to the difficulty degree of constraints obtained within the CSP generation step. According to this

degree, if a constraint is not difficult, we impose it to the IP solver as a hard constraint. Obviously,

we only consider soft constraints in this step, which have a contribution to the objective function.

In fact, only difficult constraints are kept in the objective function, and the remaining ones are

moved to the set of hard constraints. This is quite similar to modifying the associated weights with

hard constraints in the objective function to a significantly large value. Theoretically, this process

may lead to an infeasible problem. In this case, we undo the relevant change (i.e. declare the

constraint as soft again) and continue the process for the rest of the constraints. Finally, we solve

the new modified problem using the IP solver. This technique helps to reduce the search space

by tightening the problem formulation, which often results in better efficiency during the search

process, and higher-quality feasible solutions.

Lower-bound enhancement: In this step, we try to find out a better lower-bound by decom-

posing the problem to different sub-problems, and then, to solve each by using an IP solver. For

this purpose, we decompose the problem in three ways: first, we break down the problem to weekly
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rosters. For each weekly roster, all the constraints are taken into account except those associated

with the whole planning horizon. These constraints are not examined unless their imposed restric-

tion is valid for a week. For example, if the total number of assignments for each nurse within the

planning period is 5, it is added to the involved constraints. Second, we decompose the problem

to personal schedules for each nurse. In this case, all the constraints are considered excluding

Constraint 2. Finally, we decompose the problem to groups of similar nurses. To identify similar

nurses, we iterate through the set of nurses and constraints except Constraint 2 to find out nurses

who are included in similar set of constraints. In order to facilitate this process, we define data

structure LBE = {(e, ce)|e ∈ E, ce = {c⇐\ e|c ∈ C}}, where E and C show the set of nurses and

constraints, ce denotes the set of constraints affects nurse e, and ⇐\ indicates involvement. Then,

we group all nurses who have the same set of ce. Thus, each group shows a sub-problem. It should

be noted that the identified groups do not necessarily partition the set of nurses or complement

each other. Experimentally speaking, these groups are often associated with different working con-

tracts in the problem data. Indeed, we try to find out whether there is an inevitable conflict in

the model, which can be discovered before solving the problem by decomposing the problem into

smaller sub-problems. Finally, the best lower-bound calculated in this step by solving different

sub-problems is imposed to the IP solver by setting the relevant parameter (e.g. setting the start

parameter in Gurobi).

6. Computational Results

The algorithm presented in this paper is tested on 9 real-world instances published in [10], and

36 instances introduced in INRC-I competition [22]. The first set of instances is called real-world

dataset, and the second set of instances is called competition dataset-I and competition dataset-II.

The difference between the two competition datasets is that the former is according to the single-skill

assumption, on which the proposed hybrid algorithm is defined, and the latter contains multi-skill

nurses to allow further analyses. Moreover, competition dataset-II contains very challenging large-

scale instances, which are mostly computationally intractable for exact methods. Nevertheless,

we benchmark the hybrid algorithm by using these instances to investigate how it performs in

comparison with other meta-heuristic algorithms. The diversity in the structure and complexity of

these instances allows us to test the algorithm thoroughly. In addition, the softness of constraints

is varied for each instance. To the best of our knowledge, we are one of the few researchers

experimenting with all these instances altogether. Table 1 provides more information regarding

these instances. In this table, competition datasets are denoted as Medium and Long with the
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Table 1: Benchmark instances and the relevant characteristics

Instance Nurses Shift types Days Instance Nurses Shift types Days

Real-world Dataset: Competition Dataset-II:
GPOST 8 3 28 MediumH01 30 5 28
GPOSTB 8 3 28 MediumH02 30 5 28
ORTEC01 16 5 33 MediumH03 30 5 28
ORTEC02 16 5 33 MediumH04 30 5 28
Valouxis-1 16 4 28 MediumL05 30 5 28
SINTEF 24 6 21 LongE01 49 5 28
WHPP 30 4 14 LongE02 49 5 28
MILLAR-1 8 3 14 LongE03 49 5 28
LLR 27 4 7 LongE04 49 5 28
Competition Dataset-I: LongE05 49 5 28
MediumE01 31 5 28 LongH01 50 5 28
MediumE02 31 5 28 LongH02 50 5 28
MediumE03 31 5 28 LongH03 50 5 28
MediumE04 31 5 28 LongH04 50 5 28
MediumE05 31 5 28 LongH05 50 5 28
MediumH05 30 6 28 LongL01 50 5 28
MediumL01 30 5 28 LongL02 50 5 28
MediumL02 30 5 28 LongL03 50 5 28
MediumL03 30 5 28 LongL04 50 5 28
MediumL04 30 5 28 LongL05 50 5 28
MediumT01 30 5 28 LongT01 50 5 28
MediumT02 30 5 28 LongT02 50 5 28
MediumT03 30 5 28 LongT03 50 5 28
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suffix of E, H, L, T, indicating the Early, Hidden, Late, and Hint instances, respectively. We do not

include Sprint instances in our benchmarks, since even a sole IP solver is able to find the optimal

solution in a few minutes for each of them.

To evaluate the proposed hybrid algorithm, we implement our algorithm in Java 1.7, and use

the IBM ILOG CP solver 1.7 [23] and Gurobi IP solver 5.6 [20] for solving all CP and IP models,

respectively. The reason to use the aforementioned solvers is that they are easier to implement in

terms of modelling, and also they suit our hybrid framework better than other software packages.

In addition, we note that the benchmarks reported in [31] show that Gurobi produces very similar

results for most of the instances comparing with other state-of-the-art IP solvers such as IBM ILOG

Cplex [24]. We run our experiments on a PC with Intel 3.4 GHz processor and 4 GB of RAM, and

only on one CPU core, in order to have a fairer and more accurate comparison.

For evaluation purposes, we run our hybrid algorithm for 10 minutes for real-world dataset.

The reason is two-fold: first, the hybrid algorithm is primarily designed to perform well in a short

time, and second, the selected time is in line with the testing times used by most of the algorithms

reported in the literature, including the time used in INRC-I competition, so that a platform for

a fair comparison is established. For competition datasets, we run the hybrid algorithm for 10

minutes for Medium instances and 10 hours for Long instances according to the competition time

rules.

After extensive preliminary testing of the algorithm using different settings, the following pa-

rameters are chosen: We dedicate 5%, 25%, and 50% of the computational time to the Pre-solve,

CSP generation, and IP Solver steps, respectively. The remaining time is distributed equally to

Softness adjustment and Lower-bound enhancement steps as they require significantly shorter times

in comparison. Furthermore, we set the threshold parameters psThr and cspThr for the Pre-solve

and CSP generation steps to 10,000 and 1000, and parameters q and numSols for the CSP genera-

tion step to 5 and 1000, respectively. Since the design of the algorithm is deterministic, we run it

once per instance for each experiment and report the values accordingly.

We conduct three experiments to test the proposed algorithm: first, we analyse the performance

of different components of the hybrid algorithm, and how they affect the efficiency of the algorithm.

Second, we compare the hybrid algorithm with standard IP and CP solvers to investigate whether

the hybrid algorithm is able to extend the reach of each of these methods solely. Finally, we

compare the performance of the hybrid algorithm with other state-of-the-art methods in the relevant

literature for all the benchmark datasets.

The first experiment is designed to investigate the effectiveness of Softness adjustment and
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Table 2: Results of the hybrid algorithm using different settings

Instance CG
solution

LE bound WA + LE (default) No WA No LE

RR LB Obj. LB G(%) Obj. LB G(%) Obj. LB G(%)

Real-world Dataset:
GPOST 21 1 1 5 5 0.0 5 5 0.0 5 5 0.0
GPOSTB 20 0 0 5 0 100.0 5 0 100.0 5 0 100.0
ORTEC01 1031 40 60 380 158 58.4 392 158 59.7 380 158 58.4
ORTEC02 984 40 60 370 150 59.5 380 148 61.1 390 148 62.1
Valouxis-1 1651 0 0 20 10 50.0 20 10 50.0 20 10 50.0
WHPP 728 0 0 5 0 100.0 5 0 100.0 5 0 100.0
Competition Dataset-I:
MediumE02 593 235 235 240 240 0.0 240 240 0.0 240 240 0.0
MediumE03 451 232 232 236 236 0.0 236 236 0.0 236 236 0.0
MediumE04 670 233 233 237 237 0.0 237 237 0.0 237 237 0.0
MediumE05 554 275 275 303 303 0.0 303 303 0.0 303 303 0.0
MediumH05 3263 56 56 174 56 67.8 192 56 70.9 174 56 67.8
MediumL01 2910 61 92 159 147 7.5 170 144 15.3 161 144 10.6
MediumL02 422 7 7 18 18 0.0 18 18 0.0 18 18 0.0
MediumL03 1529 9 9 29 25 13.8 29 25 13.8 29 25 13.8
MediumL04 527 6 6 35 32 8.6 35 32 8.6 35 32 8.6
MediumT01 1220 10 14 39 27 30.8 41 24 41.5 39 25 35.9
MediumT02 1544 25 25 80 52 35.0 80 52 35.0 80 52 35.0
MediumT03 9632 35 41 121 80 33.9 131 77 41.2 131 78 40.5

Lower-bound enhancement steps on overall performance of the hybrid algorithm, where we run

the hybrid algorithm for 10 minutes and record the detailed results in Table 2. We do not report

the results for instances SINTEF, MILLAR-1, LLR, and MediumE01, since they have very short

solution time, hence giving us no insight into the impact of each component. In this table, the

results of running the hybrid algorithm with default settings (i.e. keeping both Softness adjustment

(WA) and Lower-bound enhancement (LE) steps), and without WA or LE are reported. For each

setting, the obtained objective function value (Obj.), lower-bound (LB), and optimality gap (G(%))

are recorded. The optimality gap is defined as the discrepancy between the value of the current

feasible solution (for the primal problem) and the value of the lower-bound (feasible for the dual

problem). When the optimality gap is zero, the current feasible solution is optimal. Furthermore,

we report the initial solution generated from CSP generation (CG) step, and the lower-bound

generated from LE step in comparison with the Root Relaxation (RR).

As it can be seen, removing WA and LE from the main algorithm setting results in poorer per-

formance for 6 and 4 instances, respectively (shown as bold style). As we have explained in Section

5, the expected impact of WA and LE steps is mostly realised when the problem instance is highly-

constrained, and therefore, it is computationally difficult to solve. Thus, the impact of removing

these two steps is only seen for some difficult instances such as ORTEC02 and MediumT01. Indeed,
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Table 3: Benchmark results of the hybrid algorithm and standard IP and CP solvers within 10 and
60 minutes using the real-world dataset and competition dataset-I

Instance
Hybrid Algorithm IP CP

10 min 60 min 10 min 60 min 60 min

Obj. LB G(%) Obj. LB G(%) Obj. LB G(%) Obj. LB G(%) Obj.

Real-world Dataset:
GPOST 5 5 0.0 5 5 0.0 9 5 44.4 5 5 0.0 11
GPOSTB 5 0 100.0 3 0 100.0 7 0 100.0 5 0 100.0 8
ORTEC01 380 158 58.4 270 210 22.2 1970 140 92.9 720 210 70.8 -
ORTEC02 370 150 59.5 270 210 22.2 15 415 140 99.1 700 210 70.0 830
Valouxis-1 20 10 50.0 20 20 0.0 1090 0 100.0 90 0 100.0 180
SINTEF 0 0 0.0 0 0 0.0 8 0 100.0 0 0 0.0 0
MILLAR-1 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0
WHPP 5 0 100.0 5 5 0.0 24 061 0 100.0 1004 0 100.0 67 050
LLR 301 301 0.0 301 301 0.0 301 301 0.0 301 301 0.0 301
Competition Dataset-I:
MediumE01 240 240 0.0 240 240 0.0 240 240 0.0 240 240 0.0 255
MediumE02 240 240 0.0 240 240 0.0 240 240 0.0 240 240 0.0 602
MediumE03 236 236 0.0 236 236 0.0 236 236 0.0 236 236 0.0 576
MediumE04 237 237 0.0 237 237 0.0 237 237 0.0 237 237 0.0 -
MediumE05 303 303 0.0 303 303 0.0 303 303 0.0 303 303 0.0 -
MediumH05 174 56 67.8 129 56 56.6 188 56 70.2 141 56 60.3 -
MediumL01 159 147 7.5 157 151 3.8 175 137 21.8 159 144 9.43 -
MediumL02 18 18 0.0 18 18 0.0 18 16 7.75 18 18 0.0 -
MediumL03 29 25 13.8 29 29 0.0 30 21 30.3 29 22 22.4 -
MediumL04 35 32 8.6 35 35 0.0 36 31 14.4 35 32 8.6 -
MediumT01 39 27 30.8 34 31 8.8 44 27 39.2 34 29 14.7 -
MediumT02 80 52 35.0 72 72 0.0 95 50 46.9 73 54 26.0 -
MediumT03 121 80 33.9 117 89 23.9 149 80 46.6 117 87 25.64 -

when a problem instance is computationally easy to solve, even removing the extra components

does not affect the whole performance of the search process. In general, according to the obtained

results, including these components within the search process is preferable. It is worth mentioning

that running the algorithm using default settings generates also better lower-bounds for 5 instances

in total, which shows the effectiveness of LE step in our algorithm.

In order to compare the performance of the hybrid algorithm against standard IP and CP solvers,

i.e. running the solvers in default settings without any tuning or extra reinforcing techniques, we

run the algorithm for 10 and 60 minutes (short and long runtimes), and report the results in Table

3 and 4. We also run the IP solver for 10 and 60 minutes, and the CP solver for 60 minutes. In

this table, Obj., LB, G(%), and T(s) show the obtained solution, lower-bound, optimality gap, and

the solution (clock) time in seconds, respectively. The better results in each runtime are shown as

bold style. It should be noted that for running the CP solver over the benchmark instances, and

therefore incorporating the soft constraints into the CP model explained in Section 4, we apply

a COP model in a similar way to [34], where the authors apply CP by using two different sub-
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Table 4: Benchmark results of the hybrid algorithm and standard IP and CP solvers within 10 and
60 minutes using the competition dataset-II

Instance
Hybrid Algorithm IP CP

10 min 60 min 10 min 60 min 60 min

Obj. LB G(%) Obj. LB G(%) Obj. LB G(%) Obj. LB G(%) Obj.

MediumH01 192 84 56.3 117 89 23.9 631 84 86.7 215 89 58.6 -
MediumH02 312 186 40.4 248 191 23.0 M 183 100.0 287 190 33.8 -
MediumH03 73 22 69.9 36 25 30.6 363 22 93.9 101 23 77.2 -
MediumH04 124 68 45.2 81 68 16.0 M 68 100.0 81 68 16.0 -
MediumL05 107 107 0.0 107 107 0.0 114 104 8.8 107 107 0.0 -
LongE01 197 197 0.0 197 197 0.0 197 197 0.0 197 197 0.0 -
LongE02 219 219 0.0 219 219 0.0 219 219 0.0 219 219 0.0 -
LongE03 240 240 0.0 240 240 0.0 240 240 0.0 240 240 0.0 -
LongE04 303 303 0.0 303 303 0.0 303 303 0.0 303 303 0.0 -
LongE05 284 284 0.0 284 284 0.0 284 284 0.0 284 284 0.0 -
LongH01 488 324 33.6 368 337 8.4 M 321 100.0 498 337 32.3 -
LongH02 101 81 19.8 92 86 6.5 M 79 100.0 144 81 43.8 -
LongH03 59 21 64.4 47 26 44.7 M 17 100.0 M 17 100.0 -
LongH04 38 14 63.2 29 19 34.5 M 14 100.0 M 14 100.0 -
LongH05 114 36 68.4 41 41 0.0 M 36 100.0 M 40 100.0 -
LongL01 332 212 36.1 235 235 0.0 M 212 100.0 M 231 100.0 -
LongL02 289 216 25.3 229 229 0.0 M 214 100.0 279 229 17.9 -
LongL03 320 213 33.4 221 218 1.4 M 213 100.0 254 218 14.2 -
LongL04 310 201 35.2 230 213 7.4 M 196 100.0 M 213 100.0 -
LongL05 156 79 49.4 94 80 14.9 631 79 87.5 374 79 78.9 -
LongT01 164 14 91.5 89 14 84.3 M 14 100.0 M 14 100.0 -
LongT02 96 9 90.6 65 10 84.6 M 4 100.0 M 9 100.0 -
LongT03 272 36 86.8 67 39 41.8 M 36 100.0 M 39 100.0 -
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models. For running the algorithm using the competition dataset-II, we extend the IP and CP

models introduced in Section 3 and 4 in a similar way to [38] by making a few minor adjustments.

Running the IP solver for 10 minutes, one can see that the hybrid algorithm found better

solutions for all real-world instances except instances MILLAR-1 and LLR, for which both methods

obtain the same results. Furthermore, the algorithm improves the lower-bounds for three instances.

Observing the results for the competition dataset-I, the hybrid algorithm generates better results

for 8 and 5 out of 13 instances, respectively. For competition dataset-II, the hybrid algorithm

generates better results for 18 out of 23 instances, where it is able to improve the lower-bounds for

7 instances. In overall, from 22 benchmark instances, the hybrid algorithm obtains better solutions

for 14 instances, and stronger lower-bounds for 8 instances in comparison with the IP solver running

within 10 minutes.

To have a fairer comparison, we run the IP solver for the longer time of 60 minutes using the

real-world dataset. It can be seen that the hybrid algorithm is able to find better solutions for 4

instances in comparison with the IP solver, where it proves the optimality for instances Valouxis-1

and WHPP. Regarding the competition instances, the proposed algorithm generates better results

for 7 and 16 instances included in the dataset I and II, respectively.

Given the extra time to run the hybrid algorithm using the long runtime, it can be seen that

the obtained results using a short runtime are improved for 4 and 24 instances from the total of 9

and 36 instances included in the real-world and competition datasets, respectively.

Similarly, running the CP solver within the long runtime using all the benchmark instances, it

obtains the optimal solution for 3 instances, while not even finding any feasible solutions for 34

instances. Apart from the generated optimal solutions, the performance of the CP solver is inferior

due to the complexity and highly-constrained nature of the benchmark instances. Therefore, it

can be seen that hybridising IP and CP leads to better performance for both the real-world and

competition instances.

To compare the performance of our algorithm (HA) with the state-of-the-art algorithms reported

in the literature by using real-world dataset, we present in Table 5 the best-published results for the

real-world instances by a hybrid Variable Neighbourhood Search [11], denoted as VNS-1, a Memetic

Algorithm [8], denoted as MA, a Variable Depth Search [12], denoted as VDS, a Harmony Search

Algorithm [21], denoted as HSA, a Scatter Search [7], denoted as SS, another variant of hybrid

Variable Neighbourhood Search [29], denoted as VNS-2, a hybrid Branch-and-price algorithm [9],

denoted as BAP, and a stochastic VNS [41], denoted as SVN. In this table, BKS shows the best-

known solutions from the literature for the benchmark instances, which are obtained using column
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Table 5: Benchmark results of the hybrid algorithm and other state-of-the-art algorithms consisting
of VNS-1 [11], MA [8], VDS [12], HSA [21], SS [7], VNS-2 [29], BAP [9], and SVN [41] for real-world
dataset

Instance BKS HA VNS-1 MA VDS HSA SS VNS-2 BAP SVN

GPOST 5 5 - 915 - - 9 8 5 -
GPOSTB 3 5 - 789 - - 5 - 3 -
ORTEC01 270 380 541 535 360 310 365 - 270 -
ORTEC02 270 370 - - - 330 - - 270 -
Valouxis-1 20 20 - 560 - - 100 160 80 73
SINTEF 0 0 - 8 - - 4 - 0 -
MILLAR-1 0 0 - 100 - - 0 0 0 -
WHPP 5 5 - - - - - 5 5
LLR 301 301 - 305 - - 301 314 301 301

generation and relaxation techniques (mostly instance specific) with an IP solver or other heuristic

methods for a long runtime. In this column, the optimal results are underlined. Furthermore, “-”

shows that there is no published result for the relevant instances using the benchmarking algorithm.

All the algorithms are run for 10 minutes except VNS-1, which is executed for one hour.

As we can see, our proposed hybrid algorithm is able to generate the best solutions for 6

instances, and competitive results for the remaining instances. Comparing the results with the

BAP algorithm, it is able to find better results only for instance Valouxis-1. Indeed, BAP is

a reinforced branch-and-price algorithm with some low-level heuristics and embedded dynamic

programming, which makes it an efficient candidate to solve the benchmark instances.

Table 6 and 7 show the results obtained by BAP and an upgraded variant of VDS [9], de-

noted as VDS-1, an adaptive VNS [44], denoted as VNS-3, a hyper-heuristic [4], denoted as HYP,

a systematic two-phase algorithm [45], denoted as SYS, an adaptive neighbourhood search [27],

denoted as ANS, a general constraint optimisation solver [32], denoted as COS, a mathematical

programming heuristic, denoted as RIP [38], and a Harmony Search Algorithm [1], denoted as HS

for the competition datasets. Observing the results reported in Table 6 for competition dataset-I,

the hybrid algorithm generates the best solutions for 8 instances. Comparing with other algorithms,

the results of our algorithm are promising. Therefore, it can be seen that for rather challenging

instances, the proposed algorithm is able to generate competitive results, even though it is an exact

approach.

Table 7 shows the result for the challenging competition dataset-II. As it can be observed, the

hybrid algorithm obtains the best solutions for only 6 instances. Comparing with other algorithms,
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Table 6: Benchmark results of the hybrid algorithm and other state-of-the-art algorithms consisting
of VDS-1 and BAP [9], VNS-3 [44], HYP [4], SYS [45], ANS [27], COS [32], RIP [38], and HS [1]
for competition dataset-I

Instance BKS HA VDS-1 BAP VNS-3 HYP SYS ANS COS RIP HS

MediumE01 240 240 244 240 240 242 240 240 241 240 243
MediumE02 240 240 241 240 240 241 240 240 240 240 242
MediumE03 236 236 238 236 236 238 236 236 236 236 238
MediumE04 237 237 240 237 237 238 237 237 238 237 240
MediumE05 303 303 308 303 303 304 303 303 304 303 305
MediumH05 119 174 - - 124 - 122 119 - 119 169
MediumL01 157 159 187 157 161 163 158 164 176 157 169
MediumL02 18 18 22 18 19 21 18 20 19 18 26
MediumL03 29 29 46 29 30 32 29 30 30 29 34
MediumL04 35 35 49 35 35 38 35 36 37 35 42
MediumT01 34 39 - - - 40 - - - - 42
MediumT02 72 80 - - - 91 - - - - 83
MediumT03 117 121 - - - 134 - - - - 130

our obtained results are inferior. These results are not beyond our expectations, since competition

dataset-II is computationally intractable for exact methods such as the proposed hybrid algorithm.

In fact, hybridising exact methods results in extending the reach of each sole method, but not to

the extent that it can outperform hybrid meta-heuristics.

It is worth noting that our proposed algorithm finds the solutions reported in Table 5 to 7,

while our aim of designing the hybrid algorithm is not only to find a good-quality solution, but

also to achieve a better optimality gap for ensuring solution quality.

7. Conclusion

In this paper, we proposed a new hybrid algorithm combining IP and CP to solve the real-world

Nurse Rostering Problem. The algorithm utilised the strengths of CP to aid the IP solver to

achieve better solutions. Concentrated on the problem structure, we developed some components

to provide valuable problem-specific information such as the computational difficulty of instances

and constraints to both IP and CP solvers so that better performance can be achieved in solving

highly-constrained problem instances. In contrast to heuristic methods reported in the literature,

we attempted to design a hybrid method for generating a high-quality solution as well as a strong

lower-bound in order to guarantee the solution quality. Due to the high-level hybridisation of IP

and CP, an important aspect of the proposed hybrid algorithm is its straightforward adaptability to

practical circumstances in terms of implementation, which makes it advantageous compared with
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Table 7: Benchmark results of the hybrid algorithm and other state-of-the-art algorithms consisting
of VDS-1 and BAP [9], VNS-3 [44], HYP [4], SYS [45], ANS [27], COS [32], RIP [38], and HS [1]
for competition dataset-II

Instance BKS HA VDS-1 BAP VNS-3 HYP SYS ANS COS RIP HS

MediumH01 111 192 - - 122 - 130 117 - 111 143
MediumH02 221 312 - - 221 - 221 220 - 221 248
MediumH03 34 73 - - 34 - 36 35 - 34 49
MediumH04 78 124 - - 79 - 81 79 - 78 87
MediumL05 107 107 161 107 112 122 107 117 125 107 131
LongE01 197 197 198 197 197 197 197 197 197 197 197
LongE02 219 219 223 219 219 220 219 222 219 219 226
LongE03 240 240 242 240 240 240 240 240 240 240 240
LongE04 303 303 305 303 303 303 303 303 303 303 303
LongE05 284 284 286 284 284 284 284 284 284 284 284
LongH01 346 488 - - 349 - 363 346 - 346 380
LongH02 89 101 - - 89 - 90 89 - 89 110
LongH03 38 59 - - 38 - 38 38 - 38 44
LongH04 22 38 - - 22 - 22 22 - 22 27
LongH05 41 114 - - 41 - 41 45 - 41 53
LongL01 235 332 286 235 239 241 235 237 235 235 253
LongL02 229 289 290 229 224 245 229 229 229 229 256
LongL03 220 320 290 220 227 233 220 222 220 220 256
LongL04 221 310 280 221 232 246 221 227 221 222 263
LongL05 83 156 110 83 83 87 83 83 83 83 98
LongT01 31 164 - - - 33 - - - - 40
LongT02 17 96 - - - 17 - - - - 28
LongT03 53 272 - - - 55 - - - - 81
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sophisticated customised methodologies from the literature that are not easy to implement and use

in practice. We benchmarked our hybrid algorithm with two different datasets consisting of real-

world and competition instances. In comparison with standard IP and CP solvers, the obtained

results showed better performance, indicating the effectiveness of the hybridisation for extending

the reach of exact methods. We also obtained competitive results against state-of-the-art algorithms

for a diverse range of instances.

In our future research, we will investigate different formulations such as pattern-based modelling

for the Nurse Rostering Problem, which have the potential to provide better performance for

large-size problem instances when the modelling is designed in a customised fashion. Moreover,

we plan to explore further opportunities to exploit the problem-specific information. From these

further studies, we plan to go beyond the aim of designing an easy-to-implement and effective

framework as accomplished in this paper. Therefore, we will attempt to design a more sophisticated

and customised framework involving various heuristics and novel automation approaches, so that

different characteristic of the problem can be accommodated, and the overall performance can

be improved. We also plan to implement our developed tools in a real hospital environment,

which we are currently discussing with various local health providers. Finally, we also plan to

investigate possibilities to extend our algorithm to other scheduling problems that have similar

problem structure, such as the course timetabling problem, so that we can exploit practical benefits

in more general settings.
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