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a b s t r a c t 

In this paper, we present an improved two-level heuristic to solve the clustered vehicle routing problem 

( CluVRP ). The CluVRP is a generalization of the classical capacitated vehicle routing problem ( CVRP ) in 

which customers are grouped into predefined clusters, and all customers in a cluster must be served 

consecutively by the same vehicle. This paper contributes to the literature in the following ways: (i) new 

upper bounds are presented for multiple benchmark instances, (ii) good heuristic solutions are provided 

in much smaller computing times than existing approaches, (iii) the CluVRP is reduced to its cluster 

level without assuming Euclidean coordinates or distances, and (iv) a new variant of the CluVRP , the 

CluVRP with weak cluster constraints , is introduced. In this variant, clusters are allocated to vehicles in 

their entirety, but all corresponding customers can be visited by the vehicle in any order. 

The proposed heuristic solves the CluVRP by combining two variable neighborhood search algorithms, 

that explore the solution space at the cluster level and the individual customer level respectively. The 

algorithm is tested on different benchmark instances from the literature with up to 484 nodes, obtaining 

high quality solutions while requiring only a limited calculation time. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Research context and literature review 

Introduced by Dantzig and Ramser (1959) , the vehicle routing

problem ( VRP ) is one of the best known and most widely studied

problems in the Operations Research community. Many variants of

the VRP have been proposed and solved during the last decades. In

this paper, we focus on the clustered vehicle routing problem ( Clu-

VRP ), a variant of the capacitated vehicle routing problem ( CVRP )

in which all customers are partitioned into predefined clusters . In

the strict version of the CluVRP , all customers belonging to the

same cluster should be visited by the same vehicle consecutively

in the same path. In other words, when a customer is visited by a

vehicle, all other customers belonging to the same cluster should

be visited first before the vehicle can either return to the depot or

move to a client that belongs to another cluster. We refer to this

problem as the clustered vehicle routing problem with strong cluster

constraints . In Section 5 , we will define a new variant of the prob-

lem with weak cluster constraints . 

The idea of customer clustering was introduced by Chisman

(1975) when defining the clustered travelling salesman problem

( CluTSP ). The objective of this problem is to construct a Hamil-

tonian path with minimum distance, visiting all customers exactly
∗ Corresponding author. 
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nce. Customers, however, are assigned to a set of predefined clus-

ers and an extra constraint imposes that all customers belonging

o the same cluster should be served consecutively. The main algo-

ithmic contributions regarding the CluTSP consist of a tabu search

euristic ( Laporte et al., 1997 ), genetic algorithms ( Ding et al.,

007; Potvin and Guertin, 1996 ) and a path relinking approach in-

luding GRASP ( Mestria et al., 2013 ). In addition to a number of ve-

icle routing applications, the CluTSP can also be applied in many

ther fields, such as manufacturing (machine scheduling, plate cut-

ing, optimisation of resource usage in a production process), IT

disk fragmentation, optimisation of computer program structure)

nd microscopy (cytology) ( Laporte et al., 2002 ). 

The CluVRP was introduced by Sevaux and Sörensen (2008) in

rder to model the parcel delivery activities of courier companies.

 common practice in this industry is to sort all outbound parcels

nto bins, where each bin corresponds to a specific, predefined part

f the distribution area, called a zone . The first step in solving

he distribution planning problem of a courier company is to as-

ign these bins (zones) to the vehicles available. A multi-objective

pproach for this problem is presented by Janssens et al. (2015) .

fterwards, an optimal cluster and customer sequence should be

etermined for every vehicle. Other examples involving customer

lustering can be found in situations where it is desirable that cer-

ain customers are served by the same vehicle. This might be due

o the fact that some customers demand a similar service, request

http://dx.doi.org/10.1016/j.cor.2017.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.02.007&domain=pdf
mailto:christof.defryn@uantwerpen.be
http://dx.doi.org/10.1016/j.cor.2017.02.007
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 specific repairman skill, or if the customer-driver relationship is

erceived important by one of the parties. 

In Pop et al. (2012) , an exact method for solving the CluVRP

s developed as an extension of the Generalized Vehicle Routing

roblem ( GVRP ). The GVRP is closely related to the CluVRP , as both

roblems share the concept of customer clustering. Contrary to the

luVRP , the GVRP requires that only one customer is visited in ev-

ry cluster ( Ghiani and Improta, 20 0 0 ). A new compact and effec-

ive integer programming formulation and exact solution approach

s proposed in Battarra et al. (2014) . 

To solve the CluVRP heuristically, Barthélemy et al. (2010) in-

roduce a transformation of the CluVRP into the CVRP. This is done

y adding a large distance M to all inter-cluster edges in the dis-

ance matrix. As a result, routes are obtained in which all cus-

omers of a single cluster are served before leaving the cluster, be-

ause of the high penalty costs. In Barthélemy et al. (2010) this big

 approach is further combined with a simulated annealing heuris-

ic. 

A hybrid algorithm that does not make use of the big M

ransformation is proposed in Marc et al. (2015) , but this algo-

ithm makes use of precomputed cluster centers and is therefore

nly able to solve Euclidean instances. Furthermore, no calculation

imes are mentioned. 

Two alternative metaheuristic solution approaches are proposed

y Vidal et al. (2015) . The first one is an adaptation of the Iterated

ocal Search (ILS) algorithm developed by Subramanian (2012) for

he CVRP . In order to avoid the evaluation of many infeasible

oves, due to the additional cluster constraints, the neighborhoods

re redefined. Secondly, Vidal et al. (2015) use their Unified Hy-

rid Genetic Search (UHGS) approach to solve the CluVRP . Since

his method is designed to solve the non-clustered VRP , the pre-

omputation of all intra cluster Hamiltonian paths is required. The

uthors report high quality solutions for both methods. This solu-

ion quality, however, comes at the expense of very high calcula-

ion times. 

Defryn and Sörensen (2015) propose a decomposition of the

roblem in two optimisation levels: a high-level routing prob-

em at the cluster level and a low-level routing problem at the

ndividual customer level. Expósito-Izquierdo et al. (2016) ac-

nowledge the two-level optimisation strategy and propose a so-

ution algorithm that combines the Record-to-record algorithm

 Li et al., 2007 ) at the cluster level with the Lin–Kernighan

euristic ( Lin and Kernighan, 1973 ) to determine the intra-cluster

outes. 

The current paper contributes to the existing literature in the

ollowing ways. First, we are able to report improved results on

ost of the instances provided by Expósito-Izquierdo et al. (2016) .

econdly, even though good algorithms exist for solving the Clu-

RP , most notably the ones proposed by Vidal et al. (2015) , a gap

emains for an approach that allows to calculate good solutions

n a short amount of computing time . The heuristic procedure pro-

osed in this paper is able to generate good quality feasible solu-

ions very fast. Such an algorithm is necessary in situations where

arge calculation times are not available or impractical, such as in

he daily planning process of couriers or other transportation com-

anies. It is additionally useful in applications for which the Clu-

RP is solved many times as a subproblem. For example, the prob-

em of defining the optimal customer clusters in the distribution

rea will rely on the CluVRP solution as an evaluation criterion.

n this case, a fast evaluation is preferred over the fact that the

ptimal solution is guaranteed. A third contribution is that, com-

ared to Defryn and Sörensen (2015) and Expósito-Izquierdo et al.

2016) , we generalise the two-level framework to also handle non-

uclidean instances. Finally, a new CluVRP variant, i.e., the CluVRP

ith weak cluster constraints is introduced in this paper. For some

pplications, the use of clusters might be beneficial to some extent
e.g., the sorting of the packages and the allocation of zones to ve-

icles for courier companies, as described above), but could be re-

axed when it comes to optimising the route of a single vehicle.

n other words, the CluVRP with weak cluster constraints still en-

orces that all customers belonging to the same cluster are visited

y the same vehicle, but relaxes the constraint that they should

e visited consecutively . The customers in the clusters assigned to

 vehicle therefore can be visited in any order. To the best of our

nowledge, this problem has not yet been described in the litera-

ure. 

The structure of the paper is as follows. In Section 2 , the

luVRP is formally described, after which a detailed analysis of

he developed metaheuristic is performed in Section 3 . Our algo-

ithm is tuned and tested on multiple instances of different sizes

n Section 4 . The CluVRP with weak cluster constraints is intro-

uced and compared to the original strong cluster constraint vari-

nt in Section 5 . Finally, the main conclusions are summarised in

ection 6 . 

. Problem definition 

In the CluVRP with strong cluster constraints, we are given a

omplete undirected graph G = (V, E) , where V is a set of vertices

ncluding one depot (denoted as V 0 ) and multiple customer nodes.

 distance d ij , is associated with each edge ( i, j ) ∈ E connecting

wo nodes. We consider K to be a set of homogeneous vehicles

ith a maximum capacity Q each. All vehicles start and end their

rip at the depot. For each customer i the demand is denoted by q i .

urthermore, a set of clusters is denoted by R . Cluster r 0 ∈ R only

ontains one node, the depot. All other clusters contain at least one

ustomer. The set of customers in a cluster is denoted as C r = { i ∈
 \ V 0 : r i = r} , ∀ r ∈ R . 

Following Expósito-Izquierdo et al. (2016) , the CluVRP can be

efined by the mathematical model described below which re-

uires the definition of some additional variables. Consider Z to be

ny subset of V that is different from V . Then, let δ+ (Z) be the set

f edges ( i, j ) ∈ Z × V \ Z and δ−(Z) the set of edges ( i, j ) ∈ V \ Z ×
 . 

 i jk = 

{
1 vehicle k travels from node i to node j 
0 otherwise 

y ik = 

{
1 customer i is served by vehicle k 
0 otherwise 

in 

∑ 

(i, j) ∈ E 

∑ 

k ∈ K 
d i j x i jk (1) 

ubject to ∑ 

k ∈ K 
y ik = 1 ∀ i ∈ V \ V 0 (2) 

 

k ∈ K 
y 0 k = | K| (3) 

∑ 

j∈ V \ V 0 
x i jk = 

∑ 

j∈ V \ V 0 
x jik = y ik ∀ k ∈ K, ∀ i ∈ V (4) 

 

i ∈ V 
q i y ik ≤ Q ∀ k ∈ K (5) 

 

i ∈ S 

∑ 

j / ∈ S 
x i jk ≤ y hk ∀ Z ⊆ V \ V 0 , ∀ h ∈ Z, ∀ k ∈ K (6) 
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Fig. 1. The CluVRP with strong cluster constraints. All three vehicles depart from the central depot (gray rectangle) to serve all the customers (black circles). All customers 

within the same cluster should be served consecutively by the same vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 Pseudocode of the two-level metaheuristic approach 

for solving the CluVRP . 

1: nIterationsNoImprov ement ← 0 ; 

2: goT oNodeV NS ← false; stoppingCr iter ion ← false; 

3: best solution found: S ∗
i 

= ; 

4: objective value of best solution found: f (S ∗
i 
) ← ∞ ; 

5: Step 0: Precomputation 

6: calculate-inter-cluster-distances(); 

7: Step 1: Constructive phase 

8: S c ← allocate-clusters-to-vehicle(); 

9: Step 2: Intensification phase 

10: do 

11: S ′ c ← perform-VNS-at-cluster-level( S c ); 

12: do 

13: S i ← convert-from-cluster-to-customer-level( S ′ c ); 
14: S ′ 

i 
← perform-VNS-at-customer-level( S i ); 

15: if f (S ′ 
i 
) < f (S ∗

i 
) then 

16: S ∗
i 

← S ′ 
i 
; 

17: f (S ∗
i 
) ← f (S ′ 

i 
) ; 

18: nIterationsNoImprov ement ← 0; 

19: else 

20: nIterationsNoImprov ement ← nIterationsNoImprov ement + 1 ; 

21: if nIterationsNoImprov ement = maxIterationsNoImprov ement 

then 

22: stoppingCr iter ion ← true; 

23: break; 

24: end if 

25: end if 

26: Step 3: Diversification phase 

27: S c ← perturb( S ′ c ); 
28: repair( S c ); 

29: r ← get-random-number[0,1](); 

30: if r < cluV NSProb then 

31: goT oNodeV NS ← false; 

32: else 

33: goT oNodeV NS ← true; 

34: end if 

35: while goT oNodeV NS = true; 

36: while stoppingCr iter ion = false; 

37: return S ∗
i 
; 

n  

r  

t  

q  

t  

b  

t  

a

∑ 

(i, j) ∈ δ+ (C r ) 

∑ 

k ∈ K 
x i jk = 

∑ 

(i, j) ∈ δ−(C r ) 

∑ 

k ∈ K 
x i jk = 1 ∀ r ∈ R (7)

x i jk ∈ { 0 , 1 } ∀ (i, j) ∈ E, ∀ k ∈ K (8)

y i ∈ { 0 , 1 } ∀ i ∈ V, ∀ k ∈ K (9)

In the model formulation above, the objective func-

tion (1) minimises the total distance travelled by all vehicles.

Constraints (2) ensure that each customer is visited exactly once.

Contraints (3) state that all vehicles should visit the depot. Con-

straints (4) guarantee that the same vehicle that arrives at a

customer also leaves from that customer. Constraints (5) make

sure that vehicle capacities are respected. The subtour elimination

constraints are represented by Eq. (6) . Constraints (7) establish

that each cluster is visited exactly once by one vehicle. 

The CluVRP is visualised in Fig. 1 . On the left hand side, the fi-

nal solution of the CluVRP with strong cluster constraints is shown

at the individual customer level. The corresponding solution at the

cluster level is included at the right hand side. This high level rep-

resentation will be used during the algorithm to reduce the com-

plexity of the problem by exploiting its clustered substructure. 

As demonstrated by Lenstra and Kan (1981) , the CVRP is NP-

hard. Since any CVRP can be reduced to a CluVRP with one cus-

tomer in each cluster and the complexity of this reduction is lin-

ear with respect to the number of customers, the CluVRP is also

NP-hard ( Barthélemy, 2012 ). 

3. A metaheuristic approach for the CLUVRP 

We propose a metaheuristic approach that explores the solu-

tion space at two different levels: the cluster level and the cus-

tomer level . At both levels, a Variable Neighborhood Search ( VNS )

algorithm is used to find a local optimum. VNS , introduced by

Mladenovi ́c and Hansen (1997) has proven to be a successful

framework for solving combinatorial optimisation problems, espe-

cially vehicle routing problems ( Hansen and Mladenovi ́c, 2014 ).

First, the problem is solved at the cluster level. Afterwards, this

result is used as an input for the customer level VNS . During

the diversification phase, the algorithm moves back from the cus-

tomer to the cluster level. The outline of our heuristic is shown in

Algorithm 1 . In the following sections, we take a closer look at the

different operators and their implementation. 

3.1. Precomputation 

During precomputation all inter cluster distances are quantified.

As described earlier, only the distance d ( i, j ) between individual
N 
odes i and j is given. These distances are not necessarily symmet-

ical or Euclidean. To solve the CluVRP at the cluster level (i.e.,

o determine the assignment of clusters to vehicles and the se-

uencing of the clusters per vehicle), the inter cluster distance ma-

rix should be defined. For this purpose we use the shortest edge

etween two clusters as an approximation for the inter-cluster dis-

ance as this will be the preferred edge to go from one cluster to

nother in the low-level routing solution. 
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Fig. 2. Visualisation of the clusterSwap operator. By swapping the clusters with de- 

mand of 14 and 10, free space is created in vehicle 1 where the additional cluster 

with a demand of 7 can be placed. 
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.2. Constructive phase 

The main goal of the constructive phase is to generate a fea-

ible initial solution at the cluster level . This means that for every

luster, the individual customers are disregarded and the cluster as

 whole is allocated to an available vehicle. Even though the travel

imes between the clusters are taken into account during the con-

tructive process, constructing a feasible allocation of clusters to

ehicles is the priority in this phase. Therefore, instead of using a

RP algorithm, a bin packing approach is preferred here. This de-

ign choice is justified as follows. 

First, contrary to a standard VRP formulation, the number of ve-

icles is given and should not be optimised any further, as all ve-

icles must be used anyway. As a result, the exact number of trips

s known in advance. Furthermore, it can be argued that the inter

luster Hausdorff distances are only an approximation of the dis-

ances between two clusters, as the real distance depends on both

he cluster and customer sequence in the trip. Finally, the instances

especially the smaller ones) are constructed in such a way that

nly very little to no spare capacity is available. For these reasons,

 problem specific bin packing approach is more suitable here. 

If we disregard the travel of the vehicles between clusters, the

llocation of clusters with their given demand to a set of vehi-

le can be modeled as a one-dimensional bin packing problem with

iven number of bins . A set of items (clusters) with a given weight

total demand) are to be packed into a set of bins (vehicles) with

 predefined maximal load (vehicle capacity Q ). 

The one-dimensional bin packing problem is shown to be

trongly NP-complete ( Garey and Johnson, 1978 ). Because we are

ot interested in the optimal bin packing solution, but a solution

or the CluVRP , we prefer a fast algorithm that provides us with a

easible result. The first-fit decreasing and the best-fit decreasing al-

orithms are most commonly applied in the literature. In this pa-

er, the best-fit decreasing strategy is adopted. 

The traditional best-fit bin packing algorithm places each item

cluster), in succession, into the fullest bin (vehicle) in which it fits

 Fleszar and Hindi, 2002 ). For a simple bin packing problem this is

atisfactory, but when solving the CluVRP , it is important that ef-

cient routes can be constructed afterwards with the clusters that

ave been allocated to the same vehicle. For every cluster, sorted

n decreasing order according to demand, we therefore look at the

atest cluster that was added to all the bins (vehicles). We then

refer the vehicle for which this latest cluster is located the clos-

st to the current cluster to add. In this way, the algorithm is more

ikely to combine different clusters that are located in the same

art of the distribution area into one vehicle. Once a vehicle has

eparted from the depot in a certain direction (certain clusters are

ssigned to that vehicle), we force that other clusters in that same

irection are also allocated to this vehicle. 

Due to the deterministic character of this constructive heuristic,

he same initial solution will be generated during every run of the

lgorithm. In order to prevent this from happening, an alternative

trategy, which involves some randomness, is defined. With a pre-

efined probability randConstructProb , the current cluster is not

llocated to the closest vehicle, but from all feasible vehicles (vehi-

les with enough spare capacity) one vehicle is selected at random.

.3. Redistribution algorithm 

As for each instance the number of vehicles is given, the heuris-

ic constructive procedure used to allocate clusters to vehicles

ight reach a point where no vehicle has enough capacity left to

tore the next cluster. In order to cope with these situations, a spe-

ific redistribution operator, that tries to re-optimize the current

apacity distribution, is built into the solution algorithm. 
This redistribution algorithm aims to increase the fill rate of

ne of the vehicles as much as possible by means of a cluster-

wap operator, that swaps the vehicle of two already allocated

lusters. All cluster pairs are checked sequentially, and the best

ove — the one leading to the highest possible fill rate for one

f the vehicles — is executed. 

The clusterSwap operator is illustrated in Fig. 2 . Two vehicles

re considered with a capacity of 50 items each and eight clusters

ith a demand of 19,14,14,12,11,11,10 and 7 items should be allo-

ated to one of the vehicles. As shown, adding the last cluster to

ny of the vehicles will result in an infeasible solution. This issue

s solved by swapping the vehicles assigned to the clusters with

 demand of 14 and 10, which will result in a 100% utilisation of

ehicle 2. As a results, enough spare capacity becomes available in

ehicle 1 to hold the cluster with a demand of 7. 

.4. Intensification phase 

From the moment that a feasible solution is constructed, the

lgorithm starts the intensification phase in which the initial solu-

ion is improved until a local optimum is reached. This is done in

hree steps. 

First, the initial solution is improved at its cluster level by

eans of a VNS . A locally optimal cluster sequence is obtained for

very vehicle. Afterwards, this cluster level solution is translated

o the individual customer level by a conversion operator. The ob-

ained result are then used as the input for a second VNS at the

ndividual customer level. 

.4.1. Intensification at the cluster level 

The first part of the intensification phase is executed at the

evel of the clusters and uses the inter cluster distance matrix,

onstructed during precomputation. By ignoring all individual cus-

omer nodes, the problem size and complexity are reduced. The

btained high level routing problem is solved by a VNS with the

bjective of finding an optimal cluster sequence for every vehicle.

he search is based on seven local search operators that are com-

only used in vehicle routing. Both intra and inter vehicle neigh-

orhoods are explored. The intra vehicle operators try to minimize

he total distance of a single trip. The inter vehicle operators com-

ine at least two trips while trying to improve the global cost (to-

al distance) of the solution by moving one or exchanging a set of

lusters between different vehicles. All local search operators are

hown in Table 1 and have complexity O ( n 2 ). We use the first im-

rovement strategy , as every beneficial move encountered is exe-

uted by the algorithm. 

The order in which the neighborhoods are checked by the algo-

ithm is changed randomly each time the VNS is called. When no

mprovement can be found in the current neighborhood, the algo-

ithm moves to the next neighborhood. Every time an improve-

ent is found, the algorithm returns to the first neighborhood.

his is repeated until none of the neighborhoods is able to improve

he current solution any further, and a local optimum is reached at

he cluster level. 
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Table 1 

List of all intra and inter vehicle local search operators, implemented in the VNS at 

the cluster level. 

Intra vehicle operators 

Swap Swap the position of two clusters in a single trip. 

Relocate Remove one cluster and insert it at a different position in the trip. 

Two-Opt Remove two edges and replace them by two new edges to close 

the tour. 

Or-Opt Remove N consecutive clusters and insert them at a different 

position in the trip. (with N = { 2 , 3 , 4 } ) 
Inter vehicle operators 

Swap Swap the vehicle of two clusters. 

Relocate Remove one cluster and insert it in another trip. 

Or-Opt Remove N consecutive clusters and insert them in another trip. 

(with N = { 2 , 3 , 4 } ) 
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3.4.2. Conversion operator 

The best cluster sequence for every vehicle obtained during the

intensification phase at the cluster level is converted into a solu-

tion at the customer level before sending it to the customer level

intensification phase. This is done by the conversion operator. 

For each cluster, an intra cluster TSP was constructed heuristi-

cally during pre-processing. The order in which the nodes appear

in this TSP is maintained by the conversion operator. The starting

node is chosen as the node closest to the current position of the

vehicle. In other words, when entering a new cluster, the customer

that is closest to the vehicles’ current position (either the last cus-

tomer visited in the previous cluster of the depot) is visited first.

Starting from this customer, the node sequence equals the intra

cluster TSP constructed during pre-processing. 

With a probability given by the parameter randConversion-

Prob , all nodes of the current clusters are added randomly to the

solution. In this way, we introduce some diversification in the con-

version operator and a larger part of the solution space is searched.

The solution obtained after applying the conversion operator is

considered the initial solution at the customer level. 

3.4.3. Intensification at the customer level 

The initial solution at the customer level constructed by the

conversion operator, is improved further during a second inten-

sification phase in which all individual customer nodes are taken

into account. Similar to the VNS discussed in Section 3.4.1 , a set of

neighborhoods is explored in the search for a local optimal solu-

tion. 

The cluster constraints, however, impose that all customers be-

longing to the same cluster should remain visited consecutively in

the same path. This restricts the number of feasible moves to be

checked by the local search operators. 

Two main groups of neighborhoods can be distinguished: the

intra cluster and the inter cluster neighborhoods. The first group is

responsible for improving the Hamiltonian path within a certain

cluster. The optimality of these intra cluster routes is also depen-

dent on the cluster sequence, as this might affect the optimal edge

to enter or leave the cluster. Secondly, the inter cluster neighbor-

hoods operate on the cluster order as obtained by the VNS at the

cluster level. As no customer information was taken into account at

the cluster level, a modified cluster sequence might be beneficial.

The inter cluster operators can be both intra or inter vehicle, as

the performed moves can involve a single vehicle (e.g., two entire

clusters swap within the same vehicle), or multiple vehicles (e.g.,

two entire clusters belonging to different vehicles are swapped).

The neighborhoods used by the VNS at the customer level are de-

scribed in Table 2 . 

Similar to the first VNS , the applied neighborhoods are checked

sequentially. When an improvement is found, the algorithm

restarts by exploring the first neighborhood. It continues until
one of the neighborhoods is able to improve the solution any fur-

her and a local optimum is reached. Again, the order in which the

eighborhoods are checked by the algorithm is changed randomly

y each call of the VNS . 

.5. Diversification phase 

After having evaluated the new solution obtained at the cus-

omer level, the algorithm executes its diversification strategy to

ontinue the search and explore another part of the solution space.

his diversification operator consists of a perturbation operator , that

estroys parts of the solution, followed by a repair operator . 

As all customer nodes that belong to the same cluster should

emain grouped together, the removal of one customer node by

he perturbation operator would in the end result in the removal

f the complete cluster this customer belongs to. Therefore, the

erturbation operator is applied immediately to the current solu-

ion at the cluster level. A random part of the solution, denoted by

he parameter pertRate , is destroyed and the removed clusters are

tacked in a separate list. 

Afterwards, all removed clusters are reallocated to random ve-

icles by the repair operator while making sure that the vehicle

apacity constraints are not violated. If no feasible vehicle can be

ound for a certain cluster, the redistribution operator (described

n Section 3.3 ) is called by the algorithm. 

When a new solution is obtained, the algorithm can resume its

earch at two different points. Either the new solution at the clus-

er level is improved first by the intensification phase at the cluster

evel, or the algorithm calls the conversion operator immediately

fter the diversification phase. The probability to call the VNS at

he cluster level after the diversification operator is denoted by the

arameter cluVNSprob . 

. Parameter tuning and experimental results 

.1. Parameter tuning 

The algorithm is controlled by four parameters, summarised in

able 3 . In order to fully test the impact of these parameter val-

es on the solution quality, a full factorial statistical experiment is

xecuted. The tuning is done on a selection of large-size instances

s provided by Battarra et al. (2014) . See Section 4.3 for a more

laborate presentation of the instances. The results of this tuning

rocedure are visualised in Fig. 3 , for each individual parameter.

he obtained best parameter settings are shown in the last col-

mn of Table 3 . The optimal value for the randConstructProb pa-

ameter is zero, stating that allocating each cluster to a close-by

ehicle outperforms a randomized approach. For the cluVNSprob

arameter the optimal value equals 1, meaning that after the di-

ersification phase the best strategy is again to first optimise the

olution at the cluster level. All results in this paper are obtained

sing these optimal parameter values. 

.2. Stopping criterion 

The search procedure continues until a stopping criterion is

eached. Our algorithm uses a predefined number of iterations with-

ut improvement . It can be expected that the solution quality will

ncrease for a larger number of allowed iterations. This result is

hown in Fig. 4 . This graph is constructed by using the optimal pa-

ameter settings, defined above, while varying the maximum num-

er of iterations without improvement. As expected, we find an

lmost linear relationship between the calculation time and the

umber of iterations without improvement. A large improvement

f the solution quality is realised during the first seconds of execu-

ion. As the optimality gap decreases, more calculation time is re-
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Table 2 

The different VNS neighborhoods at the customer level. 

Intra cluster operators 

Swap Swap the position of two customers within the same cluster in a single trip. 

Relocate Remove one customer and insert it at a different position within the same cluster. 

Two-Opt Remove two edges and replace them by two new edges to close the tour. 

Or-Opt Remove N consecutive customers and insert them at a different position within the same cluster in the trip. (with N = { 2 , 3 , 4 } ) 
Inter cluster operators (intra vehicle) 

Swap Swap the position of two clusters within the same trip. 

Relocate Remove all customers of a single cluster and insert them sequentially at a different position in the same trip. 

Inter cluster operators (inter vehicle) 

Swap Swap the vehicle of two clusters. 

Relocate Remove all customers of a single cluster and insert them sequentially in another trip. 

Table 3 

Results of parameter tuning on a small subset of the large-size instances. These results are obtained by performing a full-factorial statistical experiment. 

Parameter Definition Tested values # Best 

randConstructProb Probability that a cluster is allocated to a random instead of the closest feasible 

vehicle during construction. 

0 ,0.1,...,0.5 6 0 

randConversionProb Probability that an intra cluster route is inserted randomly instead of using the nearest 

neighbour approach. 

0 ,0.1,...,1 11 0 .4 

pertRate Percentage of the solution that is randomly destroyed by the perturbation operator. 0 ,0.1,...,0.5 6 0 .1 

cluVNSprob Probability that, after the diversification phase, the new solution is improved first at 

the cluster level before going to the conversion operator. 

0 .2,0.3...,1 9 1 

Fig. 3. Solution quality, measured by the average optimality gap and the average calculation time, for different parameter settings. Results are obtained by performing a full 

factorial experiment. 
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uired to further improve the current solution. To preserve a good

alance between computation time and solution quality, the stop-

ing criterion is set to 50 0 0 iterations without improvement. 

.3. Experimental results 

The metaheuristic is tested extensively on benchmark instances

f different sizes and with varying degree of clustering. All com-

utational results are obtained using an Intel(R) Core(TM) i7-4790

 3.60 GHz with 16GB of RAM. Because the algorithm makes use

f randomness during the optimisation process, the instances are
olved multiple times (20 runs per instance). Both the average and

est results are reported per instance. For a complete overview of

ll obtained solutions, we refer to Appendix A . 

.3.1. Results on the GVRP θ3 instances 

The algorithm is tested on a set of 79 small and medium sized

est instances, denoted as GVRP θ3, provided by Battarra et al.

2014) , as discussed in their paper on exact algorithms for the Clus-

ered Vehicle Routing Problem . These GVRP instances are adaptations

f existing CVRP instances from Bektas et al. (2011) . The transfor-

ation is achieved by creating clusters of customers using a seed-
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Table 4 

Results for the GVRP θ3 instances. Comparison between the branch-and-cut and price (BCP), branch-and-cut (BC) ( Battarra 

et al., 2014 ) and the two-level VNS proposed in this paper. 

BCP BC VNS (20 runs) 

Opt. Avg. t(s) Opt. Avg. t(s) Opt. Avg. t(s) Avg. best GAP Avg. GAP 

A 31–79 cust. 27/27 42 .52 27/27 4 .84 24/27 0 .05 0 .07% 0 .07% 

B 30–77 cust. 23/23 7 .69 23/23 4 .99 21/23 0 .04 0 .03% 0 .04% 

P 15–100 cust. 24/24 0 .48 24/24 3 .77 23/24 0 .06 0 .00% 0 .02% 

M + G 100–261 cust. 2/5 157 .25 3/5 25 .44 3/5 5 .98 0 .04% 0 .18% 

total 76/79 77/79 71/79 

average 26 .87 5 .86 0 .43 0 .03% 0 .04% 

Fig. 4. Relationship between the number of iterations without improvement (stop- 

ping criterion) and the average optimality gap for the tuning instance set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v  

c  

b  

s

 

(  

A  

V  

c  

h  

t  

t  

b  

i  

t  

O  

o  

c  

a

 

T  

i  

2  

V  

(  

w

∈  

s  

o  

m  

i  

e  

e  

p

4

e

 

G  

W  

t  

I  

f  

t  

p  

h  

g  

H  

e  

u  

(  

t  
based algorithm and by replacing the number of required vehicles

by the solution (number of bins) of the bin packing problem for

each instance. See Battarra et al. (2014) for a more elaborate ex-

planation on the design of the instances. The resulting number of

clusters reach 88, while the average number of customers per clus-

ter is three. 

The obtained results for the GVRP θ3 instances are summarised

in Table 4 . By using their branch-and-cut method, Battarra et al.

(2014) are able to solve 77 out of 79 instances exactly within rea-

sonable time limits. It should be mentioned that for these methods

the preprocessing times, which lie between 3 and 8 s, are not in-

cluded in the calculation times. This preprocessing step consists of

the calculation of all possible Hamiltonian paths inside each clus-

ter. Afterwards, while running the branch-and-cut approach, these

results are used to define the optimal inter cluster connections at

the customer level for a given sequence of clusters. Our VNS algo-

rithm is able to solve 71 instances to optimality, while significantly

reducing calculation times. For the other instances, we are able to

provide a high quality solution that lies on average 0.04% from op-

timality. For the instance G-n262-k25-C88-V9 which could not be

solved using the exact approach, a heuristic solution with an ob-

jective value of 3310 is obtained in a very short calculation time.

For instance M-n200-k16-C67-V6 we improve the upper bound to

909. 

4.3.2. Results on the adapted Golden instances proposed in 

Expósito-Izquierdo et al. (2016) 

In this section we test our algorithm on the CluVRP benchmark

instance sets proposed by Expósito-Izquierdo et al. (2016) . The in-

stances are adaptations of the instances introduced by Golden et al.

(1998) for the CVRP . Each set is characterised by a parameter ρ ,

representing the filling range of a vehicle. When ρ = 100% , each
ehicle can serve at most one cluster, whereas a lower filling per-

entage indicates that a higher number of clusters can be com-

ined in one vehicle trip. Five different instance sets are built by

etting ρ ∈ {10, 25, 50, 75, 100}%. 

The two-level solution approach from Expósito-Izquierdo et al.

2016) is compared to the two-level VNS introduced in this paper.

lthough both algorithms are based on a breakdown of the Clu-

RP in two distinct routing problems, some important differences

an be identified. First, Expósito-Izquierdo et al. (2016) define the

igh-level routing problem by replacing all clusters by their vir-

ual center by using the center of mass concept . Their approach is

herefore limited to Euclidean instances. Secondly, the algorithm

y Expósito-Izquierdo et al. (2016) is mainly focused on optimis-

ng the solution at the cluster level in which the individual cus-

omer sequence is only considered in the Lin-Kernighan heuristic.

ur two-level VNS , however, also includes a strong intensification

f the low-level routing problem by means of a separate VNS pro-

edure. The results below indicate that it is beneficial to devote

dditional attention to the solution at the customer level. 

The results of both approaches are summarised in Tables 5 –9 .

o allow a fair comparison, a maximum calculation time of 60s

s considered for both algorithms. It can be seen that if ρ ∈ {10,

5, 50}%, almost all instances can be improved by our two-level

NS algorithm compared to the results of Expósito-Izquierdo et al.

2016) . The reduction in total cost can be up to 6.10% (instance 4,

ith ρ = 10% ). For the instance sets with a higher filling rate ( ρ
 {75, 100}) it turns out to be harder to improve the current best

olution. This might be due to the fact that the lower the number

f clusters inside a vehicle, the more the CluVRP converges to the

ore traditional CVRP . Therefore we lose the advantage of exploit-

ng the clustered structure of the problem in our algorithm. How-

ver, the gaps remain far below 1% compared to Expósito-Izquierdo

t al. (2016) for all instances, ensuring that a high quality and com-

etitive solution is found. 

.3.3. Results on the adapted Golden instances proposed in Vidal 

t al. (2015) 

Finally, we test our algorithm on yet another adaptation of the

olden et al. (1998) instance set, proposed by Battarra et al. (2014) .

e refer to Table 10 for an overview of the obtained results. Our

wo-level VNS is compared to the solution procedure of Expósito-

zquierdo et al. (2016) , described above, and the UHGS algorithm

rom Vidal et al. (2015) . The UHGS algorithm aims at combining

he diversification strength of a genetic algorithm with the im-

rovement capabilities of local search and has proven to return

igh quality solutions that are very close to optimality. The al-

orithm relies, however, on the exact solution of all intra cluster

amiltonian paths, precomputed by means of Concorde ( Applegate

t al., 2006 ). This causes the required calculation time to increase

p to even above the exact solution approach of Battarra et al.

2014) . Although in terms of solution quality the UHGS method

ends to outperform all existing approaches, the high calculation
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Table 5 

Results for the adapted problem instances by Golden et al. (1998) with ρ = 10% . Comparison between the 

two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed in this paper. 

Index n + 1 Q Best known Expósito-Izquierdo et al. (2016) Two-level VNS Gap 

1 240 550 5759 .25 5801 .67 5759 .25 −0 . 73 % 

2 320 700 9247 .92 9649 .67 9247 .92 −4 . 16 % 

3 400 900 12904 .60 13249 .22 12904 .60 −2 . 60 % 

4 480 10 0 0 17810 .40 18966 .92 17810 .40 −6 . 10 % 

5 200 900 8960 .31 9479 .74 8960 .31 −5 . 48 % 

6 280 900 10976 .50 11601 .77 10976 .50 −5 . 39 % 

7 360 900 12485 .80 13243 .13 12485 .80 −5 . 72 % 

8 440 900 13331 .20 13756 .51 13331 .20 −3 . 09 % 

9 255 10 0 0 710 .64 717 .16 710 .64 −0 . 91 % 

10 323 10 0 0 908 .89 914 .73 908 .89 −0 . 64 % 

11 399 10 0 0 1139 .51 1146 .57 1139 .51 −0 . 62 % 

12 483 10 0 0 1384 .29 1386 .48 1384 .29 −0 . 16 % 

13 252 10 0 0 1030 .42 1047 .57 1030 .42 −1 . 64 % 

14 320 10 0 0 1324 .96 1340 .16 1324 .96 −1 . 13 % 

15 396 10 0 0 1668 .39 1700 .28 1668 .39 −1 . 88 % 

16 480 10 0 0 2053 .47 2097 .47 2053 .47 −2 . 10 % 

17 240 200 840 .53 867 .03 840 .53 −3 . 06 % 

18 300 200 1097 .51 1104 .86 1097 .51 −0 . 67 % 

19 360 200 1522 .83 1522 .83 1545 .53 1 .49% 

20 420 200 2019 .55 2019 .55 2042 .90 1 .16% 

#best solutions 2 18 

Table 6 

Results for the adapted problem instances by Golden et al. (1998) with ρ = 25% . Comparison between the 

two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed in this paper. 

Index n + 1 Q Best known Expósito-Izquierdo et al. (2016) Two-level VNS Gap 

1 240 550 6051 .04 6135 .26 6051 .04 −1 . 37 % 

2 320 700 9725 .90 10 0 05 .59 9725 .90 −2 . 80 % 

3 400 900 13692 .60 14083 .28 13692 .60 −2 . 77 % 

4 480 10 0 0 16977 .90 17359 .95 16977 .90 −2 . 20 % 

5 200 900 9340 .70 9701 .89 9340 .70 −3 . 72 % 

6 280 900 10840 .70 11261 .49 10840 .70 −3 . 74 % 

7 360 900 12348 .10 12720 .79 12348 .10 −2 . 93 % 

8 440 900 14100 .80 14307 .64 14100 .80 −1 . 45 % 

9 255 10 0 0 717 .63 723 .49 717 .63 −0 . 81 % 

10 323 10 0 0 908 .26 915 .09 908 .26 −0 . 75 % 

11 399 10 0 0 1131 .84 1140 .36 1131 .84 −0 . 75 % 

12 483 10 0 0 1387 .67 1395 .67 1387 .67 −0 . 57 % 

13 252 10 0 0 1034 .30 1054 .64 1034 .30 −1 . 93 % 

14 320 10 0 0 1317 .05 1341 .39 1317 .05 −1 . 81 % 

15 396 10 0 0 1667 .08 1697 .88 1667 .08 −1 . 81 % 

16 480 10 0 0 2048 .08 2105 .01 2048 .08 −2 . 70 % 

17 240 200 795 .33 808 .24 795 .33 −1 . 60 % 

18 300 200 1122 .73 1138 .45 1122 .73 −1 . 38 % 

19 360 200 1538 .20 1549 .89 1538 .20 −0 . 75 % 

20 420 200 2036 .19 2036 .19 2038 .27 0 .10% 

#best solutions 1 19 
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imes can be considered an important drawback for some applica-

ions. 

To allow the comparison with the results reported by Expósito-

zquierdo et al. (2016) , we dedicate a maximum calculation time of

0 seconds to our two-level VNS . On average, this corresponds to a

8% reduction in calculation time compared to Vidal et al. (2015) .

he two-level VNS is able to find the optimal solution for only 8

ut of 220 instances. An optimality gap of around 1% is obtained

n average, which is equivalent to a reduction of the optimality

ap by 63% compared to Expósito-Izquierdo et al. (2016) . 

. The CLUVRP with weak cluster constraints 

.1. Motivation 

As described above, the CluVRP with strong cluster constraints

equires that all customers that belong to the same cluster should

e served consecutively by the same vehicle. This requirement can

t

e relaxed in some real life applications. In parcel delivery, e.g.,

he customers are often clustered in zones (clusters) in order to fa-

ilitate the sorting process. These zones are assigned to the avail-

ble vehicles, obtaining a tactical plan in which each vehicle is

llowed to serve multiple zones during one trip. ( Janssens et al.,

015 ) However, from the moment that the vehicle leaves the de-

ots there is no need to visit the individual customers according

o their original zone. It might be profitable for the driver to leave

 current zone, serve customers belonging to another zone and re-

urn to the initial zone afterwards. This can depend on the layout

f the instance and the individual customer locations, but also on

eal time traffic information or additional constraints such as time

indows. This gives rise to another variant of the CluVRP , which

e define as the CluVRP with weak cluster constraints . Similar to

he CluVRP with strong cluster constraints, we impose that clus-

ers are assigned to vehicles and therefore that all customers that

elong to a certain cluster are all served by the same vehicle. How-

ver, we allow a vehicle to leave and re-enter a cluster multiple

imes during its trip. 
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Table 7 

Results for the adapted problem instances by Golden et al. (1998) with ρ = 50% . Comparison between the 

two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed in this paper. 

Index n + 1 Q Best known Expósito-Izquierdo et al. (2016) Two-level VNS Gap 

1 240 550 6551 .04 6719 .17 6551 .04 −2 . 50 % 

2 320 700 9787 .09 9904 .40 9787 .09 −1 . 18 % 

3 400 900 13287 .00 13303 .31 13287 .00 −0 . 12 % 

4 480 10 0 0 17569 .90 17935 .58 17569 .90 −2 . 04 % 

5 200 900 8597 .31 8790 .44 8597 .31 −2 . 20 % 

6 280 900 10550 .80 10714 .34 10550 .80 −1 . 53 % 

7 360 900 12673 .70 12862 .90 12673 .70 −1 . 47 % 

8 440 900 13766 .30 13924 .79 13766 .30 −1 . 14 % 

9 255 10 0 0 698 .04 703 .07 698 .04 −0 . 72 % 

10 323 10 0 0 890 .87 898 .19 890 .87 −0 . 81 % 

11 399 10 0 0 1107 .88 1112 .35 1107 .88 −0 . 40 % 

12 483 10 0 0 1317 .47 1319 .98 1317 .47 −0 . 19 % 

13 252 10 0 0 1053 .47 1080 .84 1053 .47 −2 . 53 % 

14 320 10 0 0 1342 .70 1363 .99 1342 .70 −1 . 56 % 

15 396 10 0 0 1657 .22 1685 .61 1657 .22 −1 . 68 % 

16 480 10 0 0 2003 .10 2030 .60 2003 .10 −1 . 35 % 

17 240 200 881 .66 910 .73 881 .66 −3 . 19 % 

18 300 200 1200 .98 1217 .71 1200 .98 −1 . 37 % 

19 360 200 1612 .33 1631 .21 1612 .33 −1 . 16 % 

20 420 200 2278 .64 2325 .47 2278 .64 −2 . 01 % 

#best solutions 0 20 

Table 8 

Results for the adapted problem instances by Golden et al. (1998) with ρ = 75% . Comparison between the 

two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed in this paper. 

Index n + 1 Q Best known Expósito-Izquierdo et al. (2016) Two-level VNS Gap 

1 240 550 6736 .15 6736 .15 6736 .15 0 .00% 

2 320 700 10204 .30 10204 .30 10223 .20 0 .19% 

3 400 900 13575 .70 13575 .70 13635 .20 0 .44% 

4 480 10 0 0 17077 .59 17077 .59 17194 .20 0 .68% 

5 200 900 8664 .94 8664 .94 8666 .59 0 .02% 

6 280 900 11452 .01 11452 .01 11520 .30 0 .60% 

7 360 900 12901 .41 12901 .41 12950 .00 0 .38% 

8 440 900 13926 .40 13943 .65 13926 .40 −0 .12% 

9 255 10 0 0 773 .39 773 .39 773 .39 0 .00% 

10 323 10 0 0 10 0 0 .51 10 0 0 .51 1001 .28 0 .08% 

11 399 10 0 0 1223 .66 1223 .66 1226 .91 0 .27% 

12 483 10 0 0 1475 .68 1475 .68 1478 .86 0 .22% 

13 252 10 0 0 1183 .12 1183 .12 1183 .12 0 .00% 

14 320 10 0 0 1520 .55 1523 .44 1520 .55 −0 .19% 

15 396 10 0 0 1825 .29 1829 .32 1825 .29 −0 .22% 

16 480 10 0 0 2265 .54 2265 .54 2265 .77 0 .01% 

17 240 200 1001 .02 1001 .02 1001 .02 0 .00% 

18 300 200 1392 .15 1396 .27 1392 .15 −0 .29% 

19 360 200 1951 .77 1977 .40 1951 .77 −1 .30% 

20 420 200 2540 .22 2540 .22 2540 .39 0 .01% 

#best solutions 14 9 
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5.2. Mathematical model 

The mathematical model, introduced in Section 2 is adapted

below to comply with the weak cluster constraints. Con-

straints (7) are relaxed and replace by constraints (16) as each clus-

ter can now be visited multiple times. Furthermore, a additional

set of equations is added to the model to ensure that all customers

that belong to the same cluster are visited by the same vehicle (see

constraints (17) ). 

min 

∑ 

(i, j) ∈ E 

∑ 

k ∈ K 
d i j x i jk (10)

Subject to ∑ 

k ∈ K 
y ik = 1 ∀ i ∈ V \ V 0 (11)
 

k ∈ K 
y 0 k = | K| (12)

∑ 

j∈ V \ V 0 
x i jk = 

∑ 

j∈ V \ V 0 
x jik = y ik ∀ k ∈ K, ∀ i ∈ V (13)

 

i ∈ V 
q i y ik ≤ Q ∀ k ∈ K (14)

 

i ∈ S 

∑ 

j / ∈ S 
x i jk ≤ y hk ∀ Z ⊆ V \ V 0 , ∀ h ∈ Z, ∀ k ∈ K (15)

∑ 

(i, j) ∈ δ+ (C r ) 

x i jk = 

∑ 

(i, j) ∈ δ−(C r ) 

x i jk ≥ 1 ∀ r ∈ R (16)
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Table 9 

Results for the adapted problem instances by Golden et al. (1998) with ρ = 100% . Comparison between the 

two-level approach from Expósito-Izquierdo et al. (2016) and the two-level VNS proposed in this paper. 

Index n + 1 Q Best known Expósito-Izquierdo et al. (2016) Two-level VNS Gap 

1 240 550 6293 .04 6293 .04 6297 .05 0 .06% 

2 320 700 9879 .59 9879 .59 9917 .68 0 .39% 

3 400 900 12361 .09 12361 .09 12422 .10 0 .49% 

4 480 10 0 0 16130 .39 16130 .39 16276 .70 0 .91% 

5 200 900 8394 .11 8394 .11 8399 .31 0 .06% 

6 280 900 10777 .33 10777 .33 10802 .70 0 .24% 

7 360 900 11346 .11 11346 .11 11411 .60 0 .58% 

8 440 900 13188 .94 13188 .94 13251 .30 0 .47% 

9 255 10 0 0 705 .19 705 .19 705 .19 0 .00% 

10 323 10 0 0 837 .52 837 .52 838 .55 0 .12% 

11 399 10 0 0 1054 .13 1054 .13 1056 .71 0 .24% 

12 483 10 0 0 1297 .31 1297 .31 1300 .02 0 .21% 

13 252 10 0 0 996 .36 996 .36 996 .36 0 .00% 

14 320 10 0 0 1223 .09 1223 .09 1223 .41 0 .03% 

15 396 10 0 0 1531 .29 1531 .29 1532 .82 0 .10% 

16 480 10 0 0 1874 .69 1874 .69 1875 .04 0 .02% 

17 240 200 844 .27 844 .27 844 .27 0 .00% 

18 300 200 1212 .97 1212 .97 1213 .13 0 .01% 

19 360 200 1667 .45 1667 .45 1667 .51 0 .00% 

20 420 200 2128 .60 2128 .60 2128 .77 0 .01% 

#best solutions 20 3 

Table 10 

Comparison between the UHGS p algorithms from Vidal et al. (2015) , the two-level approach from 

Expósito-Izquierdo et al. (2016) and the two-level VNS proposed in this paper over the problem in- 

stances proposed by Battarra et al. (2014) . 

n + 1 Vidal et al. (2015) Expósito-Izquierdo et al. (2016) Two-level VNS 

Gap t(s) Gap t(s) Gap t(s) Gap reduction 

200 0 .00% 2866 .56 4 .61% 10 .0 0 .07% 10 .0 −98 . 56 % 

241 0 .00% 174 .90 2 .39% 10 .0 0 .44% 10 .0 −81 . 66 % 

252 0 .01% 164 .69 0 .50% 10 .0 0 .53% 10 .0 5 .97% 

255 0 .02% 135 .45 3 .69% 10 .0 1 .33% 10 .0 −63 . 93 % 

280 0 .00% 3848 .31 2 .94% 10 .0 0 .71% 10 .0 −76 . 00 % 

300 0 .00% 191 .26 1 .04% 10 .0 0 .93% 10 .0 −11 . 05 % 

320 0 .02% 198 .09 1 .26% 10 .0 0 .85% 10 .0 −32 . 75 % 

323 0 .08% 175 .74 4 .94% 10 .0 0 .93% 10 .0 −81 . 22 % 

360 0 .00% 1248 .29 2 .87% 10 .0 1 .02% 10 .0 −64 . 52 % 

396 0 .05% 279 .15 1 .54% 10 .0 1 .37% 10 .0 −10 . 89 % 

399 0 .06% 198 .00 4 .96% 10 .0 2 .15% 10 .0 −56 . 58 % 

400 0 .01% 1384 .18 2 .56% 10 .0 1 .26% 10 .0 −50 . 61 % 

420 0 .00% 351 .74 2 .60% 10 .0 1 .11% 10 .0 −57 . 22 % 

440 0 .02% 1017 .64 3 .67% 10 .0 1 .32% 10 .0 −64 . 02 % 

480 0 .01% 1427 .23 3 .42% 10 .0 1 .49% 10 .0 −56 . 38 % 

483 0 .07% 389 .16 4 .93% 10 .0 2 .23% 10 .0 −54 . 75 % 

Average 0 .02% 878 .15 3 .00% 10 .0 1 .11% 10 .0 −62 . 99 % 
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 ik = y jk ∀ i, j ∈ C r , ∀ k ∈ K (17) 

 i jk ∈ { 0 , 1 } ∀ (i, j) ∈ E, ∀ k ∈ K (18) 

 i ∈ { 0 , 1 } ∀ i ∈ V, ∀ k ∈ K (19) 

.3. Experiments 

Our two-level VNS approach is slightly altered to solve the Clu-

RP with weak cluster constraints. More specifically, the intra clus-

er neighborhoods of the VNS at the customer level are expanded

o inter cluster operators, allowing the customers to be moved to

ny position in the trip. 

Again, the GVRP θ3 and Golden instances as proposed by

attarra et al. (2014) are solved. Table 11 bundles the differences
n total distance between the CluVRP with strong and weak clus-

er constraints. These relative differences are obtained by compar-

ng the results of our algorithm for weak cluster constraints to the

esults discussed in Section 4.3 . 

As in this section the problem becomes less constrained, the

bjective value, defined as the total distance travelled by all vehi-

les, is lower for all instance classes compared to the CluVRP with

ard cluster constraints. The reduction in objective value lies be-

ween 4 and 7% on average for the Golden instances, but can go up

o more than 12% for some of the instances. As the choice between

trong and weak cluster constraints might result in significant dif-

erences in total cost, this decision should be taken with care in

eal life scenarios. 

. Conclusion 

In this paper, a fast two-level VNS heuristic was presented to

olve the Clustered Vehicle Routing Problem. This metaheuristic
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Table 11 

Results for the GVRP θ3 and Golden instances as proposed by Battarra et al. (2014) with weak cluster constraints. Reported 

values are the averaged over all instances in the set, compared to the obtained results with strong cluster constraints. 

GVRP θ3 Golden instances 

Instance set t(s) Avg. best difference Avg. difference n + 1 t(s) Avg. best difference Avg. difference 

A 0 .28 −2 . 66 % −2 . 52 % 200 10 .00 −8 . 97 % −8 . 09 % 

B 0 .06 −1 . 18 % −1 . 18 % 241 10 .00 −5 . 69 % −4 . 92 % 

P 0 .52 −4 . 64 % −4 . 58 % 252 10 .00 −3 . 62 % −3 . 04 % 

M + G 13 .46 −3 . 19 % −2 . 73 % 255 10 .00 −5 . 02 % −3 . 88 % 

280 10 .00 −6 . 57 % −5 . 56 % 

300 10 .00 −3 . 81 % −3 . 09 % 

320 10 .00 −3 . 46 % −2 . 88 % 

323 10 .00 −6 . 10 % −4 . 98 % 

360 10 .00 −5 . 23 % −4 . 48 % 

396 10 .00 −3 . 13 % −2 . 41 % 

399 10 .00 −4 . 67 % −3 . 48 % 

400 10 .00 −3 . 81 % −3 . 20 % 

420 10 .00 −3 . 49 % −2 . 71 % 

440 10 .00 −4 . 25 % −3 . 37 % 

480 10 .00 −3 . 87 % −3 . 15 % 

483 10 .00 −2 . 96 % −1 . 63 % 

average 1 .12 −2 . 86 % −2 . 80 % −4 . 65 % −3 . 82 % 
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A

solution approach solves the CluVRP without assuming Euclidean

distances or converting the problem to a CVRP by using a big-M

approach. By integrating a cluster level and a customer level local

search phase, the specific clustered structure of the problem was

exploited to reduce complexity, and high quality solutions could

be obtained in very short calculation times. 

Our algorithm was tested on benchmark instances from the lit-

erature with different sizes and diverse complexities. Many of the

small and medium-sized problems were solved to optimality in

very short computing times. Even if the optimal solution was not

found, an average optimality gap of 0.03% was obtained. For the

large-size instances, which are adaptations of the Golden bench-

mark instances as proposed by Battarra et al. (2014) and Expósito-

Izquierdo et al. (2016) , only a limited number of optimal solutions

were found. However, with an average optimality gap around 1%

high quality and competitive solutions were obtained by our two-

level VNS approach in very small computation times. We therefore

believe that our solution approach has potential for integration in

solution approaches that rely on the CluVRP as a subproblem as

this might require the method to be executed multiple times. For

example, a courier company that wants to determine the bound-

aries of its zones (cluster) in the distribution area might want to

solve the CluVRP for every possible configuration to select the best

option. In this context, a fast method is preferred while the re-

maining optimality gap is a minor issue. By allowing larger calcula-

tion times, the optimality gap is likely to reduce further. However,

we leave this trade-off to the decision maker. 

Furthermore, we have introduced a new type of CluVRP in this

paper. Next to the traditional CluVRP with strong cluster con-

straints, in which it is not allowed to leave a cluster before having

served all customers within it, we have proposed a CluVRP vari-

ant with weak cluster constraints. Here, all customers belonging to
Table 12 

Detailed results for the GVRP θ3 instances A, B. 

Instance Strong cluster constraint 

Set n k c v opt. Best Avg. best GAP 

A 32 5 11 2 522 522 0 .00% 

A 33 5 11 2 472 472 0 .00% 

A 33 6 11 2 562 562 0 .00% 

A 34 5 12 2 547 547 0 .00% 

A 36 5 12 2 588 589 0 .17% 
he same cluster should be served by the same vehicle but cus-

omers in the different clusters assigned to a vehicle can be visited

n any order. Our simulation experiments show that the total dis-

ance travelled might decreases by 4.65% on average for the large-

ize instances when going from strong to weak cluster constraints.

or some instances, a cost reduction of more than 10% could be ob-

ained. These values put an estimate on the profit of allowing the

pproach with weak cluster constraints as opposed to strong clus-

er constraints, e.g., in the context of the operations of a courier

ompany. 

Although all algorithms are tested and compared on multiple

ets of benchmark instances, a gap remains between the size of

hese instances and the complexity of the logistic problems faced

y the industry today. For further research, we therefore acknowl-

dge the need for additional very large-size instances that are able

o better represent the daily planning problems faced by, e.g., par-

el delivery and courier companies. 
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ppendix A. Detailed results 
Weak cluster constraints 

Avg. GAP Avg. CPU(s) Avg. best GAP Avg. GAP 

0 .00% 0 .00 −1.34% −1.34% 

0 .00% 0 .00 −2.33% −2.33% 

0 .00% 0 .00 −1.42% −1.42% 

0 .00% 0 .00 −1.65% −1.65% 

0 .17% 0 .00 −7.81% −7.81% 

( continued on next page ) 
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Table 12 ( continued ) 

Instance Strong cluster constraint Weak cluster constraints 

Set n k c v opt. Best Avg. best GAP Avg. GAP Avg. CPU(s) Avg. best GAP Avg. GAP 

A 37 5 13 2 569 569 0 .00% 0 .00% 0 .00 −2.46% −2.46% 

A 37 6 13 2 615 615 0 .00% 0 .00% 0 .02 −1.63% −1.56% 

A 38 5 13 2 507 507 0 .00% 0 .00% 0 .00 0.00% 0.00% 

A 39 5 13 2 610 610 0 .00% 0 .00% 0 .02 −3.61% −3.41% 

A 39 6 13 2 613 613 0 .00% 0 .00% 0 .00 −1.63% −1.63% 

A 44 6 15 2 714 714 0 .00% 0 .00% 0 .04 −3.22% −3.22% 

A 45 6 15 3 712 712 0 .00% 0 .00% 0 .00 −8.43% −8.43% 

A 45 7 15 3 664 664 0 .00% 0 .00% 0 .00 −0.45% −0.45% 

A 46 7 16 3 664 664 0 .00% 0 .00% 0 .00 −3.31% −3.31% 

A 48 7 16 3 683 683 0 .00% 0 .00% 0 .00 −0.44% −0.44% 

A 53 7 18 3 651 651 0 .00% 0 .00% 0 .00 −3.69% −3.69% 

A 54 7 18 3 724 724 0 .00% 0 .00% 0 .01 −3.45% −3.45% 

A 55 9 19 3 653 653 0 .00% 0 .00% 0 .00 −1.23% −1.23% 

A 60 9 20 3 787 795 1 .02% 1 .02% 0 .02 −4.15% −4.04% 

A 61 9 21 4 682 682 0 .00% 0 .00% 0 .00 −1.61% −1.11% 

A 62 8 21 3 778 778 0 .00% 0 .00% 0 .01 −0.90% −0.90% 

A 63 10 21 4 801 801 0 .00% 0 .00% 0 .02 −2.75% −2.65% 

A 63 9 21 3 865 865 0 .00% 0 .00% 0 .45 −3.24% −3.21% 

A 64 9 22 3 773 773 0 .00% 0 .00% 0 .09 −0.78% −0.78% 

A 65 9 22 3 725 725 0 .00% 0 .01% 0 .15 −4.41% −4.41% 

A 69 9 23 3 814 819 0 .61% 0 .66% 0 .38 −3.05% −2.37% 

A 80 10 27 4 972 972 0 .00% 0 .10% 0 .27 −2.88% −2.78% 

B 31 5 11 2 375 375 0 .00% 0 .00% 0 .00 0 .00% 0 .00% 

B 34 5 12 2 416 416 0 .00% 0 .00% 0 .00 −0.24% −0.24% 

B 35 5 12 2 562 562 0 .00% 0 .16% 0 .03 −0.89% −0.89% 

B 38 6 13 2 431 431 0 .00% 0 .00% 0 .06 −0.93% −0.93% 

B 39 5 13 2 321 321 0 .00% 0 .00% 0 .00 −1.25% −1.25% 

B 41 6 14 2 476 476 0 .00% 0 .00% 0 .00 −1.47% −1.47% 

B 43 6 15 2 415 415 0 .00% 0 .00% 0 .00 −2.41% −2.41% 

B 44 7 15 3 447 447 0 .00% 0 .00% 0 .00 −0.89% −0.89% 

B 45 5 15 2 506 508 0 .40% 0 .41% 0 .02 −3.74% −3.74% 

B 45 6 15 2 391 391 0 .00% 0 .00% 0 .02 −1.28% −1.28% 

B 50 7 17 3 467 467 0 .00% 0 .00% 0 .00 −0.64% −0.64% 

B 50 8 17 3 666 666 0 .00% 0 .00% 0 .02 −0.75% −0.75% 

B 51 7 17 3 585 585 0 .00% 0 .00% 0 .00 −1.20% −1.20% 

B 52 7 18 3 427 427 0 .00% 0 .00% 0 .00 0 .00% 0 .00% 

B 56 7 19 3 433 434 0 .23% 0 .23% 0 .01 −3.23% −3.23% 

B 57 7 19 3 634 634 0 .00% 0 .00% 0 .01 −1.89% −1.89% 

B 57 9 19 3 753 753 0 .00% 0 .00% 0 .01 −0.93% −0.93% 

B 63 10 21 3 685 685 0 .00% 0 .00% 0 .06 0 .00% 0 .00% 

B 64 9 22 4 526 526 0 .00% 0 .00% 0 .00 −0.38% −0.38% 

B 66 9 22 3 687 687 0 .00% 0 .00% 0 .26 −0.58% −0.58% 

B 67 10 23 4 626 626 0 .00% 0 .00% 0 .04 −1.12% −1.12% 

B 68 9 23 3 588 588 0 .00% 0 .03% 0 .29 −1.02% −1.02% 

B 78 10 26 4 721 721 0 .00% 0 .00% 0 .02 −2.36% −2.36% 

Table 13 

Detailed results for the GVRP θ3 instances G, M, P. 

Instance Strong cluster constraint Weak cluster constraints 

Set n k c v opt. Best Avg. best GAP Avg. GAP Avg. CPU(s) Avg. Best GAP Avg. GAP 

G 262 25 88 9 – 3310 15 .95 −3 . 44 % −2 . 71 % 

M 101 10 34 4 607 607 0 .00% 0 .00% 0 .03 −1.48% −1.48% 

M 121 7 41 3 691 691 0 .00% 0 .35% 4 .25 −1.45% −0.94% 

M 151 12 51 4 804 805 0 .12% 0 .19% 3 .20 −5.71% −5.11% 

M 200 16 67 6 914 (UB) 909 −0.55% −0.34% 6 .45 −3.85% −3.40% 

P 101 4 34 2 679 679 0 .00% 0 .00% 0 .20 −4.42% −4.32% 

P 16 8 6 4 253 253 0 .00% 0 .00% 0 .00 −0.79% −0.79% 

P 19 2 7 1 186 186 0 .00% 0 .00% 0 .00 −8.60% −8.60% 

P 20 2 7 1 200 200 0 .00% 0 .00% 0 .00 −11.50% −11.50% 

P 21 2 7 1 190 190 0 .00% 0 .00% 0 .00 −5.79% −5.79% 

P 22 2 8 1 202 202 0 .00% 0 .00% 0 .00 −9.41% −9.41% 

P 22 8 8 4 365 365 0 .00% 0 .00% 0 .00 0 .00% 0 .00% 

P 23 8 8 3 279 279 0 .00% 0 .00% 0 .00 −3.23% −3.23% 

P 40 5 14 2 396 396 0 .00% 0 .00% 0 .00 −3.79% −3.79% 

P 45 5 15 2 440 440 0 .00% 0 .00% 0 .00 −4.09% −4.09% 

P 50 10 17 4 491 491 0 .00% 0 .00% 0 .02 −4.07% −4.07% 

P 50 7 17 3 447 447 0 .00% 0 .00% 0 .02 −3.80% −3.80% 

P 50 8 17 3 460 460 0 .00% 0 .00% 0 .01 −4.13% −4.13% 

P 51 10 17 4 537 537 0 .00% 0 .02% 0 .03 −8.19% −8.19% 

P 55 10 19 4 500 500 0 .00% 0 .00% 0 .03 −3.80% −3.75% 

P 55 15 19 6 595 595 0 .00% 0 .00% 0 .01 −3.87% −3.87% 

P 55 7 19 3 462 462 0 .00% 0 .00% 0 .00 −1.30% −1.30% 

P 55 8 19 3 471 471 0 .00% 0 .00% 0 .02 −3.18% −3.18% 

P 60 10 20 4 552 552 0 .00% 0 .03% 0 .19 −3.08% −2.96% 

P 60 15 20 5 611 611 0 .00% 0 .18% 0 .29 −3.27% −3.27% 

P 65 10 22 4 619 619 0 .00% 0 .00% 0 .01 −5.98% −5.98% 

P 70 10 24 4 643 644 0 .16% 0 .16% 0 .01 −6.52% −6.12% 

P 76 4 26 2 581 581 0 .00% 0 .00% 0 .41 −4.13% −3.81% 

P 76 5 26 2 581 581 0 .00% 0 .00% 0 .31 −4.30% −4.00% 
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Table 14 

Detailed results for the Golden instances 1–5, as provided by Battarra et al. (2014) . 

Instance Strong cluster constraints Weak cluster constraints 

Set n N opt. Best Avg. best GAP(%) Avg. GAP(%) Avg. CPU(s) Best diff. Avg. Diff. 

Golden-1 241 17 4831 4862 0 .64% 1 .19% 5 .33 −3.39% −2.38% 

Golden-1 241 18 4847 4864 0 .35% 0 .98% 4 .68 −2.80% −1.97% 

Golden-1 241 19 4872 4889 0 .35% 1 .24% 4 .05 −2.92% −2.41% 

Golden-1 241 21 4889 4914 0 .51% 1 .13% 5 .65 −2.81% −2.43% 

Golden-1 241 22 4908 4950 0 .86% 1 .20% 4 .07 −4.36% −3.21% 

Golden-1 241 25 4899 4917 0 .37% 0 .80% 3 .72 −3.72% −3.21% 

Golden-1 241 27 4934 4952 0 .36% 0 .67% 4 .14 −4.81% −3.70% 

Golden-1 241 31 5050 5053 0 .06% 0 .19% 5 .21 −5.68% −4.99% 

Golden-1 241 35 5102 5116 0 .27% 0 .54% 4 .75 −7.74% −6.81% 

Golden-1 241 41 5097 5113 0 .31% 0 .74% 4 .85 −7.88% −6.76% 

Golden-1 241 49 50 0 0 5039 0 .78% 1 .35% 4 .24 −7.32% −5.43% 

Golden-2 321 22 7716 7785 0 .89% 1 .24% 6 .19 −2.84% −2.43% 

Golden-2 321 23 7693 7768 0 .97% 1 .36% 5 .29 −2.79% −2.43% 

Golden-2 321 25 7668 7728 0 .78% 1 .15% 5 .79 −3.35% −2.44% 

Golden-2 321 27 7638 7705 0 .88% 1 .23% 4 .50 −2.92% −2.39% 

Golden-2 321 30 7617 7689 0 .95% 1 .51% 5 .51 −2.65% −2.26% 

Golden-2 321 33 7640 7705 0 .85% 1 .24% 4 .84 −3.04% −2.70% 

Golden-2 321 36 7643 7699 0 .73% 1 .14% 3 .62 −3.27% −2.79% 

Golden-2 321 41 7738 7781 0 .56% 1 .16% 5 .08 −4.25% −3.46% 

Golden-2 321 46 7861 7926 0 .83% 1 .30% 4 .43 −5.41% −4.86% 

Golden-2 321 54 7920 7989 0 .87% 1 .28% 3 .84 −6.28% −5.62% 

Golden-2 321 65 7892 7997 1 .33% 1 .71% 5 .45 −6.50% −5.67% 

Golden-3 401 27 10540 10662 1 .16% 1 .80% 4 .81 −2.56% −2.17% 

Golden-3 401 29 10504 10627 1 .17% 1 .50% 5 .33 −3.72% −2.92% 

Golden-3 401 31 10486 10616 1 .24% 1 .48% 4 .68 −3.23% −2.79% 

Golden-3 401 34 10465 10602 1 .31% 1 .64% 5 .18 −2.92% −2.60% 

Golden-3 401 37 10482 10605 1 .17% 1 .66% 4 .25 −3.30% −2.75% 

Golden-3 401 41 10501 10606 1 .00% 1 .51% 4 .87 −3.12% −2.70% 

Golden-3 401 45 10485 10649 1 .56% 1 .78% 4 .56 −3.73% −2.98% 

Golden-3 401 51 10583 10722 1 .31% 2 .00% 4 .46 −4.01% −3.43% 

Golden-3 401 58 10776 10905 1 .20% 1 .71% 4 .75 −5.09% −4.48% 

Golden-3 401 67 10797 10953 1 .44% 1 .79% 4 .51 −6.06% −4.96% 

Golden-3 401 81 10614 10756 1 .34% 1 .91% 4 .96 −4.14% −3.44% 

Golden-4 481 33 13598 13805 1 .52% 1 .99% 5 .07 −4.97% −3.95% 

Golden-4 481 35 13643 13795 1 .11% 1 .89% 4 .35 −4.28% −3.71% 

Golden-4 481 37 13520 13722 1 .49% 1 .83% 5 .32 −4.59% −3.80% 

Golden-4 481 41 13460 13618 1 .17% 1 .91% 5 .09 −4.46% −3.52% 

Golden-4 481 44 13568 13756 1 .39% 1 .70% 5 .25 −4.66% −3.97% 

Golden-4 481 49 13758 13968 1 .53% 2 .10% 4 .93 −5.98% −5.19% 

Golden-4 481 54 13760 13985 1 .64% 2 .27% 5 .62 −6.16% −5.02% 

Golden-4 481 61 13791 14045 1 .84% 2 .25% 5 .51 −6.09% −4.98% 

Golden-4 481 69 13966 14143 1 .27% 2 .00% 4 .31 −6.00% −5.35% 

Golden-4 481 81 13975 14167 1 .37% 2 .13% 5 .32 −6.58% −5.75% 

Golden-4 481 97 13775 13973 1 .44% 2 .22% 3 .50 −4.46% −3.96% 

Golden-5 201 14 7622 7652 0 .39% 0 .74% 4 .62 −7.08% −6.39% 

Golden-5 201 15 7424 7429 0 .07% 0 .67% 4 .52 −8.49% −7.55% 

Golden-5 201 16 7491 7491 0 .00% 0 .30% 4 .89 −8.92% −8.00% 

Golden-5 201 17 7434 7434 0 .00% 0 .44% 4 .81 −7.61% −7.04% 

Golden-5 201 19 7576 7576 0 .00% 0 .08% 4 .14 −7.23% −6.69% 

Golden-5 201 21 7596 7596 0 .00% 0 .03% 4 .59 −9.00% −8.39% 

Golden-5 201 23 7643 7643 0 .00% 0 .24% 2 .38 −11.33% −10.18% 

Golden-5 201 26 7560 7566 0 .08% 0 .21% 3 .66 −11.12% −10.20% 

Golden-5 201 29 7410 7410 0 .00% 0 .04% 4 .91 −8.99% −8.11% 

Golden-5 201 34 7429 7433 0 .05% 0 .17% 5 .28 −9.66% −8.32% 

Golden-5 201 41 7241 7251 0 .14% 0 .25% 5 .39 −9.20% −8.11% 
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Table 15 

Detailed results for the Golden instances 6–10, as provided by Battarra et al. (2014) . 

Instance Strong cluster constraints Weak cluster constraints 

Set n N opt. Best Avg. best GAP(%) Avg. GAP(%) Avg. CPU(s) Best diff. Avg. Diff. 

Golden-6 281 19 8624 8685 0 .71% 0 .94% 4 .72 −5.62% −4.91% 

Golden-6 281 21 8628 8661 0 .38% 0 .73% 5 .04 −5.83% −4.38% 

Golden-6 281 22 8646 8715 0 .80% 1 .26% 6 .02 −5.96% −4.67% 

Golden-6 281 24 8853 8905 0 .59% 1 .04% 3 .59 −5.44% −4.63% 

Golden-6 281 26 8910 8978 0 .76% 1 .31% 4 .16 −6.32% −5.52% 

Golden-6 281 29 8936 9025 1 .00% 1 .46% 4 .69 −6.98% −6.08% 

Golden-6 281 32 8891 8974 0 .93% 1 .44% 3 .93 −7.62% −5.90% 

Golden-6 281 36 8969 9011 0 .47% 0 .82% 4 .89 −6.97% −6.36% 

Golden-6 281 41 9028 9067 0 .43% 0 .80% 5 .37 −7.30% −6.42% 

Golden-6 281 47 8923 8996 0 .82% 1 .37% 2 .99 −7.19% −6.10% 

Golden-6 281 57 9028 9107 0 .88% 1 .32% 5 .36 −7.09% −6.23% 

Golden-7 361 25 9904 10021 1 .18% 1 .68% 4 .32 −4.42% −3.72% 

Golden-7 361 26 9888 10023 1 .37% 1 .76% 5 .61 −4.42% −3.71% 

Golden-7 361 28 9917 10056 1 .40% 1 .84% 5 .39 −4.72% −4.02% 

Golden-7 361 31 10021 10131 1 .10% 1 .53% 4 .67 −3.99% −3.58% 

Golden-7 361 33 10029 10161 1 .32% 1 .57% 5 .07 −4.68% −4.02% 

Golden-7 361 37 10131 10176 0 .44% 1 .14% 4 .67 −4.93% −3.75% 

Golden-7 361 41 10052 10119 0 .67% 1 .27% 4 .94 −4.50% −3.61% 

Golden-7 361 46 10080 10197 1 .16% 1 .77% 5 .75 −5.44% −4.24% 

Golden-7 361 52 10095 10201 1 .05% 1 .61% 4 .40 −4.97% −4.10% 

Golden-7 361 61 10096 10189 0 .92% 1 .74% 5 .74 −4.67% −4.18% 

Golden-7 361 73 10014 10095 0 .81% 1 .52% 4 .70 −4.88% −3.57% 

Golden-8 441 30 10866 11002 1 .25% 1 .58% 4 .86 −3.19% −2.45% 

Golden-8 441 32 10831 10943 1 .03% 1 .73% 5 .82 −2.77% −2.07% 

Golden-8 441 34 10847 10963 1 .07% 1 .68% 5 .33 −2.56% −2.04% 

Golden-8 441 37 10859 11010 1 .39% 1 .95% 5 .06 −3.18% −2.59% 

Golden-8 441 41 10934 11088 1 .41% 1 .79% 5 .94 −3.57% −3.02% 

Golden-8 441 45 10960 11103 1 .30% 1 .60% 4 .48 −3.93% −3.00% 

Golden-8 441 49 11042 11177 1 .22% 1 .61% 4 .81 −3.98% −3.34% 

Golden-8 441 56 11194 11350 1 .39% 1 .86% 4 .86 −5.50% −4.48% 

Golden-8 441 63 11252 11412 1 .42% 1 .76% 4 .64 −5.83% −4.51% 

Golden-8 441 74 11321 11462 1 .25% 2 .09% 4 .50 −6.17% −4.84% 

Golden-8 441 89 11209 11409 1 .78% 2 .45% 5 .08 −6.09% −4.74% 

Golden-9 256 18 300 304 1 .33% 1 .77% 4 .62 −5.26% −4.18% 

Golden-9 256 19 299 304 1 .67% 1 .96% 3 .67 −5.59% −3.98% 

Golden-9 256 20 296 298 0 .68% 1 .59% 3 .09 −3.69% −2.67% 

Golden-9 256 22 290 295 1 .72% 2 .45% 3 .98 −3.39% −2.85% 

Golden-9 256 24 290 295 1 .72% 2 .48% 3 .84 −3.73% −2.78% 

Golden-9 256 26 288 293 1 .74% 2 .20% 5 .29 −3.41% −2.92% 

Golden-9 256 29 292 297 1 .71% 2 .40% 3 .21 −5.39% −4.09% 

Golden-9 256 32 297 300 1 .01% 1 .58% 4 .38 −6.67% −5.02% 

Golden-9 256 37 294 296 0 .68% 1 .55% 3 .31 −5.41% −3.89% 

Golden-9 256 43 295 300 1 .69% 2 .36% 2 .97 −6.33% −5.27% 

Golden-9 256 52 296 298 0 .68% 2 .50% 4 .30 −6.38% −5.05% 

Golden-10 324 22 367 369 0 .54% 1 .20% 2 .41 −3.25% −1.88% 

Golden-10 324 24 361 361 0 .00% 0 .43% 5 .03 −1.94% −0.83% 

Golden-10 324 25 359 360 0 .28% 0 .88% 3 .75 −1.11% −0.58% 

Golden-10 324 27 361 363 0 .55% 1 .65% 3 .53 −1.65% −1.17% 

Golden-10 324 30 367 371 1 .09% 1 .58% 4 .31 −3.77% −2.87% 

Golden-10 324 33 373 378 1 .34% 2 .25% 2 .51 −5.82% −4.80% 

Golden-10 324 36 385 391 1 .56% 2 .04% 4 .22 −8.70% −7.43% 

Golden-10 324 41 400 403 0 .75% 1 .44% 4 .72 −9.93% −9.09% 

Golden-10 324 47 398 402 1 .01% 1 .58% 4 .65 −10.45% −9.38% 

Golden-10 324 54 393 397 1 .02% 1 .95% 3 .92 −10.08% −8.66% 

Golden-10 324 65 387 395 2 .07% 2 .70% 3 .64 −10.38% −8.09% 
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Table 16 

Detailed results for the Golden instances 11–15, as provided by Battarra et al. (2014) . 

Instance Strong cluster constraints Weak cluster constraints 

Set n N opt. Best Avg. best GAP(%) Avg. GAP(%) Avg. CPU(s) Best diff. Avg. Diff. 

Golden-11 400 27 457 464 1 .53% 1 .76% 3 .58 −3.66% −2.73% 

Golden-11 400 29 455 463 1 .76% 2 .38% 3 .58 −3.46% −2.71% 

Golden-11 400 31 455 464 1 .98% 2 .59% 5 .29 −3.66% −2.66% 

Golden-11 400 34 455 462 1 .54% 2 .21% 4 .23 −4.55% −3.19% 

Golden-11 400 37 459 469 2 .18% 2 .68% 4 .65 −5.33% −4.08% 

Golden-11 400 40 461 467 1 .30% 2 .25% 3 .87 −4.93% −3.88% 

Golden-11 400 45 462 470 1 .73% 2 .54% 4 .69 −5.96% −4.66% 

Golden-11 400 50 458 467 1 .97% 2 .90% 4 .81 −5.35% −3.74% 

Golden-11 400 58 456 468 2 .63% 3 .30% 4 .64 −4.91% −3.84% 

Golden-11 400 67 454 469 3 .30% 4 .13% 4 .20 −4.90% −3.57% 

Golden-11 400 80 451 468 3 .77% 4 .71% 3 .87 −4.70% −3.26% 

Golden-12 484 33 535 545 1 .87% 2 .50% 4 .38 −2.94% −1.59% 

Golden-12 484 35 537 547 1 .86% 2 .50% 3 .40 −2.93% −1.86% 

Golden-12 484 38 535 547 2 .24% 3 .39% 4 .15 −2.93% −1.37% 

Golden-12 484 41 537 550 2 .42% 3 .66% 3 .67 −3.27% −1.87% 

Golden-12 484 44 535 552 3 .18% 4 .02% 4 .11 −3.99% −2.23% 

Golden-12 484 49 533 550 3 .19% 3 .96% 4 .01 −2.00% −1.09% 

Golden-12 484 54 535 551 2 .99% 3 .83% 4 .74 −2.54% −1.11% 

Golden-12 484 61 538 552 2 .60% 3 .67% 4 .16 −2.36% −1.24% 

Golden-12 484 70 546 552 1 .10% 1 .83% 3 .76 −2.54% −1.19% 

Golden-12 484 81 546 557 2 .01% 2 .79% 4 .52 −3.23% −1.71% 

Golden-12 484 97 560 566 1 .07% 2 .07% 3 .98 −3.89% −2.71% 

Golden-13 253 17 552 553 0 .18% 0 .57% 4 .43 −2.71% −1.98% 

Golden-13 253 19 549 552 0 .55% 0 .77% 4 .79 −3.99% −3.28% 

Golden-13 253 20 548 549 0 .18% 0 .60% 4 .84 −3.28% −2.98% 

Golden-13 253 22 548 549 0 .18% 0 .74% 2 .80 −3.46% −2.86% 

Golden-13 253 23 548 551 0 .55% 0 .78% 3 .73 −3.99% −3.42% 

Golden-13 253 26 542 544 0 .37% 0 .62% 3 .69 −2.76% −2.30% 

Golden-13 253 29 540 543 0 .56% 0 .77% 3 .64 −2.58% −2.00% 

Golden-13 253 32 543 545 0 .37% 0 .69% 4 .75 −2.94% −2.19% 

Golden-13 253 37 545 550 0 .92% 1 .21% 3 .84 −3.45% −2.84% 

Golden-13 253 43 553 559 1 .08% 1 .52% 3 .24 −4.83% −4.43% 

Golden-13 253 51 560 565 0 .89% 1 .44% 3 .90 −5.84% −5.13% 

Golden-14 321 22 692 698 0 .87% 1 .23% 4 .23 −2.72% −2.25% 

Golden-14 321 23 688 692 0 .58% 1 .02% 4 .27 −2.46% −2.08% 

Golden-14 321 25 678 683 0 .74% 1 .07% 3 .87 −2.05% −1.46% 

Golden-14 321 27 676 683 1 .04% 1 .45% 4 .35 −1.90% −1.62% 

Golden-14 321 30 678 684 0 .88% 1 .47% 3 .94 −2.05% −1.62% 

Golden-14 321 33 682 687 0 .73% 1 .20% 3 .68 −2.18% −1.94% 

Golden-14 321 36 687 689 0 .29% 1 .16% 3 .35 −3.05% −2.26% 

Golden-14 321 41 690 695 0 .72% 1 .17% 5 .46 −3.88% −2.93% 

Golden-14 321 46 694 699 0 .72% 1 .44% 3 .99 −3.29% −2.72% 

Golden-14 321 54 699 706 1 .00% 1 .58% 3 .83 −4.53% −3.46% 

Golden-14 321 65 703 713 1 .42% 1 .74% 3 .55 −4.77% −4.03% 

Golden-15 397 27 842 850 0 .95% 1 .53% 5 .14 −2.94% −2.01% 

Golden-15 397 29 843 854 1 .30% 1 .64% 5 .01 −3.40% −2.51% 

Golden-15 397 31 837 846 1 .08% 1 .62% 4 .64 −2.36% −1.59% 

Golden-15 397 34 838 851 1 .55% 2 .05% 3 .95 −2.94% −2.30% 

Golden-15 397 37 845 858 1 .54% 1 .99% 4 .09 −3.73% −3.01% 

Golden-15 397 40 849 859 1 .18% 1 .60% 2 .90 −3.38% −2.81% 

Golden-15 397 45 853 864 1 .29% 1 .50% 4 .39 −3.47% −2.80% 

Golden-15 397 50 851 863 1 .41% 1 .77% 3 .04 −2 . 78 % −2 . 47 % 

Golden-15 397 57 850 859 1 .06% 1 .84% 3 .98 −2 . 44 % −1 . 82 % 

Golden-15 397 67 855 870 1 .75% 2 .26% 3 .74 −3 . 45 % −2 . 55 % 

Golden-15 397 80 857 874 1 .98% 2 .51% 3 .32 −3 . 55 % −2 . 64 % 
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Table 17 

Detailed results for the Golden instances 16–20, as provided by Battarra et al. (2014) . 

Instance Strong cluster constraints Weak cluster constraints 

Set n N opt. Best Avg. best GAP(%) Avg. GAP(%) Avg. CPU(s) Best diff. Avg. Diff. 

Golden-16 481 35 1028 1038 0 .97% 1 .31% 4 .24 −2 . 60 % −1 . 89 % 

Golden-16 481 37 1028 1037 0 .88% 1 .21% 3 .66 −2 . 89 % −1 . 96 % 

Golden-16 481 41 1032 1039 0 .68% 1 .31% 4 .43 −2 . 50 % −1 . 74 % 

Golden-16 481 44 1028 1042 1 .36% 1 .71% 4 .53 −2 . 30 % −1 . 77 % 

Golden-16 481 49 1031 1044 1 .26% 1 .66% 5 .56 −2 . 87 % −2 . 20 % 

Golden-16 481 54 1022 1038 1 .57% 1 .91% 4 .39 −2 . 50 % −2 . 13 % 

Golden-16 481 61 1013 1035 2 .17% 2 .58% 3 .85 −2 . 22 % −1 . 74 % 

Golden-16 481 69 1012 1035 2 .27% 2 .60% 3 .86 −2 . 03 % −1 . 65 % 

Golden-16 481 81 1018 1043 2 .46% 3 .06% 2 .93 −2 . 49 % −1 . 62 % 

Golden-16 481 97 1018 1048 2 .95% 3 .47% 3 .16 −2 . 48 % −1 . 72 % 

Golden-17 241 17 418 421 0 .72% 1 .16% 3 .44 −7 . 13 % −6 . 48 % 

Golden-17 241 18 419 421 0 .48% 0 .95% 2 .77 −6 . 89 % −6 . 41 % 

Golden-17 241 19 422 424 0 .47% 0 .78% 5 .01 −7 . 55 % −7 . 09 % 

Golden-17 241 21 425 427 0 .47% 0 .91% 3 .68 −8 . 67 % −7 . 85 % 

Golden-17 241 22 424 426 0 .47% 0 .91% 4 .59 −8 . 22 % −7 . 69 % 

Golden-17 241 25 418 421 0 .72% 1 .04% 3 .70 −7 . 84 % −7 . 54 % 

Golden-17 241 27 414 416 0 .48% 0 .79% 2 .29 −7 . 21 % −6 . 36 % 

Golden-17 241 31 421 422 0 .24% 0 .61% 2 .33 −5 . 45 % −4 . 62 % 

Golden-17 241 35 417 418 0 .24% 0 .49% 3 .34 −4 . 55 % −4 . 04 % 

Golden-17 241 41 412 412 0 .00% 0 .39% 4 .96 −3 . 40 % −2 . 71 % 

Golden-17 241 49 414 416 0 .48% 0 .79% 3 .45 −4 . 81 % −4 . 07 % 

Golden-18 301 21 592 599 1 .18% 1 .60% 4 .13 −4 . 34 % −3 . 06 % 

Golden-18 301 22 594 602 1 .35% 1 .61% 4 .89 −3 . 99 % −3 . 47 % 

Golden-18 301 24 592 601 1 .52% 1 .73% 5 .09 −4 . 49 % −3 . 23 % 

Golden-18 301 26 590 595 0 .85% 1 .54% 3 .41 −3 . 19 % −2 . 31 % 

Golden-18 301 28 577 582 0 .87% 1 .33% 4 .42 −2 . 23 % −1 . 65 % 

Golden-18 301 31 578 583 0 .87% 1 .18% 4 .09 −2 . 92 % −2 . 04 % 

Golden-18 301 34 582 585 0 .52% 1 .05% 4 .38 −2 . 91 % −2 . 56 % 

Golden-18 301 38 586 592 1 .02% 1 .48% 2 .32 −3 . 89 % −3 . 45 % 

Golden-18 301 43 594 599 0 .84% 1 .33% 4 .50 −4 . 34 % −3 . 80 % 

Golden-18 301 51 601 605 0 .67% 1 .18% 3 .29 −4 . 96 % −4 . 45 % 

Golden-18 301 61 599 602 0 .50% 1 .17% 3 .73 −4 . 65 % −4 . 01 % 

Golden-19 361 25 925 936 1 .19% 1 .55% 5 .06 −3 . 85 % −3 . 16 % 

Golden-19 361 26 924 935 1 .19% 1 .63% 4 .84 −3 . 21 % −2 . 84 % 

Golden-19 361 28 808 818 1 .24% 1 .63% 4 .36 −6 . 60 % −5 . 79 % 

Golden-19 361 31 811 822 1 .36% 1 .61% 4 .41 −7 . 30 % −6 . 65 % 

Golden-19 361 33 797 806 1 .13% 1 .66% 4 .96 −6 . 58 % −6 . 18 % 

Golden-19 361 37 799 809 1 .25% 1 .55% 4 .51 −6 . 30 % −5 . 77 % 

Golden-19 361 41 789 796 0 .89% 1 .27% 4 .03 −5 . 40 % −4 . 79 % 

Golden-19 361 46 788 794 0 .76% 1 .08% 3 .13 −5 . 29 % −4 . 38 % 

Golden-19 361 52 800 807 0 .88% 1 .30% 3 .43 −6 . 57 % −5 . 59 % 

Golden-19 361 61 807 812 0 .62% 1 .13% 3 .09 −6 . 03 % −5 . 40 % 

Golden-19 361 73 810 814 0 .49% 1 .33% 3 .00 −6 . 27 % −5 . 52 % 

Golden-20 421 29 1220 1231 0 .90% 1 .32% 4 .78 −1 . 79 % −1 . 49 % 

Golden-20 421 31 1232 1239 0 .57% 1 .14% 4 .30 −1 . 53 % −1 . 12 % 

Golden-20 421 33 1208 1219 0 .91% 1 .30% 4 .37 −1 . 39 % −1 . 00 % 

Golden-20 421 36 1059 1073 1 .32% 1 .76% 5 .44 −3 . 73 % −2 . 71 % 

Golden-20 421 39 1052 1063 1 .05% 1 .39% 5 .13 −3 . 57 % −3 . 07 % 

Golden-20 421 43 1052 1062 0 .95% 1 .46% 3 .37 −4 . 24 % −3 . 23 % 

Golden-20 421 47 1053 1065 1 .14% 1 .55% 3 .90 −3 . 94 % −3 . 27 % 

Golden-20 421 53 1058 1071 1 .23% 1 .94% 3 .41 −4 . 58 % −3 . 79 % 

Golden-20 421 61 1058 1072 1 .32% 1 .95% 3 .82 −4 . 76 % −3 . 61 % 

Golden-20 421 71 1059 1076 1 .61% 2 .01% 2 .80 −4 . 74 % −3 . 81 % 

Golden-20 421 85 1049 1062 1 .24% 1 .98% 4 .38 −4 . 14 % −2 . 74 % 
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