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1 Introduction

In this paper, we study and compare several formulations for the two-level uncapacitated

facility location problem with single assignment constraints (TUFLP-S), an extension of

the uncapacitated facility location problem (UFLP) [18]. The UFLP consists in selecting

a set of depots from potential locations in order to minimize an objective function that

includes fixed costs associated with each depot and transportation costs from any depot

to each customer. In the two-level uncapacitated facility location problem (TUFLP), the

single set of locations is substituted with two tiers of locations (depots and satellites),

and the path to each customer must begin at a depot and transit by a satellite. The

objective function includes fixed costs associated with the depots and the satellites, fixed

costs for establishing connections between depots and satellites, and transportation costs

from any depot to each customer, i.e., each path of the form depot-satellite-customer has

a corresponding transportation cost. The TUFLP-S imposes the additional restriction

that each satellite can be connected to at most one depot. These single assignment

constraints appear in a number of applications, most notably in transportation [31] and

telecommunications [9]. Note also that, for a large class of TUFLP instances for which

the single assignment constraints are not explicitly enforced, there is an optimal solution

that satisfies these constraints, due to the structure of the objective function [9].

The literature on multi-level facility location problems [16, 24, 30, 35], which gen-

eralize the TUFLP-S, focuses on the comparison of two types of models: arc-based

[19, 22, 27, 28] and path-based [3, 11, 15, 29]. The comparison between these different

models is performed both from theoretical and experimental perspectives [6, 7, 9, 23].

Several methods have been proposed for solving multi-level facility location problems,

based on polyhedral theory [1, 2, 9, 20], Lagrangian relaxation [4, 23, 27, 28], linear

programming (LP) relaxation and approximation algorithms [5, 8, 10, 33, 34], greedy

algorithms and metaheuristics [3, 9, 13, 21, 25, 26, 32].

The contribution of this paper is two-fold. First, we introduce six mixed-integer pro-

gramming (MIP) models for the TUFLP-S based on reformulation techniques and on the
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relaxation of the integrality of some of the variables associated with location decisions.

One of these formulations was previously considered in [14] to derive a Lagrangian re-

laxation for the TUFLP-S. Second, we compare the models by solving a large number

of various instances with a state-of-the-art MIP solver. The results show that, whenever

fixed costs at the depots (at the satellites) are significant, it is beneficial to keep the

integrality of the corresponding binary variables, but to relax the integrality of the bi-

nary variables associated with the satellites (with the depots). In our experiments, poor

results are obtained by the reformulation that minimizes the number of binary variables

by relaxing the integrality of the two types of location variables.

The paper is organized as follows. In Section 2, we present a general formulation for

the TUFLP [3] and we adapt this model to derive an initial MIP formulation for the

TUFLP-S. We then propose five additional MIP formulations and theoretically compare

the LP relaxations of these models. The formulations are then compared experimentally

in Section 3. Last, some conclusions are drawn in Section 4.

2 Formulations for the TUFLP-S

To define the TUFLP, we introduce the following notation: I is the set of potential depot

locations, J is the set of potential satellite locations, and K is the set of customers. Fixed

costs and transportation costs are defined as follows: fi, gj and hij are the nonnegative

fixed costs for, respectively, each depot i ∈ I, each satellite j ∈ J and each pair of depot-

satellite (i, j) ∈ I × J ; cijk is the transportation cost on each path (i, j, k) ∈ I × J ×K

from a depot i to a satellite j to a customer k.

Barros and Labbé [3] propose to solve this problem with a MIP formulation that uses

the following sets of binary variables:
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yi =

{
1, if depot i is open,

0, otherwise,
∀i ∈ I,

zj =

{
1, if satellite j is open,

0, otherwise,
∀j ∈ J,

tij =

{
1, if depot i is connected to satellite j,

0, otherwise,
∀(i, j) ∈ I × J,

xijk =

{
1, if customer k is served through pair (i, j),

0, otherwise,
∀ (i, j, k) ∈ I × J ×K.

The MIP model, which we denote (G), is then written as follows:

min
y,z,t,x

∑
i∈I

fiyi +
∑
j∈J

gjzj +
∑

(i,j)∈I×J

hijtij +
∑

(i,j,k)∈I×J×K

cijkxijk, (1)

subject to ∑
(i,j)∈I×J

xijk = 1, ∀k ∈ K, (2)

xijk ≤ tij, ∀(i, j, k) ∈ I × J ×K, (3)∑
j∈J

xijk ≤ yi, ∀(i, k) ∈ I ×K, (4)∑
i∈I

xijk ≤ zj, ∀(j, k) ∈ J ×K, (5)

0 ≤ xijk ∀(i, j, k) ∈ I × J ×K, (6)

yi ∈ {0, 1}, ∀i ∈ I, (7)

zj ∈ {0, 1}, ∀j ∈ J, (8)

tij ∈ {0, 1}, ∀(i, j) ∈ I × J. (9)

Constraints (2) guarantee the satisfaction of the demand for each customer. Con-

straints (3) to (5) ensure that fixed costs are incurred for the use of, respectively, depot-

satellite pairs, depots and satellites. Since there are no capacity constraints, there always

exists an optimal solution to (G) where the demand for a single customer is not split

across multiple paths, and the integrality requirements on variables xijk can be relaxed.

Last, variables xijk have not to be upper bounded due to constraints (2).
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In most papers devoted to two-level uncapacitated facility location problems, a par-

ticular case is considered by setting the costs on the arcs between depots and satellites to

zero (hij = 0 for any (i, j) ∈ I×J). For this special case, solution approaches [1, 5, 20] are

based on the MIP formulation that eliminates variables tij and constraints (3) from (G).

This does not affect the LP relaxation bounds, since no cost is incurred when variables

tij are set to one.

We now address a variant of the TUFLP that forces each satellite to be connected

to at most one depot. For some instances, solutions to (G) will naturally satisfy these

single assignment constraints. Here, we explicitly consider these constraints to derive

MIP formulations that model the TUFLP-S and apply to instances where the single

assignment requirements are either satisfied implicitly or need to be enforced.

Formulation (G) includes variables tij to determine whether arc (i, j) ∈ I × J is se-

lected or not. We define the following constraints to enforce each satellite to be connected

to at most one depot: ∑
i∈I

tij ≤ 1, ∀j ∈ J. (10)

By adding these constraints to (G) we obtain the weak formulation (W ) for the TUFLP-

S, which is then defined by the objective (1) subject to constraints (2) to (10).

The literature on the TUFLP often considers the special case where the transportation

costs on the paths are separable by arc, i.e., cijk = dkaij +bjk for any (i, j, k) ∈ I×J×K.

For TUFLP instances that satisfy this property, in addition to hij = 0 for any (i, j) ∈

I×J , it is easy to show that (G) and (W ) are equivalent [14]. We can go one step further

and show that the LP relaxations of the two models give the same bound. For any model

F , we denote by v(F ) and F its optimal value and its LP relaxation, respectively.

Proposition 1 For any TUFLP instance such that hij = 0, ∀(i, j) ∈ I × J and cijk =

dkaij + bjk, ∀(i, j, k) ∈ I × J ×K, we have v(G) = v(W ) ≤ v(W ) = v(G).

Proof. Since (G) is a relaxation of (W ), we have v(G) ≤ v(W ).

To show that v(G) ≥ v(W ), consider an optimal solution to (G) that violates constraints

(10), i.e.,
∑

i∈I tij′ > 1 for some j′ ∈ J . This implies that there is at least one pair of arcs
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(i′, j′) and (i′′, j′) such that ti′j′ > 0 and ti′′j′ > 0. We assume without loss of generality

that ai′j′ ≤ ai′′j′ . Because ti′′j′ > 0, there exists L ⊆ K,L 6= ∅ such that xi′′j′l > 0 for

l ∈ L and xi′′j′k = 0 for k ∈ K \ L. If we move the total flow dlxi′′j′l on path (i′′, j′, l) to

path (i′, j′, l) for all l ∈ L, we obtain another feasible solution where we can set ti′′j′ = 0.

The cost of this solution is necessarily the same as that of the original optimal solution,

i.e., we have constructed another optimal solution. By repeating this argument a finite

number of times, we eventually end up with an optimal solution to (G) that satisfies

constraints (10). Hence, v(G) ≥ v(W ).

The proof of the equation v(W ) = v(G) follows the same argument.

To improve model (W ), we propose a reformulation based on a simple property of

feasible solutions. For a given satellite j ∈ J , at most one variable tij can be equal to 1

due to constraints (10). Moreover, zj is equal to 1 if and only if ti′j is equal to 1 for some

i′, since fixed costs gj are nonnegative. In other words, either zj = tij = 0, for any i ∈ I,

or there exists a single i′ ∈ I such that ti′j = zj = 1 and tij = 0, for any i ∈ I, i 6= i′. On

the basis of these observations, we can add to (W ) the following valid inequalities:∑
i∈I

tij = zj, ∀j ∈ J. (11)

We can then remove constraints (10), which become redundant, as well as constraints (5),

which are implied by (3) and (11). We thus obtain the strong formulation (S), defined

by the objective (1) subject to constraints (2) to (4), (6) to (9) and (11).

Proposition 2 v(W ) ≤ v(S) and the inequality can be strict.

Proof. When considering the LP relaxations of (W ) and (S), it is also true that (3), (8)

and (11) implies (5) and (10). Hence, (W ) is a relaxation of (S) and v(W ) ≤ v(S).

To show that the inequality can be strict, we exhibit an instance such that any optimal

solution to (W ) satisfies, for some j′ ∈ J ,
∑

i∈I tij′ > z′j. This instance, shown in Figure

1, has origin-destination pairs i1 → k1 and i2 → k2. All fixed and transportation costs

are 0, except for the use of satellites j1 and j2, with a fixed cost of 1. Model (W ) has

only one optimal solution, which uses the two paths from i1 to k1 and the two paths
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i₁

j₁ j₂

i₂

k₁ k₂

Figure 1: A TUFLP-S instance for which v(W ) < v(S).

from i2 to k2 with corresponding values of variables xijk and tij equal to 1
2
. The values

of variables zj1 and zj2 are also equal to 1
2
, for an optimal value v(W ) = 1, and we have∑

i∈I tij1 > zj1 and
∑

i∈I tij2 > zj2 . The solution with the same values of variables xijk

and tij is also optimal for (S), but then, we have zj1 = zj2 = 1, because of constraints

(11), and v(S) = 2.

With the objective of reducing the number of binary variables, a reformulation of (S)

can be obtained by projecting out variables zj using equalities (11) and by reintroducing

constraints (10). This yields a simpler formulation, denoted (SP ):

min
y,t,x

∑
i∈I

fiyi +
∑

(i,j)∈I×J

(gj + hij)tij +
∑

(i,j,k)∈I×J×K

cijkxijk (12)

subject to (2) to (4), (6) to (10). As can be seen from the objective (12), constraints

(11) imply that we can attribute the fixed costs gj to every variable tij.

In any of the three TUFLP-S formulations introduced so far, (W ), (S) and (SP ), the

integrality requirements on variables yi can be relaxed after introducing the following

valid inequalities:

tij ≤ yi, ∀(i, j) ∈ I × J. (13)

Only non-negativity constraints on variables yi have then to be imposed. Adding con-

straints (13) yields a corresponding model with more constraints, but fewer binary vari-

ables than the initial model. Thus, we can derive models (WC), (SC) and (SC
P ) from

formulations (W ), (S) and (SP ), respectively (note that (SC
P ) has been used in [14] to

derive a Lagrangian relaxation method). Each of these models is obtained from the cor-
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responding one by adding constraints (13) and by relaxing the integrality of variables

yi.

To summarize, we have introduced six formulations for the TUFLP-S for which the

LP relaxations can be compared with the following result:

Proposition 3 v(W ) = v(WC) ≤ v(S) = v(SP ) = v(SC) = v(SC
P ).

Proof. To show that, for any formulation (F ), we have v(F ) = v(F
C

), we have to show

that constraints (13) are redundant for (F ). The argument is based on constraints (3),

(4) and the nonnegativity of hij. Indeed, for any (i, j) ∈ I×J , hij ≥ 0 implies there is an

optimal solution to (F ) such that tij = maxk∈K{xijk} ≡ xijk∗ , by constraints (3). Thus,

tij = xijk∗ ≥
∑

j′∈J xij′k∗ ≥ yi, by constraints (4), and constraints (13) are redundant for

(F ).

Finally, the equality v(S) = v(SP ) is trivial and the inequality v(W ) ≤ v(S) was shown

in Proposition 2.

The four formulations (S), (SP ), (SC) and (SC
P ) all provide the same LP relaxation

bound. They differ in the binary variables that remain: (S) preserves all the decision

variables from (W ), (SP ) eliminates variables zj, while (SC) and (SC
P ) both relax the

integrality of variables yi. The performance of a state-of-the-art MIP software tool when

solving these models may thus vary: is it better to mimic the initial formulation (W ) with

(S), to minimize the number of binary variables with (SC
P ), or to strike a compromise

between these two extremes with (SP ) or (SC)? Our computational experiments, to be

presented next, address these issues.

3 Computational results

To compare the computational efficiency of the six formulations, we conducted compu-

tational experiments using CPLEX 12.6.1 on a 2.5 GHz Intel Xeon E5-2609 with 128

GB RAM. The testbed includes 430 instances of two types. Instances of the first type

are derived from industrial data. They result from subproblems obtained when solving a
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Lagrangian decomposition for a more complex distribution network design problem [12].

Their integrality gaps at the root are small, but they are of large size. Instances of the

second type are artificial large-size TUFLP-S instances with single assignment generated

in [14]. They present large integrality gaps at the root node. These difficult instances

allow us to study the branching strategies for the different formulations.

More specifically, we report two types of computational results. First, we give gaps

and CPU times when solving the LP relaxation and when invoking CPLEX at the root

node only. Then, we consider different branching priorities by branching first on either

variables yi or zj to determine which branching scheme is more relevant for each type of

instance and for each model. We report the total number of nodes, the optimality gap

and the CPU time obtained after proving optimality or attaining the CPU limit of 10

hours.

3.1 Testbed

The testbed includes two types of instances. Instances of the first type (“I”) are di-

vided into four sets of 100 instances derived from a location-distribution problem faced

by a retail company [12]. Each set corresponds to an industrial instance from which 100

TUFLP-S instances inherit their network structure. We list their characteristics in Table

1, where columns 2 to 4 indicate the number of depots, satellites and customers, respec-

tively, and columns 5 and 6 show the number of depot-satellite arcs in set A ⊆ I × J ,

and the number of paths in set P ⊆ I × J ×K, respectively. Instances in set “Tiny” are

roughly one fourth the size of instances in set “Full”, those in “Small” half the size, and

those in “Medium” three quarters. These TUFLP-S instances are defined on realistic

graphs, but present a cost structure that makes them particularly difficult: depots incur

the same large fixed cost, while satellites and depot–satellite arcs incur none. Moreover,

transportation costs vary greatly depending on the locations on the path. Consequently,

the single assignment constraints are not redundant and the general model (G) is not

valid for these instances.

The second type (“L”) of instances were introduced in [14]. A set of 30 two-level
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Instances |I| |J | |K| |A| |P |
Tiny 23 80 175 134 3366
Small 47 160 351 592 28496
Medium 70 240 526 1236 92554
Full 93 320 701 2250 222308

Table 1: Characteristics of the four industrial TUFLP-S instance sets

instances were obtained based on the generator proposed in [17] to obtain UFLP instances

with large integrality gaps and on the procedure suggested in [20] to transform them into

TUFLP instances. Instances are divided into three classes, A, B and C, with |I| = |J | =

|K| = 75 (“LargeA”, “LargeB” and “LargeC”). We defined costs in such a way that

the single assignment constraints have to be imposed explicitly. Thus, these Large Gap

instances cannot be solved with formulation (G).

3.2 Bounds at the root node

Tables 2 and 3 report the average gaps (with respect to the optimal value) and CPU

times in seconds when computing the LP relaxations and the root node, respectively, of

the six models presented in Section 2.

For instances of type “I”, the LP gaps are identical, irrespective of the model con-

sidered. This is not surprising, given that these instances do not have fixed costs as-

sociated with satellite location variables and with depot-satellite assignment variables.

For instances of type “L”, the LP gaps are equal for models (W ) and (WC), and are

dominated by those obtained with models (S), (SP ), (SC) and (SC
P ), which are identical.

This is in accordance with Proposition 3. As expected, LP gaps are small (less than 1%)

for instances of type “I” while they are large (around 20%) for instances of type “L”. We

observe no difference from one model to the other in terms of computational times. All

CPU times are negligible (less than 10 seconds) with the exception of those recorded for

the full-sized industrial instances.

When we consider the gap at the root node, the LP gaps are improved marginally even

if CPLEX is invoked with its preprocessing and cutting methods. The LP gap is closed
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Type Instances (W ) (WC) (S) (SP ) (SC) (SC
P )

Tiny Gap (%) 0.01 0.01 0.01 0.01 0.01 0.01
Time (s) 0 0 0 0 0 0

Small Gap (%) 0.43 0.43 0.43 0.43 0.43 0.43
I Time (s) 0 1 0 0 1 0

Medium Gap (%) 0.15 0.15 0.15 0.15 0.15 0.15
Time (s) 4 4 4 4 6 4

Full Gap (%) 0.22 0.22 0.22 0.22 0.22 0.22
Time (s) 28 24 23 25 37 21

LargeA Gap (%) 20.42 20.42 19.14 19.14 19.14 19.14
Time (s) 1 1 1 1 1 1

L LargeB Gap (%) 27.43 27.43 24.29 24.29 24.29 24.29
Time (s) 1 1 2 1 2 1

LargeC Gap (%) 24.52 24.52 21.70 21.70 21.70 21.70
Time (s) 1 1 3 2 2 2

Table 2: Gaps and runtimes when computing LP relaxations

for most tiny industrial instances. For the remaining instances, the gap is reduced by less

than 0.5%. Considering model (W ), no significant impact of such methods is observed

at the root node. Last, it is noteworthy that the CPU times increase significantly, even

if they remain small.

3.3 Branch-and-bound performance

For a fair comparison of the different formulations, we provide as initial upper bounds

to CPLEX the optimal values and deactivate the primal heuristics. We study the per-

formance of CPLEX according to two branching strategies. The choice of the branching

variables is done in priority either among the yi variables or among the zj variables.

When yi or zj variables are not present or are continuous in the model solved, no priority

rule is imposed between the remaining binary variables. Tables 4 and 5 report the aver-

age number of nodes in the branch-and-bound tree, the gap (with respect to the optimal

values) and the CPU time in seconds. A CPU time limit of 36,000 seconds was set.

We first comment on the choice of the branching strategy. Branching on yi variables

reveals itself to be a good option for the solution of instances of type “I”. Models (W ),

(S) and (SP ), compared with other MIP formulations, require less than half the number
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Type Instances (W ) (WC) (S) (SP ) (SC) (SC
P )

Tiny Gap (%) 0.00 0.00 0.00 0.00 0.00 0.01
Time (s) 0 0 0 0 0 0

Small Gap (%) 0.42 0.41 0.41 0.42 0.40 0.41
I Time (s) 2 2 2 2 3 2

Medium Gap (%) 0.15 0.15 0.15 0.15 0.15 0.15
Time (s) 13 10 13 10 15 8

Full Gap (%) 0.22 0.22 0.22 0.22 0.22 0.22
Time (s) 51 43 51 43 60 36

LargeA Gap (%) 20.42 20.33 18.80 18.95 18.78 18.97
Time (s) 2 2 2 2 2 2

L LargeB Gap (%) 27.43 27.36 24.13 24.20 24.13 24.18
Time (s) 2 3 3 2 3 2

LargeC Gap (%) 24.52 24.47 21.34 21.54 21.32 21.55
Time (s) 3 3 4 3 4 3

Table 3: Gaps and runtimes at the the root node

of nodes. However, the picture changes when instances of type “L” are solved. Indeed,

models (W ), (S), (SP ) and (SC
P ) behave poorly, and three of them, (W ), (S) and (SP ),

fail to solve these instances to optimality systematically. The formulations leading to the

best performances, both in terms of CPU times and number of nodes, are models (WC)

and (SC), in which the binary requirements on the yi variables are relaxed.

When branching is performed in priority on the zj variables, interesting remarks can

be made. Several formulations exhibit the same efficiency in terms of nodes and CPU

times on instances of type “I”. Only model (SC) requires prohibitive computational

times. This indicates that branching in priority on zj variables is a poor strategy for

these instances. This is easily explained by the fact that, for these instances, there are

no costs associated with these variables. It is more efficient to have the option to branch

either on the yi variables or only on tij variables. The behaviour of the models is more

contrasted on instances of type “L”, for which the solution of the models including zj

variables, i.e., (W ), (WC), (S) and (SC), require much shorter computational times

than formulations (SP ) and (SC
P ), which cannot be solved to optimality for all instances.

CPLEX solves more efficiently the instances using model (SC) compared with the others,
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Type Instances (W ) (WC) (S) (SP ) (SC) (SC
P )

Tiny Nodes 1 1 1 1 1 1
Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 0 0 0 0 0 0

Small Nodes 35 63 33 34 70 62
Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 3 4 3 3 5 4

I Medium Nodes 16 32 16 15 32 32
Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 19 22 18 16 30 20

Full Nodes 43 114 41 39 143 117
Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 134 269 131 116 399 233

LargeA Nodes 88812 4949 64036 70626 4472 39482
Gap (%) 0.01 0.00 0.18 0.01 0.00 0.01
Time (s) 5860 675 7210 5857 898 3706

L LargeB Nodes 193390 6516 137558 145892 4940 50610
Gap (%) 0.46 0.00 0.88 0.54 0.00 0.01
Time (s) 14474 1196 16788 5857 1198 3706

LargeC Nodes 150798 3938 102193 104740 3215 45483
Gap (%) 0.96 0.00 1.21 1.08 0.00 0.01
Time (s) 14051 854 15777 13304 1039 5815

Table 4: Branch-and-bound performance: priority branching on yi variables

(W ), (WC) and (S).

4 Conclusions

We have compared, both theoretically and experimentally, six MIP formulations for the

TUFLP-S. The models differ first in the way they define the single assignment constraints:

weak models use the most obvious definition that involves only the depot-satellite assign-

ment variables tij, while strong models introduce a tight connection between variables tij

and the satellite location variables zj. Using this connection, it is possible to project out

the zj variables, thus obtaining equivalent strong formulations that contain less binary

variables. Furthermore, by adding redundant linking constraints between variables tij

and the depot location variables yi, we can relax the integrality of variables yi. By using
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Type Instances (W ) (WC) (S) (SP ) (SC) (SC
P )

Tiny Nodes 1 1 1 1 2 1
Gap (%) 0.00 0.00 0.00 0.00 0.00 0.00
Time (s) 0 0 0 0 0 0

Small Nodes 43 63 49 70 574323 62
Gap (%) 0.00 0.00 0.00 0.00 0.03 0.00
Time (s) 4 4 4 5 9738 4

I Medium Nodes 35 32 179 32 3220 32
Gap (%) 0.00 0.00 0.00 0.00 0.01 0.00
Time (s) 25 25 66 30 438 20

Full Nodes 64 114 977 66 5273 117
Gap (%) 0.00 0.00 0.01 0.00 0.01 0.00
Time (s) 182 278 1356 168 5273 233

LargeA Nodes 3704 2708 2728 77033 1772 39482
Gap (%) 0.00 0.00 0.00 0.33 0.00 0.01
Time (s) 484 477 625 8116 365 3706

L LargeB Nodes 5297 5592 3893 152767 2141 50610
Gap (%) 0.00 0.00 0.00 0.89 0.00 0.01
Time (s) 853 1072 1123 17568 365 3706

LargeC Nodes 3726 3291 2547 107810 1533 45483
Gap (%) 0.00 0.00 0.00 1.17 0.00 0.01
Time (s) 755 741 969 15976 486 5815

Table 5: Branch-and-bound performance: priority branching on zj variables
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these two techniques, i.e., projecting out variables zj (only for the strong models) and

relaxing the integrality of variables yi after adding linking constraints (both for the strong

and weak models), we have obtained two equivalent weak models, (W ) and (WC), and

four equivalent strong models, (S), (SP ), (SC) and (SC
P ).

On the industrial instances, which have no fixed costs on satellite location variables

and depot-satellite assignment variables, our computational results show that it is ben-

eficial to branch first on the yi variables. The model that shows the best performance

on these instances is (SP ), since it reduces the number of binary variables compared

to (S), but keeps the integrality of the most significant yi variables. The model that

shows the worst performance on these instances is (SC): it relaxes the integrality of

the yi variables, while keeping the (meaningless for these instances) zj variables in the

formulation. On the artificial instances, which have significant fixed costs on satellite

location variables, our computational results emphasize the benefit of branching first on

the zj variables. The best formulation for these instances is (SC), since it reduces the

number of binary variables compared to (S), while also keeping the most significant zj

variables in the model. The worst model for these instances is (SP ), which projects out

the zj variables, while enforcing the integrality of the less significant yi variables. For

both types of instances, industrial and artificial, the model that minimizes the number of

binary variables, (SC
P ), performs poorly. Model (S) is a good compromise, as it includes

all types of binary variables. Branching first on the yi variables is the best approach for

industrial instances, but for artificial instances, it is significantly better to branch on the

zj variables.

These results point in the direction of developing more general branching priorities

that are adapted to the relative importance of the fixed costs, both for the TUFLP-S, but

also for more general multi-level facility location problems. Indeed, it would be interesting

to generalize our findings to multi-level facility location problems. In particular, we note

that, when fixed costs on intermediate facility locations (here, satellites) are significant,

the problems appear difficult to solve. Developing efficient decomposition methods to

handle such difficult problems raises several theoretical and computational challenges.
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