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Abstract

In scheduling theory and practise for parallel computing, representing a pro-
gram as a task graph with communication delays is a popular model, due to
its general nature, its expressiveness and relative simplicity. Unfortunately,
scheduling such a task graph on a set of processors in such a way that it
achieves its shortest possible execution time (P|pred, ¢;;|Cpqs in a|B|y nota-
tion) is a strong NP-hard optimization problem without any known guaran-
teed approximation algorithm. Hence, many heuristics have been researched
and are used in practise. However, in many situations it is necessary to obtain
optimal schedules, for example, in the case of time-critical systems or for the
evaluation of heuristics. Recent years have seen some advances in optimal al-
gorithms for this scheduling problem, based on smart exhaustive state-space
search or MILP (Mixed Integer Linear Programming) formulations. This
paper proposes a novel approach based on SMT (Satisfiability Modulo The-
ory). We propose an elegant SMT formulation of the scheduling problem
that only needs one decision variable and is very compact and comprehen-
sible in comparison to the state-of-the-art MILP formulations. This novel
optimal scheduling approach is extensively evaluated in experiments with
more than a thousand task graphs. We perform experimental comparison
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with the best known MILP formulations, with attempts to further improve
them, and deeply analyse the behaviour of the different approaches with re-
spect to size, structure, number of processors, etc. Our proposed SMT-based
approach in general outperforms the MILP-formulations and still possesses
great potential for further optimization, from which MILP formulations have
benefited in the past.

1. Introduction

Task scheduling has long been recognized as a crucial part of parallel
computing. In any parallel computation, tasks need to be mapped to the
available processors and ordered for execution. In the formalisation of this
process, a directed acyclic graph (DAG) — a task graph — represents the pro-
gram to be executed on a parallel system. The nodes or vertices of this graph
represent the (sub-)tasks and the edges between them reflect the communi-
cation (data transfer) or dependencies between them. The weighted DAG
representation, a very universal and flexible model, has been widely used in
literature and practice to create schedules on a given set of processors |1, 2.
It has also seen an increasing interest in High Performance Computing in
dynamic runtime schedulers such as StarPU [3], KAAPI [4], StarSS [5], and
PaRSEC [6]. Even the OpenMP standard now includes DAG scheduling
constructs [7].

Unfortunately, the optimization problem of minimising the execution time
of a program, modelled as a weighted DAG, on a set of processors is a well
known NP-hard problem [8], for all but some very simplified cases, e.g. a
fork or a join graph on an unlimited number of processors [9], or a tree with
unit weights on two processors [10]. For that reason, many scheduling algo-
rithms have been proposed in the past. The largest category of algorithms
is based on list scheduling [11, 12, 13, 14]. Other algorithms are based on
clustering, where a second phase maps the clusters onto the limited number
of processors 15, 16, 17, 18|. Also meta-heuristics, such a genetic algorithms
have been applied to task scheduling [19, 20]. In the general case there is
no guaranteed constant approximation factor, only one based on the com-
munication costs of the graph [21]. Some scheduling algorithms might even
produce schedules that are longer than the sequential schedule, where all
tasks are executed on the same processors [1]. This is especially true for
large communication costs.



Given the importance of this task scheduling problem and the lack of
guaranteed approximation algorithms, an attempt has been made to design
algorithms and approaches to optimally solve this scheduling problem. An
optimal solution can be crucial for critical systems, where the scheduled ap-
plication is executed many times. A very important usage of optimal sched-
ules is the evaluation of heuristic scheduling algorithms, given the lack of
guaranteed optimality from heuristics. The quality of heuristic algorithms
can be judged better when the optimal solutions are available for compari-
son. As a combinatorial optimization problem, the task scheduling problem
can be tackled with various approaches. Searching through the exhaustive
solution space is one method that has been proposed, using algorithms such
as branch-and-bound or A* (22, 23, 24, 25, 26]. Another approach is using
(Mixed) Integer Linear Programming (MILP) formulations with correspond-
ing solvers. Despite the difficulty of solving scheduling problems with MILP
formulations, there has been some significant progress recently [27, 28, 29|.
As a natural generalization, constraint programming has been applied to
solving the task scheduling problem [30]. Another recent approach is to use
a SAT (Boolean Satisfiability Problem) formulation to solve the scheduling
problem |[31].

In this paper we propose an approach based on a Satisfiability Modulo
Theory (SMT) formulation. The formulation is simple and elegant as it is
mostly based on the constraints that naturally emerge from the scheduling
model. We only employ one binary decision variable to determine whether a
task is scheduled on a given processor or not. In terms of theory solver for the
inequalities, we employ Quantifier Free Linear Arithmetic Logic (QF LRA).

To evaluate the performance and usefulness of the proposed SMT formu-
lation, we compare it with state-of-the-art MILP formulations of the same
problem [29, 32, 33|. In an attempt to further improve these formulations,
we propose new variants that address the typical symmetry issue of MILP
formulations for scheduling problems.

The experimental evaluation is based on a large set of 120 task graphs,
which are scheduled with all the SMT and MILP formulations onto different
numbers of processors. These graphs cover different structures, sizes and
weightings. As solvers for the SMT and MILP formulations we use Z3 [34]
and Gurobi [35], respectively. We perform a thorough analysis of the results,
uncovering performance behaviour of the formulations with respect to struc-
ture and other characteristics of the task graphs and the processor number.
Two types of statistical classification are carried out, namely logistic regres-



sion and decision tree classification. While some of the obtained results are
intuitive and expected (e.g. larger graphs are more difficult to schedule opti-
mally), other results are unexpected and can lead to further improvement in
the future. The evaluation shows that the SMT formulation outperforms the
MILP based approaches, especially for a lower number of processors, solving
more problems optimally within the given time limit. This holds a lot of
promise for the novel SMT approach, given the potential of optimization,
which MILP formulations have already enjoyed.

The remainder of this paper is organized as follows. Section 2 defines
the scheduling model and problem. We propose our SMT formulation of the
problem in Section 3 and revisit MILP formulations in Section 4. The exper-
imental evaluation of all approaches is conducted and discussed in Section 5.
We study related work in Section 6 and conclude the paper in Section 7.

2. Scheduling model

A task graph G(V,FE) is a directed acyclic graph (DAG), where V' =
{v1, ..., v, } is the set of computation tasks, and £ C V x V is the set of data
dependency constraints (or communications) between tasks. A homogeneous
multiprocessor platform P = {p,...,p,} consists of m identical processors
connected by a communication network. Each processor is connected to ev-
ery other processor. Furthermore we also assume a dedicated communication
sub-system so that computation and communication can be executed in par-
allel. Tasks are executed sequentially without preemption on a processor.
Every task is able to run on any processor. Execution Time (ET) of task
v € V is given by ¢(v), and Communication Latency (CL) for edge (v;,v;) € E
is given by c(v;,v;). If two tasks, with data dependence, are mapped to the
same processor, inter-task communication is implemented by data sharing
in local memory, and no communication latency is incurred. If two tasks,
with data dependence, are mapped to different processors, communication
between them is implemented by data transfer through communication links,
and communication latency corresponds to the CL (e.g., c(v;,v;), (i,]) € E).
We define deg~(v) (deg™(v)) as being the in-degree (out-degree) of the vertex
v, i.e. the number of entering (leaving) edges. In this work, we assume the
ET values of tasks and CL values of intertask communications are known,
and focus on optimizing the mapping and scheduling of a task graph under
these assumptions.



Given a task graph G(V, E') and a homogeneous multi-processor platform
P, the optimization problem is to find a mapping M : V' — P for each task
in V to a processor in P and a schedule S : V' — N for the tasks assigned to
processors, where each task v in V' mapped to a processor in P is assigned
a natural number indicating its starting time s for execution on P. This
schedule (from now on the term schedule implies both the mapping and the
start time assignment to tasks) must adhere to two constraints resulting from
the above definitions. The processor constraint, meaning that for any two
tasks on the same processor, one task must finish before the other one starts.
And the precedence constraint, which enforces that for any edge (v;,v;) € E,
task v; can only start after task v; is completed (i.e. s(v;) > s(v;)+t(v;)) plus
the communication time, if the tasks are mapped to different processors (i.e.
s(vj) > s(v;) + t(v;) 4+ ¢(vi, v;)). The goal of the optimization is to minimize
the makespan m(G). Makespan, also called schedule length, is defined as
the time difference between the start time of the earliest task and the finish
time of the latest one. Assuming that the earliest task’s start time is 0, the
makespan is given by m(G) = maz,ev[s(v) + t(v)]. The problem of finding
the schedule that minimizes the makespan is known to be NP-hard [§].

3. Satisfiability Modulo Theory (SMT) formulation

Satisfiability Modulo Theory (SMT) [36] is a technique for solving boolean
constraint problems modulo theories. SMT has been used successfully in ver-
ification of hardware and software programs. Figure 1 shows the difference
between a Satisfiability (SAT) solver and a SMT solver. A SAT solver is used
to solve propositional formulas. These formulas consist of atomic proposi-
tions (or their logical negation), in the Boolean domain, combined using
logical connectives such as V (disjunction), and A (conjunction). A SAT
solver uses the well known Davis-Putnam-Logemann-Loveland (DPLL) [37]
solving technique for finding a model, i.e., an assignment for atomic propo-
sitions that satisfies the propositional formula, if one exists. A SMT solver
extends a SAT solver with theory solvers in order to solve more expressive
satisfiability problems such as those in the domain of bit-vectors, integers,
etc. The general approach (see Figure 1b) of SMT solvers is as follows:

1. Step-1: Translate the non-propositional expressions into atomic propo-
sitions.

2. Step-2: Use the SAT solver to find an assignment for the atomic propo-
sitions, if one exists, that satisfies the propositional formula.



3. Step-3: Determine that the satisfying assignments are consistent with
the theory.

4. Step-4(a): If consistent with the theory (denoted as T-consistent) then
we have satisfied the SMT formulation.

5. Step-4(b): If inconsistent with the theory (denoted T-inconsistent) then
we add a negation of the clause to the propositional formula and iterate
from steps 1 to 4. This procedure is carried out until the SMT formula
is satisfied or the whole search space is explored and no satisfying as-
signment exists.

Let us consider a pedagogical SMT formulation in Equation (1) to eluci-
date the working of the SMT solver. Applying Step-1 gives the propositional
formula shown in Equation (2). In this translation, each of the linear inequal-
ities are replaced by atomic propositions. One possible assignment for these
atomic propositions that satisfies the propositional formula, given by the SAT
solver, in shown in Equation (3). Next, in Step-4, we need to check if these
assignments are consistent with the theory of linear inequalities — obtained
using a theory solver (e.g., simplex algorithm in case of linear inequalities).
For, Equation (3) to be true, variables  and y should be assigned values
such that x +y <5, y > 5 and x > 5 hold. There exists no assignments for

. F-SAT
Lol SAT solver Satisfied
clause set F'

F —UNSATl

(a) A general SAT solver framework

T-inconsistent, add clause to F

Input: N Fis SA£ Theory
[ clause set F [ RN solver(s)

F-UNSAT T-consistent

(b) A general SMT solver framework

Figure 1: Comparison between SAT and SMT solvers



the variables x and y, where these three linear inequalities hold. Hence, the
theory solver gives back the result as T-inconsistent, with atomic proposi-
tion R being negated and added to the propositional formula. The resultant
propositional formula, and the consequent assignments to the propositions
are shown in Equation (4). The theory solver is called again, and in this
instance the linear inequalities z +y < 5, y > 5 and x > 0 can hold for the
assignment x <— 0 and y < 5, which makes the final result satisfiable. The
final assignment to x and y (called the model) is shown in Equation (5).

(+y <5 A(y=5)A((x>5)V(r=0)) (1)
PAQA(RVS) (2)

P+~ T,Q«T,R<T (3)
PAQA(-RVS); P+ T,Q«+ T,S« T (4)
x4+ 0,y 5 (5)

In this paper we provide the first ever SMT formulation for solving the
task-scheduling problem. An SMT formulation consists of a number of con-
straints, that need to be satisfied by the SMT solver. To formulate all nec-
essary constraints we employ the definitions of our scheduling problem in
Section 2. We only need to introduce one set of binary decision variables
b(v, p), which is true if task v is scheduled on processor p and false otherwise.
Formally, Vv € V,Vp € P:

b(v, p) 1 if v is mapped to p
U? = .
b 0 otherwise

The SMT formulation is then defined as given in Figure 2. The implication
operator is indicated as D. Logical implication (A D B) is equivalent to
- AV B, in classical logic. For the task-scheduling problem, the constraints
are as follows: constraint (A) guarantees that every task is allocated and
executed only on a single processor.

Constraint (S) guarantees that all source vertices, i.e., vertices with no
incoming edges have a start time of at least zero. Given an edge (v;,v;) € E,
constraints (C1) and (C2) together guarantee that task v; can only start
execution after execution of task v;. Furthermore, constraint (C'1) states that
if these tasks are assigned to different processors, then some communication



latency is incurred to transfer data from v; to v;. Constraint (C2) on the
other hand states that if these two tasks are assigned to the same processor
then no communication costs are incurred.

objective  Min(m(G))
st :

(A) YveV Vypep b(v, p)

(S) Yo eV :deg~(v) =0 s(v) >0

(C1) V(vi,v;) € B, Vp, € P b(vi, pi) Ab(vj,pr) D s(vs) > s(vi) +t(vi) + c(vi, v5)
p1 € P,pr. # pi

(€2 Vo) €EYPEP  bop) Ab(ug,p) D s(vy) > s(vi) + H(vr)

(R) Vg, v €V, (vi,v;) € BT, b(vi,p) Ab(vj,p) D (s(vi) > s(vy) + t(v)) V (s(vg) > s(vi) + t(vs))
(Ujvvi) ¢ ET,Vp epP

(M) m(G) = mazyey[5(o) + (o)] — minyey s(v)

where
t(v) € RZ0
c(vi,vj) € RZO
GT = (V,ET) is transitive closure of G

(6)

Figure 2: The Satisfiability Modulo Theory (SMT) formulation

Constraint (R) states that if two tasks v; € V and v; € V allocated to
the same processor p € P and do not have a dependency edge between them,
then either can be scheduled for execution before the other. Moreover, the
task that is scheduled second is delayed by ET of the first task. Finally,
constraint (M) gives the makespan of the task-graph. The SMT formulation
in Figure 2 is solved iteratively to find the optimal solution to the task-
scheduling problem. We use the Quantifier Free Linear Arithmetic Logic
(QF _LRA) theory with Boolean constraints. We perform binary search for
satisfaction between:

mazyevt(v), Y ) (7)
YoeV

In Equation (7), the lower bound in the closed interval gives the makespan

of the task-graph, assuming a load balanced allocation of |V| tasks onto |V/|

processors, and ignoring communication costs. The upper bound in Equa-

tion (7), is obtained by assuming all |V| tasks are allocated on a single
processor.

An important point to note is that the SMT formulation only uses dis-

junction, not exclusive OR for allocating tasks onto processors in constraint

(A). The SAT solver (a part of SMT solver) expects the problem to be in
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(a) An example task graph (b) Transitive closure of
with ET and CL in brack- the example task graph in
ets Figure 3a

Figure 3: An example task graph and its transitive closure

so called Congunctive Normal Form (CNF). Translating a disjunction into
the CNF form results in smaller number of terms than translating an exclu-
sive OR into the CNF form. Hence, disjunction is preferable. Constraint
(A) is meant to allocate a task onto a single processor, however, consider a
given task v and (say) two processors pl and p2, one possible solution, for
constraint (A) is that both variables b(v, pl) and b(v, p2) are true for propo-
sition b(v,pl) V b(v, p2) to hold. Such cases do not affect the makespan and
schedule due to the following observations:

1. If a task duplicated elongates the makespan, given that all computation
times are positive, the minimization objective will always find a smaller
makespan (and related schedule), by not duplicating the task.

2. If duplicated tasks do not affect the schedule, e.g., in cases of indepen-
dent task graphs, they can be trivially removed from the final schedule
by picking the earliest starting instance and breaking ties randomly.

3. It is not possible that the duplication of tasks permits the creation
of schedules with a shorter makespan than the corresponding schedule
without duplication (see previous point), because the (C) constraints
are constructed for all duplicated parent-child pairs, hence duplication
cannot remove communication costs. For example, a task w depends
on a task v, which is allocated to pl and p2. Then, enforced by the
(C) constraints, the start time of w needs to be after the finish time of
v on pl plus communication costs (if remote) and after the finish time
of v on p2 plus communication costs (if remote). In other words, it is
never an advantage to duplicate tasks.



(A4) b(vl,pl) V b(vl, p2)
Ab(v2,pl) V b(v2, p2)
Ab(v3,pl) V b(v3, p2)
Ab(v4, pl) V b(v4, p2)

N
(S) s(vl) >0
N
(C1) b(vl, pl) A b(v2,p2) D s(v2) > s(vl) +3+9
Ab(v1,p2) Ab(v2,pl) D s(v2) > s(vl) +3+9
Ab(v2,pl) A b(v4,p2) D s(vd) > s(v2) +3+7
Ab(v2,p2) A b(vd,pl) D s(vd) > s(v2) +3+7
Ab(vl, pl) A b(v3,p2) D s(v3) > s(vl) +3+8
Ab(vl, p2) A b(v3,pl) D s(v3) > s(vl) +3+8
Ab(v3,pl) A b(vd,p2) D s(vd) > s(v3) +3+4
Ab(v3,p2) A b(vd,pl) D s(vd) > s(v3) +3+4
N
(C2) b(vl, pl) A b(v2,pl) D s(v2) > s(vl) + 3
Ab(v1,p2) A b(v2,p2) D s(v2) > s(vl) + 3
Ab(v2,pl) A b(v4, pl) D s(vd) > s(v2) + 3
Ab(v2,p2) A b(vd, p2) D s(vd) > s(v2) +3
Ab(vl,pl) A b(v3,pl) D s(v3) > s(vl) + 3
Ab(vl, p2) A b(v3,p2) D s(v3) > s(vl) +
Ab(v3,pl) A b(vd, pl) D s(vd) > s(v3) +
Ab(v3,p2) A b(vd, p2) D s(vd) > s(v3) +
N
(R) b(v2,pl) Ab(v3,pl) D s(v2) > s(v3) +3
V s(v3) > s(v2) + 3
Ab(v2,p2) A b(v3,p2) D s(v2) > s(v3) +3
V s(v3) > s(v2) 4+ 3
N
(M) m(G) = s(vd) + 7 — s(vl)

Figure 4: SMT formulation for task graph in Figure 3a

Let us consider a simple task graph as shown in Figure 3a to describe
the SMT formulation from Figure 2 and its working. In the task graph in
Figure 3a, the vertices are labeled from v1 through to v4, while the edges are
labeled from el through to e4. The ET of vertices and the CL of the edges,
in time units, are given in brackets.
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The SMT formulation from Figure 2 applied to the task graph in Fig-
ure 3a, for a two processor system, is shown in Figure 4. The first thing to
note is that the formulation applied to any task graph is free of quantifiers,
(e.g., ¥V and 3) with all the quantifiers unrolled. Constraint (A), in Figure 4,
states that each vertex in the task graph can only be allocated to a single
processor. If we consider vertex v1, then only b(v1,pl) or b(vl, p2) can be
assigned true in the optimal solution. Should both be assigned true in a
solution, which is possible by the constraints, then either that solution will
be rejected later as non-optimal (a better solution where only one b value is
true exists) or this duplication has no influence on the makespan and either
task-to-processor allocation can be selected in the final schedule produced by
the solver. In the task graph in Figure 3a only vertex v1 has in degree 0,
and hence constraint (S) is applied to only vertex v1l. The first two linear
inequalities in constraints (C'1) and (C2), in Figure 4, correspond to edge
el in the task-graph. If the problem is feasible, only one of these linear in-
equalities can hold for any given solution because of constraint (A). These
inequalities guarantee two properties for edge el:

e Vertex v2 can only start processing, indicated by the postponement of
the start time (s(v2)) of vertex v2, after vertex v1l, due to the prece-
dence constraint enforced by the edge el.

o [f vertices v1 and v2 are allocated to different processors, then according
to the first two inequalities in (C'1) the start time of vertex v2 (s(v2)) is
postponed by the ET of vertex v1, which is 3 times units. Furthermore,
CL, of 9 time units, is incurred for transferring data from processor pl,
which is executing v1, to p2, which is executing v2 (or vice-versa). On
the other hand if v1 and v2 are assigned to the same processor (e.g.,
pl in the first expression of (C2)) then, the start time of v2 is only
delayed by the ET of v1.

Constraints (C1) and (C2) work in the same way for all the edges in the
task-graph. Now consider the transitive closure of the task-graph shown in
Figure 3b. As we can see from the transitive closure, there is no path (edge)
from vertex v2 to v3 and vice-versa. If these two vertices are allocated
to the same processor, we need to decide in what order we should execute
them. Constraint (R), in Figure 4, solves this ordering dilemma. Constraint
(R) states that if both these vertices are allocated onto processor pl or p2,
then either one can be scheduled first, and the other gets delayed by its

11



ET. Finally, constraint (M) gives the makespan for the task-graph. For
this pedagogical example, we know that vertex vl starts earliest and vertex
v4 will start latest in the schedule, obvious from the precedence constraints
enforced by the edges. Hence, the makespan of the schedule of the example
task-graph is the difference between the end of computation of vertex v4 and
the start time of the vertex v1. Once all these constraints are generated, for
any task-graph, they are anded together to form the overall SMT formulation.

4. Mixed Integer Linear Programming (MILP) formulation and
variants

In order to evaluate the performance of our proposed SMT based ap-
proach, we will compare it with the performance of the best previously pro-
posed Mixed Integer Linear Programming (MILP) formulations |29, 33, 32].
Like SMT, MILP formulations are a general approach to solve combinatorial
optimization problems. As such, a comparison with this widely used ap-
proach will position the performance of our proposed SMT approach. MILP
solvers have been widely used for scheduling problems and we will reference
and discuss related work in Section 6. The MILP formulations we consider
fall into two categories: packing and non-packing. We revisit the packing
MILP formulations [29] in this section and then propose some variants to ad-
dress the symmetry issue common in scheduling problems. We do not modify
the non-packing formulations [33, 32|, so their formulations are omitted for
brevity but their performance is evaluated in Section 5.

4.1. MILP Formulations

Venugopalan and Sinnen [29] proposed 3 MILP formulations (ILP-BASIC,
ILP-RELAXED, and ILP-REDUCED) that are variations of each other. We
present ILP-BASIC and then indicate where the other two formulations dif-
fer. Note that we have modified the notation from [29] to match our notation
in Section 3, but we retain their equation numbering to aid the reader. For,
the DAG G(V, E), which has the set of computational tasks V' = {vy,...,v,}
and communication edges £ C V x V with ET for the tasks given by
t(v),v € V and the CL given by c¢(v;,v,),e = (v;,v;) € E. The DAG is being
scheduled on a homogeneous multiprocessor platform P = {py,...,py,} of m
identical processors. The decision variables are the processor indices

p(v) €{l,... m},YoeV (A12)

12



i.e., the index of the processor that v is scheduled on, the starting time

variables
s(v) >0,V eV (A13)

the makespan variable
m(G) =0 (A14)

and two “overlap” variables

1 if v; finishes bef ; start
O-(/UZ‘,U]')_{ if v; finishes before UJS&IS,V%‘EV,VU]'GV (Alla)

0 otherwise

1 if the processor index of v; is
(v, v5) = less than processor index of v; ,Yv; € V,Vv; € V' (Allb)

0 otherwise

The objective of all the formulations is to minimise the makespan of the

schedule, i.e.,
min m(G) (A01)

The makespan is the maximum of the starting times plus the execution times
of the tasks
s(v) +t(v) <m(G),Yv eV (A02)

If tasks are different either one starts before the other or they start at the
same time

o(vi,v;) + o(vj,v;) < 1v; # v,V € VYo, € V (A03)

If the tasks are different either one processor index is less than the other or
they are on the same processor

E(’Ui,Uj) + E(’Uj,’UZ') S 1,’02' 7é Uj,Vv,- € V, V’Uj ev (A04)

If the tasks are different then either one finishes before the other or they are
on different processors

O'(U,L',Uj)—f—O'(Uj,Ui) +E(/Ui,’l)j) +€(Uj,1)l') 2 1,?]1‘ 75 ’Uj,V’UZ' c V,ij eV (AO5>

13



If tasks are different then their processor indices and their e¢ variable are
linked

p(v;) —p(v;)) =1 —m(e(vy,v;) — 1) > 0,v; # v, Vv, € V,Vo; € V. (A06)
p(vj) — p(vi) —me(vi,v;) < 0,0 # v, Vo, € V,Vu; €V (AO7)

(Recall that m = |P|.) The maximum value of the makespan is calculated

mG) =Y tw)+ Y. ;) (A15)

YveV V(vi,v5)EE
and is used to constrain task starting times depending on processor indices

s(v;) +t(v;) + m(G)(o(vi,vj) — 1) < s(vj),v; # vy, Vv, € V.Vv; € V
(A08)

s(v;) + t(v;) + c(vi, vj)(e(vi, v;) + €(vy, 1)) < s(v;), (vs,v;) € E (A09)
If task j comes after task ¢ in the DAG, then it must start after task ¢ finishes
U<Ui7 Uj) = 1,V(’UZ‘, Uj) eF (Al())

In ILP-RELAXED, Equation (A07) is relaxed. According to [29] it is
included to model communication delays. As communication only occurs
between (v;,v;) € E, €(v;,v;) only needs to be calculated for (v;,v;) € E so
Equation (A07) is replaced with

p(vj) — p(v;) —me(vi,v;) < 0,V(v;,v;) € E (A0Ta)
p(vi) — p(v;) — me(vy,v;) <0,¥(v;,v;) € E (AOT7D)

In ILP-REDUCED, redundant constraints are removed from
ILP-RELAXED. Equation (A03) is redundant because of Equation (A08)
and Equation (A04) is redundant because of Equation (A06), so
ILP-REDUCED is the ILP-RELAXED formulation without Equations (A03)
and (A04).

4.2. Breaking Symmetry

We recognized that the MILP formulations (see Section 4.1) will suffer
from solution symmetry, e.g., consider a problem with V' = {v, v}, E = 0,
and P = {p1,pa}. Then a solution to the MILP formulation could schedule
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vy on p; and vy on py (to get a makespan = max{t(vy),t(ve)}). However, a
different solution with an identical makespan would be to schedule v; on py
and vy on p;. There is symmetry in the scheduling of tasks to the proces-
sors because the processors in P are identical. If the processor indices are
randomly shuffled, then a different solution to the MILP formulation with
the same makespan will be created. To guarantee optimality of a solution, a
MILP solver needs to explore every one of these symmetrical solutions, i.e.,
m! solutions. This means that the MILP approaches will not perform well
as m increases.

One simple, yet often effective, method to break these symmetries is
to perturb the solutions’ objective values so that there is: 1) enough of a
difference in objective function so the that MILP solver will stop once it has
identified 1 of the symmetrical solutions; and 2) not enough of a difference
that the unperturbed optimal solution will be different. For the example
with 2 tasks and 2 processors, consider the extra information that both tasks
take 10ms to execute. Hence, the minimum makespan is 10 whether v; is
scheduled on p; and v, is scheduled on p2 or vice versa. However, consider
adding a perturbation to the objective function based on the processor index
for each task, i.e.,

min m(G) + p(i)p(v;) (AO1+)

If, for our example, we set p(i) = i,v; € V, i.e., p(1) = 1,p(2) = 2 then the
objective function value of scheduling vy to py, i.e., p(v;) = 1, and vy to pe,
ie, p(vy) =2,i8 10+ 1 x 1 +2 x 2 = 15. We call this the direct solution.
However, the objective function value of scheduling v; to ps, i.e., p(v1) = 2,
and vy to py, e, p(vy) = 1,is 10+ 1 x 2+ 2 x 1 = 14. We call this the
swap solution. Hence, the MILP solver will be directed to the swap solution
and its preferable objective function value means the direct solution won’t
be explored. However, as MILP solvers iteratively remove fractionality until
an integer solution is found, these solvers may spend some time exploring
the fractional region near the direct solution before determining it is less
preferable than the swap solution. Thus, perturbation may not significantly
reduce the time MILP solvers spend looking at symmetrical solutions, but it
is an approach worth investigating.

In the experiments described in Section 5, we define p(i),v; € V as follows:

1. Calculate the maximum value contribution that the perturbations will
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make to the objective function in terms of processor indices

2. Calculate a lower bound on the makespan if there was no communica-
tion between tasks, i.e., the tasks are independent

ZviEV t(vi)

m

(@) =

This lower bound allows tasks to be split between processors, so it is
unlikely to be realised unless the ETs of the task and the number of
processors are particularly congenial, e.g., 4 tasks all with execution
time of 4ms and 2 or 4 processors.

3. Calculate the increment for the perturbation

This ensures that the maximum contribution the perturbations will
make to the objective function will be % of the lower bound on the
makespan (not enough to affect the optimal solution).

4. Define the perturbation for each node

pli) =ie(p),vi €V

By applying this perturbation “recipe” and replacing the makespan ob-
jective function (Equation (A01)) with the perturbed objective function in
Equation (A01+), the antisymmetry MILP formulations ILP-BASIC-ASYM,
ILP-RELAXED-ASYM, and ILP-REDUCED-ASYM were created from ILP-
BASIC, ILP-RELAXED, and ILP-REDUCED respectively.

All 6 MILP formulations were investigated in the experiments described
in the next section.

5. Experimental evaluation

The main goals of this section are: (a) performance comparisons of the
proposed SMT formulation and the various MILP formulations as described
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in |29, 33, 32] and Section 4; (b) analysis of the behavior of the MILP formu-
lations with respect to graph structures; (c) studying the effect of communi-
cation cost to computation cost ratio (CCR) on various formulation runtimes.
The formulations are solved using Gurobi 5.6.3 [35] and Z3 4.4.2 [34], MILP
and SMT solvers respectively, on an Intel Core i5 processor 3360M, 2.8 GHZ
CPU and 8 GB RAM running with no parallel mode and on a single thread
on Linux 4.5 x86-64. All experiments are run for the task scheduling model
discussed in Section 2, i.e., a fully connected processor network with identical
bandwidth capacity is assumed. The input graphs used for experiments in
Section 5.1.1 are from [25] and the input graphs used for benchmarking in
Section 6.2 are from [28, 38]. The following two definitions of graph densities
are used:

Q=|E|/|V| (8)

w = (|E|/v) x 100 (9)

with the maximum possible number of edges in the graph as v = |V|(|]V] — 1)/2.
The two density Equations (8) and (9) arise due to the difference in density
definitions of the task graph databases used. It is also worth noting that
very high densities are not realistic for most real software applications. We
divide our experimental evaluation section into two distinct sections — Sec-
tion 5.1 compares the proposed SMT formulation with packing MILP for-
mulations and their variants as described in Section 4. Section 5.2 compares
the SMT formulation with recent non-packing MILP formulations presented
in [32, 33]. Two types of performance comparison experiments are carried
out: (a) one minute timeout in Sections 5.1.1 and 5.2.1 and 12 hour timeout
in Sections 5.1.2 and 5.2.2. The one minute timeout experiments carried out
in order to get many results that inform the performance behaviour and the
input characteristics on which it depends. Sections 5.1.1 and 5.2.1 compare
the relation between characteristics of the task graph structure with respect
to the SMT and MILP formulations. These sections also study the effect
of CCR on SMT and packing MILP formulations. The 12 hour timeout
experiments in Sections 5.1.2 and 5.2.2 are longer experiments for a direct
comparison between runtime of different formulations. Large input graphs
are tackled in these experiments. All input task graphs are represented in
the Graph eXchange Language (GXL) [39] format.

17



’ Graph Structure ‘ n =10 ‘ n =21 ‘ n =30 ‘ Total ‘

Fork-Join 30 30 30 90
Fork 30 30 30 90
Independent 10 10 10 30
InTree 30 30 30 90
Join 30 30 30 90
OutTree 30 30 30 90
Pipeline 30 30 30 90
Random 60 60 60 180
Series-Parallel 60 60 60 180
Stencil 30 30 30 90

Table 1: Detailed structure of the 1020 graph database

5.1. Comparison with packing MILP formulations

This section describes various comparisons between the SMT formulation
and the packing MILP formulations described in Section 4 and [29].

5.1.1. Comparisons with one minute timeout

A database of 1020 task graphs, summarized in Table 1, comprising of
10, 21, and 30 tasks of the following structure: fork-join, fork, indepen-
dent, intree, join, outtree, pipeline, random, series-parallel, and stencil are
chosen from [25]. The densities of the graphs in the database conform to
Equation (8). The experiments are carried out on 2, 4, 8, and 16 processor
architecture. A one minute timeout is set for each graph.

Overall, we generated 4080 x 6 = 24480 results, one for each of the six
packing MILP formulation variants, and 4080 SMT results. Given the large
number of sample data points, we carried out statistical analysis to bet-
ter understand the effect of graph characteristics on the MILP and SMT
techniques. Our statistical analysis was a two label (1/0), optimal solution
obtained, optimal solution not obtained, classification problem. We carried
out two types of classifications: (1) logistic regression [40] and (2) decision
tree classification. The results obtained from these two approaches are com-
plimentary. Decision trees give us a big picture view, in that, they help us
understand the influence of different graph characteristic on solvability of
the problem. For example, the conclusion that the structure of the graph
matters more than the number of tasks. Logistic regression helps us un-
derstand the influence of different sub-classes within a characteristic. For
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Figure 5: Completed schedules of different formulations over number of processors.

example, what type of structure is the hardest to solve. Note that we per-
formed manual characteristic selection such that the statistical models have
a prediction accuracy of 90%. We used the same characteristics (predictor
variables) for logistic regression and decision trees. Furthermore, in the case
of decision trees, we used the g¢gini impurity to measure the quality of the
split. At each node of the decision tree, the nodes were split according to the
smallest gini measure and the trees were unrolled until the leaves were pure.
The results of this analysis along with a traditional, graphical comparison of
the approaches is given in the rest of the subsection.

Overall performance evaluation. The overall results are shown in Fig-
ure 5. SMT in general solves more graphs to optimality than the packing
MILP formulations, when using two or four processors. As the number of
processors increases to eight and 16 the two approaches perform comparably.
SMT and MILP are able to solve larger numbers of graphs with increasing
numbers of processors. SM'T and MILP both use the simplex solver to solve
the numerical equations and, with an increasing number of processors, there
is more room for relaxation in simplex, which explains these results. In the
case of MILP, symmetric solutions always outperform the anti-symmetric so-
lutions. Finally, there is not much difference between the basic, relaxed, and
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reduced formulations.

The results for the statistical analysis via McNemar’s test [41] which
checks the (null) hypothesis that SMT and one of the packing MILP formu-
lations are equally likely to obtain an optimal schedule on two, four, eight,
or 16 processors is given in [42]. The results show that none of the anti-
symmetric packing MILP formulations are equally likely to result in an op-
timal makespan compared to the SMT formulation. The symmetric packing
MILP formulations on the other hand are as likely as the SMT formula-
tion to produce an optimal schedule for the eight and 16 processors, but not
equally likely to produce an optimal solution for the two and four processor
systems compared to the SMT formulation. The influence scores for dif-
ferent graph characteristics on their solvability are shown in Figure 6. The
number of tasks has the highest effect on solvability, followed by the type of
the graph structure. In case of SMT; CCR value and number of processors
plays a significant role, but not so for MILP. In fact, logistic regression results
(Figure A.18 in Appendix A) inform us that SMT has a steeper (negative)
gradient for increasing CCR values, compared to MILP, i.e., SMT is less
likely to obtain an optimal schedule with larger CCR.

Structure based performance evaluation. Structure based performance
evaluation comparing SMT and MILP techniques are shown in Figures 7-10.
It is clear that fork/join, fork-join, and independent graph structures are the
hardest to solve for both SMT and MILP. We attribute these results to the
observation that our SMT and MILP formulations are ignorant about the
fact that many tasks in independent, fork/join, and fork-join graphs do not
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need to be ordered and in fact any order will suffice. Interestingly, these are
the graphs where the ASYM approaches do the best for 2 processors When
there are fewer processors, more tasks are allocated to the same processor and
SMT /MILP need to sift through all possible orderings (a factorial operation)
to make sure that the optimal solution is obtained. On the other hand, with
increasing number of processors (especially when number of tasks is approx.
equal to the number of processors), each task can be allocated to a separate
processor and hence, search for the optimal ordering of tasks is reduced. Our
statistical analysis simply reinforces the results shown in Figures 7-10.

Effect of CCR on formulation runtime. In this section, the effect of
CCR on the performance of SMT and MILP formulation is studied. In
our database there are 330 graphs each of CCR 0.1, CCR 1.0, and CCR 10,
respectively. The independent graphs in the database have no communication
edges and are not considered for the analysis. The number of graphs for which
an optimal schedule was returned by solvers within one minute is tallied and
plotted in Figure 11 for 4 and 8 processors. We did not show the graphs of
2 and 16 processors, because they follow the same general trend.

The proposed SMT formulation performs better than the packing MILP
formulations overall in terms of absolute number of optimal schedules ob-
tained for CCR values of 0.1 and 1.0, but worse for a CCR value of 10.0.
SMT and MILP formulations perform quite differently for varying CCR val-
ues. SMT formulation performs best on medium CCR value of 1.0, whereas
it performs much worse for large CCR values. On the other hand all MILP
formulations show a small deterioration in performance when CCR increase
from 0.1 to 1.0 — not sure if this is true, but look that way — with a larger drop
off as CCR increases from 1.0 to 10.0. However, at CCR of 10.0 the MILP
approaches outperfrom SMT. This behaviour is because at low and medium
CCR values, load balancing the task graphs is easier. Higher CCR values,
on the other hand, increase the schedule length variance between different
schedules. A single task allocated to the wrong processor can imply a strong
penalty on the schedule length due to large remote communication.

This CCR dependent behavior is very interesting as it shows that the
SMT and MILP runtimes do not only relate to the size of the input prob-
lem in terms of number of tasks, edges and processors, but also depends
on the weight values. The main result from the above experiments is that
SMT solvers (at least Z3 in our case) seem to be better than MILP solvers
for load balancing problems. This result is reinforced by the fact that the
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SMT formulation was able to obtain a far greater number of optimal results
compared to any of the MILP formulation for the independent task graphs,
which is a pure load balancing problem.

5.1.2. Comparisons with 12 hour timeout

The 12 hour timeout experiments are for a direct comparison between
runtimes of the SMT and MILP formulations. The input graphs used for
benchmarking in this section are from [28] and [38]. If the solver is unable to
find an optimal solution within 12 hours, the program is terminated and the
results tabulated. The m:s notation is the standard minutes:seconds taken by
the formulation to find an optimal solution. The graphs with a name starting
with ‘t” were generated randomly and suffixed with the number of tasks in
that graph followed by its edge density and the index used to distinguish
graphs when they have the same n and w values. The graphs with a name
starting with ‘ogra’ are suffixed with the number of tasks followed by its edge
density. These edge densities conform to the percentage definition of density
in (Equations (8) and (9)). According to [28], the optimal solution for ‘ogra’
graphs are obtained when the tasks are well packed (as in an ideal sched-
ule). This has similar characteristics with respect to a number of mutually
independent tasks (that can be well packed as there are no communication
delays), for which it is hard to find the task ordering that yields the fastest
result (or the least gap) is highlighted.

SMT performs better than MILP formulations in six of the sixteen exper-
iments, but we emphasise that each experiment consists of only one problem
instance. Amongst the MILP formulations, it is seen that for most cases
RELAXED or REDUCED formulations run faster than BASIC. The anti-
symmetric formulations are slower in all cases. The most interesting observa-
tion is that SM'T performs better when the number of processors is smaller,
but REDUCED performs the best with larger number of processors. Despite
‘ogra’ graphs having a special structure making it harder to solve optimally,
it is seen that the proposed SMT formulation has significantly improved
performance and outdoes other formulations. For the random ‘t” graphs, we
see the same the outcome; SMT performing better with smaller number of
processors, but MILP formulations run slightly faster when more processors
are available for scheduling. In our benchmarks there is no case where the
packing MILP formulations provide an optimal solution but SMT fails to do
so. Yet, there are cases, e.g., first row in Table 2, where SMT formulation
gives an optimal solution, but all of the packing MILP formulations fail to
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Table 2: 12 hour Timeout Comparisons on SMT vs. ILP Formulations

Graph P SMT BASIC | BASIC-a REL REL-a RED RED-A
2 2s 12h 12h 12h 12h 12h 12h
81.59% 26.14% 28% 27.98% 30% 27.538%
4 1s 3s 18s 4s 9s 4s s
Ogra20_60, n=20
w=60, 2=5.7 8 4s 2s 6s 1.4s 3.5s 1.1s 4s
16 15s 2s 7s 1s 8s 3s 3s
2 12h 12h 12h 12h 12h 12h 12h

0.04% | 48.67% | 48.13% | 45.79% | 48.13% | 48% 16.3%

4 21.7s 11m:5s 46m:5s 17m:0s 189m:5s | 28m:3s | 106m:7s
Ogra50 60, n=>50

w=60, 2=14.7 8 1m:0s 1m:9s 19m:6s 52s Tm:3s 26s 8m:9s
16 3m:5s 50s 1m:7s 42s 3m:0s 29s 3m:4s
2 2.48s 7.Ts 3.7s 3.9s 3.2s 4.7s 2.49s

£30 60 1, 4 4.6s 5.7s 6s 3.5s 2.8s 3.6s 3.2s

n=30 w=60, 8 | 13.2s 10.7s 5.65 1.6 3.5s 17s 3.6

0=8.7
16 50.7s 5.9s 4.1s 4.2s 3.3s 3.7s 3.2s
2 11.7s 1m:2s 1m:3s 18.9s 1m 16.8s 54.4s
4 10.9s 40.9s 44.2s 14.9s 13s 14s 13.3s

t40 30 2, n=40

w=30, 2=5.85 8 18.5s 32.2s 22.8s 13.8s 13s 11.9s 15.4s
16 1m:4s 1m:09s 56.5s 16.5s 20s 13.5s 15.3s

Legend REL: RELAXED, RED: REDUCED

do so. Overall, we posit that the proposed (and very first) SMT formula-
tion is comparable to (and sometimes better than) the best packing MILP
formulations. We also expect that improvements applied to packing MILP
formulations [43| could also be applied to the SMT formulation, which is
likely to result in further improvements in the execution time of the SMT
formulation. We leave applying such improvements to the SMT formulation
as future research.

5.2. Comparison with non-packing MILP formulations

Two non-packing MILP formulations for scheduling task graphs have re-
cently been proposed in [32, 33]. These non-packing formulations differ from
the MILP formulations in Section 4, in that these formulations use processor
assignment and positional date (start time for task) decision variables only.
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The formulation in [33] is especially similar to the proposed SMT formula-
tion, because their formulation also utilizes the transitive closure of the task
graph to reduce the number of constraints and variables when scheduling
tasks on the same processor.

In this section we compare the SMT and the non-packing MILP formula-
tions. In the rest of the subsections we call the optimised formulation in [33]
as the MSPCD formulation, and the non-packing formulation in [32] as the
SVEN formulation. Like before, we generated 4080 x 2 MILP results and
4080 SMT results for 1-minute timeout experiments. Finally, we use the
same benchmarks as shown in Table 2 for the 12-hour timeout comparisons.

5.2.1. Comparison with one minute timeout

Overall, the proposed SMT formulation outperforms the MSPCD and
SVEN formulations as shown in Figure 12. In case of two and four processors,
SMT and non-packing MILP formulations schedule almost equal number of
task graphs to optimality. However, as the number of processors increases
the proposed SMT formulation outperforms both the MSPCD and SVEN

formulations.

Structure based performance evaluation. A more detailed comparison
for the results of 1-minute timeouts is presented in Figures 13 to 16. These
figures give the percentage of completed schedules for each of the formula-
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tions, with varying task graph structures. The independent task-graphs are
the hardest to solve for these non-packing MILP formulations, MSPCD and
SVEN, as they are unable to solve independent task graphs on the two pro-
cessor system. As the number of processors increases, MSPCD and SVEN
formulations are able to solve equal number of independent graphs to opti-
mality as SMT, but start lagging in solving other graph structures to op-
timality. This is opposite to the packing MILP formulations, which per-
form comparably to the SMT formulation for large number of processors
(c.f. Figures 7-10), but perform poorly compared to SMT for small number
of processors. S. Mallach in his paper [32] also states that the non-packing
formulations perform poorly when the number of processors increases — our
experiments and the McNemar’s hypothesis test results [42|, re-enforce his
observation.

Effect of CCR on formulation runtime. Like before, we compare the
number of completed schedules for 330 task graph set with 0.1, 1.0, and
10.0 CCR, respectively in Figure 17. The MSPCD and SVEN formulations
outperform the SMT formulation for a higher CCR value, but perform poorly
for lower CCR values.
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Figure 15: Completion percentage of formulations over graph structures on 8 processors

5.2.2. Comparison with 12 hour timeout
The results of the 12-hour timeout experiments comparing large task
graphs being solved by the SMT and the two non-packing MILP formula-
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Figure 16: Completion percentage of formulations over graph structures on 16 processors

tions are shown in Table 3. In 81.25% of the cases, SMT performs better
than either of the non-packing MILP formulations. MSPCD and SVEN for-
mulations give slightly better results (a few seconds faster) in three cases.
As before, there is no benchmark where the SMT formulation is unable to
find an optimal solution, but the non-packing MILP formulations do. Yet,
there are instances, where the non-packing MILP formulations fail to find an
optimal schedule, but SMT is able to provide one.

All our results, including the large task graph sets, point to the fact that,
in general, SMT is a good solution for scheduling task graphs comparable
to (and in many cases better than) both the packing and the non-packing
MILP formulations.

6. Related Work

A very large number of algorithms have been proposed for scheduling
task graphs in the past decades. As already stated in the introduction, most
of these algorithms are heuristics, which do not give a guarantee on the
schedule length in relation to the optimal schedule length. Our proposed
SMT based approach solves the scheduling problem for small and medium
sized instances optimally. Hence we here focus the discussion of related work
on optimal scheduling algorithms.

30



s SMT
B MSPCD
s SVEN

CCRO 1 CCRl 0 CCRlO 0

200 -

175 -

150 -

125 -

100 -

~
U1

Number of completed schedules
w
O

(a) Completed schedules of different formulations
over CCR on 4 processors for 330 graph set for a 1
minute timeout

s SVEN

250 -
200 -
150 -
100 -
50

CCRO 1 CCRl 0 CCR10.0

N SMT
mm MSPCD

Number of completed schedules

(b) Completed schedules of different formulations
over CCR on 8 processors for the 330 graph set for
a 1 minute timeout

Figure 17: CCR Comparisons on 4 and 8 Processors Set for a 1 minute Timeout

31



Table 3: 12 hour Timeout Comparisons on SMT vs. non-packing MILP Formulations

Graph p SMT MSPCD | SVEN
2 2s 12h 12h
Ogra20 60, n=20 22.5% 26%
w=60, 2=5.7 4 1s 3.68s 1.7s
8 4s 8s 5.2s
16 15s 26.64s 12.2s
2 12h 12h 12h
Ograb0 60, n=>50 0.04% 47.33% 44.3%
w=60, 2=14.7 4 21.7s 1m:2s 1m:8s
8 1m:0s 1m:3s 1m:1s

16 3m:5s 4m:Ts 11m:8s

2 | 2.48s 2.5s 255

30 60 1, n—30

w=60, Q=8.7 I | 46s 4.33s 1.365
8 | 13.2s 15.265 16s

16 50.7s 1m:26s 5m:7s

2 11.7s 4.29s 5.8s
t40_30_ 2, n=40
w=30, 2=5.85 4 10.9s 14.6s 1m:5s

8 18.5s 73m:2s 57Tm:7s

16 1m:4s 23m:0s 12h
4.7%

One category of optimal scheduling algorithms uses an exhaustive search
through the solution space. Given that the addressed scheduling problem is
a combinatorial optimization problem, there is an extremely large, but finite
number of possible solutions. Exhaustive search algorithms try to smartly
enumerate all possible solutions and thereby identify an optimal solution.
Two different models have been proposed to span the solution space. The
exhaustive list scheduling model essentially uses a list scheduling algorithm,
where, in each step, a task is scheduled on a processor [22, 23, 24, 25, 26|.
The exhaustive version tries all task orders and all processors exhaustively.
The other model, the allocation-ordering model, first allocates tasks to pro-
cessors and then orders them on the processor. This latter approach has the
advantage that the creation of duplicate states can be avoided efficiently
[44]. Based on the state space model, different approaches can be used
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to search this space as known from the area of artificial intelligence, e.g.
A* (22, 23, 25, 26|, IDA*, Depth-First Branch-and-Bound [24]. In general,
successful exhaustive search approaches are very problem specific using as
much domain knowledge as possible. An important aspect for the efficient
execution of the search are good pruning techniques that discard large parts
of the search space without jeopardizing the algorithms ability to find the
optimal solution [26].

A more general approach for combinatorial optimization problems and
scheduling problems in particular is the use of Mixed Integer Linear Pro-
gramming (MILP). The MILP formulations can be broadly classified as
discrete time and continuous time approaches [45, 46]. The discrete time ap-
proach introduces a new variable for each instant of time on each processor
[47]. The number of time variables introduced in this approach explode when
diverse execution times are present in the formulation. The continuous time
approach, on the other hand, can handle diverse execution times, but its
efficiency depends on how well the constraints and variables are formulated.

The continuous time approach is further subdivided into three lines -
sequencing, slots and overlaps. In sequencing, the formulation involves in-
voking new variables to determine if one task is executed after another task
on the same processor |48, 49]. The number of constraints required to enforce
the schedule requirements on each processor are known to grow quickly. In
slots, each task is assigned to a space-time vacancy on a processor. The slot
defines an order of tasks running on a processor [50, 51]. The start time
and end time of tasks entering the slot are not fixed a priori. Since the
exact number of slots required on each processor is not known a priori, a
conservative number of slots (the number of tasks) has to be reserved and
it suffers from a variable blow-up if the number of tasks to be scheduled is
large. In overlap, variables are defined to prevent overlap of tasks scheduled
on the same processor. Unlike other approaches, the number of variables
and constraints in the formulation scales well as the number of tasks to be
scheduled increases |45, 28, 52|. This approach has been employed in the
MILP formulations that are used in this paper, Section 4.

Work in [31] proposes a Satisfiability Modulo Graph Theory (SMGT)
formulation for scheduling task graphs on multi-processor systems. The
work in [31] builds a two stage solver based on Davis-Putnam-Logemann-
Loveland (DPLL). The first stage uses a pure SAT formulation to obtain
a solution in terms of boolean constraints. The second stage, a so called
Makespan Analysis Engine (MAE) detects deadlock cycles introduced by
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the SAT solver and the reason for a given makespan (the schedule length),
if no deadlock is detected. This reason is complemented and later used to
reduce the search space akin to Conflict Driven Clause Learning (CDCL)
solvers. There are two primary differences between our work and the work
presented in [31]: (a) we use an integrated SMT solver with a single boolean
decision variable, whereas their SAT formulation uses three boolean decision
variables per task in the task graph. In the worst case, the search space grows
exponentially with the number of Boolean decision variables and hence, in
the worst case, our formulation should have a shorter execution time. (b)
Their SAT formulation might introduce deadlock cycles when ordering inde-
pendent nodes on a single processor, these inadvertent deadlocks need to be
explicitly handled in their formulation, our formulation on the other hand is
free of such deadlocks.

7. Conclusions

This paper proposed a novel optimal scheduling approach to the NP-hard
problem of scheduling a task graph with communication delays on a set of
homogeneous processors. The approach is based on an elegant and com-
pact SMT formulation of the scheduling problem. Most of the constraints
of this formulation are directly derived from the scheduling model and the
definition of the problem. Only one decision variable needed to be intro-
duced and linear theory models were applied. To evaluate the performance
of this new formulation we performed an extensive experimental evaluation,
using a large set of task graphs and scheduled them on different number of
processors. The performance of the SMT formulation on these graphs was
compared with that of the best known MILP formulations for the scheduling
problem. We experimented with straightforward anti-symmetry measures to
improve the performance of these existing MILP formulations, but the re-
sults did not demonstrate any improvement. SMT outperformed the MILP
formulations in many cases. SMT successfully solves problems with a lower
number of processors and low to medium CCR, whereas MILP formulations
are more successful when there are a high number of processors and a large
CCR (approximately 10). From the statistical analysis we also see that the
solution times of the two approaches are differently influenced, e.g., SMT
formulations are not as strongly influenced by the number of tasks, but more
by the number of processors in comparison to MILP. The good performance
of SMT is extremely encouraging, given that MILP solution methods have
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undergone many advances in recent years that have significantly improved
their performance. Hence, apart from being competitive already, our SMT
approach has further potential to be improved in future work. A starting
point for this can be the transfer of the pruning techniques discovered for
exhaustive state-space search or the optimization that MILP formulations
have used.
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Appendix A.

coef std err zZ P> z [95.0% Conf. Int.]
Intercept 5.0223  0.288 17.452  0.000  4.458 5.586
C(Structure)|T.Forkjoin | -0.8442  0.261 -3.235 0.001 -1.356 -0.333
C(Structure)|T.InTree| 1.6254 0256  6.358  0.000 1.124 2.126
C(Structure)[T.Independent)] -1.2082 0.358  -3.374  0.001 -1.910 -0.506
C(Structure)|[T.Join] 0.7270  0.265 2.748 0.006  0.209 1.245
C(Structure)|T.OutTree] 1.5439  0.255 6.059 0.000 1.045 2.043
C(Structure)|T.Pipeline| 3.6256  0.278 13.019 0.000  3.080 4.171
C(Structure)|T.Random]| 5.2834 0.284 18.634 0.000 4.728 5.839
C(Structure)|T.SeriesParallel] 2.7540  0.232 11.886  0.000  2.300 3.208
C(Structure)|T.Stencil] 3.6438  0.285 12,783  0.000  3.085 4.202
C(Procs)[T.4] 1.3940 0.161 8.676 0.000 1.079 1.709
C(Procs)|T.§] 22864 0.170 13.423 0.000  1.953 2.620
C(Procs)[T.16] 3.5823  0.192  18.633  0.000  3.205 3.959
Tasks -0.3258 0.012 -27.184 0.000 -0.349 -0.302
CCR -0.4021 0.017 -23.085 0.000 -0.436 -0.368

(a) SMT Logistic

Regression results

coef std err z P> z [95.0% Conf. Int.|
Intercept 4.2613 0.106  40.059  0.000  4.053 4.470
C(Structure)[T.Forkjoin | 0.5052  0.107 4.700 0.000  0.295 0.716
C(Structure)[T.InTree| 1.1770  0.107  10.981  0.000  0.967 1.387
C(Structure)[T.Independent)] -1.5701  0.155 -10.102 0.000 -1.875 -1.265
C(Structure)|[T.Join] 0.2743  0.114 2.407 0.016  0.051 0.498
C(Structure)[T.OutTree] 1.2938  0.108 12.015 0.000  1.083 1.505
C(Structure)|[T.Pipeline| 4.2330 0.117  36.239 0.000  4.004 4.462
C(Structure)[T.Random] 4.5931  0.108 42.693 0.000 4.382 4.804
C(Structure)|T.SeriesParallel]  2.6045 0.097  26.837  0.000 2.414 2.795
C(Structure)|T.Stencil] 2.2756  0.116  19.570  0.000  2.048 2.504
C(Procs)[T.4] 1.3421  0.066  20.300  0.000 1.213 1.472
C(Procs)|T.8| 22248  0.070  32.008 0.000  2.089 2.361
C(Procs)|T.16] 2.8399 0.073 39.024 0.000 2.697 2.983
Tasks -0.3540 0.005 -73.085 0.000 -0.364 -0.345
CCR -0.1770  0.006 -32.023 0.000 -0.188 -0.166

(b) MILP Logistic Regression results

Figure A.18: SMT and ILP Logit regression results
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