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Abstract

In this paper we applied Benders’ decomposition to the Curriculum-Based Course Timetabling (CBCT) problem. The
objective of the CBCT problem is to assign a set of lectures to time slots and rooms. Our approach was based on
segmenting the problem into time scheduling and room allocation problems. The Benders’ algorithm was then employed
to generate cuts that connected the time schedule and room allocation. We generated only feasibility cuts, meaning that
most of the solutions we obtained from a mixed integer programming solver were infeasible, therefore, we also provided
a heuristic in order to regain feasibility.

We compared our algorithm with other approaches from the literature for a total of 32 data instances. We obtained
a lower bound on 23 of the instances, which were at least as good as the lower bounds obtained by the state-of-the-art,
and on eight of these, our lower bounds were higher. On two of the instances, our lower bound was an improvement
of the currently best-known. Lastly, we compared our decomposition to the model without the decomposition on an
additional six instances, which are much larger than the other 32. To our knowledge, this was the first time that lower
bounds were calculated for these six instances.

Keywords: University Course Timetabling, Integer Programming, Benders’ Decomposition, Maximum Flow,
Minimum Cut

1. Curriculum-based Course Timetabling

In this work we considered the Curriculum-Based
Course Timetabling Problem (CBCT) introduced in Track
3 of the Second International Timetabling Competition
(ITC2007) as described by Di Gaspero et al. (2007), Mc-
Collum et al. (2010) and Bonutti et al. (2012). Most of the
work on CBCT focused on the discovery of high-quality
solutions using heuristics. The drawback of these heuris-
tics is that they do not provide any proof of quality (e.g.,
how far from optimality the solutions actually are). We
need bounding and exact methods to be able to validate
the quality of the heuristics and not much work has been
put into the development of these methods. In this arti-
cle we applied Benders’ decomposition to a Mixed Integer
Programming (MIP) model that we presented in Bagger
et al. (2016). We submitted the technical report (Bag-
ger et al., 2016) to the Annals of Operations Research
(ANOR). ANOR is, as yet, unaware of our work in this
article as we had not fully developed the method. We pro-
vide the model from the report in section 2.1. The proof
of the correctness of the model is in the technical report
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which is essential, as the application of the decomposition
in this paper relies on that model.

The CBCT problem entails that we must schedule
weekly lectures for multiple courses into time periods and
assign the lectures to rooms. We are given a set of days,
each divided into a set of time slots. We refer to a day and
time slot combination as a period. The basic entities of
the problem are the courses to schedule, the periods, and
the rooms that are available. The problem originates from
a real world application and has thus received significant
attention since the competition. Each course contains a
number of lectures that must all be scheduled within a pe-
riod, and assigned a room. Furthermore, all of the lectures
are to be scheduled within distinct periods. This require-
ment is referred to as the Lectures (L) constraint. For a
course, some of the periods can be specified as unavail-
able, i.e., periods where it is not allowed to schedule the
course. This requirement is referred to as the Availability
(A) constraint. There are no constraints on assigning the
courses to rooms, i.e., any course can be assigned to any
room. Aside from the courses, the periods and the rooms,
the problem also contains lecturers and curricula; hence
the name Curriculum-Based Course Timetabling. Each
course is taught by a lecturer, and a curriculum is a set
of courses that may be followed by the same students. If
two courses are taught by the same lecturer, or belong to
the same curriculum they cannot have lectures scheduled
within the same periods. This requirement is referred to as
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the Conflicts (C) constraint. For each room, one lecture,
at most, can be assigned in any period, which is referred
to as the Room Occupancy (RO) constraint. The objec-
tive of the CBCT is to develop a timetable that fulfills all
of the latter mentioned requirements, L, A, C and RO,
while minimizing a weighted sum of the violation of four
soft constraints; Room Capacity (RC), Room Stability
(RStab), Minimum Working Days (MWD) and Isolated
Lectures (IL). When a course is assigned to a room where
the number of seats is smaller than the number of stu-
dents that are attending the course, then the constraint
RC is violated by one for each student above the capac-
ity of the room. It is desirable to assign lectures from
the same course to as few distinct rooms as possible. A
course violates the constraint RStab by the total number
of distinct rooms that it is assigned to minus one. The con-
straint MWD is the desire to spread the lectures across a
given number of days. We say that a day is a working day
for a course if at least one lecture from the course is sched-
uled in a time slot on that day. For each course, a number
of minimum working days is provided and if the number
of working days is below this number then the violation
of the constraint is the difference. The final constraint IL
is associated with the curricula. For each curriculum it is
desired to have as few isolated lectures as possible. Each
isolated lecture counts as one violation. A curriculum has
an isolated lecture in a period if any of the courses be-
longing to the curriculum has a lecture scheduled in the
period, and none of the courses have lectures scheduled in
the adjacent periods. We say that two periods are adja-
cent if they belong to the same day and are in consecutive
time slots.

In the following section 1.1 we provide an overview of
other approaches that were applied to CBCT. In section 2
we initially provide a brief introduction to Benders’ decom-
position, and then describe how we applied it to CBCT.
In section 3 we describe a heuristic to repair partially in-
feasible solutions, where by partially infeasible we refer to
solutions wherein the time schedule is feasible, but not the
room assignment. In section 4 we describe the computa-
tional results. Lastly, in section 5 we state our conclusions
on this work.

1.1. Related Research

As we considered a MIP model for the problem, we fo-
cused primarily on other MIP-based approaches in the lit-
erature. For a thorough overview of the problem and dif-
ferent approaches for CBCT we refer to Bettinelli et al.
(2015).

Burke et al. (2008, 2010) introduced a compact MIP
formulation that was exact, in the sense that the op-
timal solution can be found by a generic MIP solver
given enough computational resources. However, many
instances of the CBCT could not be solved for this formu-
lation within a reasonable time using a MIP solver; hence
Burke et al. (2010) proposed methods to derive lower and

upper bounds. They obtained lower bounds by aggregat-
ing the rooms into multi-rooms. For each multi-room the
number of lectures that can be scheduled in it, for any
period, is equal to the number of rooms that were aggre-
gated. This problem provides a lower bound for CBCT. To
obtain an upper bound they fixed the periods (or portions
thereof) according to the solution from the lower bound-
ing mechanism, and subsequently assigned rooms to the
lectures. Burke et al. (2012) proposed an exact branch-
and-cut algorithm which they also based on the compact
formulation; however, some of the objective costs were left
out and instead added as cuts during the solution process.
This can be seen as a Benders’ decomposition; howeber,
rather than generating the cuts dynamically, they were
generated a priori and then added as required.

Lach and Lübbecke (2008, 2012) proposed a method
that divided the CBCT into two stages. The began by
grouping the rooms together such that if two rooms had
the same capacity, then they were in the same group.
Then, in the first stage, they scheduled the courses into pe-
riods and assigned them to these capacities. This method
is a Benders’ Decomposition (Lübbecke, 2015). In the sec-
ond stage, they assigned the courses to the rooms, where
the solution from the first stage was employed to fix the
courses for the determined periods and the selected room
capacities.

Hao and Benlic (2011) divided the MIP model that Lach
and Lübbecke (2012) used in the first-stage into smaller
components by relaxing or removing some of the con-
straints. These relaxations made it possible to decompose
the model into a set of sub-problems, where they calcu-
lated a lower bound for each sub-problem. The sum of all
these lower bounds was then a lower bound for CBCT.

Cacchiani et al. (2013) presented multiple extended MIP
formulation, i.e., models with an exponential number of
variables. The approach that provided the best results di-
vided the problem into two parts; one that focused on the
time scheduling-related soft constraints, while the other
focused on the room-related soft constraints. They calcu-
lated a lower bound for each part and the sum of these
lower bounds was then a lower bound for CBCT.

In Bagger et al. (2016) two MIP models were presented
that were inspired by Lach and Lübbecke (2008, 2012)
and Burke et al. (2008, 2010). The division of the prob-
lem described by Lach and Lübbecke (2012) was applied
(excluding the notion of distinct capacities), where it was
shown that the two stages could be connected using two
underlying flow network formulations. The first formu-
lation was based on a minimum cost flow network, and
performed as the best of the two. The second formulation
was based on a multi-commodity flow problem which was
the formulation where we applied Benders’ decomposition
(Benders, 1962) in this article. The rationale for using
the last formulation, although it did not perform as well
as the first, is that the underlying network is a feasibil-
ity problem. Therefore, we did not need to generate any
optimality cuts, only feasibility cuts.
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2. Benders’ Decomposition

In this section we give an introduction to Benders’ de-
composition followed by our application of the technique.
Our introduction is a crude overview, and we refer to (Ben-
ders, 1962) and (Martin, 1999, chapter 10) for a detailed
description. We describe the method based on a model
that contains two types of variables, x and y. The x vari-
ables are non-negative continuous variables, and we do not
have any assumptions on the y variables, i.e., x ≥ 0 and
y ∈ Y where Y can be any domain (e.g., the set of inte-
gers). Consider the MIP model (1).

min c>x+ f(y)

s.t. Ax+B(y) ≥ b
y ∈ Y
x ≥ 0

(1)

In the model (1) c ∈ Rn is the cost vector of the x vari-
ables, A ∈ Rn×m is the constraint matrix of the x variables
and b ∈ Rm is the right-hand-side vector of the constraints.
f : Y → R is some function to evaluate the cost of the y
variables and B is a vector function that evaluates the
contribution of the y variables for the constraints. If we
fix the y variables to some value in the domain Y then
what remains is a linear programme (LP). This assump-
tion can be extended as described by Geoffrion (1972), but
we stick to the (LP) case in this context. Model (1) can
be rewritten to model (2).

min f(y) + z

s.t. z ≥ min
x≥0

{
c>x |Ax ≥ b−B(y)

}
y ∈ Y
z ∈ R

(2)

In the model (2) there is an inner optimization prob-
lem in the constraints. If the y variables are fixed, then
this is an LP and we can change it into its dual LP as in
model (3).

min f(y) + z

s.t. z ≥ max
π≥0

{
(b−B(y))π |A>π ≤ c

}
y ∈ Y
z ∈ R

(3)

One interesting aspect of the inner optimization prob-
lem in model (3) is that the corresponding polytope is
independent of the values of the y variables. Hence, if the
polytope

{
ATπ ≤ c

}
is non-empty, then we can reformu-

late the problem using the extreme points Πp and extreme

rays Πr as in model (4).

min f(y) + z

s.t. z ≥ (b−B(y))πp ∀πp ∈ Πp

0 ≥ (b−B(y))πr ∀πr ∈ Πr

y ∈ Y
z ∈ R

(4)

Model (4) is referred to as Benders’ master problem.
For a given solution y model (5) is referred to as Benders’
subproblem.

max (b−B(y))π

s.t. A>π ≤ c
π ≥ 0

(5)

As the number of extreme points and rays can be expo-
nentially large, a strategy for solving the model is to relax
the master problem by removing some (or all) of the con-
straints that originates from the extreme points and rays
and then iteratively add them as required. This is done by
finding a solution y for the master problem (4) and insert-
ing the solution into the subproblem (5). The subproblem
is then solved to obtain an extreme point πp or ray πr

and the corresponding cut is added to the master problem
if it is violated. This is done iteratively as illustrated in
Figure 1.

Master problem

Subproblem

Solution y
Extreme point πp

or extreme ray πr

Figure 1: The iterative loop of Benders’ algorithm.

A lower bound on the (relaxed) master problem is a
lower bound on the original model, and if the subprob-
lem returns an extreme point, then this provides an upper
bound. The iterative process is run until some stopping
criterion is met (e.g., a time limit is reached, or the lower
and upper bounds are sufficiently close).

In the following section 2.1 we present the model we em-
ployed for the decomposition and Benders’ master prob-
lem. In section 2.2 we state the sub-problems we used to
generate Benders’ cuts. For all of the models we are given
the set of courses C, the set of periods P and the set of
rooms R. We are also provided with the set of days D and
the set of periods Pd belonging to each day d ∈ D. For
each period p ∈ P the set θp is the set of periods that are
adjacent to p, i.e., the periods that belong to the same day
and are in consecutive time slots. Furthermore, we have
the set of lecturers L and curricula Q. For each curricu-
lum q ∈ Q we have the set of courses Cq that belongs to
the curriculum. We also define the set Γ which is the set
of course-cliques. A course-clique γ ∈ Γ is a set of courses
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Cγ such that for each period p ∈ P one lecture, at most,
from Cγ can be scheduled in that period. We found the set
of course-cliques in the same way as Bagger et al. (2016).
For each course c ∈ C we have the number of lectures that
is required to be scheduled Lc ∈ Z+, where Z+ is the set
of non-negative integers, and the minimum number of re-
quested working days Mc ∈ Z+. We also have the number
of students attending the course Sc ∈ Z+, and for each pe-
riod p ∈ P, the parameter Fc,p ∈ B that specifies whether
or not it is feasible to schedule c in p. For each room, we
have the parameter Cr ∈ Z+, which is the capacity of the
room. We have WMWD ∈ R+, W IL ∈ R+, WRC ∈ R+

and WRStab ∈ R+, which are the non-negative weights of
the soft constraints, MWD, IL, RC and RStab respec-
tively. Lastly, for any value x ∈ R we use the notation
(x)+ to denote that we are taking the maximum of x and
zero.

2.1. Master Problem

The model we employed for the decomposition was the
multi-commodity flow formulation that we presented in
Bagger et al. (2016). We begin by describing this model,
and then we describe how we reformulated it using Ben-
ders’ decomposition.

For each course c ∈ C and period p ∈ P there is a binary
variable xc,p which is set to one, if c is scheduled in p, and
zero otherwise. To calculate the violation of the requested
minimum working days we need to calculate which days
the courses are scheduled for. A binary variable tc,d is
defined for each course c ∈ C and day d ∈ D which is set
to one, if c is scheduled in at least one of the periods Pd,
and zero otherwise. We let wc for each course c ∈ C be an
integer variable, counting the number of days, below the
minimum requested, that c has lectures scheduled. Lastly
for each curriculum q ∈ Q and period p ∈ P there is a
binary variable sq,p that is set to one if q has an isolated
lecture in p, and zero otherwise. We can then formulate
the time scheduling part of the problem as follows:

∑
p∈P

xc,p = Lc ∀c ∈ C (6)

xc,p ≤ Fc,p ∀c ∈ C, p ∈ P (7)∑
c∈Cγ

xc,p ≤ 1 ∀γ ∈ Γ, p ∈ P (8)

∑
p∈Pd

xc,p ≥ tc,d ∀c ∈ C, d ∈ D (9)

∑
d∈D

tc,d + wc ≥Mc ∀c ∈ C (10)

∑
c∈Cq

xc,p − ∑
p′∈θp

xc,p′

 ≤ sq,p ∀q ∈ Q, p ∈ P (11)

xc,p ∈ B ∀c ∈ C, p ∈ P (12)

tc,d ∈ B ∀c ∈ C, d ∈ D (13)

wc ∈ Z+ ∀c ∈ C (14)

sq,p ∈ B ∀q ∈ Q, p ∈ P (15)

Constraints (6) and (7) ensure that all lectures are
scheduled, that they are scheduled in different periods,
and that they are only scheduled in the periods where the
courses are available. Constraints (8) ensure that at most
one lecture from each course-clique is scheduled in every
period. The violation of the MWD constraint is calcu-
lated in (9) and (10). Lastly, the constraints (11) calculate
in which periods the curricula have isolated lectures. The
domains of the variables are given in (12) – (15).

For the room assignment portion of the problem we de-
fine an integer variable yc,r for each course c ∈ C and room
r ∈ R which counts the number of times that c has been
assigned to r. zc,r is a binary variable that is set to one
if the course c ∈ C is assigned to room r ∈ R at least
once, and zero otherwise. The room assignment portion
can then be formulated as follows:

∑
r∈R

yc,r = Lc ∀c ∈ C (16)

yc,r ≤ Lczc,r ∀c ∈ C, r ∈ R (17)

yc,r ≥ zc,r ∀c ∈ C, r ∈ R (18)∑
r∈R

zc,r ≥ 1 ∀c ∈ C, r ∈ R (19)

yc,r ∈ Z+ ∀c ∈ C, r ∈ R (20)

zc,r ∈ B ∀c ∈ C, r ∈ R (21)

Constraints (16) ensure that all lectures are assigned a
room. For every course c ∈ C and room r ∈ R the variable
yc,r has to be set to zero if zc,r is zero and it has to be set
to a positive value if zc,r is set to one. This is ensured by
the constraints (17) and (18). Since every lecture has to
be scheduled, every course has to be assigned to at least
one room, which is reflected by the constraints (19). The
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domains of the variables are given in (20) – (21).

Finally, from the two parts; (6) – (15) and (16) – (21),
we can formulate the objective function which is to be
minimized:

o (x, y, z):=WMWD
∑
c∈C

wc

+WRC
∑

c∈C,r∈R
(Sc − Cr)+ yc,r

+WRStab
∑
c∈C

∑
r∈R

zc,r − 1


+W IL

∑
q∈Q,p∈P

sq,p (22)

Until now, we treated the time scheduling and room as-
signment parts of the problem as separate entities. Given
a binary variable fc,p,r for each course c ∈ C, period p ∈ P
and room r ∈ R, which is set to one, if c is scheduled
in room r at period p, the two parts can be connected as
follows:

∑
p∈P

fc,p,r = yc,r ∀c ∈ C, r ∈ R (23)

∑
r∈R

fc,p,r ≤ xc,p ∀c ∈ C, p ∈ P (24)∑
c∈C

fc,p,r ≤ 1 ∀r ∈ R, p ∈ P (25)

fc,p,r ∈ B ∀c ∈ C, p ∈ P, r ∈ R (26)

We showed in Bagger et al. (2016) that the integrality
requirements (26) can be relaxed to non-negativity con-
straints such that the f variables are continuous. This
means that we can project them out and replace (23) –
(26) by the following Benders’ cuts:

∑
c∈C,p∈P

αkc,pxc,p +
∑

c∈C,r∈R
βkc,ryc,r ≤ ηk ∀k ∈ K (27)

The set K is the set of Benders’ cuts. For each cut k ∈ K
the coefficient of the variable xc,p is αkc,p for each course
c ∈ C and p ∈ P, and for each course c ∈ C and room r ∈ R
the coefficient of the variable yc,r is βkc,r. The parameter ηk

is a constant for each k ∈ K. Since K can be exponentially
large we added the cuts dynamically when required. We
added some of the cuts statically. For instance, we cannot
schedule more courses to a single period than the number
of rooms available:∑

c∈C
xc,p ≤ |R| ∀p ∈ P (28)

Similarly the total number of times that some room is
assigned to by the courses cannot exceed the total number

of periods: ∑
c∈C

yc,r ≤ |P| ∀r ∈ R (29)

The cuts (28) and (29) were added to the master prob-
lem before we began the solution process, and we gener-
ated the remaining cuts when an integer solution violated
them.

2.2. Sub-problems

In this section, we describe the sub-problems. Our first
sub-problem was based on the problem connecting the x
and y variables (23) – (26). These cuts are necessary and
sufficient to ensure that the solutions obtained in our de-
composed model are equivalent to the solutions in our non-
decomposed model. We based the second sub-problem on
the indirect connection between the x and z variables. The
applicability of the second sub-problem was to generate
cuts on the z variables as they are connected with the y
in the constraints (17) and (18) so the cuts also had an
indirect effect on the y variables.

2.2.1. Dual LP

The first sub-problem we used, directly follows from the
LP relaxation of (23) – (26), as previously mentioned, the
integrality constraints can be neglected. Given a solution
(x, y, z) we fix the x and y variables and if (23) – (26)
is infeasible then we need to identify a cut. It can be
verified that due to constraints (6) and (16) if we remove
constraints (25) then the problem is feasible. Hence, to
learn if (23) – (26) is infeasible for the given solution, we
subtract a non-negative variable u from the left-hand-side
of each of the constraints (25). We then search for the
solution that minimizes u:

min u (30)

s.t.
∑
p∈P

fc,p,r = yc,r ∀c ∈ C, r ∈ R (31)

∑
r∈R

fc,p,r = xc,p ∀c ∈ C, p ∈ P (32)∑
c∈C

fc,p,r − u ≤ 1 ∀r ∈ R, p ∈ P (33)

fc,p,r ≥ 0 ∀c ∈ C, p ∈ P, r ∈ R (34)

u ≥ 0 (35)

Note that we changed the inequality (24) to the equal-
ity (32). This is because any solution

(
x, y, z, f

)
that is

feasible has to meet equality in the constraints (24), since
Lc =

∑
r∈R yc,r =

∑
p∈P,r∈R f c,p,r ≤

∑
p∈P xc,p = Lc

must hold for each c ∈ C. The problem (23) – (26) is fea-
sible for the given solution (x, y, z) if, and only if, there
exists a solution for (30) – (35) where the variables x and
y are fixed at the values x and y respectively and where

5



the value of u is zero. We can, therefore, use this problem
to generate feasibility cuts.

Given a solution (x, y, z), we fix the variables x and y in
(30) – (35) to the values x and y, i.e., setting the bounds
x ≤ x ≤ x and y ≤ y ≤ y, and solve the problem to
optimality. Let rxc,p and ryc,r be the reduced costs of the
variables x and y respectively and let u be the value of the
variable u. According to Fischetti (2015) we can derive
the Benders’ cut as follows:

∑
c∈C,p∈P

rxc,p (xc,p − xc,p) +
∑

c∈C,r∈R
ryc,r

(
yc,r − yc,r

)
+u ≤ 0

(36)
We added the cut (36) whenever it was violated by an

integer solution (x, y, z).

2.2.2. Maximum Flow / Minimum Cut

In the previous section we described how to obtain the
cuts from (23) – (26). Those cuts connect only the x and
y variables together. In this section, we look at the link
between the x and z variables. Though they are not di-
rectly connected in any constraints, they have an indirect
relation since the y and z variables are contained in some
of the same constraints. Consider the model (23) – (26).
It can be shown that the constraints (24) must be met by
equality in any feasible solution. When changing the in-
equality in (24) into an equality, then the equality in (23)
can be changed to a less-than-or-equal inequality. Com-
bining this with constraint (17) we have that:∑

p∈P
fc,p,r ≤ Lczc,r ∀c ∈ C, r ∈ R (37)

The consequence of (37) is that for some course c ∈ C
and some room r ∈ R, if zc,r is zero, then fc,p,r has to
be zero for each period p ∈ P. This leads to the following
model:

fc,p,r ≤ zc,r ∀c ∈ C, p ∈ P, r ∈ R (38)∑
r∈R

fc,p,r = xc,p ∀c ∈ C, p ∈ P (39)∑
c∈C

fc,p,r ≤ 1 ∀r ∈ R, p ∈ P (40)

fc,p,r ≥ 0 ∀c ∈ C, p ∈ P, r ∈ R (41)

Note that model (38) – (41) is decomposable by the pe-
riods, i.e., to learn if the model is feasible we can consider
one period at a time. We can formulate this problem as a
maximum flow problem. Given the solution (x, y, z) con-
struct a graph Gp =

(
Vp,Ap

)
for each period p ∈ P. The

graph contains a source node (u) and a sink node (v). Fur-
thermore there is a node (c) for each course c ∈ C and a
node (r) for each room r ∈ R. For each course c ∈ C there
is an arc (u, c) ∈ Ap where the capacity is set to xc,p. For
each room r ∈ R there is an arc (r, v) ∈ Ap with a capacity

of one. For each course c ∈ C and room r ∈ R there is an
arc (c, r) ∈ Ap where the capacity is set to zc,r. An exam-
ple of the graph, for an instance with two courses and two
rooms for some period p ∈ P, is illustrated in Figure 2.

c1

c2

u

r1

r2

v

xc1,
p

x
c2 ,p

zc1,r1

z
c
1 ,r

2

z c2
,r

1

zc2,r2

1

1

Figure 2: Illustration of the maximum flow graph Gp =
(
Vp,Ap

)
for

period p ∈ P of an instance with two courses and two rooms to vali-
date the (x, z) pair. The labels above the arcs are the corresponding
capacities.

As we state in the next proposition 1, we can use this
graph to check whether or not (38) – (41) is feasible for a
given solution.

Proposition 1. The model (38) – (41) is feasible for a
given solution (x, y, z) if, and only if, for each period p ∈ P
there exists some flow in the graph Gp where the value is
equal to

∑
c∈C xc,p

Proof of proposition 1. Consider the solution (x, y, z) and
the graph Gp for some period p ∈ P. We first prove that
if the model is feasible for the period, then there exists
some flow in the graph where the value of the flow is equal
to
∑
c∈C xc,p. Subsequently, we prove that if there exists

some flow in the graph where the value of the flow is equal
to
∑
c∈C xc,p then there is a feasible solution for the model

for the period.

Consider some solution f to the model (38) – (41) for
(x, y, z). Consider the graph Gp for some period p ∈ P.
For each course c ∈ C and room r ∈ R the amount of
flow we send on the path (u) → (c) → (r) → (v) is equal
to f c,p,r. To validate that this is a flow for the graph we
need to check if the node balancing constraints and the
capacity constraints are met. Since we are only sending
flow on paths from the source to the sink, then the node
balancing constraints have to be met. The flow leaving
node (c) is equal to

∑
r∈R f c,p,r and due to the node bal-

ancing constraints and the constraints (39) then the flow
on the arc (u, c) must be equal xc,p which is the capacity
of that arc. The flow on the arc (c, r) is f c,p,r and due to
constraint (38) this is less than or equal to zc,r, which is
the capacity on the arc. The total amount of flow entering
the node (r) is equal to

∑
c∈C f c,p,r and due to the node

balancing constraint, the flow on the arc (r, v) has to be
equal to this value. Due to the constraint (40), the flow on
the arc (r, v) has to, therefore, be less than or equal to one
which is the capacity of the arc. The value of the flow has
to be equal to

∑
c∈C xc,p because of the constraints (39).

Hence, if (38) – (41) is feasible for the given solution then
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there is a flow for the graph where the value of the flow is∑
c∈C xc,p.

Now consider some flow for the graph Gp for period p ∈
P where the value of the flow is equal to

∑
c∈C xc,p. For

each course c ∈ C and room r ∈ R let f c,p,r denote the

amount of flow on the arc (c, r). f is a feasible solution
for the f variables if the constraints (38) – (40) are not
violated. Since the capacity on the arc (c, r) for course
c ∈ C and room r ∈ R is zc,r then the constraints (38)
cannot be violated. Since the sum of the capacities leaving
the source node is equal to

∑
c∈C xc,p, this means that the

flow on arc (u, c) for each course c ∈ C has to be equal to
xc,p and due to the node balancing constraint, all the flow
leaving (c) has to also equal this value, i.e.,

∑
r∈R f c,p,r has

to be equal to xc,p, meaning that the constraints (39) are
fulfilled. The total amount of flow entering node (r) has
to be equal to

∑
c∈C f c,p,r, and due to the node balancing

constraint, this value cannot exceed one, which means that
the constraints (40) are not violated. Hence, if there exists
some flow for the graph where the value of the flow is equal
to
∑
c∈C xc,p then the model is feasible.

Since we considered an arbitrary period, this concludes
our proof of proposition 1.

For the source node (u) and sink node (v) a u− v cut is
a cut that separates the graph into two parts; the u side,
which contains the source node, and the v side that con-
tains the sink node. For the maximum flow problem, the
value of any flow in the graph is upper bounded by the
sum of the capacities for any u−v cut (Ahuja et al., 2013,
property 6.1). In the remainder of the section, whenever
we mention a cut we refer to a u − v cut unless speci-
fied otherwise. If we consider some cut χp ⊆ Ap in the

graph Gp then the sum of the capacities in the cut has to
be greater than or equal to

∑
c∈C xc,p for the solution to

be feasible. Hence, given the solution (x, y, z) we solved
the maximum flow problem by the labeling algorithm de-
scribed by Ahuja et al. (2013, chapter 6). This algorithm
also finds a minimum cut χp ⊆ Ap and if the value of
the maximum flow (capacity of the minimum cut) was less
than

∑
c∈C xc,p, we added the following cut to the master

problem:

∑
(u,c)∈χp

xc,p +
∑

(c,r)∈χp

zc,r +
∣∣(r, v) ∈ χp

∣∣ ≥ ∑
(u,c)∈Ap

xc,p

(42)

For ease of notation in (42) we write (u, c) ∈ A which
means; for each c ∈ C where the arc (u, c) is in the set A.
Similarly, (r, v) ∈ A means for each room r ∈ R where the
arc (r, v) is in the set A and (c, r) ∈ A is the set of all the
arcs (c, r) for each c ∈ C and r ∈ R in the setA. We use the
notation | · | on these sets to denote the cardinalities, and
use this notation throughout the remainder of the paper.

We can rewrite (42) into a simpler form:

∑
(u,c)∈Ap\{χp}

xc,p −
∑

(c,r)∈χp

zc,r ≤
∣∣(r, v) ∈ χp

∣∣ (43)

Whenever we obtained an integer solution (x, y, z), we
added the cut (43) for each period p ∈ P where it was
violated.

3. Primal Heuristic

The solutions obtained were often infeasible during the
Branch-and-Bound process, which meant that it was diffi-
cult for the MIP solver to achieve the upper bounds used
for pruning. Therefore, we implemented a heuristic to re-
gain feasibility whenever a cut was generated, to assist
the solver. In the heuristic we exploited the property that
the courses can be assigned to any room. Due to con-
straints (28) we know that given any solution (x, y, z) the
time-schedule part x of the solution is feasible, meaning
that it is possible to create a room assignment based on the
time-schedule to obtain a complete solution. The heuristic
runs through every period and in each period the lectures
that are scheduled in that period are each assigned to a
distinct room. This will always be possible since no more
courses are scheduled in any period than the number of
rooms available. Based on this assignment, the heuristic
calculates the values of the y and z variables.

For each period p ∈ P we found a minimum cut χp in the

graph Gp as described in section 2.2.2. Then we calculated
the value vp

(
χp
)
:

vp
(
χp
)

:=
∑

(u,c)∈Ap\{χp}
xc,p −

∑
(c,r)∈χp

zc,r −
∣∣(r, v) ∈ χp

∣∣
(44)

If vp
(
χp
)
> 0 then we cannot schedule all lectures in

p, and we need to change the values of the z variables
to obtain feasibility. We did this by ordering the periods
according to the values of vp

(
χp
)

from the largest to the
smallest. We then iterated over the periods in the given
order and for each period p ∈ P we performed the following
steps:

1. Let the graph Gp be defined as in section 2.2.2 with
the same capacities. For each course c ∈ C and room
r ∈ R let the weight on the arc (c, r) ∈ Ap be

WRC (Sc − Cr)+ and let the weights of the remaining
arcs be zero.

2. If vp
(
χp
)
≤ 0, then stop.

3. For every arc (c, r) ∈ χp, if zc,r (the capacity) is zero
then we open the room, i.e., we change the value to
one.

4. We then find the minimum cost maximum flow f
(minimum cut χp) and for every arc (c, r) were we
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changed the capacity in step 3, if there is no flow on
the arc, i.e., if f c,p,r = 0, we change the capacity back
to zero.

5. Given the new minimum cut χp, update the value

vp
(
χp
)

and go back to step 2.

When we had processed all periods, we set the values y
as follows:

yc,r =
∑
p∈P

f c,p,r c ∈ C, p ∈ P, r ∈ R (45)

We then set the z values as follows to ensure that the
constraints (18) were fulfilled:

zc,r =

{
1 if yc,r > 0

0 otherwise
c ∈ C, p ∈ P, r ∈ R (46)

In step 3 a minimum cost maximum flow problem is
solved, which is to find a minimum-cost flow among all
the maximum flows. The reason we solved a minimum cost
maximum flow problem, rather than just a maximum flow
problem was that we wished to create a feasible solution
without increasing the penalty of the RStab constraint
too much. The algorithm we used is a modified version of
the algorithm described by Ahuja et al. (2013, section 9.7)
which finds the minimum cost flow given the demands and
supplies on the nodes. We had a supply on the source node,
and a demand on the sink node both equal to

∑
c∈C xp and

on the rest of the nodes, the demands and supplies were
zero. The modification to the algorithm is the stopping
criterion. In its pure form, the algorithm assumes that it
is possible to meet all the demands of the nodes. Since we
did not always have a feasible flow, we added the stopping
criterion that if no path exists from the source node to the
sink node in the residual graph, then the algorithm has to
stop. Hence, the modified algorithm finds the minimum
cost flow among all the maximum flows that exists. We
found the minimum cut from this flow in the same way as
we did in section 2.2.2.

We need to show that the algorithm is finite and returns
a feasible solution. If the algorithm assigns all lectures to
rooms in each period, then the overall solution is feasible.
Therefore, we only need to show that the algorithm is finite
and returns a feasible solution for a single period since
there is a finite number of periods. For period p ∈ P,
if all the arcs (c, r) ∈ Ap have a capacity of one, then
all lectures scheduled in the period can be assigned to a
room. Hence, if the period is infeasible, then some of the
arcs (c, r) ∈ Ap have to have a capacity of zero. As long as
at least one of the lectures cannot be assigned to a room,
i.e., as long as vp

(
χp
)
> 0, the algorithm changes at least

one value zc,r from zero to one, for some arc (c, r) in each
iteration, assuming step 3 is correct. The correctness of
step 3 is given by proposition 2. Since there is a finite
number of these arcs, then the algorithm also has to be
finite. Furthermore, since the algorithm does not stop as

long as vp
(
χp
)
> 0, then the solution will also be feasible

for the period p ∈ P, since all capacities on the arcs (c, r) ∈
Ap are set to one in the worst case.

Proposition 2. For a solution (x, y, z), a period p ∈ P
and a minimum cut χp, if vp

(
χp
)
> 0 then there has to

exist a course c ∈ C and a room r ∈ R where the arc (c, r)
is in the cut χp and the capacity is zero, i.e., zc,r = 0

To prove proposition 2 we first prove that in the mini-
mum cut χp, at least one of the arcs (c, r) ∈ Ap has to be
in the cut. Subsequently, we prove that the arcs (c, r) ∈ χp
cannot all have a capacity of one.

Proof. At least one arc (c, r) ∈ Ap is in the cut χp. We
begin the proof by showing that not all of the arcs
(u, c) ∈ Ap can be in the minimum cut χp, nor can all the

arcs (r, v) ∈ Ap. In Figure 3 we give an illustration of the
graph Gp and two cuts; χ1

p and χ2
p.

c1

c2

u

r1

r2

v

xc1,
p

x
c2 ,p

zc1,r1

z
c
1 ,r

2

z c2
,r

1

zc2,r2

1

1

χ1
p χ2

p

Figure 3: Illustration of the two cuts; cut χ1
p containing all arcs

leaving the source node and χ2
p containing all arcs entering the sink

node.

The cut χ1
p contains all the arcs (u, c) ∈ Ap and the

cut χ2
p contains all the arcs (r, v) ∈ Ap. Since we know

vp
(
χp
)
< 0 for the minimum cut χp then neither χ1

p nor

χ2
p can be a minimum cut. The reason that χ1

p cannot be a
minimum cut is that the total capacity of the minimum cut
χp is strictly less than

∑
c∈C xc,p, however, since the cut

χ1
p contains all the arcs (u, c) ∈ Ap then the total capac-

ity of χ1
p has to be greater than or equal to

∑
c∈C xc,p.

The reason that χ2
p cannot be a minimum cut is that∑

c∈C xc,p ≤ |R| due to constraint (28), thus the total
capacity of the minimum cut χp is strictly less than |R|
since not all of the lectures are assigned to a room. How-
ever, since the cut χ2

p contains all of the arcs (r, v) ∈ Ap
then the total capacity of χ2

p has to be greater than, or
equal to, |R|.

As we cannot have all arcs (u, c) ∈ Ap in the minimum
cut, there have to exist some course c ∈ C where the node
(c) is on the same side of the cut as the source node (u).
Similarly, as we cannot have all arcs (r, v) ∈ Ap in the
minimum cut, there has to exist some room r ∈ R where
the node (r) is on the same side of the cut as the sink
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node (v). Hence, the arc (c, r) must be in the cut which
concludes our proof.

We showed that at least one of the arcs (c, r) ∈ Ap has
to be in the minimum cut. One side effect of our proof is
that since not all of the arcs (u, c) ∈ Ap can be in the cut,
we have the following:∣∣(u, c) ∈ χp∣∣ ≤ |C| − 1 (47)

Similarly, since not all of the arcs (r, v) ∈ Ap can be in
the minimum cut, we have the following:∣∣(r, v) ∈ χp

∣∣ ≤ |R| − 1 (48)

Before the next proof, we make the assumption that
|R| ≥ 2. It is fair to make this assumption since if |R| = 0
the problem is infeasible and if |R| = 1 then at most one
course is scheduled in each period and can be assigned to
the single room.

Proof. zc,r = 0 for at least one arc (c, r) ∈ χp. We
showed in the previous proof that there is at least
one arc (c, r) in the minimum cut for some course c ∈ C
and room r ∈ R. Now we show for at least one of the arcs
(c, r) ∈ χp that the capacity is zero. To prove this, we
assume that every arc (c, r) ∈ χp has a capacity of one,
and show that this leads to a contradiction.

Since we consider an infeasible solution, due to con-
straint (43), the following have to hold:

∑
(c,r)∈χp

zc,r +
∣∣(r, v) ∈ χp

∣∣ < ∑
(u,c)∈Ap\χp

xc,p (49)

All capacities in the graph are either zero or one; hence,
we can calculate an upper bound of the right-hand side of
(49) as follows:

∑
(u,c)∈Ap\χp

xc,p ≤
∣∣(u, c) ∈ Ap\χp∣∣ = |C| −

∣∣(u, c) ∈ χp∣∣
(50)

If we insert (50) into (49) together with our assumption
that the capacities of all the arcs (c, r) ∈ χp are one then
we obtain the following:

∣∣(c, r) ∈ χp∣∣+
∣∣(r, v) ∈ χp

∣∣ < |C| − ∣∣(u, c) ∈ χp∣∣ (51)

Consider an arc (c, r) for some course c ∈ C and some
room r ∈ R. For this arc to be in the cut, the node (c)
has to be on the same side of the cut as the source node,
and the node (r) has to be on the same side as the sink
node. The node (c) is on the source side if, and only if,
the arc (u, c) is not in the cut. Similarly, the node (r) is
on the sink side if and only if the arc (r, v) is not in the

cut. So we can express
∣∣(c, r) ∈ χp∣∣ as the product of the

arcs (u, c) and (r, v) that are not in the cut:

∣∣(c, r) ∈ χp∣∣ =
∣∣(u, c) ∈ Ap\χp∣∣ ∣∣(r, v) ∈ Ap\χp

∣∣ (52)

We can rewrite (52) by noting that the number of arcs
leaving the source, which are not in the cut is equal to the
number of arcs leaving the source minus the arcs in the
cut, and similarly for the arcs entering the sink:

∣∣(c, r) ∈ χp∣∣ =
(
|C| −

∣∣(u, c) ∈ χp∣∣) (|R| − ∣∣(r, v) ∈ χp
∣∣)
(53)

Expanding the expression gives us the following:

∣∣(c, r) ∈ χp∣∣ =|C||R|+
∣∣(u, c) ∈ χp∣∣ ∣∣(r, v) ∈ χp

∣∣
− |R|

∣∣(u, c) ∈ χp∣∣− |C| ∣∣(r, v) ∈ χp
∣∣ (54)

Substituting (54) into (51) gives the following:

|C||R|+
∣∣(r, v) ∈ χp

∣∣ < |C| − ∣∣(u, c) ∈ χp∣∣ ∣∣(r, v) ∈ χp
∣∣

+ |R|
∣∣(u, c) ∈ χp∣∣+ |C|

∣∣(r, v) ∈ χp
∣∣− ∣∣(u, c) ∈ χp∣∣

(55)

Next we rearrange the terms:

|C| (|R| − 1) < (|C| − 1) (|R| − 1)

−
(
(|R| − 1)−

∣∣(r, v) ∈ χp
∣∣) ((|C| − 1)−

∣∣(u, c) ∈ χp∣∣)
(56)

An upper bound can be found for the right-hand side of
(56) by finding a lower bound for the expression:

(
(|R| − 1)−

∣∣(r, v) ∈ χp
∣∣) ((|C| − 1)−

∣∣(u, c) ∈ χp∣∣) (57)

Since we know that
∣∣(r, v) ∈ χp

∣∣ ≤ |R| − 1 then(
(|R| − 1)−

∣∣(r, v) ∈ χp
∣∣) ≥ 0 has to hold. Similarly(

(|C| − 1)−
∣∣(u, c) ∈ χp∣∣) ≥ 0 also has to hold, which

means that the minimum value that (57) can take has
to be zero. Hence, the right-hand side of (56) has to be
less than or equal to (|C| − 1) (|R| − 1), and since we as-
sumed that |R| ≥ 2 we can divide by |R|− 1 to obtain the
following:

|C| < |C| − 1 (58)

As (58) is a contradiction then we have concluded our proof
and at least one of the arcs (c, r) ∈ χp must have a capacity
of zero.

We have now proven that our algorithm is finite and re-
turns a feasible solution. We ran this heuristic whenever
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we retrieved an integer solution where a cut was gener-
ated.

4. Computational Experiments

In this section, we report our computational experi-
ments. We conducted all our tests on a 3.40GHz Intel®

Core™ processor running Windows 10 with 8GB memory
RAM. We used Gurobi 6.5.2 provided by Gurobi Opti-
mization, Inc. (2016) both for the master problem and
also for the subproblem described in section 2.2.1. We set
all parameters in Gurobi to their default except, Presolve,
Threads and LazyConstraints. We set Presolve to 2 (the
most aggressive level), Threads to 1 as this was the max-
imum allowed threads for the ITC2007 competition and
LazyConstraints to 1 to be able to add cuts on integer
solutions.

We tested our approach on four datasets; TEST, COMP,
DDS and ERLANGEN. The TEST dataset consists of
four data instances, test1 – test4, proposed by Di Gaspero
and Schaerf (2003). The COMP dataset contains 21 data
instances, comp01 – comp21, described in Di Gaspero
et al. (2007) mainly taken from the University of Udine.
The DDS dataset contains seven data instances, DDS1 –
DDS7, taken from other Italian universities. The ERLAN-
GEN dataset consists of six instances, provided by Dr.-Ing.
Moritz Mühlenthaler. All the datasets can be retrieved
from http://tabu.diegm.uniud.it/ctt/index.php.
For the ITC2007 competition, a benchmarking tool was
provided, which can be obtained from http://www.cs.

qub.ac.uk/itc2007. The tool calculates the time limit
for the competition on the machine the tool is executed
on. This time limit is referred to as one CPU unit, which
in our case is 208 seconds. We have written all our imple-
mentations (including the flow algorithms) in C#.

The flow diagram in Figure 4 is an illustration of our
implementation of Benders’ Decomposition.

At first the model is initialized as (6) – (22), (28), (29)
and we set the best known solution value to be infinity.
We then start Gurobi’s Branch-and-Bound solver and in
a callback function we retrieve every integer solution that
is obtained. Whenever we receive an integer solution we
generate the cut (36) and cuts (43) for each period if the
solution violates them. If we generate at least one cut,
then we run the heuristic described in section 3 to repair
the solution. If the repaired solution is better than our
current best-known solution, then we reinsert the solution
into Gurobi. The reason that we reinsert the solution is
that Gurobi can use the solution to prune nodes in the
Branch-and-Bound tree and the heuristics can use the so-
lution to search for improvements.

In the following we compare our implementation with re-
sults obtained in the literature by other MIP-based meth-
ods: Lach and Lübbecke (2012), Burke et al. (2010), Hao
and Benlic (2011), and Cacchiani et al. (2013). In sec-
tion 4.1 we first compare the lower bounds obtained by our
implementation with Lach and Lübbecke (2012), Burke

Initialize the model
(6) – (22), (28), (29)
and set UB ← ∞

Start Branch-and-Bound

Wait for next
solution (x, y, z)

Generate cut (36) and
cuts (43) for each period

if they are violated

Was at least one
cut generated?

Add cuts and run heuristic
to modify solution (x, y, z)

Set UB ← min {o (x, y, z) , UB}

yes

no

Figure 4: Flow diagram of the implemention of Benders’ decomposi-
tion. The algorithm continues until a stopping criterion is met, e.g.,
when a time limit is reached or the best solution is proven optimal.

et al. (2010), Hao and Benlic (2011), and Cacchiani et al.
(2013) on the first fourteen data instances of COMP. Af-
terwards, we compare the lower bounds obtained on all
21 data instances in COMP as well as all instances from
the sets DDS and TEST with Cacchiani et al. (2013) as
they have reported lower bounds for all these sets. In sec-
tion 4.2 we compare both lower and upper bounds obtained
by Lach and Lübbecke (2012) and Burke et al. (2010) as
these methods provide not only lower bounds but also up-
per bounds. In section 4.3 we compare our implementation
to the original model without Benders’ decomposition, i.e.,
model (6) – (26) where the integrality requirements (26)
are relaxed such that the f variables are non-negative con-
tinuous variables.

Before these comparisons we compare the implementa-
tion of Benders’ decomposition with the results from Bag-
ger et al. (2016) when given a time limit of forty CPU
units in Table 1; the minimum cost flow formulation (Min)
and the multi-commodity flow formulation (Mult). If an
approach obtains a lower bound for an instance which is
at least as good as the other approaches for the same in-
stance, then we denote this using a bold font. If the lower
bound is better than all the other approaches, then we
mark it with an underline. In the bottom of the tables, we
report the number of times that each approach obtains a
lower bound which is at least as good as the others (the
line Best) and the number of times a lower bound which
is better than all the other approaches (the line follow-
ing Best). Furthermore, we compute the ranking of the
approaches on each instance. For each instance, the ap-
proach that obtains the best bound is given rank 1, the
second best is given rank 2 and so on. If multiple ap-
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proaches are tied then they receive the average rank of the
respective ranks, e.g., if two approaches are tied for rank
3 and 4 then they both receive rank 3.5 as this is the av-
erage. In the last line of the tables, we report the average
of the ranks of each approach. The approach that obtains
the best rank is marked with a bold font. We use this
notation throughout all the tables.

In Table 1 we see that the implementation of Benders’
decomposition obtains a lower bound which is at least as
good as the other two in 27 instances and a bound which is
better in 11 out of 32 instances. Referring to Bonutti et al.
(2016) we observe that for two of the instances (marked
with an * in the table), comp12 and test4, the lower bounds
we obtain, 147 and 49, is an improvement of the currently
best-known bounds of 142 and 46 respectively. The upper
bounds that we obtain in Benders’ decomposition is never
better than the Min nor the Mult approaches and has an
upper bound which is equal to at least one of the other
on six out of 32 instances. Thus, the current focus of
the heuristic on feasibility is not enough to improve the
upper bounds. Future work could include the possibility
of including improvement techniques after the heuristic has
regained feasibility.

4.1. Lower Bounds

In this section we first compare the lower bounds ob-
tained by our approach with Lach and Lübbecke (2012),
Burke et al. (2010), Hao and Benlic (2011) and Cacchiani
et al. (2013). Following the literature we compare the re-
sults using three time limits; one CPU unit, ten CPU units
and forty CPU units. We start by comparing our results
with Cacchiani et al. (2013) as they are the only ones to
report lower bounds for the entire COMP dataset as well
as for DDS and TEST for forty CPU units. In Table 2 we
compare their results with our approach where we use the
same notation as in Table 1.

In Table 2 we see that our approach obtains a bound
which is at least as good as the bound obtained by Cac-
chiani et al. (2013) on 23 of the 32 instances and a better
bound on eight of the 32 instances.

Next, we compare the lower bounds obtained by our
approach with Lach and Lübbecke (2012), Burke et al.
(2010), Hao and Benlic (2011), and Cacchiani et al. (2013)
on the first fourteen data instances of COMP. The rea-
son for only comparing the first fourteen instances is that
these were the only ones that were available for Lach and
Lübbecke (2012) and Burke et al. (2010). In the tables 3,
4 and 5 we report the lower bounds obtained for each ap-
proach given a time limit of one, ten and forty CPU units
respectively. We use the same notation as in Table 1.

In Table 3 – 5 we see that our approach obtains a lower
bound which is at least as good as the other approaches in
ten instances for one and ten CPU units and in eleven out
of the fourteen instances for forty CPU units. Benders’
decomposition obtain a better bound in four, three and
three out of the fourteen instances for one, ten and forty

Table 1: Comparison of the lower bounds obtained on COMP, DDS
and TEST for Min (minimum cost flow formulation from Bagger
et al. (2016)), Mult (multi-commodity flow formulation from Bagger
et al. (2016)) and Benders (our implementation in this article) with
a time limit of forty CPU units. A number in bold font denotes
that the approach obtained a value which is at least as good as the
other methods for the particular instance. An underlined number
means that the approach obtained a value which is better than all
the other methods. The line Best counts the number of times that
each approach obtains a value which is at least as good as the other
methods in this table. The line following the line Best counts the
number of times that the approaches obtained values that are better
than all the other methods in this table. The last line Rank reports
the average rank obtained by each method when comparing with the
other methods in this table and the best rank is marked with bold
font.

M
in

M
ul

t
B
en

de
rs

In
st
an

ce

LB UB LB UB LB UB
comp01 5 5 5 5 5 5
comp02 8 45 8 59 9 112
comp03 38 123 37 99 42 107
comp04 35 35 35 35 35 76
comp05 186 355 181 377 168 466
comp06 16 92 16 92 20 139
comp07 0 179 6 - 6 183
comp08 37 37 37 41 37 99
comp09 74 105 73 103 82 113
comp10 4 18 4 68 4 72
comp11 0 0 0 0 0 0
comp12 142 423 140 500 147* 464
comp13 56 66 59 59 57 152
comp14 44 55 43 74 48 93
comp15 38 123 37 99 42 107
comp16 13 61 11 42 16 76
comp17 43 123 44 109 46 132
comp18 36 78 30 108 35 88
comp19 56 57 55 57 54 92
comp20 0 50 0 96 0 340
comp21 56 156 57 133 62 138

DDS1 46 70 44 76 45 214
DDS2 0 0 0 0 0 0
DDS3 0 0 0 0 0 0
DDS4 15 17 15 12079 15 1192
DDS5 0 0 0 0 0 0
DDS6 0 2 0 27 0 123
DDS7 0 0 0 0 0 0

test1 224 224 224 224 224 314
test2 16 19 16 19 16 104
test3 59 75 59 75 59 96
test4 44 91 43 107 49* 101

Best 19 25 17 19 27 6
4 13 1 7 11

Rank 2.03 1.59 2.27 1.84 1.70 2.56
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Table 2: Comparison of the lower bounds obtained on COMP, DDS
and TEST for CCRT13 (Cacchiani et al., 2013) and Benders (our
implementation) with a time limit of forty CPU units. The notation
follows that of Table 1.

Instance CCRT13 Benders
comp01 5 5
comp02 16 9
comp03 52 42
comp04 35 35
comp05 166 168
comp06 11 20
comp07 6 6
comp08 37 37
comp09 92 82
comp10 2 4
comp11 0 0
comp12 100 147
comp13 57 57
comp14 48 48
comp15 52 42
comp16 13 16
comp17 48 46
comp18 52 35
comp19 48 54
comp20 4 0
comp21 68 62

DDS1 40 45
DDS2 0 0
DDS3 0 0
DDS4 17 15
DDS5 0 0
DDS6 0 0
DDS7 0 0

test1 224 224
test2 16 16
test3 59 59
test4 46 49

Best 24 23
9 8

CPU units respectively. Considering the average rank ob-
tained we see that our approach obtains a lower average
rank than all the other approaches on the first fourteen
data instances of COMP for all three time limits.

4.2. Upper Bounding Methods

In this section, we compare both the upper bounds that
we obtain on the first fourteen data instances from COMP
with Lach and Lübbecke (2012) and Burke et al. (2010) as
these are the only methods besides ours that obtain both
lower and upper bounds. We report the results in the
tables 6 – 8 where we use the same notation as in Table 1.

Table 3: Comparison of the lower bounds obtained on the first four-
teen data instances of COMP for the different approaches with a time
limit of one CPU unit; LL12 (Lach and Lübbecke, 2012), BMPR10
(Burke et al., 2010), HB11 (Hao and Benlic, 2011), CCRT13 (Cac-
chiani et al., 2013) and Benders (our implementation). The notation
follows that of Table 1.

In
st
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ce

LL12
B
M

PR
10

H
B
11

C
C
RT

13

B
en

de
rs

comp01 4 0 4 5 5
comp02 0 0 10 0 7
comp03 0 25 26 24 37
comp04 22 35 35 35 35
comp05 92 119 19 6 145
comp06 7 13 12 0 17
comp07 0 6 5 0 6
comp08 30 37 37 37 37
comp09 37 68 39 92 78
comp10 2 3 4 0 4
comp11 0 0 0 0 0
comp12 29 101 43 0 91
comp13 33 52 46 57 56
comp14 40 41 41 32 43

Best 1 5 5 6 10
1 1 2 4

Rank 4.21 2.71 2.82 3.50 1.75

Table 4: Comparison of the lower bounds obtained on the first four-
teen data instances of COMP for the different approaches with a time
limit of ten CPU units; LL12 (Lach and Lübbecke, 2012), BMPR10
(Burke et al., 2010), HB11 (Hao and Benlic, 2011), CCRT13 (Cac-
chiani et al., 2013) and Benders (our implementation). The notation
follows that of Table 1.
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ce

LL12
B
M

PR
10

H
B
11

C
C
RT

13

B
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rs

comp01 4 4 4 5 5
comp02 8 0 12 16 8
comp03 0 33 34 52 41
comp04 28 35 35 35 35
comp05 25 111 69 6 167
comp06 10 15 12 11 19
comp07 2 6 6 6 6
comp08 34 37 37 37 37
comp09 41 65 67 92 81
comp10 4 4 4 2 4
comp11 0 0 0 0 0
comp12 32 95 78 0 144
comp13 39 52 53 57 57
comp14 41 42 43 48 47

Best 2 5 5 10 10
4 3

Rank 4.36 3.14 2.86 2.61 2.04
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Table 5: Comparison of the lower bounds obtained on the first four-
teen data instances of COMP for the different approaches with a time
limit of forty CPU units; LL12 (Lach and Lübbecke, 2012), BMPR10
(Burke et al., 2010), HB11 (Hao and Benlic, 2011), CCRT13 (Cac-
chiani et al., 2013) and Benders (our implementation). The notation
follows that of Table 1.

In
st
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ce

LL12
B
M

PR
10

H
B
11

C
C
RT

13

B
en
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rs

comp01 4 5 4 5 5
comp02 11 1 12 16 9
comp03 25 33 36 52 42
comp04 28 35 35 35 35
comp05 108 114 80 166 168
comp06 10 16 16 11 20
comp07 6 6 6 6 6
comp08 37 37 37 37 37
comp09 46 66 67 92 82
comp10 4 4 4 2 4
comp11 0 0 0 0 0
comp12 53 95 84 100 147
comp13 41 54 55 57 57
comp14 46 42 43 48 48

Best 4 6 5 10 11
3 3

Rank 4.00 3.32 3.21 2.32 2.14

Table 6: Comparison of the upper bounds (UB) obtained on the first
fourteen data instances of COMP for the different approaches with
a time limit of one CPU units; LL12 (Lach and Lübbecke, 2012),
BMPR10 (Burke et al., 2010) and Benders (our implementation).
The notation follows that of Table 1.

Instance LL12 BMPR10 Benders
comp01 12 168 14
comp02 239 114 118
comp03 194 158 179
comp04 44 153 108
comp05 965 1447 604
comp06 395 277 227
comp07 525 - 260
comp08 78 173 106
comp09 115 112 142
comp10 235 70 101
comp11 7 288 0
comp12 1122 - 874
comp13 98 556 229
comp14 113 123 103

Best 4 4 6
4 4 6

Rank 2.00 2.36 1.64

Regarding the upper bounds we see that in Table 6 we
obtain upper bounds which are better on six out of the

Table 7: Comparison of the upper bounds (UB) obtained on the first
fourteen data instances of COMP for the different approaches with
a time limit of ten CPU units; LL12 (Lach and Lübbecke, 2012),
BMPR10 (Burke et al., 2010) and Benders (our implementation).
The notation follows that of Table 1.

Instance LL12 BMPR10 Benders
comp01 12 10 5
comp02 93 101 112
comp03 86 144 122
comp04 41 36 76
comp05 468 649 581
comp06 79 317 139
comp07 28 857 191
comp08 48 53 99
comp09 106 115 113
comp10 44 49 72
comp11 7 12 0
comp12 657 889 472
comp13 67 92 222
comp14 54 72 93

Best 10 1 3
10 1 3

Rank 1.36 2.43 2.21

Table 8: Comparison of the upper bounds (UB) obtained on the first
fourteen data instances of COMP for the different approaches with
a time limit of forty CPU units; LL12 (Lach and Lübbecke, 2012),
BMPR10 (Burke et al., 2010) and Benders (our implementation).
The notation follows that of Table 1.

Instance LL12 BMPR10 Benders
comp01 12 9 5
comp02 46 63 112
comp03 66 123 107
comp04 38 36 76
comp05 368 629 466
comp06 51 46 139
comp07 25 45 183
comp08 44 41 99
comp09 99 105 113
comp10 16 23 72
comp11 7 12 0
comp12 548 785 464
comp13 66 67 152
comp14 53 55 93

Best 8 3 3
8 3 3

Rank 1.50 2.07 2.43

fourteen instances and the two other approaches both ob-
tain a better upper bound on four of the instances each.
For both ten (Table 7) and forty (Table 7) CPU units our
approach obtains a better upper bound for three of the
instances, Lach and Lübbecke (2012) obtains a better up-
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per bound on ten and 8 instances respectively and Burke
et al. (2010) obtains a better upper bound on one and
three instances respectively.

4.3. Large Datasets (Erlangen)

In this section, we test our model on the ERLANGEN
dataset. The data instances in this set are larger than
for the other datasets we have tested and for some of the
instances even solving the root note LP takes longer time
than the forty CPU units we tested on. Therefore we have
tested them using 100 CPU units, and we have changed
the parameter setting to use the non-homogeneous barrier
method as the LP solver (Method=2, NodeMethod=2 and
BarHomogeneous=0) and with the number of threads to
be equal to the number of processors (Threads=4) as this
accelerates the solution time of the LP. We compare our
implementation to the original model (the model that we
have based our decomposition on) to see the benefits of
the decomposition for such large datasets.

In Table 9 we report the lower and upper bounds ob-
tained after running the MIP solver for the given time limit
(100 CPU) for both the original model and the decompo-
sition. In the last two columns we report how much the
values are improved by Benders. In the column LB we re-
port the increase of the lower bound in percent which is cal-
culated as (LBBenders − LBMult) /LBMult where LBMult

and LBBenders are the lower bounds obtained by the orig-
inal and the decomposed model respectively. Similarly, in
column UB we report the decrease of the upper bound.

Table 9: Comparison of the lower bound (LB) and upper bound
(UB) obtained for the original model (Mult) and our implementation
(Benders) on the ERLANGEN dataset when running the Branch-
and-Bound solver Gurobi. The last two columns (Impr.) report how
much the bound is improved by Benders in percentages.

MULT Benders Impr.
Instance LB UB LB UB LB UB
2011 2 2105 10390 2385 10127 13% 3%
2012 1 1235 21178 1393 18334 13% 13%
2012 2 1556 - 1766 21722 13% -
2013 1 1259 172474 1417 28529 13% 83%
2013 2 1086 - 1274 19808 17% -
2014 1 834 30985 975 18851 17% 39%
Avg. 14% 35%

We see in Table 9 that the decomposition approach ob-
tains better bounds for all six instances, where for two of
the instances the original model does not obtain any so-
lution. Our decomposition gives an improvement of 14%
and 35% on average for the lower and upper bounds re-
spectively. However, it should be noted that the average
improvement on the upper bounds is calculated on only
four of the six insrances

In Table 10 we report the performance for the root LP,
i.e., the results of solving the LP relaxation in the root
node before the MIP solver starts to add cuts and branch.

For both the original model and the decomposition we re-
port the time spent by the solver in seconds (Time) and the
objective value of the LP (Obj). In the last two columns
we report how much the values are improved be Benders.
In the column, Time we report the speed-up factor which
we calculate as the time that the solver spent on solving
the root node LP in the original model divided by the time
spent in the decomposed model. In the column Obj we re-
port the increase of the objective value in permille which
is calculated as (ObjBenders −ObjMult) /ObjMult where
ObjMult and ObjBenders are the objective values of the
root node LP in the original and the decomposed model
respectively.

Table 10: Comparison of the time (Time) it takes to solve the root
node LP and the objective value (Obj) obtained for the original
model (Mult) and our implementation (Benders) on the ERLAN-
GEN dataset. The last two columns (Impr.) report how much the
values are improved by Benders. The improvement of the time is re-
ported as the speed-up factor and the improvement of the objective
value is reported in permille. The last line (Avg.) report the average
improvements.

Mult Benders Impr.
Instance Time Obj Time Obj Time Obj
2011 2 5836.7 1985.7 86.6 1994.8 ×57 5‰
2012 1 2518.9 1015.8 117.7 1019.8 ×21 4‰
2012 2 6306.5 1347.9 162.3 1347.9 ×39 0‰
2013 1 3083.1 1030.9 153.5 1032.4 ×20 1‰
2013 2 5634.6 959.9 199.9 967.7 ×28 8‰
2014 1 2740.6 734.9 224.8 737.6 ×12 4‰
Avg. ×31 4‰

In Table 10 we see that our decomposition speeds up the
solution time for the root node LP by more than thirty
times on average. This speed-up makes sense as the ma-
jority of the variables in the model are projected out in
the decomposition. What may come as a surprise is that
the objective value for five of the instances is larger in
the decomposition than in the original model. The rea-
son for this improvement is that the MIP solver manages
to heuristically generate some integer solutions for the de-
composition before it starts to solve the LP. These integer
solutions are infeasible and some of the cuts we generate
are the cuts (43) which are based on more information than
what is available for the original model, i.e., these cuts are
based on model (39) – (41). In our opinion, these results
illustrate that Benders’ decomposition is a powerful tool
for this problem, especially for massive datasets.

5. Conclusion

In this article, we proposed a Benders’ decomposition
on a Mixed Integer Programming (MIP) model for the
Curriculum-Based Course Timetabling problem. We also
described a heuristic to repair the solutions that were cut
away by the Benders’ feasibility cuts. Regarding lower
bounds, our approach obtained better results on average
compared to other MIP based approaches for the first four-
teen instances, from the second international timetabling
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competition. We compared our approach on a larger set
of data (a total of 32 instances) with the state-of-the-art
algorithm. We obtained a lower bound, which was at least
good on 23 of the 32 instances and we obtained a better
bound on eight instances. Furthermore, we improved the
currently best known lower bounds for two out of the 32
instances. Benders’ decomposition did not provide better
upper bounds than the non-decomposed model, thus, the
focus on feasibility in the heuristic was not sufficient to
improve the upper bounds. Lastly, we compared Benders’
decomposition to the MIP model, where the decomposi-
tion originated from, on six additional data instances that
are much larger than the other 32 instances. The results
revealed the benefit of implementing Benders’ decomposi-
tion as both the lower and upper bounds were improved
for all of the instances compared to the original model.
To the best of our knowledge, no other studies have tested
MIP based methods on these data instances; hence, we im-
proved the best known lower bounds for all six instances.
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Burke, E. K., Mareček, J., Parkes, A. J., Rudová, H., 2010.
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