
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/156847

Fanjul-Peyro, L.; Ruiz García, R.; Perea Rojas Marcos, F. (2019). Reformulations and an
exact algorithm for unrelated parallel machine scheduling problems with setup times.
Computers & Operations Research. 101:173-182. https://doi.org/10.1016/j.cor.2018.07.007

https://doi.org/10.1016/j.cor.2018.07.007

Elsevier



Reformulations and an exact algorithm for unrelated
parallel machine scheduling problems with setup times

Luis Fanjul-Peyróa, Rubén Ruiza, Federico Pereaa,∗

aGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática,
Ciudad Politécnica de la Innovación, Edifico 8G, Acc. B. Universitat Politècnica de

València, Camino de Vera s/n, 46021, València, Spain.

Abstract
Parallel machine scheduling problems have many practical and industrial
applications. In this paper we study a generalization which is the Unrelated
Parallel Machine scheduling problem with machine and job sequence Setup
times (UPMS) with makespan minimization criterion. We propose new mixed
integer linear programs and a mathematical programming based algorithm.
These new models and algorithms are tested and compared with the exist-
ing ones in an extensive and comprehensive computational campaign. The
performance of two popular commercial solvers (CPLEX and Gurobi) is
also compared in the experiments. Results show that the proposed methods
significantly improve on existing methods and are able to obtain solutions for
extremely large instances of up to 1000 jobs and eight machines with relative
deviations from lower bounds below 0.8%.
Keywords: Parallel machine, Scheduling, Sequence dependent setup times,
Makespan.

1. Introduction1

Industrial manufacturing scheduling entails the assignment of production2

activities to a limited number of available production resources. After the3

assignment, these activities must be scheduled with the objective of optimizing4

one or more key criteria. There are literally hundreds of different scheduling5
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problems as they model many different production processes. One important6

scheduling problem is the so called parallel machines scheduling problem,7

where n independent jobs (indexed by j) have to be assigned and scheduled to8

m machines (indexed by i) that may process jobs in parallel. Each job must9

be manufactured by exactly one machine without preemption. No machine10

can process more than one job at a time, and in principle any job can be11

assigned to any machine. In the most general case machines are said to be12

unrelated, meaning that the time needed to process a given job depends13

on the machine to which it is assigned. This time is known in advance,14

is deterministic and denoted as pij, i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}.15

Unrelated Parallel Machines scheduling problems (UPM) model high output16

production shops or even central stages in certain production processes, for17

example, the kiln firing stage in ceramic tile manufacturing. Without any18

other additional constraints or considerations, in the UPM, a job is processed19

when all previously assigned jobs on the same machine are completed. This20

completion time is referred to as Cj. With this in mind, the most commonly21

studied objective is the minimization of the maximum completion time. This22

is known as the makespan or Cmax. The UPM with this criterion is denoted23

as R//Cmax (Graham et al., 1979). This problem is NP-Hard even for the24

simplest case of just two identical parallel machines, denoted by P2//Cmax25

(Lenstra et al., 1977). Furthermore, the order in which the jobs are processed26

on a given machine is irrelevant to optimizing the Cmax. It is, therefore, a27

sort of assignment problem.28

However, practical industrial problems include a large number of additional29

considerations, such as the possibility of machine disruptions (see Yin et al.30

(2017)), competing agents that share the machines (see Yin et al. (2016))31

and many others. Among these, it can be argued that the most common one32

is the presence of setup times. Setups are usually non-productive activities33

carried out on the production lines between the production of consecutive34

products in the sequence. Cleaning, adjustments, reconfigurations and color35

preparations, etc. are examples of setups. The vast majority of production36

processes require these setups. As a result, the literature on scheduling with37

setups is extensive. Allahverdi (2015) has published a recent review (out of a38

series of three) which gathers no less than 500 papers in just the last 10 years.39

There are several types of setups. The most complex ones are setup times40

that depend on the machine and job sequence and at the same time are41

separable from the processing times. This paper considers the Unrelated42

Parallel Machine scheduling problem with sequence dependent Setup times43
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(UPMS) or R/sijk/Cmax, where sijk denotes the amount of setup time needed44

at machine i after having finished job j if the next job to be processed on45

this machine is k. Note that the setup times usually satisfy the triangular46

inequality, i.e.: sijk ≤ sij` + pi` + si`k, i ∈ {1, 2, . . . ,m}, j, k, ` ∈ {1, 2, . . . , n},47

j 6= k, j 6= `, k 6= `. While in theory this is only needed for some mathematical48

models, it makes sense from a practical point of view. Note that with the49

addition of setup times the UPMS is significantly harder than the UPM.50

First of all, the job sequence on each machine is no longer irrelevant as the51

setup times depend on the order in which jobs are processed on each machine.52

As a matter of fact, a special case of the UPMS with a single machine and53

where all processing times are zero can be modeled as a particular Traveling54

Salesman Problem (TSP). While the literature on the UPM is extensive (see55

Fanjul-Peyro and Ruiz, 2010, 2011 for some references), the UPMS has been,56

comparatively speaking, much less studied. Given its complexity, most existing57

literature deals with heuristics and metaheuristics, and the exact approaches58

proposed are only valid for relatively small to medium instances. One of the59

contributions of this paper is new mathematical reformulations for the UPMS.60

Mathematical programming models cannot compete with the various and61

powerful heuristics and metaheuristics designed to solve large-scale instances62

of the UPMS. However, since they help to better understand the problem, are63

easy to implement, replicate and modify, we devoted some effort to improving64

existing mixed integer linear programs (MILP) for the UPMS. Besides, a MILP65

model is often preferable to a specifically tailored algorithm as results are66

arguably harder to reproduce in this later case. The MILP models presented in67

this paper are able to solve instances of considerable size to almost optimality68

and with very small deviations from lower bounds. Additionally, based on69

these efficient MILPs, another contribution of this paper is the design of an70

efficient mathematical programming based algorithm. These methods can71

be used in exact algorithms (like the one in Section 5), or in combination72

with heuristic techniques. The latter results in the so-called matheuristics, see73

Fanjul-Peyro et al. (2017) for an example of the application of these techniques74

to scheduling problems. An added advantage of using MILP models is that75

one can benefit from the continuous improvements in MILP solvers. The76

same models will solve larger instances, and with shorter computational times77

if solvers become more efficient. Two recent state-of-the-art solvers will be78

compared in the appendix.79

In short, the contribution of this paper is twofold:80
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• new mathematical models for the UPMS that solve instances of up to81

n = 400 jobs and m = 4 machines, with deviations with respect to82

optimal solutions of less than 1%. This is a huge step from the state-of-83

the-art model found in the literature, which reported optimal solutions84

to instances of n = 60 jobs in Avalos-Rosales et al. (2015), although85

we were able to efficiently solve instances of n = 200 jobs and m = 486

machines with that model just by changing the solver (see Section 4).87

This fact supports our statement that mathematical models greatly88

benefit from the improvements in solvers. Furthermore, the models89

presented in this paper are more robust against changes in the solver90

than this state-of-the-art model, as we will show in the Appendix.91

• a new exact algorithm that combines some ideas from the literature and92

a new methodology with the proposed MILP models. This algorithm93

which solves instances of up to n = 1000 jobs and m = 8 machines with94

deviations with respect to optimal solutions of less than 1%. This is a95

significant improvement over the best known exact algorithm proposed96

for this problem by Tran et al. (2016), which was able to solve instances97

of up to 120 jobs (see Section 5).98

The rest of the paper is structured as follows. Section 2 reviews the99

literature on the problem. The problem is stated in Section 3 along with the100

state-of-the-art mathematical model to solve it. The first contribution of this101

paper is the MILP models introduced in Section 4. A new exact algorithm102

based on these MILP models is described in Section 5. All these models103

and algorithms are comprehensively tested in Section 6. Finally, in Section 7104

conclusions and future research directions are given. An Appendix shows two105

more MILP models and a comparison between CPLEX and Gurobi.106

2. Literature review107

As stated, the complexity of the UPMS has resulted in many studies108

with proposals of heuristic and metaheuristic algorithms. However, some109

efforts have been made to design exact approaches to solve the UPMS.110

The model presented in Guinet (1991) served as a basis for other MILP111

approaches, although optimality was guaranteed in small instances only. Some112

improvements on this MILP can be found in Vallada and Ruiz (2011), where113

problems of up to 14 jobs could be solved to optimality. In Vallada and114

Ruiz (2012), an adaptation of the model presented in Balakrishnan et al.115
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(1999) is proposed for weighted earliness-tardiness minimization. To the best116

of our knowledge, this model, which has a significantly reduced number of117

binary variables, has not been adapted to the makespan objective before,118

something that will be carried out in the Appendix. It was not until the last119

few years that much larger instances of the UPMS were solved to optimality.120

Avalos-Rosales et al. (2015) proposed a MILP that efficiently solved some121

instances of up to 60 jobs and 8 machines. A similar MILP previously served122

as a master problem in some iterative algorithms presented in Tran and Beck123

(2012) and Tran et al. (2016). The sizes of the problems solved in these last124

papers are much larger, reaching n = 120 jobs, although still far from the125

sizes we will solve in Section 6.126

Because exact algorithms did not prove efficient in solving real life instances127

of this problem until recently, more papers on heuristic and metaheuristic128

approaches can be found in the literature. In Glass et al. (1994), some129

metaheuristics that rely on a local search are explored. A heuristic based on130

set partitioning is proposed in Al-Salem (2004). Later, another heuristic in131

Rabadi et al. (2006) and a tabu search in Helal et al. (2006) proved closer132

to optimality than Al-Salem (2004). All these algorithms were improved on133

by the ant colony optimization presented in Arnaout et al. (2010), while the134

genetic algorithm (GA) presented by Vallada and Ruiz (2011) was able to135

give even smaller deviations from best known solutions. Another GA was136

proposed by Yilmaz Eroglu et al. (2014). A complex inmune-based method was137

presented by Diana et al. (2014). More recently Wang et al. (2016) presented138

a hybrid between an estimation of distribution and iterated greedy methods139

with good results. In any case, and as we will show in Section 6, we are able to140

solve very large instances to almost optimality with the proposed approach.141

Note that we are not reviewing the large body of research concerning142

problems related to the UPMS with other objectives, constraints and situations143

as it is beyond the scope and space limitations in this paper. The interested144

reader is referred to (Allahverdi, 2015) for an in-depth review.145

3. State-Of-The-Art model146

The Unrelated Parallel Machine scheduling problem with Setups (UPMS)147

takes the following input data: 1) A set of jobs N = {1, ..., n}, indexed by148

j, k, `. For modeling purposes it will be useful to enlarge the set N so that it149

includes a dummy job denoted by 0. This new set is denoted by N0 = N ∪{0}.150

The dummy job is needed in the TSP-like formulations of the problem, and151
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can be viewed as the depot in the TSP. 2) A set of machines M = {1, ...,m}152

that can process these jobs, indexed by i. 3) A matrix P ∈ R(m)×(n+1)
+ , with the153

processing times pij ≥ 0 that job j needs on machine i where no preemption154

is allowed. Note that pi0 = 0, ∀ i ∈ M . 4) A matrix S ∈ Rm×(n+1)×(n)
+ with155

the setup times. After processing job j on machine i a setup time sijk ≥ 0156

is needed if the next job processed on i is k. The objective is to find the157

sequence of jobs processed on each machine that minimizes the makespan.158

We now define the concept of successor and predecessor in the UPMS context.159

160

Definition 3.1. Let j, k ∈ N be two jobs processed on the same machine161

i ∈M . We say that k is the successor (predecessor) of j on machine i if j is162

processed immediately before (after) k, and there are no other jobs processed163

between them on i.164

Note that k is the successor of j if and only if j is the predecessor of k.165

To the best of the authors’ knowledge, the most efficient MILP for the166

UPMS is the one found in Avalos-Rosales et al. (2015). This formulation uses167

variables X, Y,C:168

• Xijk = 1 if k is the successor of j on machine i, zero otherwise.169

• Yij = 1 if j is processed on machine i, zero otherwise.170

• Cj ≥ 0 is the completion time of job j.171

We will see later that variables Y are relaxed in this formulation. The
MILP presented in Avalos-Rosales et al. (2015), that we denote as AAA,
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consists of:

min Cmax (1)
s.t.

∑
j∈N0,k∈N,k 6=j

sijkXijk +
∑
j∈N

pijYij ≤ Cmax, i ∈M (2)
∑
k∈N

Xi0k ≤ 1, i ∈M (3)
∑
i∈M

Yij = 1, j ∈ N (4)

Yij =
∑

k∈N0,j 6=k

Xijk, i ∈M, j ∈ N (5)

Yik =
∑

j∈N0,j 6=k

Xijk, i ∈M,k ∈ N (6)

Ck − Cj + V (1−Xijk) ≥ sijk + pik,

j ∈ N0, k ∈ N, j 6= k, i ∈M (7)
C0 = 0 (8)
Cmax ≥ Cj, j ∈ N (9)
Xijk ∈ {0, 1}, Yij ≥ 0, Cj ≥ 0.

Constraints (2) define the makespan (note that the left hand side of these172

constraints define the amount of time that machine i is busy). Constraints (3)173

ensure that at most, one job is scheduled as the first on each machine after the174

dummy job. Constraints (4) state that each job is to be processed on exactly175

one machine. Constraints (5) ensure that all jobs have one successor (possibly176

the dummy, as this model includes dummy jobs at the end of each machine) on177

the machine in which they are processed. Analogously, constraints (6) ensure178

that all jobs have one predecessor on the machine in which they are processed.179

Constraints (7) provide a right processing order and break subtours. They180

impose that if k is the successor of j on machine i, then k should be completed181

in at least sijk + pik units of time after j is completed. Constraint (8) sets the182

completion time of the dummy job to zero. Constraints (9) are feasible cuts183

that proved efficient in Avalos-Rosales et al. (2015). The reader should note184

that the structure of the problem allows for variables Yij to be relaxed and185

are therefore defined as positive instead of binary. This is true because Yij is186

defined as the sum of binary variables Xijk, constraints (5) and (6), this sum187

being bounded from above by 1 in constraints (4). In Avalos-Rosales et al.188

(2015), it is reported that this MILP model (referred to as model 2b in the189
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original paper) efficiently solves some instances of up to 60 jobs.190

In order to avoid confusion, in this paper variables are represented by191

capital letters, while parameters are represented by small letters.192

4. The proposed models193

The traveling salesman problem (TSP) is a well-known problem in combi-194

natorial optimization. Given a graph (N,A), with an identified origin node195

usually called the depot (which may or may not be in N), the TSP asks for the196

minimum length route that visits all nodes of N exactly once while starting197

and finishing at the depot. If only one machine is considered, and the setup198

times are sequence dependent (like our problem), then the corresponding199

scheduling problem is a TSP, see Pinedo (2005). When one considers that200

more than one salesman is available, and that each city must be visited201

by exactly one salesman, we have a multiple traveling salesman problem202

(m-TSP), see Bektas, 2006; Kara and Bektas, 2006. This would cover the case203

of identical machines processing jobs in parallel. A special case of m-TSP204

arises when the costs associated with traversing the arcs in A need not be205

the same for all salesmen. This new problem is called the heterogeneous206

m-TSP, and better reflects our UPMS problem, as machines process jobs at207

different speeds, and the setup times also depend on the machines. To the208

best of our knowledge, this heterogeneous m-TSP has seldom been addressed209

in the literature (Sundar and Rathinam, 2015). However, its extension as a210

heterogeneous fleet vehicle routing problem has received much more attention.211

The interested reader is referred to the survey in Koç et al. (2016).212

In summary, the UPMS can be seen as an heterogeneous m-TSP, in which213

the jobs correspond to cities, and the machines correspond to salesmen. If214

two cities j and k are visited one after the other by the same salesman i215

in the heterogeneous m-TSP, in the corresponding UPMS we say that k is216

the successor of j on machine i. The cost for the salesman (machine) i of217

traversing the arc linking cities j and k (of processing job j and then k) is218

equal to pij + sijk.219

The MILPs that we propose in this section share the structure defined by220

equations (1) to (6) which include variables X and Y . Note that constraints221

(7) are basically subtour elimination constraints (SEC) and there are many222

options for these in the underlying m-TSP. In this section, we substitute (7),223

(8) and (9) by other SEC and cuts. Note that without these three sets of224
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constraints variables Cj are no longer needed. Instead, we define the following225

set of variables:226

• Uj ∈ Z+ is a lower limit on the number of jobs processed before j on the227

machine where j is processed. We will see that due to the structure of228

the constraints involving these variables they can be relaxed to Uj ≥ 0.229

4.1. Subtour elimination constraints230

Two different subtour elimination constraints will be tested to substitute
(7). The first one is:

Uj − Uk + n
∑
i∈M

Xijk ≤ n− 1, j, k ∈ N, j 6= k. (10)

This set of constraints ensures that, if k is the successor of j on any machine231

(and therefore ∑
i∈M Xijk = 1), then Uk ≥ Uj + 1. Otherwise (∑i∈M Xijk = 0),232

they set the upper bound Uj ≤ n − 1. These constraints are adapted from233

the well-known Miller-Tucker-Zemlin (MTZ) constraints, and have been234

extensively used to break subtours of the single TSP and its variants ever235

since they were proposed in Miller et al. (1960).236

The second SECs are adapted from those proposed by Desrochers and
Laporte (1991) for the single TSP, which make the relation between the X
and the U variables stronger than in the MTZ constraints:

Uj − Uk + n
∑
i∈M

Xijk + (n− 2)
∑
i∈M

Xikj ≤ n− 1, j, k ∈ N, j 6= k. (11)

These constraints will be denoted as DL. Note that they impose for any pair237

of jobs j and k where k is the successor of j, that Uk = Uj + 1 (as opposed238

to Uk ≥ Uj + 1 in MTZ). In any other case, they impose the upper bound239

Uj ≤ n− 1 (like in MTZ).240

4.2. Valid inequalities241

It should be noted that both the MTZ and DL constraints were designed242

for the standard TSP (with one salesman only), where variables Uj take all243

integer values ranging from 0 to n− 1. In the UPMS, this is not necessarily244

true (this would be true only if one machine processed all jobs). To illustrate,245

consider a UPMS problem instance with 10 jobs and more than one machine. If246

one of the machines processes jobs 1,2,3, we could have U1 = 0, U2 = 1, U3 = 2.247

But we could also have U1 = 7, U2 = 8, U3 = 9 or infinite many other different248
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combinations. In order to reduce the feasible set without missing potential249

optimal solutions, the following sets of valid inequalities are proposed to250

narrow down the possible values that variables Uj may take.251

The first set of valid inequalities we propose are adapted from some252

initially designed for an m-TSP in Kara and Bektas (2006). These constraints,253

denoted as KB, are:254

Uj + (n− 2)
∑
i∈M

Xi0j −
∑
i∈M

Xij0 ≤ n− 2, j ∈ N, (12)

Uj +
∑
i∈M

Xi0j ≥ 1, j ∈ N. (13)

The following proposition proves that KB are actually valid inequalities.255

Proposition 4.1. Constraints KB, (12) and (13), are valid inequalities for256

the UPMS.257

Proof. The proof is similar to the one found in Kara and Bektas (2006).258

Only four cases are possible:259

1. If j is the first and last job to be processed on its machine, ∑
i∈M Xi0j =260

1,∑i∈M Xij0 = 1, the two constraints imply 0 ≤ Uj ≤ 1.261

2. If j is the first but not the last job to be processed on its machine,262 ∑
i∈M Xi0j = 1,∑i∈M Xij0 = 0, the two constraints imply Uj = 0.263

3. If j is the last but not the first job to be processed on its machine,264 ∑
i∈M Xi0j = 0,∑i∈M Xij0 = 1, the two constraints imply 1 ≤ Uj ≤265

n− 1.266

4. If j is neither the first nor the last job to be processed on its machine,267 ∑
i∈M Xi0j = 0,∑i∈M Xij0 = 0, the two constraints imply 1 ≤ Uj ≤268

n− 2.269

�270

We now propose another set of valid inequalities, by slightly modifying
(12) so it becomes:

Uj + (n− 1)
∑
i∈M

Xi0j ≤ n− 1, j ∈ N. (14)

These constraints impose that if a job j is the first job on one machine then271

Uj = 0 regardless whether j is also the last job or not. The new set of valid272

inequalities consists of (14) and (13), and is denoted as AM. The following273
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proposition, which can trivially be proved, shows that these constraints are274

actually valid inequalities for the UPMS problem.275

Proposition 4.2. Constraints AM, (14) and (13), are valid inequalities for276

the UPMS.277

By combining the two types of SEC, and the two sets of valid inequalities278

proposed, we build six MILP models. They all share the structure defined by279

(1) to (6). Their differences rely on the type of SEC constraint used and the280

valid inequalities applied (if any). The different models proposed are denoted281

as XXX-YY, where XXX stands for the type of SEC used (MTZ or DL), and282

YY stands for the type of valid inequalities (blank if no valid inequalities are283

added, KB if (12) and (13) are added and AM if (14) and (13) are added).284

Table 1 summarizes this notation.285

No valid inequalities (12) and (13) (14) and (13)
SEC (10) MTZ MTZ-KB MTZ-AM
SEC (11) DL DL-KB DL-AM

Table 1: Notation of different MILP models proposed. All models include (1) to (6). By
rows, the type of SEC applied. By columns, the valid inequalities added (if any).

As we will show in the experiments section, our models are able to solve286

instances of relatively large sizes (say 400 jobs and four machines). However,287

if one wants to solve problems with more jobs and machines (say 1000 jobs288

and eight machines), then other types of algorithms are needed. Therefore,289

in the next section we describe an exact algorithm that uses variants of the290

MILPs shown above.291

5. A mathematical programming based algorithm292

Recently, Tran et al. (2016) have published a branch and check decomposi-293

tion algorithm that proves efficient when solving instances with up to 120 jobs.294

In their decomposition methods, a master problem, which basically consists295

of constraints (1) to (6) relaxing X variables and imposing Y ∈ {0, 1}, is296

solved. This solution gives a feasible assignment of jobs to machines. The297

cycles created in the solutions obtained by this master problem are broken298

by means of the Concorde TSP solver1, yielding optimal schedules on each299

1http://www.math.uwaterloo.ca/tsp/concorde.html
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machine for the assignments given by the master problem. This algorithm300

iterates in this way, possibly adding cuts, until optimal solution (cycle-free)301

is found or a given time limit is reached.302

In this section we present an algorithm which takes some of the ideas303

presented in Tran et al. (2016) with a new methodology and combines them304

with our MILP models in order to efficiently solve UPMS instances of large305

sizes. Basically, we use our relaxed model as the master problem, find an306

assigment of jobs to machine and then find a feasible solution for each machine307

afterwards, by means of a unique MILP. More specifically, the algorithm works308

with the following master problem:309

min Cmax

s.t.:(2), (3), (4), (5), (6) (Master)
CUTS

Xijk ∈ [0, 1], Yij ∈ {0, 1}.

Note that no SEC constraints are added and that X variables are relaxed,310

whereas Y variables are binary, as opposed to our original MILP models (see311

Section 4). A solution to Master will be denoted as (CM
max, X

M , Y M). Note312

that this solution gives a feasible assignment of jobs to machines by means of313

Y M , but not necessarily a feasible sequence of jobs in each machine.314

In the first iteration of the algorithm, the master problem is solved with315

CUTS = ∅, allowing for a 2% gap, similar to the gap used in Tran et al.,316

2016. Additionally, in this first iteration a maximum CPU time equal to317

90% of the total time allowed for the algorithm is imposed. In this way, we318

ensure that there is time left to find a feasible cycle-free sequence in the319

remaining 10% of the time. We chose 90% because it yielded good trade-offs320

between the efficiency and the quality of the solution returned in preliminary321

experiments. In subsequent iterations the next feasible solution to the master322

problem will be looked for. In either case (first iteration or following iterations),323

these solutions yield feasible job-machine assignments, given by the values324

of variable Y , denoted by Y M . However, no feasible sequence is guaranteed325

as the X variables are relaxed and no subtour elimination constraints are326

included. The integrality of the X variables will be enforced in the next phase327

of the algorithm, when solving the sequencing problem.328

From the assignments Y M obtained in the master problem, a feasible329

sequence is built by solving the complete MILP model in which we minimize330
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the sum of the machine completion times using one of our models. Since this331

assignment is fixed, we define the parameter yM = Y M , to be used in the332

next model. We chose the combination MTZ-AM since it yielded the best333

results (see the experiments section). Therefore, this problem, that we call334

Sequencing(yM), results in:335

min
∑
i∈M

∑
j∈N0,k∈N,k 6=j

sijkXijk +
∑
j∈N

pijy
M
ij (15)

s.t.:(3), (5), (6), (10), (14), (13) (Sequencing(yM))
Xijk ∈ {0, 1}, Uj ≥ 0.

It should be noted that in (5) and (6), variables Yij are substituted by336

the assignment previously found in the master problem yM
ij . A solution to337

Sequencing(yM) will be denoted as (C∗max, X
∗, yM). Note that this solution338

is a feasible sequence of jobs in each machine, given by X∗, that is, a feasible339

solution to the UPMS.340

Afterwards, if the solution to Master was optimal, cuts are added to the
master problem as in Tran et al. (2016), Section 4.4. If Nh

i denotes the set of
jobs assigned to machine i in the master problem of iteration h, the proposed
cut at iteration h (denoted by CUT (h)) is:

CUT (h) : Cmax ≥ Chi∗
max −

∑
j∈Nh

i

(1− Yij)θhij, (16)

where Chi∗
max is the makespan found in the master problem of iteration h for341

machine i and θhij = pij +maxk∈Nh
i ,k 6=j{sikj} is the sum of the processing time342

of job j on machine i, plus the maximum setup time between any of the jobs343

assigned to i at iteration h and job j itself. This cut imposes a lower bound344

on the makespan in future iterations and is proven to not remove globally345

optimal solutions, see Tran et al. (2016), Theorem 1. Therefore, the solutions346

to Master are lower bounds to the optimal solution of the global problem.347

After updating the cuts of the master problem a new iteration starts348

unless the best feasible solution found so far is proven to be optimal, or there349

is no more time left in the algorithm. Note that if the solution to the master350

problem is optimal, and its value is equal to the value of the best feasible351

solution found, then such a feasible solution is guaranteed to be optimal352

and the algorithm stops (as the Master problem gives a lower bound on the353

optimal solution to UPMS). We denote this algorithm as MPA (Mathematical354
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Programming based Algorithm). Algorithm 1 presents a pseudocode of MPA.355

The main differences between the proposed MPA and the algorithms in356

Tran et al. (2016) are:357

• We first use the master problem, without a lower bound, to find a358

feasible assignment. The feasible sequence is found using one of the359

MILPs proposed obtainign a feasible solution for all machines in a single360

go, instead of repeatedly calling Concorde’s TSP solver for each machine.361

We did not use Concorde because of the huge size of the problems we362

aim at solving. Note that, in order to transform the sequencing problem363

of the UPMS into a standard TSP, one needs to triple the number of364

jobs in the scheduling problem in order to get the number of nodes in365

the TSP, see Tran et al. (2016). This implies that, for example when366

dealing with an instance of n = 1000 jobs and m = 2 machines, each367

one of the two machines will have to process around 500 jobs. Therefore,368

for the corresponding sequencing problem one needs to solve a TSP369

with at least 1500 nodes. Furthermore, this has to be carried out for370

each machine. While Concorde is able to solve large TSP instances, the371

CPU times quickly escalate after 500 nodes and make the approach372

basically intractable for such large instances.373

• Our first solution to the master allows a 2% of gap (similar to the374

LBBD in Tran et al. (2016)) and uses at most, 90% of the total time of375

the algorithm. In following iterations we find the next solution to the376

master (like the branch-and-check in Tran et al., 2016).377

• We do not calculate a feasible sequence if the solution to the master378

problem does not have a value lower than the best solution feasible for379

the UPMS found so far.380

• We do not add cuts until the master problem solution is optimal (without381

a gap). This allows us to move towards good solutions without wasting382

time trying to improve solutions that are not promising.383

6. Computational experiments384

Three groups of instances have been used for the computational campaign:385

small, medium and large. For the small instances, we run our six MILP386

models, two models introduced in the Appendix, and the best model found in387
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Data: A UPMS problem instance
Set STOP = False, BestV al = +∞, T imeLeft =
TotalT ime, CUTS = ∅, h = 0
while STOP = False and Timeleft > 0 do

h = h+ 1;
if h = 1 then

Solve Master to GAP ≤ 2% or TimeAvailable = 0.9Timeleft.;
else

Find the next solution to Master ;
end
Let (CM

max, X
M , Y M) be the solution found ;

Let Chi∗
max be the makespan of machine i in this iteration h;

Set yM = Y M and update Timeleft;
if CM

max < BestV al then
Solve Sequencing(yM) with TimeAvailable = TimeLeft;
Let (C∗max, X

∗, yM) be the solution found;
BestV al = min{BestV al, C∗max};
if (CM

max, X
M , Y M) is optimal in Master then

CUTS = CUTS ∪ {CUT (h)}
end

else
if (CM

max, X
M , Y M) is optimal in Master then

STOP = True, optimal solution found;
end

end
Update Timeleft.

end
Algorithm 1: Pseudocode of MPA. TimeAvailable denotes the maximum
CPU time given to the solver. Note that the solution to Sequencing(yM),
(C∗max, X

∗, yM), is a feasible solution to UPMS whereas the solution to
Master, (CM

max, X
M , Y M), may not be feasible for the UPMS.
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the literature (AAA). Since these instances were not useful for comparing the388

performance of the different MILP models, their results are not explained here389

but in the Appendix. For the medium instances, we also run our mathematical-390

programming-based algorithm (MPA). In order to compare our MPA with the391

methodology proposed in Tran et al. (2016), we implemented a Branch-And-392

Check algorithm using our tools: Gurobi instead of SCIP as a solver, and our393

mathematical programming models instead of Concorde in the sequencing394

problem. We denote this implementation as B&C. We were forced to carry out395

our implementation with these changes since we were not able to reproduce396

the code provided by the authors in Tran et al. (2016) after a large amount of397

hours devoted to it and frequent communication exchanges with the original398

authors, who kindly helped us. This implementation is far more similar to399

MPA and allows for a better comparison between the two methodologies.400

Besides, as we will see in the results, this implementation yields better results401

than those reported in Tran et al. (2016). In the large instances, we run the402

two MILP models that produced the best results in the medium instances403

(AAA, MTZ-AM), our algorithm MPA and the implementation of the Branch-404

and-Check methodology of Tran et al. (2016) (B&C).405

6.1. Instances generation and experimental setting406

The sets of small and large instances have been created for this paper and407

are available from the authors upon request. In these two sets, the processing408

times pij were randomly generated following an integer uniform distribution409

U(1, 100). The rest of the input data is explained below. The set of medium410

instances is the same as in Tran et al. (2016), which in turn are obtained411

from Arnaout et al. (2010). Note that after the communication exchanges412

with Tony T. Tran, it was found that the results shown in Tran et al. (2016)413

for the instances of Arnaout et al. (2010) are not correct as these instances414

contain initial setup times (a setup before the first job in the sequence), which415

are placed in the diagonals of the setup matrix (j = k) but in Tran et al.416

(2016) it was assumed that these setups where in the first column. We want417

to underline that, although these results are not correct, the algorithm in418

Tran et al. (2016) is valid, and the incorrectness of the results comes from419

a confusion when reading the input data of the instances in Arnaout et al.420

(2010). Therefore, we had to get a new set of results over the same instances421

from Tony T. Tran, which we kindly appreciate.422

For the small set we have three different factors defining each instance with423

the following levels: 1) n ∈ {10, 20, 30, 40}, 2) m ∈ {2, 4, 6, 8} and 3) Setup424
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times randomly generated following four different integer uniform distributions:425

{U(1, 9), U(1, 49), U(1, 99), U(1, 124)}. We generated 10 instances of each426

combination of factors, having in total 10× 4× 4× 4 = 640 instances. The427

results over this set of instances is shown in the appendix, as they did not428

give significant information about the differences in performance between the429

models and algorithms tested.430

In the medium instances the number of jobs is n ∈ {40, 60, 80, 120}. The431

following number of machines were tested: for n = 40, m = 2, for n ∈ {60, 80},432

m ∈ {2, 4}, for n = 100, m ∈ {2, 4, 6}, and for n = 120, m ∈ {2, 4, 6, 8}. 15433

replicates are given for each combination, having in total 180 instances. These434

are the instances employed by Tran et al. (2016).435

Finally, for the large instances, we again have all combinations of the436

following factors: 1) n ∈ {200, 400, 600, 800, 1000}, 2) m ∈ {2, 4, 6, 8} and 3)437

Setup times randomly generated as in the small instances. We generated 10438

instances of each combination of factors, having in total 10× 5× 4× 4 = 800439

instances.440

The MILP models were run for a maximum CPU time of one hour (3600441

seconds) for the small instances, and three hours (10800 seconds), as in Tran442

et al. (2016), for the medium and large instances. The solver of choice was443

Gurobi version 7.0.2, because the MILP models tested seem to perform better444

with Gurobi than with CPLEX, see the Appendix. It must be underlined445

that such difference is specially significant for the AAA model, which stops446

being competitive even for medium instances if using CPLEX. Coding is447

performed with Visual Studio 2015 IDE. The experiments in this paper are448

carried out on virtual machines with 2 virtual processing cores and 16 GBytes449

of RAM running Windows 10 Enterprise 64 bits OS. Virtual machines are450

managed by an OpenStack virtualization platform running on 12 blades, with451

four 12-core AMD Opteron Abu Dhabi 6344 processors at 2.6 GHz. and 256452

GBytes of RAM each. The virtual machines are used in numbers with a453

random distribution of experiments so as to speed up the completion of all454

the experimentation without parallel computing.455

We employ different performance indicators, but the main one is the456

average relative percentage deviation (RPD) with respect to the optimum457

solution or best lower bound found. This is calculated as follows: RPD =458

100Cmax(Model)−LB(Best)
LB(Best) , where LB(Best) is the highest value found for a given459

instance between the lower bounds or the optimal solution to any of the MILP460

models and algorithms.461

All binaries and detailed results, logs and files are available as accompa-462
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nying on-line materials.463

6.2. Results and discussion464

As we mentioned before, small instances do not show significantly different465

performance when comparing our MILP models and AAA, and are therefore466

analyzed in the Appendix for the sake of completeness and readability. Moving467

on to the medium instances, we show in Table 2 the average results over the 180468

instances. Column “Algorithm” refers to the MILP model or algorithm tested,469

column “RPD shows the average relative percentage deviation, column “Opt”470

refers to the percentage of instances in which the corresponding algorithm471

found the optimal solution and proved such optimality, and column “Time”472

shows the average CPU time in seconds. We test our six proposed MILP473

models, the AAA MILP model, the implementation of the Branch-and-Check474

methodology of Tran et al. (2016) (B&C) and our Mathematical-Programming-475

Based algorithm (MPA). The last row corresponds with the data directly476

provided by Tony T. Tran for these medium instances. Recall that these477

results are not the same as those reported in Tran et al. (2016) due to the478

aforementioned problem when considering the initial setup times. Furthermore,479

they were obtained on an Intel Core i7 CPU running at 3.0 GHz with 12480

GBytes of RAM. Note that this CPU is faster that the CPU we use in our tests.481

The results from Table 2 show that even model AAA of Avalos-Rosales et al.

Algorithm RPD Opt% Time
AAA 0.41 47 6079
DL 0.52 40 7249
DL-AM 0.48 37 7299
DL-KB 0.52 36 7371
MTZ 0.56 36 7411
MTZ-AM 0.47 39 7069
MTZ-KB 0.54 37 7330
B&C 0.23 44 6129
MPA 0.29 44 6106
Tran et al. (2016)∗ 0.48 0 10 800

Table 2: Summary of average results in the medium instances (times in seconds). ∗ Data
provided by Tony T. Tran via private communication.

482

(2015), with 0.41% of RPD and 47% of optimal solutions, improves results of483

Tran et al. (2016), with 0.48% of RPD and 0% optimal solutions. Additionally484
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the implementation of the B&C clearly improves on the results of the original485

implementation of Tran et al. (2016) (corrected results). We manage to obtain,486

in a slower computer, an RPD of 0.23 compared to the 0.48 supplied by Tony487

T. Tran. While this seems a small difference in absolute terms, it is quite488

large as our implementation gives 48.16% lower RPD results. Besides, the489

results we were provided by Tony T. Tran did not prove optimality in any490

instance. Note that the average time of this algorithm is 10800 seconds, the491

maximum. This is due to the fact that no solution returned was proven to492

be optimal, and therefore the algorithm would not stop until reaching the493

maximum CPU time available.494

As for the models, AAA seems to perform slightly better than ours in these495

instances (lower RPD and higher optimality rate). Regarding our models,496

MTZ-AM seems to perform slightly better than the others (lowest average497

RPD and second highest optimality rate). The tests with medium instances498

are still not sufficient to check the best method in the comparison as AAA,499

B&C and MPA are all below 0.5% in RPD. It has to be stressed that these500

percentage deviations are obtained either from optimum solutions or from501

the best known lower bounds, which basically means that the algorithms are502

very close to optimality. Therefore, we had to compare in larger instances.503

504

Table 3 shows the average results over the set of large instances, broken505

down by n and m values for the two MILP models that yielded the best506

results in the medium instances: AAA and MTZ-AM. Globally speaking,507

MTZ-AM performs best in terms of average RPD. However, in the case of508

200 jobs, AAA seems to give slightly better results. It is for n = 400 that our509

proposed model MTZ-AM clearly outperforms the AAA model. Furthermore,510

AAA needs long CPU times (even longer than the allowed 10800 seconds).511

The reason for this excess in time is that Gurobi cannot be stopped until512

heuristics and root node are solved and, in many instances, this went over the513

three-hour CPU time limit. In any case, more than four machines presents514

a problem for both models, as is the case when n > 400. We would like515

to stress however, that average RPD values of less than 1% from optimum516

solutions or lower bounds in the UPMS problem, up to 400 jobs and four517

machines, is a big improvement over the previous recent literature where518

no more than 60 jobs could be solved to this degree of precision. However,519

regarding optimality rates, AAA seems to find optimal solutions more often520

than MTZ-AM. The reader should note that this heavily depends on the521

solver used, as AAA model yields worse results when using CPLEX (see the522
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Appendix) in comparison with our MILP models.523

AAA MTZ-AM
n m RPD Opt% Time RPD Opt% Time

200

2 0.00 100 405 0.01 72 4056
4 0.28 27 8159 0.60 25 8714
6 1.21 20 9743 2.41 0 10 802
8 4.74 0 10 857 4.88 0 10 817

Average 1.56 37 7291 1.98 24 8597

400

2 7.14 92 2965 0.09 52 6224
4 26.41 10 11 439 0.85 10 10 056
6 552.88 2 13 045 167.18 2 10 558
8 1796.33 0 14 227 528.92 0 10 803

Average 595.69 26 10 419 174.26 16 9410
Tot. average 298.63 31 8855 88.12 20 9003

Table 3: Summary of results in the large instances for the best proposed MILP model and
AAA. Times in seconds.

In order to compare our methodology with that of the Branch-And-Check524

in Tran et al. (2016), we test both implementations over the large instances525

(using the same solver, Gurobi, and the same way of finding feasible sequences,526

model MTZ-AM). The results of these experiments are shown in Table 4.527

We added to the table three additional columns. “Best” corresponds to the528

time at which the best feasible solution returned by the algorithm was found.529

“Master” and “Sched” show the average CPU time in seconds spent solving530

the master problem and the sequencing problem respectively. We note that531

both algorithms perform similarly when n = 200 in terms of the quality of532

solution (RPD), although B&C seems to find the best solution a bit faster533

and has a small RPD advantage. However, for n ∈ {400, 600} we see how534

our MPA produces much lower average RPD than B&C and also utilizes535

shorter CPU times. It is worth noting that such RPD is computed against536

the best lower bound given by any of the algorithms. B&C was not able to537

cope with instances larger than n = 400 and m = 8 or n = 600 and m ≥ 4.538

Still, we tested the proposed MPA algorithm for instances of really large sizes539

(n = 800, 1000), and we observed that the quality of solutions (again measured540

against the best lower bound) is excellent, always being below 0.8% average541
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B&C MPA

n m RPD Time Best Master Sched RPD Time Best Master Sched

200

02 0.00 406 114 233 172 0.00 345 101 248 97
04 0.12 6238 2221 6037 201 0.12 5959 1589 5865 95
06 0.72 8383 3986 8223 160 0.91 8384 1876 8344 40
08 2.13 10 186 5570 10 086 100 2.68 10 388 2421 10 376 12

Average 0.74 6303 2973 6145 158 0.93 6269 1497 6208 61

400

02 0.00 1651 1112 710 941 0.00 924 355 665 259
04 0.09 7337 4301 5905 1432 0.05 7445 3340 7227 217
06 0.48 10 157 5427 8824 1333 0.40 10 366 3337 10 267 99
08 66.10 10 807 5985 9721 1086 0.98 10 807 4957 10 726 80

Average 16.67 7488 4206 6290 1198 0.36 7385 2997 7221 164

600

02 0.00 4172 3610 597 3575 0.00 1292 926 901 390
04 133.49 8859 7709 5437 3422 0.05 8196 5353 7777 415
06 282.93 10 139 7122 7252 2887 0.27 10 221 6546 9980 241
08 454.70 10 815 8350 8206 2606 0.87 10 734 5653 10 603 130

Average 217.78 8496 6698 5373 3122 0.30 7611 4620 7315 294

800

02 0.00 3036 2802 1628 1407
04 0.07 9878 7096 9377 485
06 0.65 10 741 7123 10 420 307
08 0.78 10 835 4957 10 644 191

Average 0.37 8623 5494 8017 598

1000

02 0.00 5444 5229 1952 3484
04 0.17 10 361 7057 9685 673
06 0.70 10 833 5747 10 483 350
08 0.76 10 386 6029 9984 272

Average 0.41 9256 6015 8026 1195

T. aver. 78.40 7429 4626 5936 1493 0.47 7829 4125 7358 462

Table 4: Summary of results in the large instances for the B&C reimplementation and the
proposed MPA. Times in seconds
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RPD. It is also interesting to observe that both algorithms spend most of542

the CPU time solving the master problem. In our MPA, the proportion of543

time spent on the sequencing problem is around 5.9% of the total time used.544

Therefore, even if Concorde was a faster option than the adaptation of our545

MTZ-AM for the sequencing part, the global improvement in either algorithm546

would be residual as it would affect this 5.9% of the total time used. As a547

general observation, our proposed MPA is able to generate average relative548

percentage deviations from lower bounds of 0.41% in the largest instances549

of 1000 jobs for the UMPS. This significantly improves upon the previous550

recent results in the literature by Tran et al. (2016) of about 2.48% RPD for551

n = 120.552

It is interesting to note the high computational times for the solution of553

the scheduling problem within the B&C algorithm. This is due to the fact554

that the differences between B&C and MPA are important, and have an555

effect in the scheduling problem time. Basically, B&C carries out many more556

master-scheduling iterations than MPA, as B&C makes every master solution557

feasible whereas MPA does not call the scheduling subproblem until a 2%558

gap or lower is reached. This results in the large differences in time in this559

part of the algorithms.560

We observe that the RPD values of B&C are already close to 500% on561

average for n = 600 and 8 machines. For n = 800, the RPD values climbed562

so high that resulted in absurd averages. For n = 1000 the algorithm started563

having memory problems and no feasible solutions were found. Therefore we564

avoided including the results of the B&C algorithm for n ∈ {800, 1000}.565

7. Conclusions and future research566

In this paper we have studied the unrelated parallel machine scheduling567

problem with sequence dependent setup times (UPMS). We have proposed568

improvements on existing mathematical formulations, based on adaptations of569

subtour elimination constraints. More precisely, we have modeled the UPMS570

as a particular heterogeneous m-TSP. Furthermore, in order to accelerate571

the solution of the proposed models, we have also proposed two sets of572

valid inequalities that proved useful in the experiments. Thanks to these573

improvements, our mixed integer linear programs (MILP) are able to give574

near-optimal solutions to instances of up to 400 jobs and four machines in less575

than three hours. The best MILP model proposed in the literature, Avalos-576

Rosales et al. (2015) and referred to as AAA, has also been tested in this paper,577

22



and is able to cope with instances of up to 200 jobs and eight machines. In any578

case, even the best model combined with the most effective solver is unable to579

cope with larger instances, with a limit that surfaces around 400 jobs and six580

machines. For this reason, we have developed a mathematical-programming-581

based algorithm (MPA) that uses the MILP models we introduced before in582

a decomposition approach. This algorithm is able to obtain solutions that are583

close to optimality all the way up to 1000 jobs and eight machines, which is a584

significant leap forward compared to the existing literature on this problem585

(60 jobs for MILP models and 120 jobs for exact algorithms). Furthermore,586

we have observed that a large percentage of the feasible solutions provided587

by MPA when the time limit is reached are indeed optimal, but MPA is not588

able to prove this optimality for such large instances in the three-hour CPU589

time limit. Another important conclusion reached in this paper relates to the590

choice of a suitable solver. An updated solver is able to solve instances of591

up to 200 jobs for the AAA model of Avalos-Rosales et al. (2015), up from592

the 60 jobs of the original authors just two years before the writing of this593

paper. The same can be said about our reimplementation of the B&C of Tran594

et al. (2016). We have been able to solve instances of up to 600 jobs with an595

efficient reimplementation. Comparatively, the original authors were only able596

to solve instances of up to 120 jobs with faster computers and yet obtained597

worse results. It is clear that the choice of solver and version goes a long way598

in relation to efficiently solving the UPMS. As shown in the Appendix, we599

conclude that Gurobi is more suitable than CPLEX for the MILP models600

analyzed in this paper.601

Avenues for future research could go in multiple directions. Objectives602

different to makespan are interesting for practical reasons. Additional produc-603

tion resources (like personnel) are as limited as machines and need assignment604

as well. Additionally, more constraints and practical situations could be added605

to the problem such as release dates, overlaps and waiting times etc.606
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8. Appendix707

In this appendix we show two other MILP models that we have tested during708

our research, both based on previous research. We decided not to include them in709

the paper as they yield poor results, as we will see in the experiments performed710

over small instances.711

8.1. A Standard Model712

The model in Vallada and Ruiz (2011) can be considered as the standard one,713

and is detailed here for the sake of completeness. This model, denoted as ST, uses714

the following variables:715

• Xijk = 1 if k is the successor of j on machine i, zero otherwise.716

• Cij ≥ 0 is the completion time of job j on machine i.717
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• Cmax is the maximum completion time (makespan).718

From these variables this model consists of:

min Cmax

s.t.
∑
i∈M

∑
j∈N0
j 6=k

Xijk = 1, k ∈ N (17)

∑
i∈M

∑
k∈N
j 6=k

Xijk ≤ 1, j ∈ N (18)

∑
k∈N

Xi0k ≤ 1, i ∈M (19)
∑

`∈N0
` 6=k, 6̀=j

Xi`j ≥ Xijk, j, k ∈ N, j 6= k, i ∈M (20)

Cik + V (1−Xijk) ≥ Cij + sijk + pik, j ∈ N0, k ∈ N, j 6= k, i ∈M
(21)

Ci0 = 0, i ∈M (22)
Cmax ≥ Cij , j ∈ N, i ∈M (23)
Xijk ∈ {0, 1}, Cik ≥ 0.

where V is a sufficiently large constant. (17) ensures that every job k has a pre-719

decessor in N0, and is processed on one machine in M . (18) ensures that every720

job j has at most one successor in N and is processed on, at most, one machine721

in M . (19) imposes that, for every machine in M , there is at most one job in N722

that is the first to be processed. (20) ensures that for every machine in M , if j723

is a predecessor of k, both in N , then j must have a predecessor on this machine724

which could be the dummy job. (21) imposes that, if j and k are successive, then725

the completion time of job k is at least the completion time of job j, plus the726

setup time between j and k, plus the processing time of job k. (22) imposes that727

the completion time of the dummy job is 0 on any machine. Finally, (23) ensures728

that the makespan is not lower than any of the jobs’ completion times.729

8.2. A two-index model730

We now adapt the model in Balakrishnan et al. (1999), originally proposed for731

a different but related problem, to the UPMS. It is a two-index model, as opposed732

to the other MILP models we consider in this paper. Three new sets of variables733

are needed:734

• Xjk = 1 if k is processed after j (not necessarily an immediate successor).735

• Yij = 1 if j is processed on machine i, zero otherwise.736
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• Cj ≥ 0 is the completion time of job j.737

From these variables, this model that we denote as BL, consists of:

min Cmax

s.t.
∑
i∈M

Yij = 1, j ∈ N (24)

Yij +
∑

i′∈M
i′ 6=i

Yi′k +Xjk ≤ 2, 1 ≤ j < n, k > j, i ∈M (25)

Ck − Cj + V (3−Xjk − Yij − Yik) ≥ pik + sijk,

1 ≤ j < n, k > j, i ∈M (26)
Cj − Ck + V (2 +Xjk − Yij − Yik) ≥ pij + sikj ,

1 ≤ j < n, k > j, i ∈M (27)
Cj ≥ pijYij , j ∈ N, i ∈M (28)
Cmax ≥ Cj , j ∈ N (29)
Xjk ∈ {0, 1}, Yij ∈ {0, 1}, Cj ≥ 0.

(24) ensures that every job in N is processed on exactly one machine. (25) imposes738

that, if a job j is processed on i and k is its successor, then k cannot be processed739

on another machine that is not i. (26) and (27) control the completion times of740

any pair of jobs. Note that these constraints are quite convoluted but it suffice to741

say that they have to be satisfied for the jobs that follow a sequence on a machine.742

Particular to the BL model, setup times must satisfy the triangular inequality.743

This is not the case for the ST model.744

8.3. Results over small instances745

Table 5 shows the average results for the small instances. Since we noted that746

the solver used may significantly affect the relative performance of the models, we747

decided to test another solver: CPLEX 12.7.0. We chose Gurobi and CPLEX be-748

cause they are arguably the most common solvers used in industry and academia,749

and they are also the best performers according to the updated results of Hans Mit-750

telmann (http://plato.asu.edu/ftp/milpc.html). We show the average RPD751

across the 640 small instances, the percentage of optimal solutions found (OPT%)752

and the average CPU time used by each method (in seconds). Note that due to753

space considerations it is not possible the break down all results by n and m754

values as the resulting tables are excessively large. The complete results in Ex-755

cel spreadsheets are available as accompanying online materials. We observe that756

both models ST and BL obtain much poorer results than AAA and our six models.757

Therefore, ST and BL are discarded and will not be tested in the other sets of758

instances. We also see that the performance of AAA and our six models is similar,759

both in terms of the quality of solution (RPD), percentage of optimal solutions760

(OPT%) and speed (Time). We also note that Cplex performs a little better in761
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CPLEX Gurobi
Model RPD OPT% Time RPD OPT% Time
ST 31.78 30.94 2527.43 34.39 32.50 2483.17
BL 4.32 48.91 1955.78 6.47 50.31 1910.22
AAA 0.17 94.06 340.14 0.13 94.69 297.82
DL 0.13 95.16 283.98 0.15 94.38 286.06
DL-AM 0.13 95.78 268.23 0.15 94.84 291.96
DL-KB 0.13 95.31 275.50 0.16 94.38 320.38
MTZ 0.14 95.47 280.36 0.16 94.53 293.94
MTZ-AM 0.15 95.47 284.44 0.17 94.22 309.76
MTZ-KB 0.14 95.47 290.16 0.16 93.75 340.85

Table 5: Summary of results for the small instances (times in seconds).

our six models, and Gurobi performs a little better in the AAA model. In any762

case, it seems that the small instances are not large enough to discern between763

AAA and our proposed models or between CPLEX and Gurobi.764

8.4. Results over medium instances: CPLEX vs. Gurobi765

In Table 6 we see the comparison between CPLEX and Gurobi over the766

medium instances, when solving model AAA, our models proposed in this pa-767

per, our reimplementation of the B&C of Tran et al. (2016), our MPA, and the768

results provided by Tony T. Tran via private communication (different from those769

in Tran et al. (2016)). We here stress the differences observed between the two770

solvers employed. Most algorithms and models, and particularly AAA, DL and771

MTZ, show in comparable CPU times much better performance in Gurobi com-772

pared to CPLEX. In total CPLEX obtains an average RPD of 3.75% vs. 0.45%773

of Gurobi. In a quick ANOVA experiment this difference is statistically significant774

(p − value = 0.0065). Although not detailed here, for larger instances CPLEX775

even fails to even provide feasible solutions. This motivates the choice of Gurobi776

for the remainder of this paper.777
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CPLEX Gurobi
Model RPD Time RPD Time
AAA 7.28 6872.50 0.41 6078.67
DL 12.31 7194.53 0.52 7248.96
DL-AM 1.80 7209.79 0.48 7298.79
DL-KB 1.19 6984.65 0.52 7371.38
MTZ 4.44 7255.06 0.56 7411.06
MTZ-AM 1.61 6951.35 0.47 7069.08
MTZ-KB 1.09 6930.56 0.54 7329.78
B&C 0.32 6339.99 0.23 6128.67
MPA 0.35 6332.68 0.29 6106.18

SCIP + Concorde
Tran et al. (2016) 0.48 10 800.00

Table 6: Summary of results in the medium instances (times in seconds).
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