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Côte-Sainte-Catherine, Montréal, Canada H3T 2A7

Abstract

Autonomous vehicles, and in particular autonomous trucks (ATs), are an emerging technology that

is becoming a reality in the transportation sector. This paper addresses the problem of optimizing

the routes and the speeds of ATs making deliveries under uncertain traffic conditions. The aim

is to reduce the cost of emissions, fuel consumption and travel times. The traffic conditions are

represented by a discrete set of scenarios, using which the problem is modeled in the form of two-stage

stochastic programming formulations using two different recourse strategies. The strategies differ in

the amount of information available during the decision making process. Computational results show

the added value of stochastic modeling over a deterministic approach and the quantified benefits of

optimizing speed.
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1. Introduction

Autonomous trucks (ATs) are an emerging technology with potential to revolutionize the

transportation sector. In Europe, a convoy of more than 12 ATs completed a European cross-border

journey in April 2016 (The Guardian, 2016). The ATs formed platoons of two or three connected

trucks that drove close to each other, using the same speed, acceleration and steering profile. This5

was achieved by the use of an existing technology of adaptive cruise control where the trucks were

connected via wireless technologies with a driver sitting in the lead truck. In such a setting, fuel

savings of around 5% can be achieved by the lead truck, and between 10–15% for the follower trucks
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(Tsugawa, 2012). In the US, the first freight shipment with an AT was made on the 25th of October

2016 (Wired.com, 2016). The truck was able to drive without driver assistance on the highway. It10

was able to assess traffic conditions, choose acceleration and speed, and had the ability to self steer

to stay in the driving lane. The truck, however, needed a driver to control it in complex driving

areas, such as cities.

The emergence of ATs can also address the problem of truck drivers shortage. In the US, there

was a shortage of 48,000 truck drivers in 2015, which is predicted to be 175,000 by 2024 under the15

current trend (Costello and Suarez, 2015). ATs can help increase the overall traffic safety. Traffic

crashes including trucks represent 10% of all crashes in the US, and more than 90% of accident

causes are due to driver errors (Singh, 2015).

The introduction of ATs is likely to significantly improve transport efficiency and reduce pollution,

one reason for which is the ability to better control vehicle speed, but subject to traffic conditions.20

To capture these two aspects, we consider in this paper a variant of the Vehicle Routing Problem

(VRP), where the vehicles are assumed to be ATs. In addition to determining routes, we also

compute optimal speeds at which ATs should travel on each leg of a route in order to minimize a

comprehensive cost function that includes fuel costs. However, selecting the optimal travel speed

depends on the traffic conditions in the network. In practice, vehicle speed is often affected by25

factors that are not known with certainty in advance, such as weather-related events or traffic

congestion. Such events are likely to reduce the speed of vehicles and cause deterioration in the

general traffic speed. If this is the case, vehicles cannot travel faster than the traffic speed. Ignoring

this uncertainty at the planning stage may render optimal solutions computed using deterministic

parameters sub-optimal or even infeasible, and in turn may result in a cost increase, depending on30

the traffic speed in practice. In addition, customers may experience large and unpredictable delays.

Consequently, it makes sense to incorporate uncertainty in the optimization process to ensure that

the planned solutions are robust against speed variations.

There have been several strategies proposed for the implementation of ATs, including lane

reservation (Fang et al., 2013) and exclusive assignment of an existing infrastructure (Wu et al.,35

2017), although both are deemed to be expensive and restrictive with respect to the applicability of

this new technology (Vanholme et al., 2013). A preferred feasible strategy, at least for the foreseeable

future, is for ATs to share the same infrastructure with conventional vehicles (driven by humans)

(Vanholme et al., 2013). However, the latter option would introduce uncertain traffic conditions for
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ATs, which is precisely what we assume in this paper.40

The problem we consider is similar to the Pollution-Routing Problem (PRP) introduced by

Bektaş and Laporte (2011), in that we treat the choice of speed at which the vehicle will want

to travel at on a given segment of road as a decision variable as part of devising the operational

routing plans. This flexibility breaks away from the common assumption in traffic flow theory that

drivers simply drive at maximum speed possible, and is used primarily for reducing fuel consumption.45

However, once en route, we do not assume that the vehicle is necessarily able to travel at the chosen

speed on a given arc, as it may be constrained by uncertain traffic conditions that are not necessarily

known at the time of planning. If this is the case, then the vehicle will have to travel at a speed

lower than the one that was chosen, which impacts on fuel consumption and emissions. Our models

take such situations into account in an explicit way. In this paper we model uncertainty as stochastic50

input parameters. We describe two stochastic programming models that differ with respect to the

time at which the routing decisions are made. We consider a finite number of scenarios, each with a

different traffic speed for each arc of the network. The first formulation is a two-stage stochastic

programming model with complete recourse. In this case, the recourse variables correspond to the

delays experienced in servicing the customers, and to the speed reduction needed when the planned55

speed is higher than the realized speed. The second formulation is also a two-stage stochastic

programming model in which travel speeds are computed for every scenario separately, assuming

that the realizations of the scenarios are revealed before the start of routing, in the expectation that

further cost minimization will be achieved.

The three key contributions of this paper are as follows. (1) We describe two recourse strategies60

to mitigate the adverse effects of speed uncertainty on fuel consumption and greenhouse gases

(GHG), where speed reductions are treated as an integral part of the recourse decisions for the first

time, (2) using a stochastic programming methodology, we describe several two-stage stochastic

programming formulations with recourse, and (3) we present results that numerically compare the

recourse strategies and we offer insights into the relative performance of each strategy and discuss65

implications of the strategies on fuel consumption and total cost.

The remainder of this paper is structured as follows. Section 2 presents a brief review of the

literature where routing and speed decisions were considered simultaneously. Section 3 introduces

some technical background information. Mathematical models are described in Section 4. Section 5

presents computational experiments, and conclusions follow in Section 6.70
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2. Literature review

Most of the available literature on autonomous vehicles consider their use and planning in private

spaces, such as indoor warehouses. for a recent review, the reader is directed to (Flämig, 2016).

Regarding the use of autonomous vehicles in public spaces, only a few studies are available, including

one by Fagnant and Kockelman (2014) on the impact of autonomous vehicles on the environment,75

and another one by de Almeida Correia and van Arem (2016) on the impact of self-driving family

vehicles on urban mobility. When it comes to ATs, there seems to exist no study on route and speed

optimization assuming the use of AT technology.

In this section, we review some of the relevant existing literature of the PRP and its variants,

given the similarities to the problem studied in this paper. Our study contains also stochastic travel80

times within a VRP framework, therefore it can also be viewed as a natural extension of the VRP

with stochastic travel times. Therefore, we also review the relevant literature on this problem. For

recent reviews of the literature on green road freight transportation, we refer the reader to Demir

et al. (2014b) where the authors review gas emissions models, and to Lin et al. (2014), Eglese

and Bektaş (2014) and Bektaş et al. (2016) which are surveys of green VRPs. For a wider and85

comprehensive overview of the green transportation, including air and maritime transportation, we

refer the reader to Psaraftis (2016).

2.1. The Pollution-Routing problem

In the original paper of Bektaş and Laporte (2011), the PRP makes use of the comprehensive

fuel consumption model proposed by Scora and Barth (2006), and is modeled through a non-linear90

mathematical formulation in which the decision variables correspond to the selection of routes and

speeds. Non-linear constraints are linearized using speed discretization. The authors presented

extensive computational results on instances involving up to 20 customers and showed that CO2

emissions could be reduced by up to 8% by solving a comprehensive model that accounts for pollution.

Instead of discretizing speed, Fukasawa et al. (2016) tackled the PRP with continuous speed and put95

forward two arc-based mixed-integer convex optimization models that can be solved as disjunctive

convex programs, and can handle instances with up to 25 customers. Dabia et al. (2016) described

a branch-and-price algorithm for the PRP based on a column generation mechanism in which the

master problem is a set partitioning problem. The pricing problem is solved by means of modification

of a labeling algorithm for the elementary shortest path problem with resource constraints. The100
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algorithm can optimally solve all instances with 10 customers, as well as some instances from the

PRP-lib with 15 and 20 customers.

Demir et al. (2012) developed an adaptive large neighborhood search (ALNS) metaheuristic for

larger PRP instances which embeds an adaptation of the speed optimization algorithm of Norstad

et al. (2011). The algorithm provided solutions for realistic instances with up to 200 customers within105

just over 10 minutes. Kramer et al. (2015) later proposed a matheuristic that combines an iterative

local search, based on the randomized variable neighborhood descent heuristic of Subramanian et al.

(2010), with a speed optimization algorithm and an exact method for a set partitioning problem.

When compared with the ALNS of Demir et al. (2012), their matheuristic yielded better quality

solutions on all instances with 100 and 200 customers.110

Franceschetti et al. (2013) studied a version of the PRP with time-dependent speeds which

assumes two periods, one characterized by a congestion speed, and the other when a vehicle can

travel at an optimized free-flow speed. The authors used the emissions model of Scora and Barth

(2006) to compute fuel consumption. In this problem, service at customers must start within

specified time windows, and it is possible for a vehicle to wait at customer after completing service115

to avoid congestion further along the route. The authors also studied a special case of the problem

with a single customer and analytically characterized optimal solutions. They described a speed

optimization algorithm for the problem and solved to optimality instances with up to 20 customers.

Qian and Eglese (2014) tackled the problem of minimizing fuel consumption under time-varying

speeds. The authors considered both vehicle routes and speeds as decision variables. They proposed120

two algorithms based on dynamic programming, one of which is exact and the other is heuristic,

and tested both on a realistic 14-customer instance. Their results showed that the heuristic is much

faster than the exact method, taking five minutes instead of 12 hours. The same authors (Qian

and Eglese, 2016) later proposed a combined tabu search and column generation algorithm for this

problem, based on an earlier algorithm by Prescott-Gagnon et al. (2009) for the VRP with time125

windows. The algorithm was tested on a real instance with 60 customers and one depot, and the

results indicated about three percent savings in GHG emissions compared with a time-minimizing

objective.

Maden et al. (2010) considered the VRP with time windows and time-dependent speeds, and

developed a tabu search heuristic in which the objective is to minimize the total time spent by the130

vehicles. The authors showed that up to 7% of CO2 emissions can be saved on the instances tested.
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2.2. Vehicle routing problems with stochastic travel times

The most common sources of uncertainty in stochastic vehicle routing are customer availability,

customer demand, service times and travel times (Gendreau et al., 2016). In these variants, some

key concepts such as feasibility or optimality are not defined in the same way as in the deterministic135

VRP, which increases the difficulty of solving such problems (Cordeau et al., 2007). The most

relevant variant to our paper is the VRP with stochastic travel times, as described by Laporte et al.

(1992), who modeled the problem as a two-stage stochastic program for the first time. However,

environmental concerns within vehicle routing problems with uncertain parameters, in particular

stochastic travel times, have only been studied to a limited extent, however.140

Hwang and Ouyang (2015) considered the full-truck delivery problem under uncertainty, defined

on a road network where nodes represent major intersections and directed arcs represent route

segments between them. Speed congestion is modeled as an independent random variable on each

arc of the network. The problem is to select the sequence of arcs to traverse in order to minimize

an objective function based on expected total travel time, GHG emissions and penalties for late or145

early arrivals. The authors described a stochastic dynamic approach and a deterministic shortest

path heuristic to solve problem instances with up to 416 nodes. The heuristic approach provided

solutions quickly, but of lower quality as compared to the dynamic approach. Savings between 4%

and 8% were obtained when compared to the same approach without considering emissions.

Ehmke et al. (2016) developed two algorithms to find expected emissions-minimizing paths in150

urban areas with stochastic travel times. They developed an A* algorithm based on sampling travel

times to estimate the expected emissions on each arc of the graph and a second heuristic based on

Dijkstra’s algorithm (Dijkstra, 1959) to solve a time-dependent but deterministic version of the

problem, using expected emissions on each arc. This simplification was made to reduce the total

time required to solve the problem. The heuristic method showed similar results but the running155

times were significantly faster than for the A* algorithm.

Eshtehadi et al. (2017) considered the PRP under demand and travel time uncertainty. The

authors focused on stochastic customer demand and proposed three mathematical models based on

a robust optimization approach. The authors defined a hard-worst case (HWC), a soft-worst case

(SWC) scenario and a chance-constrained robust model. The difference between these approaches is160

their robustness to uncertainty. Travel time uncertainty is handled by considering a deterministic

congestion level. The results showed that considering robust optimization technique to provide
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reliable solutions may result in 30, 50 and 60 liters of additional fuel consumption for 10-, 15- and

20-node instances respectively.

Huang et al. (2017) considered the Time-Dependent VRP (TDVRP) with path flexibility. As165

opposed to considering a simple path between a pair of customers, the authors start first by

determining the set of time-dependent shortest paths on the network using a modified version

of Dijkstra’s algorithm. The authors describe a mathematical model to the TDVRP with path-

flexibility and a two-stage stochastic program to solve a stochastic variant in which speeds on arcs

are represented by discrete scenarios. The first-stage decisions relate to customer sequences and the170

second-stage decisions relate to the selection of paths. Instances with 30 nodes were solved by the

deterministic version, and instances with 10 nodes and three discrete scenarios were solved by the

stochastic program. The deterministic equivalent of the stochastic PRP with path flexibility yielded

better results than solving a standard TDVRP.

2.3. Relationship with the state of knowledge175

Although the papers just reviewed share some similarities with the problem we introduce

here, they exhibit two fundamental differences with respect to the types of decisions and the cost

components. The first of these is vehicle speed. The authors of the above papers argue that speed

cannot be controlled in urban areas and vehicles must follow the traffic speed. In our study, we

consider an intercity travel setting, such as highways, where autonomous trucks have control over180

the speed. From a methodological point of view, modeling speed as decision variable is challenging

due to the non-linearity it entails. The second fundamental difference relates to the cost. In

particular, we consider driver wage as part of the objective function. While this may seem a

relatively straightforward modification of the objective function, it does make a difference since

it has been shown that the largest component of the PRP objective function is the driver’s wage185

(Bektaş and Laporte, 2011). Table 1 summarizes the differences between the papers cited above and

our paper.

Our work builds on and contributes to the existing body of work in a number of aspects. First,

we continue to treat speed as a decision variable, as was done in the PRP and other relevant studies

reviewed in Section 2.1 (e.g., Demir et al., 2012; Fukasawa et al., 2016). However, we break away190

from the main assumption made in those references in that the vehicle speed is bounded by a

constant value. One novel aspect of our contribution is to restrict the vehicle speed on each arc by a
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Paper Objective function Time Speed Path Time Solution method

Cost Fuel dependency decisions flexibility windows Exact Heuristic

Ehmke et al. (2016) - X X - - - - X

Hwang and Ouyang (2015) X X - - X - X X

Eshtehadi et al. (2017) - X - X - X X -

Huang et al. (2017) - X X - X - X X

This paper X X - X - X X -

Table 1: Comparison of the problem characteristics studied in this paper and related papers

stochastic parameter, the value of which depends on a future realization of a scenario that prescribes

the traffic speeds. This makes for a more realistic treatment of the problem by reflecting part of the

uncertainty of the traffic conditions in the relevant models. Second, we assume that the travel times195

are stochastic by following a line of analysis similar to that of the references reviewed in Section

2.2. However, whereas the references cited above treat the travel time on an arc as an uncertain

input parameter, we model it as a function of the speed chosen to traverse that arc, implying that

travel time itself is effectively a decision variable, but one that is subject to uncertainty. The latter

aspect of our contribution is therefore different and unique. While the robust approach proposed200

by Eshtehadi et al. (2017) for the pollution-routing problem considers speed as a decision variable,

it tends to be over-conservative since it assumes the realization of a worst-case scenario. Robust

solutions are therefore costlier than those produced by the stochastic programming methods we

advocate in this paper. Finally, we resort to two-stage stochastic programming formulations with

recourse as the modeling framework, for the very reason that this approach is shown to be a suitable205

way to formulate such problems (e.g., Laporte et al., 1992), and with an objective function that

minimizes the expected cost (e.g., Laporte et al., 1992; Taş et al., 2013).

3. Technical background information

In our study, we use the same consumption model as in Bektaş and Laporte (2011), which we

now describe. From this model and by using an illustrative example, we show also the impact that210

stochastic travel times may have on the amount of emissions. We then propose two ways of modeling

our problem.
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3.1. Calculation of fuel consumption and emissions

There exist numerous emission models, which were reviewed and compared in Demir et al.

(2014b). These models vary with respect to the input parameters and level of detail, but most use215

non-linear functions of vehicle speed. Such functions generally have a convex U-shaped form, which

can be optimized to yield a speed minimizing fuel consumption and emissions. Our emissions model

is an instantaneous model proposed by Barth and Boriboonsomsin (2008), which estimates the fuel

consumed Fr per second based on the function

Fr = ε(kΩV + P/η)/κ, (1)

where η and κ are constants related to diesel fuel typically used by delivery vehicles, ε is fuel-to-220

air mass ratio, k, Ω and V are the engine friction factor, engine speed and engine displacement

respectively. Furthermore, P is the engine power output per second (in kW) and is calculated as

P = Ptract/ηtf + Pacc, (2)

where ηtf is the vehicle drive train efficiency, and Pacc is the engine power demand associated with

running losses of the engine and the operation of vehicle accessories (i.e., air conditioning). In

our study, we assume that Pacc is equal to zero. The parameter Ptract is the total tractive power225

requirements (in kW) placed on the wheels:

Ptract = (Λτ + Λg sin θ + 0.5CdρΓv2 + ΛgCr cos θ)v/1000, (3)

with Λ and v are the vehicle weight (kg) and speed (m/s) respectively, τ is the acceleration (m/s2),

θ is the road angle, g is the gravitational constant (m/s2), and Cd and Cr are the coefficients of the

aerodynamic drag and rolling resistance, respectively. Finally, ρ is the air density (kg/m3), and Γ is

the frontal surface area of the vehicle (m2). For a given arc (i, j) of length d and assuming that all

parameters remain constant except for the vehicle speed, we can express fuel consumption in liters

(L) as

F (v) = kΩV λd/v (4)

+ (wαv + αfv + βv3)λγd/v, (5)

where λ and γ are constants defined as λ = ε/κΨ, where Ψ is the conversion factor of fuel from (g/s)

to (L/s), and γ = 1/(1000ηtfη) . Furthermore, if Λ is the total weight of vehicle between node i and
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j, then Λ = w + f , where w is the weight of an empty vehicle (curb weight), and f is the vehicle

load. Let α = τ + g sin θ + gCr cos θ be a vehicle-arc specific constant and β = 0.5CdρΓ be a vehicle230

specific constant. We omit indices (i, j) on the variables v, d, f , and α to simplify the presentation.

3.2. The impact of travel speed uncertainty on emissions

Traffic congestion is one of the main factors preventing vehicles from driving at an optimal speed.

It can be caused by accidents, bad weather, or simply the traffic level in the network. Congestion is

typically characterized by low speeds and regular start-and-stops. As a result, it drastically increases235

fuel consumption compared with the non-congestion case.

We now illustrate how congestion may impact the routing decisions on a four-node instance

corresponding to four British cities, where the fictional demand of each customer and the service

times for this instance are given in Table 2. The time windows of the customers (in minutes) are

shown in Figure 1a. The distance matrix of Table 3 shows the distances (m) between the nodes of240

the network.

Node index City Demand (kg) Service time (min)

0 Kingston upon Hull (depot) – –

1 Pocklington 721 24

2 Brough 814 27

3 Selby 620 21

Table 2: Demand and service time data

Node index 0 1 2 3

0 0 41150 25680 54200

1 40660 0 51980 32800

2 25010 51780 0 61520

3 54270 32750 61560 0

Table 3: Distance matrix for the example of Table 2

We assume that the traffic speeds on all the arcs of the network is not known in advance, but is
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instead a discrete random variable referred to as a scenario. In this example, we consider three

scenarios S1, S2 and S3 with respective probabilities 33%, 33% and 34%. Below, we show the

matrices representing the three scenarios S1,S2 and S3 for this example where each entry (i, j) in245

a matrix represents the traffic speeds (km/h) on each arc (i, j). The scenarios S1, S2 and S3 are

derived from a probability distribution discussed further in Section 5.1.

S1 =


0 22 28 35

21 0 40 23

67 56 0 59

46 37 29 0

 S2 =


0 59 48 60

31 0 53 28

43 46 0 33

41 70 30 0

 S3 =


0 22 21 50

39 0 60 23

37 21 0 70

33 29 58 0


.

The problem is to find an optimal route and the optimal speeds on each arc, where the chosen

speeds are constrained by the chosen speeds. One way to solve the problem is by creating an average

scenario Sav where the traffics speeds on each arc (i, j) is the average of all traffic speeds over all250

scenarios, taking into account their respective probability and solve a deterministic PRP. Sav is

represented by a matrix where each item Sav(i, j) = 0.33S1(i, j) + 0.33S2(i, j) + 0.34S3(i, j).

Figure 1 shows two optimal solutions obtained by using £1.4 as the combined unit cost of fuel

(per litre) and CO2, and £10 as the hourly driver cost. The solution shown in Figure 1a is obtained

by solving the deterministic PRP where the traffic speeds are prescribed by the matrix Sav, and255

are imposed as upper limits on the speeds that can be chosen on each arc. The optimal speeds

are shown on the arcs. The cost of this solution is £99.96, and its expected value when calculated

under the realization of S1, S2 and S3, is equal to £121.58. However, this approach is suboptimal

as it does not fully utilize all the available information. In contrast, Figure 1b shows the solution

generated using stochastic programming where the three scenarios S1, S2 and S3 are explicitly taken260

into account during the solution process. This solution has an expected cost equal to £106.70, which

represents a saving of 12.26% over the deterministic. The way in which stochastic programming is

used to produce the latter solution will be further explained in Section 4.2.1.
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40km/h 60km/h 50km/h

Figure 2: Example of speed variability
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(a) The solution obtained by considering Sav (b) The solution obtained by considering the scenarios (S1, S2

and S3)

Figure 1: Two solutions of the four-node instance

Variability of traffic speed on a given intercity road can be better represented by dividing an

arc between two customers into smaller segments. The traffic speed will then be defined for every265

segment, where for each segment an optimal speed can be prescribed. To illustrate, we consider the

example in Figure 2, which shows an arc (1, 2) of 100km length, on which we assume the traffic

speed to be 50 km/h. Suppose now that further information is available about the variability of

traffic speeds on this arc such that it can be divided into three segments of 50km, 20km and 30km,

where the traffic speed on each segment is 40 km/h, 60 km/h and 50 km/h, respectively. If we270

consider a vehicle traveling at 50 km/h, assuming a constant traffic speed throughout the arc, the

combined cost of fuel, CO2 and driver is £34. If however, we consider the three segments and that

the vehicle travels at the traffic speed on each of the segments, the total cost is £37, which is more

accurate, but is at the expense of a 9% increase.
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3.3. Decision time-lines and modeling of stochasticity275

Planning vehicle routes without taking the congestion effect into account may lead to poor

quality solutions when implemented. In addition, the assumption that one has perfect information

on congestion data is not realistic, due to the difficulty associated with accurately predicting travel

times. In this study, we use a strategy based on stochastic programming that is able to represent

the variability in the traffic speeds. Stochastic programming has been extensively used in a variety280

of contexts, and has yielded good results on routing problems (Gendreau et al., 2016).

Traffic speeds are modeled as discrete random variables. They are represented by a finite set

S of scenarios, where each scenario s ∈ S has an associated probability ps > 0 of occurring. In

our context, a scenario s is characterized by a matrix of traffic speeds in which every entry (i, j)

corresponds to an upper bound usij on the maximum speed that can be attained on arc (i, j) which285

depends on the traffic conditions on the corresponding route leg.

We now describe two ways of modeling the problem as a stochastic program, as well as the

possible recourse actions. To clarify the difference between the proposed strategies, we use the

following notation. We define a planning horizon of D units of time. The time at which the routing

decision are made and the time where speed decisions are made are denoted T p and T s, respectively,290

where T p ≤ T s < D. The random variables realization are revealed at time T r, where T r ≥ T s. We

denote by T e the time at which the solution is executed (i.e., when vehicles leave the depot to visit

the customers), where T e ≥ T r .

Under the first strategy, illustrated in Figure 3, we assume that the realization of the random

variables will be revealed after the routing plan has been finalized, which also includes the speeds of295

travel on each arc of the routes. No further action can be taken to change the routes and speeds

to improve the solution after this point. We will refer to this strategy as “one-route, one-speed”

(OR-OS).

T = 0 T eT p, T s T = DT r

Figure 3: Time-line of the first strategy decision making process

Under the second strategy, we also assume that the scenarios are revealed after the routes have

been designed. However, before executing the routes, further actions can be taken to reoptimize the300
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speeds, as shown in Figure 4. This situation occurs in practice when the vehicles must be loaded

the day before the routing plans are operationalized, and the information about traffic speeds is

revealed before the start of routing. In this case, the routes cannot be redesigned assuming that the

goods are already loaded in the vehicles. We will refer to this strategy as “one-route, several speeds”

(OR-SS). This strategy is unlikely to be applied in practice given that the information required is305

almost impossible to acquire. However, the aim of considering such a strategy is to assess the value

of the added information and the savings that it can provide.

T = 0 T eT p T = DT r T s

Figure 4: Time-line of the second strategy decision making process

4. Problem Description and Mathematical Models

The problem studied in this paper is similar to the PRP, where the traffic speeds constitute the

upper bounds on the maximum speed that can be attained on each leg of the route are not known310

with certainty at the time of route planning. Instead, they are described by a discrete and finite set

of scenarios. The problem involves determining a set of vehicle routes and speeds on each leg of the

routes, as in the PRP. However, upon realization of the random variables, the optimal speeds may

no longer be feasible with respect to the traffic speeds, in which case delays may occur in arriving at

customer locations. The objective is to minimize the expected cost of the total fuel consumption,315

emissions, drivers and delays. The problem is cast as a two-stage stochastic programming problem

(Birge and Louveaux, 2011), for which we define two variants. The first variant corresponds to

the OR-OS strategy, where the first-stage decisions involve determining the routes and the arc

speeds. The second-stage decisions are the speed reductions inferred by the traffic speeds, which

translate into possible delays. The second variant is based on the OR-SS strategy, where the first320

stage decisions are restricted to planning a route for each vehicle, and the second stage variables

correspond to computing the speeds on each route, separately for each scenario. In what follows, we

describe mathematical models associated with the two problem variants just described.
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4.1. Notations Common to the Two Models

The stochastic models presented in this paper are based on the deterministic mathematical model325

of the classical PRP proposed by Demir et al. (2012). The problem is defined on a complete graph

G = (N,A), where N = {0, 1, . . . , n} is the node set, and A = {(i, j); i, j ∈ N, i 6= j} is the arc set,

where each arc (i, j) has |Lij | segments of length dijl, Lij = {1, . . . , l, . . . , |Lij |} . Node 0 represents

the depot at which m vehicles of capacity Q are based, and N0 = N\{0} is the set of customers.

Each customer i ∈ N0 has a demand qi > 0, which should start to be delivered within the time330

window [ai, bi], and incurs a service time ci. The decision variables are defined as follows: xij is a

binary variable equal to 1 if and only if a vehicle visits customer j immediately after customer i. A

vehicle travels at speed vijl on segment l ∈ Lij of arc (i, j), subject to a lower bound vlb and an

upper bound vub that correspond to legal limits on speed. Under uncertainty, a traffic speed usijl is

defined on segment l ∈ Lij of arc (i, j) for each scenario s ∈ S which is the maximum attainable335

speed on that arc. The continuous variable fij is the amount of commodity carried on the vehicle

on arc (i, j) ∈ A. The continuous variable yi is the time at which service begins at customer i ∈ N0,

and the continuous variable δi is the the cumulative time spent on the route whose last customer is

i.

4.2. One-Route, One-Speed Strategy340

Under the OR-OS strategy, we assume that the decisions concerning routes and speeds are made

simultaneously, and prior to the realization of the random variables. These two sets of decisions

are made at the first stage and cannot subsequently be changed. However, if v∗ijl > usijl, a vehicle

will not be able to drive at speed v∗ijl chosen on a specific segment l of arc (i, j) for a particular a

scenario s ∈ S. In this case, the recourse action is to reduce the speed by at least v∗ijl − usijl in order345

for the solution to be feasible. To this end, we introduce a speed reduction recourse variable SRsijl

to ensure the feasibility of solutions independently of random variables realizations. The scenarios

also imply that some customers may not be served within their time window. Therefore, the time

window requirements will be treated as soft constraints, in which case, the delay for the start of

service at customer i will be represented by a recourse variable lsi in the second stage, and penalized350

by using a unit delay cost e.

It is important to observe that speed reduction recourse variables are needed in the computation

of delays and routes durations, but are not explicitly penalized in the objective function. They are
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only implicitly penalized because the vehicle will have to travel at a speed different from the optimal

speed, which will increase the cost accordingly.355

The speed chosen on an arc will affect the time yi at which service starts at node i, and hence it

will be different from one scenario to another. For this reason, this time will be represented by a

scenario-dependent variable ysi . This variable captures the fact that a vehicle can be late to serve a

customer in one scenario, but on time in a another one. The same reasoning applies to the variables

representing the overall time spent on a route δi which will now be δsi . We define M as a large

enough constant. The mathematical model is described as follows:

Minimize
∑

(i,j)∈A

∑
l∈Lij

wfcγλαijdijlxij +
∑

(i,j)∈A

∑
l∈Lij

fcγλαijfijdijl (6)

+
∑
s∈S

ps

(
fckΩV λ

∑
(i,j)∈A

∑
l∈Lij

dijl/(vijl − SRsijl) (7)

+ fcβγλ
∑

(i,j)∈A

∑
l∈Lij

dijl(vijl − SRsijl)2 (8)

+
∑
j∈N0

fdδ
s
j (9)

+
∑
j

elsj

)
(10)

subject to∑
j∈N

x0j = m (11)

∑
j∈N

xij = 1 i ∈ N0 (12)

∑
i∈N

xij = 1 j ∈ N0 (13)

∑
j∈N

fji −
∑
j∈N

fij = qi i ∈ N0 (14)

qjxij ≤ fij ≤ (Q− qi)xij (i, j) ∈ A (15)

ysi − ysj + ci +
∑
l∈Lij

dijl/(vijl − SRsijl) ≤M(1− xij) i ∈ N, j ∈ N0, i 6= j, s ∈ S (16)

ysj − cj − δsj +
∑
l∈Lij

dj0l/(vj0l − SRsj0l)M(1− xj0) j ∈ N0, s ∈ S (17)

aj ≤ ysj ≤ bj + lsj j ∈ N0, s ∈ S (18)
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vijl − SRsijl ≤ usijl (i, j) ∈ A, l ∈ Lij , s ∈ S (19)

vijl − SRsijl ≥ vlbxij (i, j) ∈ A, l ∈ Lij , s ∈ S (20)

fij ≥ 0 (i, j) ∈ A (21)

ysi ≥ 0 i ∈ N0, s ∈ S (22)

SRsij ≥ 0 (i, j) ∈ A, s ∈ S (23)

vlbxij ≤ vijl ≤ vubxij (i, j) ∈ A, l ∈ Lij (24)

xij ∈ {0, 1} (i, j) ∈ A. (25)

The first term of the objective function computes the cost of the solution that can be attributed

to vehicle weight and load. Similarly, the terms (7)–(10) represent the expected cost as a function

of speeds, delays at customers, and driving time. Constraints (11) ensure that all vehicles leave the

depot. Constraints (12)–(13) state that each customer must be visited exactly once. Constraints

(14) and (15) define the flow on each arc. Constraints (16)–(17) compute the arrival time at each360

customer j ∈ N0 in each scenario s ∈ S, (18) calculate the delay at customers, (19) ensure that

the speed used in a scenario after any reduction is lower than the traffic speed in that scenario.

Constraints (20) ensure that the speeds chosen are at least vl if the arc is in the route of a vehicle.

Due to the terms (7), (8), (16) and (17), the model described above is non-linear. In the following,

we present two different ways of linearizing these terms.365

4.2.1. Discrete Speeds and Discrete Recourse

In order to linearize the non-linear terms, we adopt the same strategy as in Bektaş and Laporte

(2011), which consists of discretizing the speed variables. We will also discretize the recourse variables.

The speeds are represented by a set R = {1, . . . , r, . . .} of discrete levels. A binary variable zrijl is

equal to 1 if and only if the rth speed level vr is chosen for the vehicle traveling on segment l ∈ Lij
of arc (i, j). We note that v1 = vlb and v|R| = vub. The same reasoning applies to the discretized

recourse. We define a set |T | of recourse levels T = {1, . . . , t, . . .}, and a binary variable αtsijl is equal

to 1 if and only if the level t of speed reduction level ψt is chosen for the vehicle traveling on segment

l ∈ Lij of arc (i, j) in scenario s ∈ S, with ψ1 = 0 and ψ|T | = vub − vlb. We also introduce also M

as a large constant. The discretized mathematical model is described as follows.

Minimize
∑

(i,j)∈A

∑
l∈Lij

wfcγλαijdijlxij +
∑

(i,j)∈A

∑
l∈Lij

fcγλαijdijlfij (26)
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+
∑
s∈S

ps

(
fckΩV λ

∑
(i,j)∈A

∑
l∈Lij

dijl
(∑
r∈R

∑
t∈T

zrijlα
ts
ijl/(v

r − ψt)
)

(27)

+ fcβγλ
∑

(i,j)∈A

∑
l∈Lij

dijl
∑
r∈R

∑
t∈T

zrijα
ts
ijl

(
vr − ψt

)2
(28)

+
∑
j∈N0

fdδ
s
j (29)

+
∑
j

elsj

)
(30)

subject to

(11)–(15), (18), (21), (22)

ysi − ysj + ci +
∑
l∈Lij

dijl
∑
r∈R

∑
t∈T

zrijlα
ts
ijl/(v

r − ψt) ≤M(1− xij) i ∈ N,

j ∈ N0, i 6= j, s ∈ S (31)

ysj − cj − δsj +
∑
l∈Lij

dj0l
∑
r∈R

∑
t∈T

zrj0lα
ts
j0l/(v

r − ψt) ≤M(1− xj0) j ∈ N0, s ∈ S (32)

α1s
ijl ≥ (usijl −

∑
r∈R

zrijlv
r)/M + (xij − 1) (i, j) ∈ A, l ∈ Lij , s ∈ S (33)

α1s
ijl ≤ (usijl −

∑
r∈R

zrijlv
r)/M + 1 (i, j) ∈ A, l ∈ Lij , s ∈ S (34)

∑
r∈R

∑
t∈T

zrijlα
ts
ijl(v

r − ψt) ≤ usijl (i, j) ∈ A, l ∈ Lij , s ∈ S (35)

∑
r∈R

∑
t∈T

zrijlα
ts
ijl(v

r − ψt) ≥ v1xij (i, j) ∈ A, l ∈ Lij , s ∈ S (36)

∑
r∈R

zrijl = xij (i, j) ∈ A, l ∈ Lij (37)

∑
t∈T

αtsijl = xij (i, j) ∈ A, l ∈ Lij , s ∈ S (38)

αtsijl, z
r
ijl, xij ∈ {0, 1} (i, j) ∈ A, l ∈ Lij ,

s ∈ S, r ∈ R, t ∈ T. (39)

Constraints (31)–(32) compute the arrival time at each customer j ∈ N0 in each scenario s ∈ S.

Constraints (33)–(34) ensure that the value of the speed reduction is 0 if the speed chosen is lower

than the traffic speed in scenario s. Constraints (35)–(36) play the same role as (19)–(20). Finally,

constraints (38) ensure that only one recourse is chosen if arc (i, j) is selected.370
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This model is still non-linear due to the presence of products of two binary variables in constraints

(35) and (36). To linearize these constraints, we introduce a new binary variable τ rtsijl equal to 1 if

and only if a vehicle travels on segment l of arc (i, j) at speed vr and applies a speed recourse ψt in

scenario s ∈ S. The variables τ rtsijl will replace the products zrijlα
ts
ijl through the use of the following

constraints:

τ rtsijl ≤ zrijl (i, j) ∈ A, l ∈ Lij , r ∈ R, s ∈ S (40)

τ rtsijl ≤ αtsijl (i, j) ∈ A, l ∈ Lij , t ∈ T, s ∈ S (41)

τ rtsijl ≥ zrijl + αtsijl − 1 (i, j) ∈ A, l ∈ Lij , r ∈ R, t ∈ T, s ∈ S (42)

τ rtsijl ∈ {0, 1} (i, j) ∈ A, l ∈ Lij , s ∈ S, r ∈ R, t ∈ T. (43)

4.2.2. Discrete Speeds and Continuous Restricted Recourse

In the previous model, we used discretization to linearize the mathematical program. However,

due to the uncertainty about the traffic speeds, using discrete speed reductions may result in poor

quality recourse actions. We therefore introduce an alternative modeling scheme based on the use

of continuous recourse variables, using same notation as in Section 4.2.1. However, here we make

an additional assumption that restricts the value of the recourse action. Recall that SRsijl is the

speed reduction needed on segment l of arc (i, j) ∈ A to travel at a speed not exceeding usijl in

scenario s ∈ S. We now assume that if a speed recourse is needed, then SRsijl, will be exactly equal

to
∑
r∈R z

r
ijlv

r − usijl. This assumption is needed to linearize the model, and to have continuous

recourse variables. We introduce a binary activation variable asijl equal to 1 if and only if a speed

reduction is needed on segment l of arc (i, j) ∈ A in scenario s ∈ S. The mathematical model is

described as follows:

Minimize
∑

(i,j)∈A

∑
l∈Lij

wfcγλαijdijlxij +
∑

(i,j)∈A

∑
l∈Lij

fcγλαijdijlfij (44)

+
∑
s∈S

ps

(
fckΩV λ

∑
(i,j)∈A

∑
l∈Lij

dijl
(∑
r∈R

zrijl/(v
r − SRsijl)

)
(45)

+ fcβγλ
∑

(i,j)∈A

∑
l∈Lij

dijl
∑
r∈R

zrijl
(
vr − SRsijl

)2
(46)

+
∑
j∈N0

fdδ
s
j (47)

+
∑
j

elsj

)
(48)
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subject to

(11)–(15), (18), (21)–(23)

ysi − ysj + ci +
∑
l∈Lij

∑
r∈R

dijlz
r
ijl/(v

r − SRsijl) ≤M(1− xij) i ∈ N, j ∈ N0, i 6= j, s ∈ S (49)

ysj − cj − δsj +
∑
l∈Lij

∑
r∈R

dj0lz
r
j0l/(v

r − SRsijl) ≤M(1− xj0) j ∈ N0, s ∈ S (50)

SRsijl ≥
∑
r∈R

zrijlv
r − usijl (i, j) ∈ A, l ∈ Lij , s ∈ S (51)

SRsijl ≤
∑
r∈R

zrijlv
r − usijl + (1− asijl)M (i, j) ∈ A, l ∈ Lij , s ∈ S (52)

SRsijl ≤ asijlM (i, j) ∈ A, l ∈ Lij , s ∈ S (53)

asijl ≥ (
∑
r∈R

zrijlv
r − usijl)/M (i, j) ∈ A, l ∈ Lij , s ∈ S (54)

asijl ≤ (
∑
r∈R

zrijlv
r − usijl)/M + 1 (i, j) ∈ A, l ∈ Lij , s ∈ S (55)

asijl, z
r
ijl, xijl ∈ {0, 1} (i, j) ∈ A, r ∈ R (56)∑

r∈R
zrij = xij (i, j) ∈ A. (57)

In the objective function, the term (44) computes the cost of the solution associated to the vehicle

weight and load. The terms (45)–(48) compute the expected cost as a function of speeds, delays at

customers and drivers’ wages. Constraints (49)–(50) define the arrival time at each customer j ∈ N0

in each scenario s ∈ S. Constraints (51)–(55) force SRsijl to be equal to
∑
r∈R z

r
ijlv

r − usijl if and375

only if there is a speed reduction.

Due to the presence of the terms (45) and (46) in the objective function, the model is non-linear.

In order to linearize these terms, we introduce two sets of new variables SF sijl and SSsijl. These new

variables are such that SF sijl = 1/usijl−
∑
r∈R z

r
ijl/v

r if and only if there is a speed reduction. Using

the same reasoning, SSsijl =
∑
r∈R z

r
ijl(v

r)2 − (usijl)
2. Components (45) and (46) then become

fckΩV λ
∑

(i,j)∈A

∑
l∈Lij

dijl

(∑
r∈R

(zrijl/v
r) + SF sijl

)
(58)

fcβγλ
∑

(i,j)∈A

∑
l∈Lij

dijl

(∑
r∈R

zrijl(v
r)2 − SSsijl

)
. (59)
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We also replace constraints (49)–(53) with constraints (60)–(69):

ysi − ysj + ci +
∑
l∈Lij

∑
r∈R

dijl

(∑
r∈R

(zrijl/v
r) + SF sijl

)
≤M(1− xij) i ∈ N, j ∈ N0, i 6= j,

s ∈ S (60)

ysj − cj − δsj +
∑
l∈Lij

∑
r∈R

dj0l

(∑
r∈R

(zrj0l/v
r) + SF sj0l

)
≤M(1− xj0) j ∈ N0, s ∈ S (61)

SF sijl ≥ 1/usijl −
∑
r∈R

zrijl/v
r − (1− xij)M (i, j) ∈ A, l ∈ Lij , s ∈ S (62)

SF sijl ≤ 1/usijl −
∑
r∈R

zrijl/v
r + (2− asijl − xij)M (i, j) ∈ A, l ∈ Lij , s ∈ S (63)

SF sijl ≤ asijlM (i, j) ∈ A, l ∈ Lij , s ∈ S (64)

SSsijl ≥
∑
r∈R

zrijl(v
r)2 − (usijl)

2 − (1− xij)M (i, j) ∈ A, l ∈ Lij , s ∈ S (65)

SSsijl ≤
∑
r∈R

zrijl(v
r)2 − (usijl)

2 + (2− asijl − xij)M (i, j) ∈ A, l ∈ Lij , s ∈ S (66)

SSsijl ≤ asijlM (i, j) ∈ A, l ∈ Lij , s ∈ S (67)

SF sijl ≥ 0 (i, j) ∈ A, l ∈ Lij , s ∈ S (68)

SSsijl ≥ 0 (i, j) ∈ A, l ∈ Lij , s ∈ S. (69)

We now present a proposition that establishes the equivalence between the non-linear and the

linearized formulations of the discrete speed and continuous recourse.

Proposition 1. Let v∗NLP be the optimal value and (x∗, z∗, k∗, SR∗) be an optimal solution of

the non-linear formulation. Let v∗LP be the optimal value and (x∗, z∗, k∗, SS∗, SF ∗) be an optimal380

solution of the linearized formulation. If (45)–(46) and (49)–(53) are replaced by (58)–(59) and (60)–

(69) respectively, then v∗NLP = v∗LP and the optimal solutions coincide with respect to (x∗, z∗, k∗).

Proof. To prove the validity of Proposition 1, we compute the value of the two original terms in the

objective functions, and the terms that replace them in the linearized version. The value of these385

terms needs to be the same. For a given arc (i, j) ∈ A, there are four cases:

1. There is no speed violation on (i, j):
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(a) non-linear model: Due to (54)–(55) asijl = 0, hence, due to (53), SRsijl = 0 for all s ∈ S.

Therefore the values of (45)–(46) are as follows :

• dijl
∑
r∈R z

r
ijl/(v

r −SRsijl) = dijl
∑
r∈R z

r
ijl/v

r = dijl/v
r if zrijl = 1, and 0 otherwise,390

• dijl
∑
r∈R z

r
ijl(v

r − SRsijl)2 = dijl
∑
r∈R z

r
ijl(v

r)2 = dijl(v
r)2 if zrijl = 1, and 0 other-

wise.

(b) linearized model: Due to (54)–(55) asijl = 0, hence, due to (64), SF sijl = 0 and due to

(67) SSsijl = 0 for all s ∈ S. Therefore the value of (58)–(59) are as follows:

• dijl
∑
r∈R(zrijl/v

r) + SF sijl = dijl
∑
r∈R z

r
ijl/v

r = dijl/v
r if zrijl = 1, and 0 otherwise,395

• dijl
∑
r∈R z

r
ijl(v

r)2 − SSsijl = dijl
∑
r∈R z

r
ijl(v

r)2 = dijl(v
r)2 if zrijl = 1, and 0 other-

wise.

2. There is a speed violation on (i, j) (i.e.
∑
r∈R z

r
ijl > usijl):

(a) non-linear model: Due to (54)–(55) asijl = 1, hence, due to (51)–(52), SRsijl =
∑
r∈R z

r
ijlv

r−

usijl for all s ∈ S. Therefore:400

• dijl
∑
r∈R z

r
ijl/(v

r − SRsijl) = dijl
∑
r∈R z

r
ijl/(v

r −
∑
r∈R z

r
ijlv

r + usijl) = dijl/u
s
ijl if

zrijl = 1, and 0 otherwise,

• dijl
∑
r∈R z

r
ijl(v

r − SRsijl)2 = dijl
∑
r∈R z

r
ijl(v

r −
∑
r∈R z

r
ijlv

r + usijl)
2 = dijl(u

s
ijl)

2 if

zrijl = 1, and 0 otherwise.

(b) linearized model: Due to (54)–(55) asijl = 1, hence, due to (62)–(63), SF sijl = 1/usijl −405 ∑
r∈R z

r
ijl/v

r and due to (65)–(66) SSsijl =
∑
r∈R z

r
ijl(v

r)2 − (usijl)
2 for all s ∈ S. There-

fore:

• dijl
∑
r∈R(zrijl/v

r) + SF sijl = dijl(
∑
r∈R z

r
ijl/v

r + 1/usijl −
∑
r∈R z

r
ijl/v

r) = dijl/u
s
ijl

if zrijl = 1, and 0 otherwise,

• dijl
∑
r∈R z

r
ijl(v

r)2−SSsijl = dijl(
∑
r∈R z

r
ijl(v

r)2−
∑
r∈R z

r
ijl(v

r)2+(usijl)
2) = dijl(u

s
ijl)

2
410

if zrijl = 1, and 0 otherwise.

We have shown that in all possible cases, the linearized and non-linear models are equivalent.

Therefore, v∗NLP = v∗LP and the optimal solutions of the two models coincide with respect to

(x∗, z∗, k∗).
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4.3. One-Route, Several-Speeds Strategy415

As explained in Section 3.3, the OR-SS strategy assumes that the actual maximum speeds are

revealed prior to executing the routes, but after the routing decisions have been made. Here the

decisions involve determining a set of routes that will remain intact regardless of the scenario, but

will include a set of optimal speeds for each scenario. This problem is now modeled as a two-stage

stochastic program in which the first-stage variables correspond to the routes. The variables zrijl

that were used to choose a speed level vr for the segment l of the arc (i, j) in Section 4.2.1 will now

be second-stage decision variables and redefined separately for each scenario as zrsijl to denote the

speed level vr. The recourse variables are potential delays experienced when serving customers. The

objective is to minimize the expected cost by taking into account the scenario probabilities. The

two-stage stochastic program is defined as follows, where EsW (x, s) represents the expected cost of

the objective function of second-stage problem W (x, s):

Minimize
∑

(i,j)∈A

∑
l∈Lij

wfcγλαijdijlxij (70)

+
∑

(i,j)∈A

∑
l∈Lij

fcγλαijdijlfij (71)

+
∑
s∈S

ps

( ∑
(i,j)∈A

∑
l∈Lij

fckΩV λdijl
∑
r∈R

zrsijl/v
r (72)

+
∑

(i,j)∈A

∑
l∈Lij

fcβγλdijl
∑
r∈R

zrsijl(v
r)2
)

(73)

+EsW (x, s) (74)

subject to ∑
j∈N

x0j = m (75)

∑
j∈N

xij = 1 i ∈ N0 (76)

∑
j∈N

xij = 1 j ∈ N0 (77)

∑
j∈N

fij −
∑
j∈N

fji = qi i ∈ N0 (78)

qjxij ≤ fij ≤ (Q− qi)xij (i, j) ∈ A (79)
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∑
r∈R

zrsijl = xij (i, j) ∈ A, l ∈ Lij , s ∈ S (80)

xij ∈ {0, 1} (i, j) ∈ A (81)

fij ≥ 0 (i, j) ∈ A, (82)

where the second stage problem is defined as

W (x, s) = minimize{
∑
j∈N0

fdδ
s
j +

∑
j∈N

elsj}, (83)

subject to

ysi − ysj + ci +
∑
r∈R

∑
l∈Lij

dijlz
rs
ijl/v

r ≤M(1− xij) i ∈ N, j ∈ N0, i 6= j, s ∈ S (84)

ysj − cj − δsj +
∑
l∈Lij

∑
r∈R

dj0lz
rs
j0l/v

r ≤M(1− xj0) j ∈ N0, s ∈ S (85)

aj ≤ ysj ≤ bj + lsj i ∈ N, j ∈ N0, i 6= j, s ∈ S (86)

ysi ≥ 0 i ∈ N0, s ∈ S (87)

zrsijl ∈ {0, 1} (i, j) ∈ A, l ∈ Lij , r ∈ R s ∈ S. (88)

The value of optimal solution yielded by the OR-SS strategy is at least as good as the optimal

value of the OR-OS strategy. The relative difference between these values can be interpreted as the

value of the additional information provided by the OR-SS strategy. Indeed, the gain in cost is due

to the knowledge of traffic speeds before the start of the routing.

5. Computational experiments420

The purpose of the computational experimentation carried out in this section is fourfold. First,

we aim to compare the two linear models described in Section 4.2.1, which are the discrete speed and

discrete recourse model, and the discrete speed and continuous recourse model. This comparison

will show which of the linearization techniques is more suitable to solve the problem. Second, once

the best linear stochastic model is identified, it will be compared with a deterministic model. This425

model considers only one scenario, where on each arc the traffic speed is the average of traffic speeds

of each scenario. This comparison will highlight the advantage of using a stochastic strategy rather

than a simple deterministic strategy. The relative difference between the two solutions values can
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be interpreted as the value of a stochastic solution (Birge, 1982; Birge and Louveaux, 2011). Third,

in order to assess the benefit of having perfect knowledge of the traffic speeds, we will compare430

the OR-OS and OR-SS strategies. The difference between the solution values yielded by these two

strategies can be interpreted as the value of complete information about congestion and random

events. Finally, we quantify the benefits of optimizing speeds as compared with a scenario where

the vehicles simply travel at the fixed traffic speed.

We have conducted experiments on the 20 benchmark instances of PRP-lib with 10 customers.435

All tests were performed on a computer equipped with an Intel Core i7-3770 processor, 3.4 GHz and

a RAM of 8GB. The mathematical models were solved by CPLEX 12.6.0.1 using default options. A

maximum CPU time of three hours was allowed for the solution of any instance. The typical values

of the parameters used in fuel emission model as described in Bektaş and Laporte (2011) are shown

in Table 4, with exception of the driver wage for which we use £10 per hour as per the 2017 rate440

reported in (National Careers Service, 2017).

5.1. Probability distribution and scenario generation

As mentioned in Section 3.3, the traffic speeds are the random variables of the problem. To

generate traffic speeds, we need to generate different traffic conditions on the network, which can be

achieved through the use of distributions to generate vehicle speeds. Hofleitner et al. (2012) and445

Rakha et al. (2006) suggest that compared with other distributions, the log-normal distribution

provides a good fit for vehicle speeds. This is therefore the distribution we have used to model

traffic speeds on arcs.

In the computational experiments carried out, we considered three scenarios S1, S2 and S3. Each

scenario was defined using a log-normal distribution with parameters µ and σ from which we drew450

traffic speeds for each arc of the graph. This distribution describes the general characteristics of

the speeds for that scenario. For example, if µ is low, the traffic is low in general, although some

arcs may have higher traffic speeds due to the long tail of the distribution, particularly if σ is large.

The mean and variance of a sample generated using a log-normal distribution is µ̂ = eµ+σ2/2 and

its variance is σ̂2 = (eσ
2 − 1)e2µ+σ2

. In the remainder of the paper, we will refer to the log-normal455

distribution by its mean µ̂ and variance σ̂2 defined above. In the first part of the computational

experiments, we consider only one segment per arc (i.e. Lij = {1},∀(i, j) ∈ A).

To generate realistic scenarios, we used the Mobile Century Data (Herrera et al., 2010) that
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Notation Description Typical values

w Curb-weight (kg) 6350

ε Fuel-to-air mass ratio 1

k Engine friction factor (kJ/rev/L) 0.2

Ω Engine speed (rev/s) 33

V Engine displacement (L) 5

g Gravitational constant (m/s2) 9.81

Cd Coefficient of aerodynamic drag 0.7

ρ Air density (kg/m3) 1.2041

Γ Frontal surface area (m2) 3.912

Cr Coefficient of rolling resistance 0.01

ηtf Vehicle drive train efficiency 0.4

η Efficiency parameter for diesel engines 0.9

fc Fuel and CO2 emissions cost (£/L) 1.4

fd Driver wage (£/s) 0.0028

e Unit delay cost (£/s) 0.0028

κ Heating value of a typical diesel fuel (kJ/g) 44

Ψ Conversion factor (g/s to L/s) 737

θ Road angle 0

vlb Speed lower bound (km/h) 20

vub Speed upper bound (km/h) 96

Table 4: Values of the parameters used in the emission model

provides vehicles speed collected using phones GPSs during different times. The first scenario S1

is extracted from the data where the average speed is relatively low but has a large variance. It460

represents a relative congestion on some arcs while others have larger traffic speeds. The scenario

S1 is generated using a mean µ̂ = 40 km/h and a variance σ̂2 = 64 . The second scenario S2 is

extracted from data where the average speed is high but values over the arcs have high fluctuation.

It is generated with µ̂ = 70 and σ̂2 = 144. The last scenario is generated using µ̂ = 55 and σ̂2 = 100
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The traffic speed generated usij for all arcs (i, j) ∈ A and all scenarios s ∈ S must lie within the465

interval 20 ≤ usij ≤ 96 required by law for delivery vehicles. Below is an example of a complete

graph defined with a single depot and three customers, where on each arc the traffic speed are drawn

from scenario S2: 
0 87 20 45

58 0 26 51

29 59 0 29

58 24 61 0


.

For all comparisons provided in this section, every instance was solved on three different, and

randomly generated realizations of S1, S2 and S3, the results displayed on the tables represents the470

average of all these tests. This methodology allow the results to be meaningful and do not rely

on a particular realization of the scenarios. It also enables the assessment of the robustness of the

solution algorithms with respect to changes in traffic conditions.

5.2. Comparative results for the discretized and continuous recourse strategies

We now present the results of experiments in which each of the 20 instances was solved once by475

the discretized recourse model, and once by the continuous recourse model, both described in Section

4.2.1. The results are presented in Table 5 which displays the optimal values for the instances (in

£) and solution times in seconds to optimality. The gap (%) is the percentage of the continuous

recourse optimal solution value saved with respect to the optimal solution value of the discrete

recourse model. We can see from Table 5 that the fixed continuous recourse model outperforms480

the discretized recourse model by an average of 4.95% in terms of optimal solution value. This

table also shows that the continuous recourse model is more than twice faster on average than the

discretized recourse model. On instance UK10 15, the discretized recourse model could not yield

a proven optimal solution within the time limit of three hours; in this case, we report the best

known solution value. Given this result, OR-OS, will henceforth refer to the discretized speed and485

continuous recourse model.

5.3. Comparative results for the OR-OS strategy with the deterministic model and OR-SS strategy

Here, we present the results of experiments in which each of the 20 instances is solved by the

deterministic and the OR-SS approaches, both described in Section 4.2.1 and 4.3. The relative

difference in cost between the OR-OS and deterministic approaches is the Value of the Stochastic
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Instance Discrete recourse Continuous recourse

Optimal value Seconds Optimal value Seconds Gap (%)

UK10 01 261.6 4799.0 251.3 1119.7 4.1

UK10 02 327.6 2505.3 308.4 1844.7 6.2

UK10 03 295.6 2682.0 282.3 818.7 4.7

UK10 04 284.4 1736.3 270.3 711.0 5.2

UK10 05 240.4 3061.0 232.1 719.0 3.6

UK10 06 343.4 4352.0 328.9 2092.3 4.4

UK10 07 288.5 2250.3 277.7 1004.7 3.9

UK10 08 330.0 1607.5 313.2 487.0 5.4

UK10 09 259.6 763.7 246.4 213.3 5.4

UK10 10 293.1 2319.7 278.0 587.3 5.4

UK10 11 439.0 1206.3 409.8 1083.3 7.1

UK10 12 260.2 849.7 248.4 829.3 4.8

UK10 13 289.5 1408.3 279.7 1431.7 3.5

UK10 14 282.3 5305.7 267.0 2963.0 5.7

UK10 15 210.7 10800.0 199.5 3381.0 5.6

UK10 16 252.0 4616.0 243.8 1447.0 3.4

UK10 17 255.6 1235.3 246.5 347.7 3.7

UK10 18 242.5 3574.0 225.8 1062.0 7.4

UK10 19 266.3 2974.3 251.6 573.3 5.8

UK10 20 244.1 4259.0 235.8 1373.0 3.6

Average 283.32 3115.28 269.82 1204.45 4.95

Table 5: Comparison between the solutions of the discretized and continuous recourse models

Solution (VSS) (Birge, 1982). It represents the percentage cost saved when solving a stochastic

model rather than a deterministic one. The VSS is computed as follows:

V SS =
Deterministic solution cost− Stochastic solution cost

Stochastic solution cost
× 100.

In Table 6, we show the optimal solutions values (in £), the solution times in seconds, and
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the VSS. We see that the stochastic solutions are on average better than the deterministic ones

by 7.48%. The largest saving 17.7%, is obtained by the OR-OS strategy is achieved on instance490

UK10 15. The average solution time to optimality of the deterministic model is 47.03 seconds, while

the same statistic for the OR-OS model is 1204.45 seconds.

The OR-SS strategy reduces the total cost obtained by the OR-OS on average by 1.27%. This

improvement is the saving achieved when perfect information about the traffic speeds is available,

but this information is in practice very difficult to acquire. However, the results of these tests495

show that the use OR-OS strategy can provide solutions that are on average less than two percent

more expensive than those based on perfect information. Comparing the times required to solve

the instances to optimality, we see that OR-SS strategy requires 191.05 seconds on average, while

the OR-OS strategy is slower, with an average solution time of 1204.45 seconds. This difference

is justified by the fact that no speed recourse decisions are needed under the OR-SS strategy, and500

hence fewer solutions need to be checked to prove the optimality of the current solution.

5.4. Correlation between total cost and fuel cost savings

To gain more insight, we provide a pairwise comparison of six scenarios, two with low means

equal to 30 km/h and 40 km/h, two with higher means equal to 55 km/h and 70 km/h, and with

variances equal to either 64 or 144, yielding eight combinations. The tests show how the traffic505

conditions affect both the fuel consumption and the total cost of the solutions. The tests are run

on the instance UK10 01 and the results are reported in Table 7, where each entry corresponds to

a pair of scenarios, and contains two rows. The first row reports the percentage reduction in fuel

consumption achieved by the OR-OS strategy over the deterministic approach, and it is displayed in

the form (minimum, average, maximum). A negative value indicates that the deterministic approach510

performed better than the OR-OS strategy. The second row reports similar statistics for the total

solution cost.

The results shown in Table 7 suggest that the savings in total cost and in fuel consumption are

not necessarily correlated. In fact, a large reduction in total cost does not imply a large reduction in

fuel consumption. In this respect, Demir et al. (2014a) pointed out that the objective function is515

composed of two cost components: fuel consumption and driver cost. These are often conflicting,

and the latter plays a more important role in achieving reductions in the overall cost. The results

indicate that the largest savings both in fuel and in driver cost are achieved when the average speed
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Instance Deterministic OR-SS

Optimal

value

Seconds VSS (%) Optimal

value

Seconds Gap (%)

UK10 01 265.4 33.0 5.6 246.3 154.3 −2.0

UK10 02 332.6 37.7 7.8 303.5 138.0 −1.6

UK10 03 297.3 64.3 5.3 278.8 158.3 −1.3

UK10 04 288.7 43.3 6.8 267.4 132.3 −1.1

UK10 05 241.5 52.5 4.1 230.4 187.0 −0.7

UK10 06 352.3 78.7 7.1 325.2 358.7 −1.1

UK10 07 295.5 35.3 6.4 274.5 144.3 −1.2

UK10 08 332.4 16.0 6.1 309.5 57.0 −1.2

UK10 09 256.5 10.7 4.1 243.3 30.0 −1.3

UK10 10 294.0 18.0 5.8 273.5 84.7 −1.6

UK10 11 444.6 41.7 8.5 406.3 218.0 −0.9

UK10 12 263.5 45.3 6.1 245.9 185.3 −1.0

UK10 13 290.6 71.3 3.9 275.0 333.0 −1.7

UK10 14 282.1 105.3 5.7 263.3 427.7 −1.4

UK10 15 234.9 58.7 17.7 196.0 498.0 −1.8

UK10 16 254.9 49.0 4.5 242.0 113.3 −0.7

UK10 17 281.4 13.7 14.2 244.1 58.0 −1.0

UK10 18 259.3 53.7 14.8 223.1 143.7 −1.2

UK10 19 277.7 30.0 10.4 248.4 101.0 −1.3

UK10 20 246.7 82.3 4.6 232.5 298.3 −1.4

Average 289.59 47.03 7.48 266.45 191.05 −1.27

Table 6: Performance of deterministic and OR-SS approaches and comparison with OR-OS

across all scenarios is less than the the globally optimal speed v∗ that minimizes fuel consumption

(which depends on the type of vehicle and is between 50 and 60 km/h in our case), otherwise520

the savings in fuel consumption are less than 0.6% on average. The results also show that the

deterministic approach was able to save fuel on some instances, but this saving is achieved at the
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µ̂ = 40, σ̂2 = 144 µ̂ = 70, σ̂2 = 144

µ̂ = 30, σ̂2 = 64
(−0.2%, 0.4%, 1.2% ) ( −1.8%, 0.1%, 2.2%)

(9.3%, 12.9%, 15.6% ) ( 7.6%, 15.8%, 20.8%)

µ̂ = 30, σ̂2 = 144
(−1.9%, −1.3%, −0.8% ) ( −1.2%, −0.1%, 1.3%)

(3.2%, 7.6%, 13.3% ) ( 6.7%, 12.7%, 16.2% )

µ̂ = 55, σ̂2 = 64
(−3.7%, −1.1%, 1.1% ) ( −2.0%, −0.7%, 1.4%)

(3.9%, 5.7%, 9.3% ) ( 10.1%, 11.8%, 13.2%)

µ̂ = 55, σ̂2 = 144
(−0.5%, 2.1%, 5.6% ) ( −1.7%, 0.0%, 2.7%)

(4.4%, 11.4%, 20.1% ) ( 7.2%, 13.5%, 24.7%)

Table 7: Comparison between deterministic and OR-OS solution values

expense of the overall cost. Finally, when the average speed of one scenario is lower than v∗ and

the other is higher than v∗, the two approaches yield similar fuel consumptions, but the OR-OS

strategy performs better in terms of the overall cost.525

5.5. The value of optimizing speed

Most papers relevant to the stochastic VRP, such as those reviewed in Section 2.2, do not consider

speed as a decision variable. This means that if arc (i, j) is chosen in the first stage, then it is

assumed that the vehicle will travel on that arc at a traffic speed that is scenario dependent. From a

decision-making point of view, this does not allow any flexibility in changing vehicle speeds and does530

not take into account the flexibility of reducing speed to save on fuel cost. From a methodological

point of view, this is a special case of our approach where the speed decision variables are fixed to

the traffic speeds on all arcs.
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To quantify the value of optimizing speed, we present results using the first 10 instances of the

testbed (namely UK 10 01 to UK 10 10), on which we compare the percentage savings afforded535

by optimized speeds against the case where speeds are fixed to the traffic speed value prescribed

by the scenarios. Table 8 shows the results over 3 realizations of each scenario in terms of the

minimum, average and maximum savings, presented under the three main columns. For each of the

columns, we again provide the minimum, average and maximum savings obtained. For example,

the column titled Minimum and sub-column titled Av shows the average minimum saving achieved540

across the 10 instances and the 3 realizations of the scenarios. The values are expressed in percentage

of the objective value which includes only fuel costs. Each row represents a setting, numbered

1–5, that are generated using the scenarios where settings 1 and 2 include one, settings 3, 4 and 5

include two scenarios. The scenarios are defined by the following distributions (µ̂ = 40, σ̂2 = 64);

(µ̂ = 70, σ̂2 = 144); (µ̂ = 70, σ̂2 = 144), (µ̂ = 30, σ̂2 = 64); (µ̂ = 70, σ̂2 = 144), (µ̂ = 80, σ̂2 = 164);545

(µ̂ = 40, σ̂2 = 64), (µ̂ = 30, σ̂2 = 64).

Setting Minimum (%) Average (%) Maximum (%)

Min Av Max Min Av Max Min Av Max

1 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.3 0.4

2 0.0 0.1 0.3 0.1 0.3 0.8 0.2 0.7 1.5

3 0.0 0.0 0.0 0.1 0.1 0.3 0.1 0.3 0.5

4 0.0 0.0 0.2 0.1 0.2 0.4 0.1 0.4 0.7

5 0.0 0.0 0.0 0.0 0.1 0.2 0.1 0.2 0.4

Table 8: Savings achieved by considering speed as a decision variable

Table 8 shows that considering speed as a decision variable can result in average savings of up to

0.8% in terms of the total cost. Low savings are due to the fact that driver cost is the largest cost in

the objective function (Bektaş and Laporte, 2011). With the introduction of ATs, the driver is not

in control of the vehicle on the highways, and hence driver cost can be removed from the objective550

function to minimize exclusively fuel consumption and GHG emissions.

In Table 9, we repeat the experiment, with the same scenarios described above. This time

however, we do not consider driver wage in the objective function. We can see that, on average,

considering speed as a decision variable can achieve savings on fuel consumption and GHG emissions
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between 0.7% and 3.8%. The average minimum saving is achieved in setting 1, whereas the average555

maximum is 4.4% is made on setting 2, where the maximum saving achieved is 8.5%. This shows

that the savings made are highly correlated with general trend of the traffic speed on the network.

Indeed, when the traffic speed is high, the fuel consumption is also high. Therefore, if the vehicle has

to travel on all arcs at the traffic speed, it will not choose some arcs that have high speed, which in

turn will increase the fuel consumption. This situation is avoided by considering speed as a decision560

variable, since the vehicle then has the ability to travel at speed that is lower than the traffic speed.

Setting Minimum (%) Average (%) Maximum (%)

Min Av Max Min Av Max Min Av Max

1 0.0 0.6 1.4 0.7 1.5 3.8 1.1 2.5 7.9

2 0.0 1.3 2.1 1.7 2.7 3.6 2.5 4.4 8.4

3 0.5 1.1 1.6 1.2 1.8 2.5 1.7 2.6 4.2

4 0.5 1.3 2.6 1.5 2.2 3.3 1.9 3.2 4.5

5 0.2 0.8 1.8 0.8 1.4 1.9 1.5 2.0 2.4

Table 9: Savings achieved by considering speed as a decision variable without driver

5.6. The effect of variability in traffic speed

This section reports results when more than one segment is assumed for each arc in the network

to be able to evaluate the effect of any speed variability.

We consider a road network where we generate a traffic speed for two segments per arc and565

then solve the problem using the OR-OS approach. To compare this approach, we consider another

network where the traffic speed on one arc is the average of its two segments and solve using the

same approach. From this test we see the difference in cost of the two approaches which represents

the accuracy in handling speed variability brought by considering more segments.

Table 10 shows the results of these two settings. We see that, on average, considering two570

segments increased the accuracy by 8% compared to only one segment per arc. We also notice that

ignoring speed variability may result in an over-optimistic approach that underestimates the real

cost. From a computational complexity point of view, considering two segments slows down the

solution time by a factor of almost six.
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Instance Two segments One segment

Optimal value Seconds Optimal value Seconds Gap (%)

UK10 01 247.3 7500.0 230.3 804.0 7.4

UK10 02 309.3 8634.0 284.4 797.0 8.8

UK10 03 285.4 6475.0 268.2 1008.0 6.4

UK10 04 275.4 6385.0 253.9 826.0 8.5

UK10 05 252.1 8690.0 237.2 3852.0 6.3

UK10 06 322.5 7916.5 292.1 1347.0 10.4

UK10 07 278.2 3826.0 254.8 410.5 9.2

UK10 08 325.6 1813.0 299.1 223.3 8.9

UK10 09 250.3 3283.0 232.0 239.7 7.9

UK10 10 272.6 2659.0 254.7 274.3 7.0

Average 281.91 5718.15 260.67 978.18 8.0

Table 10: Comparison between network with two segments per arc and with one segment per arc

6. Conclusions575

We have introduced, modeled and solved the route and speed optimization problem for au-

tonomous trucks. We have used a comprehensive cost function and considered stochastic speeds to

represent the uncertainty in traffic conditions. Since the traffic speed on each arc is stochastic, the

travel times were also treated as random variables. We first modeled the problem considering discrete

uncertainty representation, where the traffic speeds are represented by a finite set of scenarios.580

A two-stage non-linear stochastic program was developed. We linearized the resulting model by

using a discretization of both speed variables and speed recourse variables. The use of a discrete

recourse has a significant impact on the performance of the algorithm. We therefore proposed

another linearization technique that uses a continuous recourse instead of a discretized one. When

10-node instances from the PRP-lib were solved using both formulations, the continuous recourse585

model outperformed the discretized recourse model, yielding an average cost reduction of 4.95%.

The continuous recourse strategy was also compared with its deterministic counterpart in which

traffic speeds are the averages across all scenarios. This enabled us to estimate the value of solving a
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stochastic model as opposed to a deterministic one. The continuous recourse model yielded average

cost savings of 7.48%.590

We have also studied a decision making process in which the routing decisions are made before

the information about stochastic events becomes available, but speeds can be chosen after the

realizations of the scenarios. While this scenario is less likely to occur in practice, it was implemented

to evaluate the value of perfect information on traffic condition. When this model was solved on the

same instances, only 1.27% of the total cost was saved with respect to the continuous recourse model595

on average. Finally, we have proposed a way to represent traffic speeds variability by considering

several segments on a given arc. We showed that considering two segments per arc can increase the

accuracy of the solution by 8.0% on average.
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Taş, D., Dellaert, N., Van Woensel, T., De Kok, T., 2013. Vehicle routing problem with stochastic

travel times including soft time windows and service costs. Computers & Operations Research 40,

214–224.

The Guardian, 2016. Convoy of self-driving trucks completes first european700

cross-border trip. https://www.theguardian.com/technology/2016/apr/07/

convoy-self-driving-trucks-completes-first-european-cross-border-trip. Accessed

on 30.11.2017.

Tsugawa, S., 2012. Energy its: What we learned and what we should learn. on-

linepubs. trb. org. http://onlinepubs.trb.org/onlinepubs/conferences/2012/Automation/705

presentations/Tsugawa.pdf. Accessed on 30.11.2017.

Vanholme, B., Gruyer, D., Lusetti, B., Glaser, S., Mammar, S., 2013. Highly automated driving

on highways based on legal safety. IEEE Transactions on Intelligent Transportation Systems 14,

333–347.

Wired.com, 2016. Uber’s self-driving truck makes its first delivery: 50.000 beers. https://www.wired.710

com/2016/10/ubers-self-driving-truck-makes-first-delivery-50000-beers/. Accessed

on 30.11.2017.

Wu, P., Chu, F., Che, A., Fang, Y., 2017. An efficient two-phase exact algorithm for the automated

truck freight transportation problem. Computers & Industrial Engineering 110, 59–66.

39

https://www.theguardian.com/technology/2016/apr/07/convoy-self-driving-trucks-completes-first-european-cross-border-trip
https://www.theguardian.com/technology/2016/apr/07/convoy-self-driving-trucks-completes-first-european-cross-border-trip
https://www.theguardian.com/technology/2016/apr/07/convoy-self-driving-trucks-completes-first-european-cross-border-trip
http://onlinepubs.trb.org/onlinepubs/conferences/2012/Automation/presentations/Tsugawa.pdf
http://onlinepubs.trb.org/onlinepubs/conferences/2012/Automation/presentations/Tsugawa.pdf
http://onlinepubs.trb.org/onlinepubs/conferences/2012/Automation/presentations/Tsugawa.pdf
https://www.wired.com/2016/10/ubers-self-driving-truck-makes-first-delivery-50000-beers/
https://www.wired.com/2016/10/ubers-self-driving-truck-makes-first-delivery-50000-beers/
https://www.wired.com/2016/10/ubers-self-driving-truck-makes-first-delivery-50000-beers/

	Introduction
	Literature review
	The Pollution-Routing problem
	Vehicle routing problems with stochastic travel times
	Relationship with the state of knowledge

	Technical background information
	Calculation of fuel consumption and emissions
	The impact of travel speed uncertainty on emissions
	Decision time-lines and modeling of stochasticity

	Problem Description and Mathematical Models
	Notations Common to the Two Models
	One-Route, One-Speed Strategy
	Discrete Speeds and Discrete Recourse
	Discrete Speeds and Continuous Restricted Recourse

	One-Route, Several-Speeds Strategy 

	Computational experiments
	Probability distribution and scenario generation
	Comparative results for the discretized and continuous recourse strategies
	Comparative results for the OR-OS strategy with the deterministic model and OR-SS strategy
	Correlation between total cost and fuel cost savings
	The value of optimizing speed
	The effect of variability in traffic speed

	Conclusions

