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ABSTRACT

This report extends prior research on the “decision theory” approach for scheduling/sequencing (DTS).
Compared to other construction heuristics like priority dispatching (PD) approaches, DTS has the ad-
vantage that it is flexible regarding a diverse range of regular and non-regular objectives. Furthermore,
multiple decision criteria linearly combined within a single objective function can be addressed.

For sequencing a set of jobs on a single machine, DTS estimates the total effect of selecting the next
job in the sequence. To this, the completion times for all jobs resulting from this decision need to be
estimated. We provide an estimator for job completion times and prove it to be the expected completion
time. We also prove that DTS using this estimator provides optimum solutions for a number of single
machine scheduling problems. Finally, we provide an extensive computational study comparing DTS to 38
competing PD approaches for a large variety of objectives (31). The results indicate DTS to be a flexible
and viable alternative to PD approaches almost independent of specific objectives and problem instance

characteristics.

1. Introduction

For more than four decades, the development and use of pri-
ority dispatching (PD) rules have played a prominent role in both
scheduling theory and the practice of industrial scheduling. The PD
approach is easy to understand, simple to apply, and in many cases
yields good solutions. However, PD rules suffer from the defect of
being aimed at a specific objective function. One rule might per-
form well when minimizing flow time; another rule might work
best when minimizing tardiness is the criterion. As pointed out
by Kanet and Zhou (1993), a second drawback of traditional PD
is its inherent myopic view when selecting the next job to dis-
patch. All PD approaches determine a measure of urgency (a pri-
ority index) for each job and select the most urgent job (with the
highest priority) to be dispatched. The inherent opportunity cost
that all other jobs will not be selected is not considered. To over-
come this drawback, Chryssolouris et al. (1988, 1991) developed a
scheduling approach, which has become known as the “decision
theory approach” (DT) for sequencing. The DT approach is based
on estimating the (full) consequences (on the objective function
value) of selecting a given job to be dispatched next. Thereby, the
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consequence of selecting one job next includes not only its effect
on the objective function value but also the expected effects of all
other jobs that are not chosen next. In consequence, the job that
provides the most favorable expected “total” consequence is dis-
patched next (Kanet and Zhou, 1993).

In this paper, we further develop the idea of DT sequencing
(DTS). To confirm the worthiness of DTS, we limit the analysis
here to a systematic study of single machine sequencing prob-
lems in which the objective is the minimization of different func-
tions f on the completion times of a set of jobs (f{C)). Beside
regular functions (freg) like total flowtime or total tardiness, we
also consider non-regular objective functions fureg with the restric-
tion that no idle time is allowed. Generally, only non-delay se-
quences are considered. This restriction to non-delay sequences,
even for non-regular objectives, is very common for different sin-
gle machine sequencing objectives like the minimization of “total
weighted earliness and tardiness” (see e.g., Ow and Morton, 1989;
Valente and Alves, 2005), “total weighted quadratic earliness and
tardiness” (Vila and Pereira, 2013), or “completion time variance”
(Srirangacharyulu and Srinivasan, 2010). Focusing on single ma-
chine problems is not as restrictive as it may appear because many
variants of the problem types 1||freg(C;) and 1|[fareg(C;), though well
studied, are still of theoretical and practical importance. The atten-
tion to such single machine problems is well justified as it applies
to many industrial settings, e.g., paint shops in a car manufacturing
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facility (Bock and Pinedo, 2010) or any serial production facility or
assembly line that is scheduled as a single entity (Pinedo, 2009).
Furthermore, with the long-standing industrial focus to move from
job-shop process design to work cells, one sees work cells sched-
uled as a single entity (Wemmerlév and Hyer, 1989). In addition,
for many more scheduling environments, like parallel machines,
findings for the 1[|{C;) problem can be used to optimize the se-
quence on each machine more efficiently (Koulamas, 2010).

Generally, we extend the work of Kanet and Zhou (1993) who
demonstrated the viability of the DT approach in a small experi-
mental study. We extend that study in several ways:

- We prove the completion time estimator used here is the ex-
pected value.

- We prove for some special cases that DTS yields optimum se-
quences.

- In our experimental study, we consider exhaustive sets of ob-
jective criteria (regular and non-regular) and competitive PD
approaches.

- For weighted objective criteria, we carefully compare DTS to PD
approaches under different assumptions to the nature of the
weights (arbitrary (unrestricted), agreeable, and proportional
weights).

The remainder of this paper is organized as follows. In
Section 2 we specify how the DT approach can be implemented
for single machine sequencing problems along with the aforemen-
tioned proofs of the unchosen jobs’ completion time estimator and
the special cases. Section 3 follows with a description of the ex-
perimental study conducted to compare DTS to competing PD ap-
proaches. Here, we concentrate our analysis on “conventional” PD
approaches, i.e., single-pass construction heuristics. For each con-
sidered objective, we searched the literature for the best published
approach with which we could compare DTS. Section 4 reports ex-
perimental results. Section 5 summarizes and comments on future
research directions.

2. Decision theory-based single machine sequencing

Formally, the scope of the problems we address here is as fol-
lows. A set N of n=|N| independent jobs (indexed by j=1, 2,
..., n)has to be sequenced on a single machine that can pro-
cess at most one job at a time. Preemption of jobs is not allowed
and the machine is continuously available. Each job j has a ready
time equal to zero, a processing time p;, a due date d;, a weight
(tardiness penalty factor) w;, and an earliness penalty factor hy,.
Based on the completion time C; of job j, we compare the per-
formance of DTS to PD approaches over a variety of regular objec-
tive functions freg(Cy, Ca, ..., ) and non-regular objective functions
fnreg(c1v C2v [ERN) Cn)-

Generally, the literature on decision theory based sequencing or
scheduling at all is quite rare. As stated above, the basic idea of
DTS is attributable to Chryssolouris et al. (1988; 1991) and their
MADEMA (MAnufacturing DEcision MAking) framework. Based on
MADEMA, Kanet and Zhou (1993) explicitly formulate the DT ap-
proach for scheduling problems. Sridharan and Zhou (1996a;b) ex-
tend the previous work by considering release dates and the objec-
tives total tardiness minimization and weighted earliness and tar-
diness minimization, respectively. Monch et al. (2005) address the
problem to schedule jobs on parallel batch machines with incom-
patible job families and unequal release dates. Within their genetic
algorithm, they solve 1|r;, batch, incompatible|Zw;T; subproblems
via DT. Their results show that the DT approach outperforms all
other heuristic methods in terms of solution quality but at costs
of higher computation times. DTS might also be seen as a simpli-
fication of the “Beam Search” approach of Ow and Morton (1989).
Limiting the “beamwidth” parameter to one leads to DTS. For the
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Fig. 1. Illustration of estimated job completion times.

application of Beam Search see Morton and Pentico (1993) and
Sabuncuoglu and Bayiz (1999). Following these authors, the gen-
eral course of action of DTS is as follows (N; defines the set of jobs
yet to be sequenced at time (decision point) t; n; = |N¢|):

Procedure DTS

Step 0: Set t=0 and N;=N.

Step 1: For each job k from N; tentatively select k to start at time t and
compute Cy =t-+pg.

Step 1.1: For each other job j € N; (j # k), estimate its completion time C; given
that job k starts at time t (via Eq. (1); see below).

Step 1.2: Compute the estimated objective value Z, =f(Cy,..., Cy).

Step 2: Choose that job k* to be sequenced next with smallest estimated Z.

Step 3: Set t =t + py- and remove job k* from N;.

Step 4: If N; is not empty, then go to Step 1.

As can be seen by procedure DTS, the algorithm complexity
is O(n3), which is somewhat higher compared to the complexities
of static PD approaches (with O(n log n)) and most dynamic PD ap-
proaches (with O(n?)). It should be noted that some more sophis-
ticated dynamic PD approaches also have a complexity of O(n3).
Nevertheless, there are several major advantages of DTS over many
PD approaches:

- First, the logic of DTS is easy to follow. It contains no complex
formulas as in some PD approaches.

- Second, no a priori parameter estimation is required (e.g., look-
ahead parameters or job allowance factors).

- Third, DTS takes a global view in selecting a job to be se-
quenced next (global in the sense that it considers the oppor-
tunity cost of not selecting other jobs), which sets it apart from
“myopic” PD approaches that considers only the attributes of
each job individually (see e.g., Sridharan and Zhou, 1996a).

- Fourth, and most importantly, it is flexible with regard to the
objective criterion. Except for changing the objective function,
no other changes regarding the implementation are required.

2.1. Estimating job completion times for DTS

To apply DTS, we need to estimate job completion times as re-
quired in Step 1.1 of Procedure DTS shown above. To estimate these
completion times given that some job k is scheduled next, we use
the following estimator of a job j's completion time E(Cj) as used
by Sridharan and Zhou (1996a;b):

+pj+h . .
BEBT 2 vjen, j#k (1)

E(Cj) =t+

In expression (1), P; refers to the total processing time of all
jobs j € Ni to be sequenced at this point in time (P = 3"y, pj)- At
time t, we tentatively select job k to be sequenced and thus, any
other unselected job j will complete processing somewhere in the
interval [t 4 py + p;, t+ P (Fig. 1 illustrates).

We prove in the following that this estimator (expression (1))
is the expected value of a job’s completion time. Note that when
a job k is chosen, then each remaining unchosen job j can, with
equal probability, occupy any one of the u=1, ..., n;—1 (with
n: = |N¢|) positions after job k. Given any position u for job j, there

are (Z[__ ]2 ) ways that u—1 of the remaining n,—2 jobs can be

chosen to reside in the schedule between k and j. Using Zgzo(g) =

2b. the total number of outcomes (the event space) for all positions



of job j is:

n—1
ng—2 _
Z(u—l)zznz' (2)
u=1

Consequently, there are 2"~2 events defining possible comple-
tion times for a job j. In this context, the set B;(u) contains all jobs
assumed to lie between job k and job j when it occupies position u.
In any such event, the completion time C; of job j is

G =t+pc+pi+ Y D 3)

ieBj(u)

As can be seen in (3), p; and py are part of the completion time
of j, independent of u, and thus are contained in each of the 2"~ 2
events. Regarding all other jobs (N;—{j} —{k}), for any position u,
each of these jobs could be before j or not. Therefore, they par-
ticipate in exactly half of the 2"~2 events; i.e., they participate in
273 events. Thus, the total processing time involved in all of the
272 events is:

2" 2(pj+p)+2"2 > b (4)
ieNe—{j}—{k}

In (4), Yjcn,—(j)-(k} Pi €an be replaced by P;—py —p; (see Fig. 1)
and thus, the estimator for E(Cj) as defined by (1) is the expected
value E(C;) for the completion time of job j:

. 2"2(pj + pi) +2"3(P — pi — pj)

E(Cj)zt n-2
1
=t+pi+pcty (P = p — pj)
i P,
= DD (5)

Note that the expected completion time E(C;) of job j is equal
to the mean of its earliest and latest completion time when job k
is chosen to be sequenced next.

Summarizing, expression (1) defining a job’s expected comple-
tion time, can be used to estimate the completion time of all un-
chosen jobs (see Step 1.1 in Procedure DTS) for any problem of the
type 1||freg(C;) and of the type 1||fureg(C;) if idle time is not allowed
(i.e., only non-delay schedules are considered).

2.2. Problem variants when DTS provides optimum solutions

There are several variants for which we can prove that DTS
based on expression (1) leads to optimum solutions:

- Single machine total weighted flowtime with agreeable
weights: 1|agreeable w; and p;|Zw;F;

- Single machine total flowtime: 1||ZF;

- Single machine total weighted flowtime with equal processing
times: 1|p; = p|Zw;F;

- Single machine maximum lateness with equal processing times:
1|p; = plmax{L;}

- Single machine maximum tardiness with equal processing
times: 1|p; = p|max{T;}

For the 1||Zw;F; problem, it is well known that the shortest
weighted processing time (SWPT) dispatching rule generates op-
timum solutions (see e.g., Baker and Trietsch, 2009). In the follow-
ing, we prove that DTS is equivalent to the SWPT dispatching ap-
proach when job processing times and weights are agreeable (i.e.,
Pr < pj=>w, > w;) and therefore also generates optimum solutions.

Theorem 1. For 1|agreeable w; and p;| Zw;F;, DTS is optimum.

Proof:
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By assumption we have p; < p; and wy > w;. To simplify the
notation we omit the flowtime contribution of the current partial
schedule that ends at time ¢; thus P; simplifies to P.

In step 2 of Procedure DTS (see Section 2), DTS will choose job
k to precede job j when

wj(Pe+ Dj +P) w; (P + pi + P)
Wipg+ ————> + —— —— =W;p;
2 ie[\%é:j,k 2 ™
+Wk(pj+2pk+P) + Z Wi(pj"‘zpi'f'P). (6)

ieN.ij.k

holds for all j. Since py < pj, the third term on the left hand side
(lhs) of (6) is smaller than the third term on the right hand side
(rhs) of (6) and thus, it is sufficient to test if

wj(px+pj+P) - +Wr<(Pj+Pk+P)

Wi Pk + ) < W;p;j 5 . (7)
This can be simplified to
WiDi + WjpPi + WP < w;p; + wyp; + wiP. (8)

Because wy, > wj, the third term on the lhs of (8) is not greater
than the third term on the rhs of (8) and thus, it is sufficient to
test if

WyDk + WPy < Wipj + Wypj. 9
Finally, because py < p; is given, (9) is true and so DTS will
choose job k to precede j. This decision is identical to the decision
of SWPT: p; < p; and wy > w; lead to pyfwj < pj/w;. Since SWPT
is optimum, then so is DTS. O
The following corollary follows directly from Theorem 1.

Corollary 1.1. For 1||XF;, DTS is optimum.

Proof:

If all weights in (9) are equal to one, then we have py < p; and
the resulting sequence is equal to the optimum solution achieved
by SPT (as SPT provides optimum solutions for 1||XF; Baker and
Trietsch, 2009). O

Replacing the assumption of agreeable weights by equal pro-
cessing times in Theorem 1 leads to the following theorems.

Theorem 2. For 1|p;=p|Zw;F;, DTS is optimum.

Proof: Given p;=pVj € N, using DTS we have wyF, =w(t+p)
and w;Fj=w;(t+2%), so that total weighted flowtime is
wk(t+p)+(t+%’)) > wj. When w, > w;Vj # k then

JjeN. j#k
Y. w; is minimum and we have sequencing by SWPT (ie,
JjeN. j7k
smallest p/w; first). O

Theorem 3. For 1|p; =p|max{L;}, DTS is optimum.

Proof: Given pj=pVj € N, using DTS we have Cy=t+p and
G=t+(P+p)2. Then Ly=t+p—d, and Lj=t+5L—d;Vj#
k. Then max{t+p—de.t+52—d;} is smallest when
max{0. 5 + p+d,—d;} is smallest. Clearly £+ p+d,—djis
smallest when d, < d;Vje,j # k. So DTS is equivalent to EDD
scheduling which is known to minimize max{L;} (Baker and
Trietsch, 2009). O

Corollary 3.1. For 1|p; =p|max{T;}, DTS is optimum.

It is well known that EDD minimizes max{T;} (Baker and Tri-
etsch, 2009) and thus, by Theorem 3, DTS provides optimum solu-
tions for 1|p;=p|lmax{T;}. O

Note that even though DTS provides optimal solutions for these
problem variants, they are polynomially solvable using variant spe-
cific PDs which are more efficient than DTS.
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3. Experimental design

To assess the overall performance of DTS applied to problems
of the types 1||freg(C;) and 1|[fareg(C;), we perform an exhaustive
computational study comparing DTS to the best performing PD ap-
proaches found in literature. Beside the competing PD approaches,
the study comprises of several objectives of different complexity
and several problem instance sets having different characteristics.

3.1. Considered objective functions

With the goal to assess the performance of DTS particularly
with regard to its flexibility concerning decision criteria, a large
variety of scheduling objectives are examined. For each objective,
we specify its calculation formula, abbreviation, name, and PD ap-
proaches providing optimum solutions or PD approaches explic-
itly designed for this objective function (for details on the PD ap-
proaches, see Section 3.2 and the Appendix). For some of the more
unusual objectives, we additionally provide literature references (if
available).

Regarding the subsequently specified regular objective func-
tions, F=XF; refers to total flowtime (with F,=C—-0), T=XT;
refers to total tardiness (with T; =max{C;—d;, 0}), and U;=1 indi-
cates that job j is tardy (else U;=0).

3.1.1. Regular single-criteria objectives

- XF;, F, total flowtime: SPT (optimum).

- Xw;Fj, WF, total weighted flowtime: SWPT (optimum).

- XT;, T, total tardiness: EDD, MST, MDD, EHD, CR, CoverT, UATC,
UMATC, UAR, UBACK.

- Xw;T;, WT, total weighted tardiness: EHD, WEDD, WMDD,
WCR, WCoverT, ATC, MATC, AR, MAR, BACK.

- ZTJ?, QT, total quadratic tardiness: UQAR, UQB6.

- ijsz, WAQT, total weighted quadratic tardiness: QAR, QB6.

- max{T;}, maxT, maximum tardiness: EDD (optimum).

- max{w;T;}, maxWT, maximum weighted tardiness: BT31WT
(optimum)

- XU;, U, total number of tardy jobs: Moore (optimum)

- Tw;U;, WU, total weighted number of tardy jobs.

3.1.2. Regular linear composite bi-criteria objectives

To assess the capabilities of DTS solving problems with linear
composite bi-criteria objectives forming a regular objective func-
tion we use the following objectives (on multi-criteria scheduling
in general see e.g., Dileepan and Sen, 1988; Chen and Bulfin, 1993;
Nagar et al,, 1995; Hoogeveen, 2005):

- XF+XTj, F+T, total flowtime and total tardiness: Morton and
Pentico (1993).

- Twifj+ Zw;T;, WF+WT, total weighted flowtime and total
weighted tardiness: van Wassenhove and Gelders (1978).

- Y F+Y sz, F+QT, total flowtime and quadratic tardiness; here
the quadratic tardiness expresses a preference for the tardiness
criterion.

- 2wk + ZWJTI.Z, WF+WQT, total weighted flowtime and
weighted quadratic tardiness; here the quadratic tardiness ex-
presses a preference for the tardiness criterion.

- pXF; 4+ q max{T;}, F + maxT, weighted sum of total flowtime and
maximum tardiness: Sen and Gupta (1983); here, we use equal
preference weights (p=q=1).

- pEWF; 4+ g max{w;T;}, WF+maxWT, weighted sum of total
weighted flowtime and maximum weighted tardiness: Sen and
Gupta (1983); here, we use equal preference weights (p=q=1).

3.1.3. Non-regular single-criteria objectives

The following non-regular objective functions are studied (with
L;=C;—d; referring to the lateness of job j, E; =max{d; - Cj, 0} re-
ferring to earliness of job j and Var referring to variance):

ZT] ..
T YU CMT, conditional mean

Hayya (1982) and Baker (1984).
- /%ZTJZ, RMST, root-mean-squared tardiness: Mebarki and

Shahzad (2013).

- ZLJZ, QL, total quadratic lateness: Gupta and Sen (1983)and
Schaller (2002).

- ijLﬁ, WQL, total weighted quadratic lateness: Sen et al.
(1995). )

- %Z (@ —0)? with C= % > C;, CTV, completion time variance:
SMV; Merten and Muller (1972).

- Iy wi(G;-C")2 with OV = ZLWJ_ZWJCJ, WCTV, weighted
completion time variance: WSMV; Cai (1995) and Nessah and
Chu (2010).

- PR (M- T)?
Haupt (1989). )

- LYy wi(T; - T)% with TW = LW] > w;Tj, WTV, weighted tardi-
ness varial_1ce.

- Iy @;-0? with
Haupt (1989).

- Iy wiL; - I")? with [V = z+v,

tardiness: Kanet and

with T=1T, TV, tardiness variance:

F . . )
L=33>L; LV, lateness variance:

> w;L;, WLV, weighted late-
ness variance.

3.14. Non-regular linear composite bi-criteria objectives

The following linear composite bi-criteria objectives forming
non-regular objective functions are studied to assess the flexibil-
ity of DTS:

- X(E; + w;T;), WE+WT, total weighted earliness and weighted
tardiness: LIN-ET, EXP-ET, WPT-MS.

- (Ej+ T2), E4+QT, total earliness and quadratic tardiness:
EQTP_EXP.

- Z(hjEJZ +ijj2). WQE +WAQT, total weighted quadratic earli-
ness and weighted quadratic tardiness: ETP_v2, ETP_LIN_vk.

-2 (F +L§), F+QL, total flowtime and quadratic lateness; here
the quadratic lateness expresses a preference for the lateness
criterion.

- Y (wjF +WjL}), WF+WQL, total weighted flowtime and
weighted quadratic lateness; here the quadratic lateness ex-
presses a preference for the lateness criterion.

3.2. Competing PD approaches

For each of the objective functions, we searched the literature
to find (most) competitive PD rules to compare with DTS. The fol-
lowing Table 1 provides a complete list of the PD approaches we
consider (a more detailed description of each PD approach is given
in the Appendix).

Beside the PD approaches listed above, we use two other PD-
like solution methods for three specific objectives because no suit-
able PD approaches exist.

First, for the objective total number of tardy jobs (U), we use
Moore’s Algorithm (“Moore”) also known as Hodgson’s Algorithm
for comparison (Moore, 1968). This algorithm is quite similar to a
PD approach and as Moore’s Algorithm calculates optimum solu-
tion, no PD approaches have been developed for this objective.

Second, for the objectives completion time variance (CTV) and
weighted completion time variance (WCTV), we use the SMV pro-
cedure as described in Kanet (1981) because this approach is the
most competitive PD-like approach (cf. Manna and Prasad, 1999;
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Table 1
Considered PD approaches.
Abb. Short description Reference
SPT Shortest processing time Baker and Trietsch (2009)
SWPT Shortest weighted processing time Baker and Trietsch (2009)
EDD Earliest due date Baker and Trietsch (2009)
WEDD Weighted earliest due date Kanet and Li (2004)
EHD - Arkin and Roundy (1991)
MST Minimum slack time Baker and Trietsch (2009)
MDD Modified due date Baker and Bertrand (1982)
WMDD Weighted modified due date Kanet and Li (2004)
CR Critical ratio Kanet and Li (2004)
WCR Weighted critical ratio Kanet and Li (2004)
CoverT Cost over time Carroll (1965); adapted by Morton and Pentico (1993) and
Kanet and Li (2004)
WCoverT Weighted cost over time Morton and Pentico (1993)
ATC (UATC) Apparent tardiness costs (unweighted) Rachamadugu and Morton (1983), Vepsalainen and

MATC (UMATC)  Modified apparent tardiness costs (unweighted)

AR (UAR) (unweighted)

MAR (UMAR) Modified AR (unweighted)

QAR (UQAR) Quadratic AR (unweighted)

BT31T Backward dispatching to minimize maximum cost (e.g.,
tardiness)

BT31WT Backward dispatching to minimize maximum cost (e.g.,

weighted tardiness)

BACK (UBACK) Backward dispatching (unweighted)

QB6 (UQB6) Quadratic backward version 6 (unweighted)

LIN-ET Linear extended local optimum earliness/tardiness

EXP-ET Exponential extended local optimum earliness/tardiness

EXP-ET-VA EXP-ET version with adaptive «

WPT-MS Weighted processing time and minimum slack

EQTP-EXP Earliness and quadratic tardiness penalty with an
exponential function”

ETP-v2 Earliness/tardiness priority dispatching

ETP_LIN_vk Earliness/tardiness priority dispatching with dynamic look

ahead

Morton (1987)

Alidaee and Ramakrishnan (1996)

Alidaee and Ramakrishnan (1996), Valente and
Schaller (2012)

Valente and Schaller (2012)

Valente and Schaller (2012)

Lawler (1973), Baker and Trietsch (2009)

Lawler (1973), Baker and Trietsch (2009)

Valente and Schaller (2012)

Valente and Schaller (2012)

Ow and Morton (1989)

Ow and Morton (1989), Valente and Alves (2005)
Valente and Alves (2005)

Valente and Alves (2005)

Valente (2007)

Valente and Alves (2008)
Valente and Alves (2008)

Srirangacharyulu and Srinivasan, 2010). For the WCTV objective,
we slightly adapted the basic SMV procedure by using the WCTV
(abbreviated WSMV) criteria to decide if we insert the largest un-
scheduled job on the immediate left or on the immediate right of
the smallest (scheduled) job (cf. Kanet, 1981; p. 1456).

3.3. Problem instances

After analyzing the considered objective functions (see
Section 3.1), it is obvious that problem instances must be dif-
ferentiated according to processing times, weights, due dates, and
earliness penalties. To provide suitable instances, we generally
follow the approach used to generate problem instances for the
single machine total tardiness problem as provided by the OR-
Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html)
but introduce further generation parameters. Like Vila and
Pereira (2013) and others (e.g., Valente, 2010), we distinguish
between processing times with a low (PTVL) and a high variabil-
ity (PTVH). To that end, processing times are drawn from two
discrete uniform distribution restricted by [45, 55] and [1, 100],
respectively. With regard to weights (and tardiness penalty factor),
we also distinguish between a low (WVL) and a high variability
(WVH) and additionally distinguish between unrestricted (arbi-
trary) weights (UW), proportional weights (PW; with w;=pj),
and agreeable weights (AW; with p, < p; then w, > w;). For
the weights, we use the discrete uniform distributions restricted
by [45, 55] and [1, 100] for WVL and WVH, respectively. For
earliness penalties h;, we differentiate between identical earliness
penalties (IEP; with hj:wj), half tardiness penalties (HEP; with

hj= ]/2w]-), and unrestricted (arbitrary) earliness penalties with
a high variability (UEPVH) and a low variability (UEPVL; drawn
from the same uniform distribution as the weights). To determine

due dates, we follow the approach widely used in literature and
draw integer due dates from the discrete uniform distribution
restricted by [P (1—tf—"44), P(1—tf+ )] with P=Y pj,
jeN

mean tardiness (tightness) factor tf, and relative due date range
factor rdd (first authors using such kind of due date generation
parameters are Srinivasan, 1971; Wilkerson and Irwin, 1971). Both,
tardiness factor and due date range factor are set to 0.2, 0.4, 0.6,
0.8, and 1.0. Concerning the number of jobs per instance, we set n
to 25, 50, 100, 200, 400, and 800. Table 2 lists the five generated
instance sets S1 to S5 according to their basic characteristics. For
each combination of characteristics, we randomly generate 10
instances and the resulting instance subsets are named e.g., S1-1
to S1-12.

Altogether, 93,840 instances within the five instance sets and
9384 subsets are generated.

3.4. Experimental design summary

To keep the experimental study manageable, we limit the com-
parison of DTS to only those PD approaches that we judged to be
relevant for a specific objective. In doing so, we aggregated the ex-
perimental study into six clusters C1 to C6 whereby each cluster is
defined by a subset of objectives, a subset of solution methods, and
a corresponding instance set. Table 3 summarizes the experimental
design.

It is important to note that we included also those objectives
in our analysis where an optimum polynomial algorithm is known
(ie., F, WE, maxT, maxWT, and U). Of course, DTS is certain to be
outperformed by these algorithms but as we intend to assess the
flexibility of DTS regarding all “standard” objectives, these are still
considered within the experimental study.
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Table 2
Generated instance sets, parameters, and total number of (TNO) instances.
Due date
Weight range
Proc. time variabil- Due date tardiness factor Earliness penalty TNO sub-
Name Num. of jobs variability ity Weight type factor (tf) (rdd) type sets/instances
S1 25, 50, 100, 200, PTVL, PTVH 12/120
400, 800
S2 25, 50, 100, 200, PTVL, PTVH WVL, WVH uw, PW, AW 72{720
400, 800
S3 25, 50, 100, 200, PTVL, PTVH 0.2, 04, 06,08, 1.0 0.2,04, 0.6, 300/3000
400, 800 08, 1.0
S4 25, 50, 100, 200, PTVL, PTVH WVL, WVH uw, PW, AW 0.2,04,0.6,0.8, 1.0 0.2,04, 0.6,
400, 800 0.8, 1.0 1800/18,000
S5 25, 50, 100, 200, PTVL, PTVH WVL, WVH uw, PW, AW 0.2,04,0.6,0.8, 1.0 0.2,04, 06, IEP, HEP, UEPVL, 7200/
400, 800 0.8, 1.0 UEPVH 72,000
Table 3
Experiment cluster, characteristics, and total number of (TNO) experiments.
TNO
TNO solution TNO TNO exper-
Name Objectives Solution methods methods Inst. set instances iments
C1 F, CTV 2 DTS, SPT, SMV 3 S1 120 720
C2 WF, WCTV DTS, SWPT, WSMV S2 720 4320
3 T, QT, maxT, U, 13 DTS, SPT, EDD, 17 S3 3000 663,000
F+T, F+QT, EHD, MST, MDD,
F+ maxT, CMT, CR, CoverT, UATC,
RMST, QL, TV, LV, UMATC, UAR,
F+QL UMAR, BT31T,
UQAR, UBACK,
UQB6, Moore
C4 WT, WQT, maxWT, 10 DTS, SWPT, WEDD, 15 S4 18,000 2,700,000
WU, WF+WT, EHD, WMDD,
WF + WQT, WCR, WCoverT,
WF + maxWT, ATC, MATC, AR,
WQL, WTV, WLV MAR, BT31WT,
QAR, BACK, QB6
c5 E+QT 1 DTS, SPT, EDD, 24 S3 3000 72,000
EHD, MST, MDD,
CR, CoverT, UATC,
UMATC, UAR,
UMAR, BT31T,
UQAR, UBACK,
UQB6, LIN-ET,
EXP-ET,
EXP-ET-VA,
WPT-MS,
EQTP_EXP,
ETP_v2,
ETP_LIN_vk, SMV
C6 WE +WT, 3 DTS, SWPT, WEDD, 23 S5 72,000 4,968,000
WQE +WQT, EHD, WMDD,
WF +WQL WCR, WCoverT,
ATC, MATC, AR,
MAR, BT31WT,
QAR, BACK, QB6,
LIN-ET, EXP-ET,
EXP-ET-VA,
WPT-MS,
EQTP_EXP,
ETP_v2,
ETP_LIN_vk,
WSMV

Altogether, the experiment clusters define 8,408,040 experi-

ments. Of course, for all solution methods other than DTS, the se-
quencing for a problem instance is only done once and the objec-
tives given by a cluster are evaluated by this sequence. This re-
duces computational efforts remarkably. Instance generation, DTS
and PD approaches, and experiment configuration and manage-
ment are implemented within a comprehensive Java framework.
Experiments are executed on four workstations with an Intel
Core™ {7-2600 CPU @ 3.40 GHz and 16 GB RAM.

4. Experimental results

The main goal of the following analysis is to assess the solution
quality achieved with DTS and particularly, to assess the flexibility
of DTS to tackle regular and non-regular objectives with different
(single and linear composite bi-criteria) criteria. After the defini-
tion of the central key performance indicator, we present general
insights and aggregated results before comparing DTS to the best
performing PD approaches (with regard to a specific objective).
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Table 4
Influence of the weight variability on the solution quality (with regard to the weight type).

WF WT WwQT maxWT WU WF +WT WF+WQT WF + maxWT WCTV WQL WTV WLV WE +WT WQE + WQT WEF-+WQL
uw  + + + + + ++ + ++ + + 0 0 + + +
AW+ + + ++ + ++ + ++ + + 0 0 + + +

4.1. Key performance indicator

To assess the solution quality of DTS and the PD approaches,
we use the key performance indicator “mean relative improvement
versus the worst objective function value” (MRIW; Valente and
Schaller, 2012). MRIW is used since objective function values could
be equal to zero for some instances and thus, relative improve-
ments versus the best objective function value are troublesome
(since division by zero is undefined). The MRIW is specified as fol-
lows: For a given problem instance and objective function, the rel-
ative improvement versus the worst result for a solution method
M (with s=1, ..., z) is indicated by RIW;. Let Vpes and vyerse indi-
cate the best (smallest) and worst (largest) objective function value
of all z solution methods (with regard to a single problem instance
and a single objective function), respectively. If Vpos = Vworst, then
RIW; is set to zero. Otherwise, RIWs=|(Vworst — Vs)/Vworst ® 100|,
where vs is the objective function value of solution method M.
Based on this definition of RIWs, mean values (MRIW) for each so-
lution method per objective function (see Section 3.1) and instance
set or subset (see Section 3.3) can be calculated.

4.2. General insights

To keep the analysis manageable, we omit a detailed descrip-
tion of the results concerning individual objectives, solution meth-
ods, and instance characteristics (e.g., number of jobs, processing
time variability ...) but give some general insights before present-
ing aggregated results.

- The number of jobs per instance has only a small impact on
the solution quality of all solution methods, independent of the
objective.

Concerning the processing time variability (PTVL vs PTVH),
their influence on the solution quality is

Noteworthy for the objectives F, CTV, WF, WCTV, F+T,
F+ maxT, F+QL, WT, WQT, maxWT, WF+WT, WF+ maxWT,
and

Minor for the objectives T, QT, maxT, U, F+QT, CMT, RMST,
QL, TV, LV, WU, WF + WQT, WQL, WTV, WLV, E + QT, WE +WT,
WQE + WQT, WF+WQL.

The influence of the weight variability (WVL vs WVH) on the
solution quality is analyzed with regard to the weight types
UW and AW; weight type PW is not considered here because
w; =p; holds for all jobs and influences are minimal in general).
In Table 4, “++" means a high influence, “+” means a small in-
fluence, and “0” depicts a minimal influence.

Regarding the influence of the earliness penalty characteristics
(IEP, HEP, UEPVH, UEPVL) on the solution quality, we can state
that the influence is generally small for the objectives WE + WT,
WQE +WQT, and WF +WQL. The influence slightly increases for
WE + WT and WQE + WQT if the processing time variability is
high and/or earliness penalties are unrestricted and have a high
variability (PTVH and/or UEPVH).

The detailed results forming the data basis of these insights
can be found in the supplementary material (file “Detailed-
Analysis.xlsx”).

Computation times for different (groups of) solution methods
(cf. Section 3.2 and the Appendix) are listed in Table 5. Each cell
entry reports mean computation times for all objectives a solution
method is applied to (cf. Table 3) depending on the number of jobs

n. The mean (with regard to n and all corresponding computation
times) relative standard deviation (coefficient of variation) of 0.77%
shows that the computation time measurements are almost undis-
torted.

As the computation times in Table 5 show, DTS is outperformed
by all solution methods (as to be expected), even by the PD ap-
proaches having a complexity of O(n3). This is due to the fact
that the objective value calculation has larger computational ef-
forts than just determining a parameter of a solution method (e.g.,
the parameter p ijd for BACK with O(n3)). Observe that computa-
tion times of DTS increase faster with increasing problem instance
size than the other solution methods.

4.3. Aggregated results

To assess the overall performance of DTS and particularly its
flexibility, we present the MRIWs of DTS and all competing PD
approaches (with regard to the considered objective functions) in
the following tables (Tables 6-9). Each cell entry (except in the
“MEAN" columns) represents the mean values for all instances of
the corresponding instance set (cf. Tables 2 and 3). Bold cell entries
mark the best (largest) MRIW per objective and italic and under-
lined cell entries mark the second best MRIW when DTS is best.

The MRWIs in Table 6 shows that DTS is generally suitable and
competitive for regular, unweighted objectives except for the ob-
jective maxT. For linear composite bi-criteria objectives, DTS even
achieves best results for two objectives. Moreover, the flexibility of
DTS is substantiated by the largest mean MRWIs (see columns 7
and 11).

Analyzing the MRWIs for regular, weighted objectives (cf.
Table 7), it can also be stated that DTS is suitable and competitive
(with some limitations regarding the objective maxWT). In turn,
DTS achieves best results for two regular, weighted linear compos-
ite bi-criteria objectives. Again, the flexibility of DTS is substanti-
ated by the largest mean MRWIs (see columns 6 and 10).

Also for non-regular, unweighted objectives, DTS is suitable and
competitive (as can be seen by the MRWIs in Table 8) but regard-
ing the CTV objective, it must be stated that DTS is clearly outper-
formed by SMV. Concerning the flexibility, DTS is minimal outper-
formed by CR (see columns 7 and 10).

Analyzing the MRWIs in Table 9, DTS outperforms all other
solution methods regarding the non-regular, weighted objectives
WQL, WTV, and WLV. Regarding the other non-regular, weighted
objectives, DTS is outperformed but competitive (even for the ob-
jective WCTV). Regarding the flexibility, DTS is most flexible for
non-regular, weighted, single-criteria objectives and second best
for linear composite bi-criteria objectives (see columns 5 and 9).

Summarizing the analysis of MRWIs in Tables 6-9 (and partic-
ularly the MEAN columns) with regard to the flexibility of DTS to
tackle different objectives, we can report that DTS is suitable to
solve almost any objective competitively and that no other PD ap-
proach shows similar flexibility when considering all types of ob-
jectives.

4.4. Comparing DIS to best performing PD approaches

In this section, we present a more detailed analysis by com-
paring the solution quality of DTS to a reference solution method
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Table 5
Mean computation times (in milliseconds).

Static PD Dynamic PD Dynamic PD Explicit earliness-
approaches with approaches with approaches with tardiness PD
n DTS O(n - logn) 0(n?) o(n3) approaches (W)SMV  Moore
25 0.23 0.01 0.03 0.13 0.02 0.04 0.01
50 142 0.02 0.05 0.47 0.05 0.04 0.06
100 1258 0.02 0.13 2.85 013 0.13 0.09
200 98.19 0.04 0.47 21.70 0.47 0.33 0.68
400 878.74 0.08 1.96 199.56 1.84 149 2.53
800 968221 018 8.29 2173.49 7.99 8.09 13.39
Table 6
MRIWs by solution method and regular, unweighted objectives.
Single criterion Bi-criteria
F T QT maxT U MEAN*  F+T F+QT F+4+maxT  MEAN*

DTS 184 491 63.4 35.8 54.5 50.7 21.0 62.8 20.5 34.8

SPT 184 99 11.2 5.7 254 131 18.0 111 20.3 16.5

EDD 392 571 58.9 28.2 459 74 56.5 5.6 232

EHD 36.0 54.3 58.9 278 442 4.8 53.7 33 20.6

MST 351 533 58.6 273 43.6 43 52.7 29 20.0

MDD 51.6 551 36.5 36.1 44.8 14.9 54.5 111 26.8

CR 46.4 63.6 55.1 235 472 10.0 62.9 71 26.7

CoverT 44.0 48.8 294 16.4 347 19.0 483 16.7 28.0

UATC 51.5 549 36.2 404 45.7 15.6 54.2 11.9 272

UMATC 51.5 54.7 36.1 409 45.8 15.7 54.1 12.0 273

UAR 51.2 54.2 355 403 453 19.8 53.7 16.5 30.0

UMAR 511 54.0 352 41.0 453 19.9 534 16.6 30.0

BT31T 36.8 55.1 58.9 28.2 448 2.2 54.4 0.5 19.0

UQAR 474 63.8 55.2 30.8 49.3 174 63.3 14.9 31.9

UBACK 45.0 39.2 209 523 39.4 20.0 389 17.3 254

UQB6 474 64.0 55.7 289 49.0 16.8 634 14.0 314

Moore 385 32.0 30.6 64.2 413 12.0 315 10.5 18.0

SMV 0.0

DTS - best PD approach 0.0 -25 -06 =231 -96 14 1.0 -0.6 0.2 29

Instance set S1 S3 S3 S3 S3 S3 S3 S3

Cluster C1 C3 C3 C3 C3 3 C3 C3

* Mean values with regard to the objectives T, QT, maxT, and U.
** Mean values with regard to the objectives F+T, F+QT, and F+ maxT.

(RSM). This RSM (best performing PD approach) is determined by
the largest MRWI with regard to a specific objective (as highlighted
in Tables 6-9).

Generally, we compute all following key figures (Tables 10-13)
for each instance subset individually and then aggregate them by
their mean values with regard to all instance subsets of an instance
set (cf. Table 2). The detailed data and statistical analysis can be
found in the supplementary material (file “DTSvsRSM - Statistical-
Analysis.xlsx”).

For comparing the solution quality of the two solution meth-
ods RSM and DTS, we report the mean relative difference
of MRWIs (MRdiff =(MRIW(DTS)-MRIW(RSM))/max{MRIW(DTS),
MRIW(RSM)}) and the mean coefficient of variation of the rela-
tive difference of these MRWIs (CVdiff). Additionally, we performed
two-sided, pairwise t-tests on each instance subset to test whether
the difference of the MRIWs (MRIW(DTS)-MRIW(RSM)) is statisti-
cally significant (<0.05; with degrees-of-freedom df =9) or not. Be-
cause of the different number of instance subset in each instance
set, we report the mean relative number of statistically significant
different MRIWs (“Sig. different MRWIs”) in addition to the mean
p-value and the mean t-value (these mean values are with regard
to all instance subsets of the corresponding instance set).

Since the key figures presented in Tables 10-13 speak for them-
selves, we omit their discussion in detail but report further insights
regarding the solution quality of DTS compared to RSM whenever
noteworthy.

As stated above, DTS is not competitive for maxT. Concerning
this objective, we can additionally state that the solution quality of
DTS deteriorates with increasing rdd and tf. A similar observation
can be reported for objective U: if rdd increases, the performance
of DTS worsens. Regarding objective F + T, the good performance of
DTS improves with increasing rdd if the processing time variability
is high (PTVH) and deteriorates with increasing rdd if the process-
ing time variability is low (PTVL). For the objective F+ maxT, DTS
outperforms SPT for instance subsets of any type.

For WF, SWPT outperforms DTS negligible for instance subsets
with unrestricted weights except subsets having a high process-
ing time variability. Regarding the objective WT, we can report
that ATC has largest benefits for instances with tf=0.6 and that
a high due date range factors slightly deteriorates the performance
of DTS. In contrast, for WQT, high due date range factors improves
the solution quality of DTS. Concerning the objective maxWT, we
can state that the performance of DTS deteriorates with increas-
ing rdd and tf and that for WU, the solution quality of DTS re-
markably improves with increasing rdd and tf. For the objective
WF +WQT DTS is only outperformed by QB6 for instance subsets
with a high processing time variability, proportional weights, and
high due date tightness factor (tf>0.6). An interesting observation
can be reported for WF + maxWT, SWPT achieves for instance sub-
sets with unrestricted or agreeable weights almost identical good
results as DTS but provides the worst solution quality for most in-
stance subsets having proportional weights.



m

Table 7
MRIWs by solution method and regular, weighted objectives.
Single criterion Bi-criteria
WF WT wQT maxWT WU MEAN* WF+WT  WF+WQT  WF+ maxWT MEAN*
DTS 20.5 53.8 66.5 511 56.8 571 25.7 65.8 23.8 38.5
SWPT 20.8 16.1 14.7 17.0 289 19.2 227 14.7 23.7 204
WEDD 394 52.0 59.1 30.3 452 17.0 51.6 14.5 277
EHD 347 497 50.0 279 406 55 48.8 33 19.2
WMDD 413 38.6 45.5 454 42.7 213 383 18.7 26.1
WCR 444 59.9 52.5 239 452 104 58.8 7.0 254
WCoverT 437 462 31.8 16.1 34.5 194 45.6 16.2 271
ATC 56.2 579 479 422 511 19.2 57.0 14.6 30.3
MATC 56.1 57.8 47.8 42.6 511 194 56.9 14.7 303
AR 56.1 57.0 47.0 434 509 24.4 56.4 20.1 33.6
MAR 559 56.6 46.5 438 507 24.5 56.0 20.2 33.6
BT31WT 453 59.1 715 31.6 50.0 8.6 579 5.6 24.0
QAR 53.0 674 65.4 322 545 222 66.7 18.6 35.9
BACK 523 472 483 548 506 23.6 46.6 20.1 30.1
QB6 53.2 67.7 65.1 314 54.3 20.5 66.9 16.7 34.7
WSMV 0.0
DTS - best PD approach  -02 -24 -12 -203 2.0 2.5 13 -11 0.2 2.6
Instance set S2 S4 S4 S4 S4 S4 S4 S4
Cluster c2 Cc4 c4 Cc4 C4 Cc4 Cc4 C4
* Mean values with regard to the objectives WT, WQT, maxWT, and WU.
* Mean values with regard to the objectives WF+ WT, WF+ WQT, and WF + maxWT.
Table 8
MRIWSs by solution method and non-regular, unweighted objectives.
Single criterion Bi-criteria
CTV CMT RMST QL TV Lv MEAN* F+QL E+QT MEAN*

DTS 3.6 67.2 493 57.3 714 70.9 63.2 57.3 65.6 614

SPT 0.0 30.7 6.1 77 12.0 5.0 12.3 7.7 215 14.6

EDD 61.7 453 52.3 71.5 712 60.4 52.2 60.0 56.1

EHD 59.6 437 50.1 74.8 74.6 60.6 50.0 57.3 53.7

MST 59.2 43.0 49.7 743 74.6 60.2 49.7 56.5 531

MDD 66.0 43.2 50.3 51.0 55.9 53.3 50.3 58.0 541

CR 67.3 494 593 709 70.3 63.4 59.2 66.1 62.7

CoverT 65.7 36.1 231 45.3 224 385 231 52.7 379

UATC 63.5 429 492 507 54.6 522 492 57.8 53.5

UMATC 63.0 428 49.0 505 54.4 52.0 49.0 57.7 533

UAR 63.2 423 39.2 499 444 478 39.2 572 48.2

UMAR 62.5 421 389 496 440 474 389 57.0 479

BT31T 59.9 442 46.8 75.2 64.2 58.1 46.8 58.1 52.5

UQAR 654  49.6 46.8  70.6 59.6 584 46.8 66.1 56.4

UBACK 43.8 313 232 326 239 31.0 231 441 33.6

UQB6 66.6 49.8 422 711 52.0 56.3 421 66.2 54.2

Moore 16.1 25.5 36.1 286 407 294 36.1

LIN-ET 49.8

EXP-ET 49.9

EXP-ET-VA 48.7

WPT-MS 511

EQTP_EXP 66.0

ETP_v2 50.3

ETP_LIN_vk 66.2

SMV 251 48

DTS - best PD approach -21.5 —-0.2 -0.5 -19 —-3.8 -3.7 —-0.2 -19 -0.6 —-12

Instance set S1 S3 S3 S3 S3 S3 S3 S3

Cluster C1 3 C3 C3 C3 C3 C3 C5

* Mean values with regard to the objectives CMT, RMST, QL, TV, and LV.
** Mean values with regard to the objectives F+ QL and E+ QT.

Regarding the objective CMT, the PD approach CR is most com-
petitive for instance subsets with a high processing time variabil-
ity and a low due date range factor (rdd =0.2). For the objectives
RMST, QL, TV, and LV, DTS’s solution quality deteriorates if the pro-
cessing time variability is high and the due date range factor is low
(rdd <0.4). Concerning objective F+ QL, the performance of DTS is
most inferior if the processing time variability is high, rdd <0.6,
and tf=0.6; in almost all other cases achieves DTS competitive re-
sults.

Relating DTS’s poor performance for WCTV, we would like to
state that DTS particularly fails for all instance subsets with pro-

portional weights but that DTS clearly outperforms WSMV for un-
restricted weights and a high weight variability (independent of
the processing time variability). Regarding the objectives WQL and
WTV, the superiority of DTS improves with increasing due date
tightness factor. Concerning WLV, EHD is only competitive for in-
stance subsets with rdd =0.2 or a due date range factor tf=1.0.

Summarizing the comparison of DTS to RSMs, we can report
that DTS is outperformed (with a mean MRdiff of —6.45%) by the
reference method for many of the considered objectives (21 out of
31), however, it outperforms the reference method for 10 objec-
tives.
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Table 9
MRIWs by solution method and non-regular, weighted objectives.
Single criterion Bi-criteria
WCTV WwQL WTV WLV MEAN* WE+WT  WQE+WQT  WF+WQL MEAN*
DTS 13.7 60.7 739 74.0 69.6 45.0 63.9 63.3 574
SWPT 14 8.5 111 6.6 8.7 12.7 174 16.2 15.5
WEDD 44.6 60.0 62.3 55.6 315 49.6 481 431
EHD 484 70.6 724 63.8 318 521 524 45.5
WMDD 371 30.6 433 37.0 32.6 42.8 414 39.0
WCR 57.0 67.6 68.7 644 41.8 60.1 60.0 54.0
WCoverT 241 40.0 211 284 30.8 291 29.2 29.7
ATC 514 50.1 55.3 523 435 55.1 54.9 51.2
MATC 51.2 50.0 55.1 52.1 433 549 54.7 51.0
AR 411 49.0 46.8 45.6 374 46.3 453 43.0
MAR 409 48.5 466 453 372 46.2 451 428
BT31WT 50.4 70.7 61.0 60.7 44.9 56.4 56.2 52.5
QAR 49.1 72.2 62.4 61.3 36.1 53.1 52.0 471
BACK 28.5 374 284 314 341 337 331 33.6
QB6 45.6 729 54.0 57.5 374 48.6 48.7 449
LIN-ET 48.4 513 48.7 49.5
EXP-ET 48.1 513 48.7 494
EXP-ET-VA 477 50.7 48.0 48.8
WPT-MS 48.8 51.9 493 50.0
EQTP_EXP 41.0 57.7 57.7 521
ETP_v2 494 53.6 51.6 515
ETP_LIN_vk 48.1 65.7 63.6 59.1
WSMV 18.2 11.2 16.8 16.7 149
DTS - best PD approach ~ —4.6 3.7 11 17 51 —44 -17 -0.2 -17
Instance set S2 S4 S4 S4 S5 S5 S5
Cluster c2 4 c4 c4 6 6 C6
* Mean values with regard to the objectives WQL, WTV, and WLV.
** Mean values with regard to the objectives WE + WT, WQE +WQT, and WF +WQL.
Table 10
Comparison regarding regular, unweighted objectives.
Single criterion Bi-criteria
Objective F T QT maxT U F+T F+QT  F+maxT
RSM SPT MDD UQB6 EDD Moore UBACK UQB6 SPT
MRdiff [%] 000 -580 -126 —-4324 -1461 520 -1.27 3.36
Cvdiff - -140 -164 -0.71 —0.56 3.08 -161 230
Mean p-value - 0.06 0.05 0.02 0.02 0.07 0.03 0.04
Mean t-value - 12.47 10.57 16.41 16.08 10.65 1245 4.58
Sig. different MRWIs [%]  0.00 68.00  69.67  89.00 9133 81.67 92.00 72.67
Instance set S1 S3 S3 S3 S3 S3 S3 S3
TNO subsets 12 300 300 300 300 300 300 300
Table 11
Comparison regarding regular, weighted objectives.
Single criterion Bi-criteria
Objective WF WT WQT maxWT WU WF+WT  WF+WQT  WF+ maxWT
RSM SWPT ATC QB6 BT31WT BACK MAR QB6 SWPT
MRdiff [%] -0.57 -448 -235 3267 15.06  2.99 -2.29 30.00
Cvdiff -298 -179 -198 -0.95 2.39 3.82 -198 1.51
Mean p-value 0.00 0.07 0.04 0.03 0.05 0.05 0.03 0.08
Mean t-value 18.93 10.70 10.96 11.79 1239 1258 11.73 8.60
Sig. different MRWIs [%]  33.33 62.17 76.33 82.28 80.72  72.39 87.61 73.22
Instance set S2 S4 S4 S4 S4 S4 S4 S4
TNO subsets 72 1800 1800 1800 1800 1800 1800 1800
Table 12.
Comparison regarding non-regular, unweighted objectives.
Single criterion Bi-criteria
Objective CTvV CMT RMST QL TV LV F+QL E+QT
RSM SMV CR UQB6 CR BT31T MST CR ETP_ LIN_vk
MRdiff [%] -86.26  0.54 -160 -350 572 -674 -350 -104
Cvdiff -0.15 14.20 —1.51 -2.49 -3.17 -1.99 —-249 —1.58
Mean p-value 0.00 0.07 0.05 0.02 0.10 0.16 0.02 0.03
Mean t-value 58.06 15.09 1118 14.87 12.10 10.84 14.88 11.74
Sig. different MRWIs [%] ~ 100.00 7533 7233 95.00 61.00 61.33 95.00 89.67
Instance set S1 S3 S3 S3 S3 S3 S3 S3
TNO subsets 12 300 300 300 300 300 300 300




Table 13
Comparison regarding non-regular, weighted objectives.
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Single criterion

Bi-criteria

Objective WCTV WQL WTV WLV WE+WT  WQE+WQT WF+WQL
RSM WSMV  WCR QB6 EHD ETP_v2 ETP_LIN_vk ETP_LIN_vk
MRdiff [%] -39.97 792 2.10 1.96 —5.42 -2.90 -0.53
Cvdiff -1.52 243 718 9.26 -2.40 —2.45 -20.21
Mean p-value 0.03 0.03 0.06 0.04 0.05 0.01 0.02

Mean t-value 37.61 15.77  10.75 13.15 14.09 16.01 15.89

Sig. different MRWIs [%]  91.67 91.61 68.17  89.00 7528 96.69 95.31
Instance set S2 S4 S4 S4 S5 S5 S5

TNO subsets 72 1800 1800 1800 7200 7200 7200

5. Summary

In this paper, we extended prior research on the “decision the-
ory” approach to scheduling. To this end, the completion time es-
timator used here was proven to be the expected value and for
several simple cases, DTS was proven to yield optimum solutions.

To assess the flexibility of DTS, we conducted an exhaustive ex-
perimental study comparing the solution quality of altogether 39
solution methods (DTS, 35 PD approaches and three PD like ap-
proaches) with regard to specific objective functions (altogether
31 different objective functions were considered). These objectives
comprise eight groups: single-criterion or linear composite bi-
criteria, regular or non-regular, weighted or unweighted. In three
of these objective groups (cf. Tables 8 and 9), the mean perfor-
mance of DTS was slightly worse (never more than —1.7%) com-
pared to the best mean of all PD approaches but in five of these
objective groups (cf. Tables 6, 7, and 9), DTS mean performance
was better than that of all competing PD approaches (at least by
1.4%). The results show the great flexibility of DTS almost indepen-
dent of the objective function and specific problem instance char-
acteristics.

Aside from its flexibility, DTS has several other advantages. The
logic of DTS is easy to follow, it contains no complex formulas
and no parameters are required. The basic search structure remains
constant regardless of the objective and we do not need a differ-
ent search procedure for different problems. Furthermore, because
of its demonstrated flexibility particularly for linear composite bi-
criteria objectives, we can infer that DTS would perform well for
more complex, yet to be determined objectives (like linear combi-
nations of earliness, tardiness, andjor flowtime).

Further research topics could be the consideration of ready
times, sequence dependent setup times and inserted idle-time (de-
layed/active schedules). Beside the investigation of further problem
variants, a performance comparison of DTS to more complex so-
lution methods like meta-heuristics (e.g., Tabu Search or Genetic
Algorithms) could be of interest.

Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.cor.2018.09.005.

Appendix

In the following, we briefly describe all PD approaches used for
comparison with DTS. For each approach we list its abbreviation,
name, originally considered objective(s), formula and parameters
to calculate the priority index 7; of job j, the “selection (sorting)
strategy” indicating the job to be allocated next (min or max), ref-
erence literature, and remarks.

For PD approaches having one or more parameters, we use the
best parameters proposed in literature. In the case of identical pri-

ority indices, we break ties first by non-decreasing p;, then by non-
decreasing d;, and finally by job number as given by the instance
data.

Static PD approaches with O(n e logn)

- SPT, “shortest processing time”, F, ;=p;, min, Baker and Tri-
etsch (2009).

- SWPT, "shortest weighted processing time”, WF, 7r; =p;/w;, min,
Baker and Trietsch (2009); this rule is also abbreviated WSPT
and defined by 7;=w;/p; and max — with identical results.

- EDD, “earliest due date”, T, m;=d; min, Baker and Tri-
etsch (2009).

- WEDD, *“weighted earliest due date”, WT, 7;= dj/Wj, min,

Kanet and Li (2004).

- EHD, -, ;= d; — $pj, WT (T), min, Arkin and Roundy (1991).

- MST, “minimum slack time”, T, 7;(t)=sl;=d;—(t+p;), min,
Baker and Trietsch (2009); updating the slack after each se-
quencing decision does not influence the final sequence.

Dynamic PD approaches with O(n?)

- MDD, “modified due date”, T, 7;(t)=max{d; t+p;}, min,
Baker and Bertrand (1982).

- WMDD, “weighted modified due date”, WT, m;(t)=
1/Wj(max{pj, d; — t}), min, Kanet and Li (2004).

- CR, “critical ratio”, T, nj(t):(dj_t)/pj, min, Kanet and
Li (2004).

- WCR, “weighted critical ratio”, WT, 7;(t) = (d; _t)/w Dy min,

Kanet and Li (2004).
- CoverT, “cost over time”, T,

1 if t > uj
Ti(t, a) = Ci/pj with ¢; = (t - UJ) (uj ~n)) ifnj<t<u;
ift > n;

with nj=d;—a p; (with o= Z d;/ Z p;)

jeN jeN
Carroll (1965); adapted by Morton and Pentico (1993) and
Kanet and Li (2004) for single machine sequencing.

and u;=d;—p;, max,

- WCoverT, “weighted cost over time”, WT,
Ti(t) = ch,»/pj
with ¢; as defined for COVERT, max, Morton and Pentico (1993).

- ATC, “apparent tardiness costs” (also called “apparent urgency
- AU"), WT (T),

max40, sl;
Tit, k)= Wf/pjexp - { }
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with the static mean processing time ﬁ:P/n (with P = %pj).
je
look ahead parameter «=2.0, and in the unweighted case
w;=1 (UATC), max, Rachamadugu and Morton (1983) and
Vepsalainen and Morton (1987).

- MATC, “modified apparent tardiness costs”, WT (T),

max{0, si;}

. —w; i s §

Ti(t, k)= J/pjexp( -

with the dynamic mean processing time p; = Pf/n[, look ahead pa-
rameter k =2.0, and in the unweighted case w; =1 (UMATC), max,
Alidaee and Ramakrishnan (1996).

- AR, “=“ WT (T)
Wi if sl; <0

o2

with look ahead parameter « =2.0 and in the unweighted case
(UAR) w;=1, max, originally described in Alidaee and Ramakr-
ishnan (1996) - the version depicted here is from Valente and
Schaller (2012).

- MAR, “modified AR”, WT (T)
W.

I
w;j /pJ(K_p,ﬂT) otherwise

with look ahead parameter « =2.0 and in the unweighted case
(UMAR) w; =1, max, Valente and Schaller (2012).

- QAR, “quadratic AR”, WQT (QT)

Wj/pj(ﬁt +2max {t + p; —d;, 0})
7Tj (t’ G) = Wi, 5 K_Pr
o P\ %5

with a dynamic parameter « depending on the number of critical
jobs:k =max{0.5, |C|} (with set C={j € N[0 < s; < sl }, whereby
Slgig =0 Pr and o =0.1) and in the unweighted case (UQAR) w;=1,
max, Valente and Schaller (2012).

otherwise

ifslj <0
Ti(t, k)=

ifsl; <0

otherwise

- BT31T, “backward dispatching to minimize maximum cost (e.g.,
tardiness) - Theorem 3.1”, maxT, 7;(t¥)=T;=max{t®-d;, 0}
with t® denoting the decision point for backward dispatching
(i.e., the completion time of the job to be scheduled next), min,
Lawler (1973) or Baker and Trietsch (2009).

- BT31WT, “backward dispatching to minimize maximum
cost (e.g., weighted tardiness) - Theorem 3.1”7, maxWT,
7i(tB)=w;Tj=w; max{t® — d;, 0}, min, Lawler (1973) or

Baker and Trietsch (2009).
Dynamic PD approaches with O(n3)

- BACK, “backward dispatching”, WT (T)

oy | P if slj.‘ <0
(") = :—(wj/pT"d) otherwise
with sl¥ = t% —dj, and p* = min{p;. min{T|i € Ng 71 # j A T)O0}}

(versmn three for pmud) with N,z denoting the set of unsched-
uled jobs at decision point t8 and in the unweighted case (UBACK)
w; =1, max, Valente and Schaller (2012).
- QB6, “quadratic backward version 6", WQT (QT)
pj if slf <0

(e, ) = {_(wj/p?"’d)[(slﬂ) _ v(max{tB prex —d;, 0} )]

otherwise

with p® = max{p;|j € N;s), p’j""d = min{p;. min{T;|i € N A T;)0}}
(version two for pT"d ), and

0 if pr > ST’
if [)t<§B A St’—5>a)

P
5’—(}-”—[ pe<sl A <w
S

v={1

(with s = ]N%[ Zslf referring to the mean slack of all jobs in N5

and parameter w=0.5) and in the unweighted case (UQB6) w; =1,
max, Valente and Schaller (2012).

Explicit earliness-tardiness PD approaches

- LIN-ET, “linear extended local optimum earliness/tardiness”,
WE + WT,

W; ifsl; <0
it k)= Wj—SI’(—V:’EfL) if0<slj < «kp
—H; otherwise

with W; = %' and H; = ’;—j'_ (h; representing the earliness penalty
factor), and x =3, max, Ow and Morton (1989).
- EXP-ET, “exponential extended local optimum earli-
ness/tardiness”, WE + WT,
W; if sl; <0,

a4 ()

ifOSSljf(H+W>K p[
3
Hﬁ(mg—ﬁ%%%i) if (% )ic B < sl <xc B

—H; otherwise

it k) =

with parameter as defined for LIN-ET, max, Ow and Morton (1989);
the version depicted here is from Valente and Alves (2005).

- EXP-ET-VA, “EXP-ET version with adaptive « as defined by
Valente and Alves (2005)”, WE + WT,

Wi if sI; <0,

i
w; exp( H+jW (Ks’i,r» if0<sl; < (HJ%,JK Pr

(L k) = (H;+W,)sl; 3 - -
HJ,—Z(Wj_f_KI.)Jt;J) if <H+W)/c DPe<slj<k p;
—H; otherwise

with instance dependent (adaptive) parameter «, max, Valente and
Alves (2005).

- WPT-MS, “weighted processing time and minimum slack”,
WE +WT

if sl < 1
. w -
; if 1 <Slj < (W)K Dt

2
1—(/( pe— sl ) . w, - _
—-H;| ————% if i)k pe < Sl <k Py
i\ % PR W, j

—H; otherwise

ERS

S
it k) =

with instance dependent (adaptive) parameter «, max, Valente and
Alves (2005).

- EQTP-EXP, “earliness and quadratic tardiness penalty with an
exponential function”, E + QT,

o (Be+2(t+pj - ;) ifsl;<0
%exp(—(ﬁ[—i—l)f%f) if 0 < sl < (32)c B

AN s >
(F/) ( Dj Py(pr+1)’( 51)
1

Nz

7Tj(t,0')=

lf(Hl)lc pr<slj<k Pt
otherwise



with a dynamic parameter ¥ depending on the number of critical
jobs:k =|C| (with set C={j € Ni|0 < sl; < sl}, whereby sl =
o n; pr and o =0.6, max, Valente (2007).

- ETP-v2, “earliness/tardiness priority dispatching”, WQE + WQT,

2 (Be +2max {t + p;+d;, 0}) if sl; <0
() = min{ G- (Be+2max {t + pj +d;. 0}).
}:;_'j(ﬁf—zlnax{dj—t—pj, 0}) } otherwise

, max, Valente and Alves (2008).

- ETP_LIN_vk, “earliness/tardiness priority dispatching with dy-
namic look ahead”, WQE + WQT,

%(ﬁt+2(t+p1 —dj))

(70_prh
TO — 511<Tf ki [)
j KDt

J
h (=
7 (P =2(d; -t - pj))
. = i P = = hj
with — TP=p(5),  EM=(h-2Ap)5)  and
e =pT i +(1—p) ey with pt = L (with set C={j e N0

< sl < Slnax} and slmax =@ n¢ pr) and the parameter kp=8.5,
k;=0.5, and w =0.25, max, Valente and Alves (2008).

if sI; <0

wi(t, Ky, KL, @)= if 0 <slj <kpe

if sl; > K py
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