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Abstract

Two-echelon distribution systems are attractive from an economical standpoint and help to
keep large vehicles out of densely populated city centers. Large trucks can be used to deliver
goods to intermediate facilities in accessible locations, whereas smaller vehicles allow to reach
the final customers. Due to their reduced size, pollution, and noise, multiple companies consider
using an electric fleet of terrestrial or aerial vehicles for last-mile deliveries.

Route planning in multi-tier logistics leads to notoriously difficult problems. This difficulty
is accrued in the presence of an electric fleet since each vehicle operates on a smaller range and
may require planned visits to recharging stations. To study these challenges, we introduce the
electric two-echelon vehicle routing problem (E2EVRP) as a prototypical problem. We propose a
large neighborhood search (LNS) metaheuristic as well as an exact mathematical programming
algorithm, which uses decomposition techniques to enumerate promising first-level solutions in
conjunction with bounding functions and route enumeration for the second-level routes. These
algorithms produce optimal or near-optimal solutions for the problem and allow us to evaluate
the impact of several defining features of optimized battery-powered distribution networks.

We created representative E2EVRP benchmark instances to simulate realistic metropolitan
areas. In particular, we observe that the detour miles due to recharging decrease proportionally
to 1/p* with x &~ 5/4 as a function of the charging stations density p; e.g., in a scenario where
the density of charging stations is doubled, recharging detours are reduced by 58%. Finally,
we evaluate the trade-off between battery capacity and detour miles. This estimate is critical
for strategic fleet-acquisition decisions, in a context where large batteries are generally more
costly and less environment-friendly.
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1. Introduction

Nowadays, as technology for electric mobility progresses, multi-tier delivery schemes are
naturally destined to make use of electric vehicles, and multiple companies have, in practice,
already operated this transition (Foltynski 2014). Yet, electric vehicles also pose specific
challenges, due to their limited autonomy, smaller capacity, and the possible need of planned
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visits to charging stations. Moreover, whereas early charging technologies required several
hours for a full recharge, recent developments of fast-charging or battery-swap stations (Yang
and Sun 2015, Hof et al. 2017, Keskin and Catay 2018) allow energy replenishment in half an
hour. The growing adoption of these technologies allows en-route recharging (e.g., during lunch
breaks) in metropolitan distribution systems, as well as the use of cheaper lightweight vehicles
(Perboli et al. 2018a, Perboli and Rosano 2018) with smaller batteries. Last but not the least,
the study on battery-powered distribution is not limited to terrestrial vehicles, but also meets
critical applications in last-mile distribution using aerial vehicles (i.e., drones — Poikonen et al.
2017 and Wang et al. 2017b), which typically have a smaller autonomy.
To focus on these challenges, we introduce the E2EVRP as a prototypical problem. It is
a natural extension of the two-echelon vehicle routing problem (2EVRP) in which electric
vehicles are used on the second echelon. Given a geographically-dispersed set of customers
demanding an amount of a single commodity, a set of satellites (intermediate facilities), a set
of charging stations, and a central depot where the commodity is kept, the E2EVRP seeks
least-cost delivery routes to transport the commodity from the depot to the satellites with
conventional vehicles (first-level), and from the satellites to the customers using an electric
fleet (second-level). Some additional rules must be satisfied with respect to the basic 2EVRP:
e Electric vehicles have a limited driving range, which can be fully replenished at a charging
station;

e Each second-level route originates at a satellite, visits a sequence of customers and possibly
some recharging stations, and returns to the same satellite;

e FBach satellite also hosts a charging station at its location;

e Charging stations can be used multiple times, but a consecutive visit to two charging stations
in a second-level route is prohibited.

The cost of the solution, to be minimized, includes a fixed cost for each vehicle in use, as well

as driving costs proportional to the distance traveled.

To solve this problem, we introduce a LNS-based metaheuristic which combines a restricted
set of destruction and reconstruction operators, a local search procedure, and a fast labeling
algorithm to optimize the visits to charging locations. We also propose an exact mathematical
programming algorithm, which uses a decomposition technique to enumerate promising first-
level solutions along with bounding functions and route enumeration for the second level, using
problem-tailored pricing algorithms. These two methods can be viewed as extensions of the
approaches of Breunig et al. (2016) and Baldacci et al. (2013) for the classical 2EVRP, in
which specialized route evaluation techniques, labeling algorithms and dominance strategies
have been integrated to efficiently manage the selection of recharging stations for the electric
vehicles.

Not only do these algorithms allow to find optimal or near-optimal solutions for the E2EVRP,
and thus respond to the need of advanced algorithms for future city-logistics planning, but
they also open the way to an analysis of several defining features of optimized battery-powered
city-distribution networks. To that end, we created new datasets which simulate the general
characteristics of a metropolitan area, and examine the impact of the density of the charging
station network and the capacity of the vehicles” batteries on the cost-efficiency of the optimal
solutions of the problem.

The remainder of this paper is organized as follows. Section 2 reviews the related literature
and Section 3 formally describes the problem. Then, Sections 4 and 5 describe, respectively,



the proposed exact and heuristic algorithms. Section 6 reports our computational experiments
and sensitivity analyses, and Section 7 concludes.

2. Related Literature

We review the existing solution algorithms for the 2EVRPs, discuss the recent studies
dedicated to routing optimization for vehicles with alternative fuels, and finally examine the
use of en-route recharging in recent studies and applications.

Two-echelon vehicle routing problems. Several early studies focused on mathematical
programming solution techniques for the 2EVRP. Gonzalez-Feliu et al. (2008) were the first
to describe a branch-and-cut algorithm based on a commodity flow formulation that solved
instances with up to 32 customers and 2 satellites. The method of Gonzalez-Feliu et al. (2008)
was improved by Perboli et al. (2010) and Perboli et al. (2011) by adding valid inequalities
in a cutting plane fashion. Optimal solutions for instances with up to 32 customers and 2
satellites were found by the method of Perboli et al. (2011). Jepsen et al. (2012) described
a branch-and-cut algorithm based on a new mathematical formulation and different valid
inequalities. Exact algorithms were also designed by Baldacci et al. (2013) and by Santos et al.
(2015). Santos et al. described a branch-and-cut-and-price algorithm for the 2EVRP that
relies on a reformulation based on the g-routes relaxation proposed for the capacitated vehicle
routing problem (CVRP) by Christofides et al. (1981). Baldacci et al. proposed an exact
method for solving the 2EVRP based on a set partitioning formulation with side constraints.
They described a bounding procedure that is used by the exact algorithm to decompose the
problem into a limited set of multi-depot capacitated vehicle routing problems (MDCVRPs)
with side constraints. The optimal 2EVRP solution is obtained by solving the set of MDCVRPs
generated. The method was tested on 207 instances, taken both from the literature and newly
generated, with up to 100 customers and 6 satellites. The results obtained by Baldacci et al.
(2013) show that their exact algorithm outperforms the existing methods from the papers
described above. Finally, Perboli et al. (2018b) recently found new valid inequalities for the
2EVRP. Using these inequalities within a branch-and-cut algorithm allowed to solve several
new instances with up to 50 customers.

The number of heuristics, metaheuristics and case studies focused on multi-echelon vehicle
routing problems has also rapidly grown in the last decade. The surveys by Cuda et al. (2015)
and Schiffer et al. (2018) capture well the breadth of this line of research. The former covers
different two-echelon structured transportation problems: two-echelon location routing prob-
lems (2ELRPs), 2EVRPs and truck and trailer routing problems (TTRPs). The latter focuses
on vehicle routing problems and location routing problems with intermediate stops, dedicated
to replenishment, refueling or idling. Among the most recent contributions in this domain,
Zeng et al. (2014) proposed a greedy randomized adaptive search procedure with a route-first
cluster-second splitting algorithm and a variable neighborhood descent for the 2EVRP. Their
results are promising, but the algorithm was only tested on the smaller benchmark instances
with up to 50 delivery points. Breunig et al. (2016) introduced a LNS for 2EVRPs and the
two-echelon location routing problem with single depot (2ELRPSD). The method uses six
destroy and one repair operator as well as some well-known local search procedures. It finds or
improves 95% of the best known solutions for the classical benchmark instances. Given the



efficiency and the effectiveness of this method, the same general structure has been used for
the heuristic proposed in this paper, in addition with multiple improvements and adaptations
to account for the specificities of electric vehicles. Later on, Wang et al. (2017a) studied an
extension of the 2EVRP with stochastic demands, described as a stochastic program with
recourse. A genetic algorithm was proposed, and the results on the problem with stochastic
demands were compared to the best known deterministic solutions.

Electric vehicle routing, en-route recharging and battery swaps. Over the last decade,
research has also rapidly progressed on vehicle routing problems (VRPs) with alternative
propulsion modes: electric or hybrid. As generally reflected in the surveys of Montoya (2016),
Pelletier et al. (2016) and Schiffer et al. (2018), many of these studies consider possible en-route
recharging or battery swaps to overcome the range limitations of electric vehicles.

Conrad and Figliozzi (2011) were amongst the first to consider optimization techniques for
electric vehicles and possible recharging stops. In the proposed recharging VRP, batteries can
be charged at customer locations subject to additional costs. Other studies were focused on
VRPs considering different aspects of environment-friendly transport. In particular, Erdogan
and Miller-Hooks (2012) proposed the green vehicle routing problem (GVRP), involving
battery-powered vehicles with possible en-route recharging at dedicated stations, and evaluated
the implications of refueling-stations availability and dispersion.

After these seminal works, the literature progressed towards more intricate problem variants
and solution methods. Schneider et al. (2014) introduced additional time-window constraints
for customer deliveries as well as recharging delays. New benchmark instances were introduced,
and solved by means of a hybrid heuristic combining variable neighborhood search (VNS) and
tabu search (TS). Desaulniers et al. (2016) developed an exact method based on branch-price-
and-cut, and presented computational results for the same benchmark instances.

Moreover, to progress towards real applications and improve the accuracy of the studies,
other important characteristics of real delivery networks have been considered. Heterogeneous
fleets with different propulsion modes were studied in Felipe et al. (2014), jointly with a
heterogeneous set of recharging stations with different cost and recharging time. Goeke and
Schneider (2015) considered a mix of conventional and electric vehicles, evaluating the energy
consumption of an electric vehicle as a function of speed, gradient and cargo load distribution.
Hiermann et al. (2016) proposed the electric fleet size and mix problem with fixed costs
and time windows (EFSMFTW), in which the deliveries can be performed with a mix of
vehicle types, differing in their acquisition cost, freight capacity, and battery size. Experiments
were conducted with a branch-and-price algorithm and a hybrid heuristic. This research was
extended in Hiermann et al. (2019) to study the impact of additional plug-in hybrid vehicles.
Keskin and Catay (2016) introduced an adaptive large neighborhood search (ALNS) for a
problem variant in which partial recharging is allowed.

In a recent case study, Wang et al. (2017c) stressed several interesting facts regarding the
use of large battery powered commercial vehicles. They show that in the real-world transit
network based in Davis, California, range anxiety can be mitigated by adopting good recharging
strategies, and that several companies adapt much stricter range limits than the theoretical
ones (typically half of the range) to extend battery life cycles. Finally, they indicate a list
of case studies in which battery swapping has been applied to electric bus transit systems, a
strategy which is justified by the fact that fast charging techniques can significantly extend
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vehicle ranges within only five to ten minutes of charging. Other recent works have proposed to
optimize fast or partial charging strategies. In particular, Schiffer and Walther (2017a) intro-
duced the electric location routing problem with time windows and possible partial recharging
stops, whereas Keskin and Catay (2018) extended the electric vehicle routing problem with
time windows (EVRPTW) with different types of stations (super-fast, fast, and normal ones)
for en-route recharging.

Real-world applications of en-route recharging. As early as 2008, electric buses were
installed for the Beijing Olympic Games. Each bus, of a capacity of 50 seats, can undergo
battery swapping up to three times a day (EV World 2008). Similarly, fully electric public
transit buses have been operating in Vienna, Austria for several years now. These buses stop
for approximately 15 minutes at the end of their route to traverse the inner city and recharge
the batteries with an overhead system multiple times a day (Wr. Linien 2013). Schiffer et al.
(2016) also recently established a case study of “TEDi Logistik GmbH & Co. KG”, which
provides freight transportation services and relies on two electric vehicles. They concluded
that the operations would be significantly improved if fast-charging stations were additionally
available at a few customers locations for en-route recharging, therefore allowing to reach
locations located further than 70km from the depot. Finally, JD.com, one of China’s biggest
e-commerce companies, is replacing its existing fleet with fully electric vehicles (John 2017).
Seeing the need for it, they recently launched a contest for optimization algorithms capable of
routing vehicles with en-route recharging (JD.com 2018).

Our study shares the same objectives as many aforementioned papers: bridging the gap
between academic electric VRPs and real problem attributes. The current literature on electric
vehicles has only considered simplistic delivery networks with a single depot and a single
echelon, but it is well known that city logistics usually involve richer configurations, with
interconnected echelons and transportation modes. Moreover, the restricted range of the
electric vehicles and their possible need for en-route recharging bring new challenges which
have to be considered when selecting intermediate facilities (i.e., satellite) locations. We
therefore propose to study the impact of electrical fleets in second-level routes, in a two-echelon
delivery setting, where electric vehicles are likely to be needed.

3. Problem Description

The E2EVRP addressed in this paper can be formally described as follows.

A mixed graph G = (N, E, A) is given, where the vertex set N is partitioned as N =
{0} UNgUNgU Ng. Vertex 0 represents the depot, Ng = {1,2,...,n,} represents n, satellites,
Ne ={ns+1,...,ns+n.} represents n. customers, and Ngp = {ns+n.+1,...,ns+n.+n,}
represents n, charging stations. The edge set E is defined as £ = {{0,j} : j € Ns} U{{4,j}:
i,7 € Ng,1 < j} and the arc set A as A ={(4,7) : 1,7 € NeUNcUNg,i £ j}\{(:,75):4,5 €
Ng}\{(7,4) : 1,7 € Ng}. A travel or routing cost d;; is associated with each edge {i,j} € F
and with each arc (i, ) € A.

Each customer ¢« € N¢ requires a supply of ¢; units of goods to be delivered from the depot
using the following two types of vehicles. A fleet of m! vehicles of capacity @, located at depot
0 and a fleet of my, vehicles of capacity ()2 < Q1 located at satellite & € Ng. Moreover, at
most m? < Zke N MUk second-level vehicles can be used.


JD.com

A 1%%-level vehicle route is a simple cycle in G passing through the depot and a subset of
satellites such that the total demand delivered is less than or equal to Q1. A satellite k € Ng
can be visited by more than one 15-level route and has a capacity B, that limits the demand
that can be delivered to it.

A 2"-]evel route is a circuit in G passing through a satellite and a subset of customers and
charging stations and such that the total demand of the visited customers does not exceed
the vehicle capacity ()2 and the following charging station constraints are respected. Each
vehicle on the 2"-level has a maximum battery capacity L, and a battery consumption c;; is
associated with each arc (i, j) € A; the maximum battery consumption of a vehicle without a
visit to a charging station is therefore equal to L. Charging stations can be visited right after
or before a satellite, or in between customers, and, whenever a charging station is visited, a
vehicle is fully charged up to level L. In the scope of this short-haul problem, we prohibit a
consecutive visit to two charging stations.

Fixed costs U; and U, are also associated with the use of 1%-level and 2"4-level vehicles,
respectively. The cost of a route (15%-level or 2"-level) is equal to the sum of the costs of the
traversed edges or arcs plus the fixed cost.

The problem asks to design both 1%t-level and 2"-level routes so that the quantity delivered
from each satellite is equal to the quantity received from the depot, each customer is visited
exactly once, and the total cost of the routes is minimized.

Multigraph reformulation. The E2EVRP can be reformulated as a routing problem on a
multigraph G' = (N, E', A’), where N’ = {0} U Ng U N¢ is the vertex set, E' = {{0,j} : j €
Ns}U{{i,j} : i, € Ng,i < j} is the edge set and A’ is the arc set. Arc set A’ is used to
represent 2"4-level routes and is defined as A’ = {(i,5) : 4,57 € NsU Ng,i # j} \ {(i,7) : i, €
Ng}. The arc set A" also contains the following set of arcs:

e With each arc (i,j) € A’ are associated h(i, j) arcs representing the different paths that
a 2"%level vehicle can take to go from vertex i to vertex j with at most one charging
station visited in between vertices ¢ and j.

e A cost d(i,j,p), a consumption c(i,j,p) and a charging station s(i,j,p) € Ng are
associated with each arc (i,7,p), p = 1,...,h(i,7), V(i,j) € A’. We assume that
s(i, j,p) = 0 if arc (7, j, p) represents the direct path (7, j) without any charging station
visited in between 7 and j.

e The cost d(i, j,p) and the consumption ¢(i, 7, p) of arc (i, j, p) are defined as follows:

d(iajap):dijﬁ C(iajap)zcija if S(Zajap):()
d(Zajvp) = dzk + dkj> C(iajap) = Ckj, it k = 3(i7j7p) 7é 0.

Multigraph G’ does not contain any arc (,j,p) such that s(i,j,p) = 0 and ¢;; > L, or
k = s(i,j,p) # 0 and ¢;, > L or ¢x; > L. Notice that for arc (4, j, p) with s(i, j,p) # 0 value
L — c(i,7,p) represents the battery level of the vehicle after arriving at vertex j whereas if
s(i,7,p) = 0, i.e., no charging station is visited in between i and j, the battery level at vertex
j is equal to b — c(i, j,p), where b is the battery level at vertex i.



A 2"_]evel route for satellite £ € Ng in graph G’ is a simple circuit in G’ passing through a
satellite and a subset of customers and such that (i) the total demand of the visited customers
does not exceed the vehicle capacity Q2 and (ii) the vehicle leaves satellite & with a consumption
equal to 0 (or, equivalently, the vehicle is fully charged) and its consumption at each visited
vertices does not exceed the maximum battery capacity L.

The following proposition holds.

Proposition 1. There is a one-to-one correspondence between 2™-level routes in G and
2n_level routes in G'.

Moreover, the set of arcs A" can be reduced by means of the following dominance rule.

Proposition 2. An optimal E2EVRP solution cannot contain an arc (i,7,11) if there exists
another arc (i,7,79), 11 # 19, such that:
1. i € Ng: d(i,7,m) > d(i,7,7m2) and c(i,j,r1) > c(i,],72);
2.4 € Ng: d(i,j,r1) > d(i,j,re) and c(i,j,m1) > c(i,j,72), and Cig, > Cigy, k1 = s(i,7,71),
ki #0, and ky = s(i, j, ), ko # 0.

4. Solving the E2EVRP to Optimality

The method used to solve the E2EVRP to optimality is based on the exact method proposed
by Baldacci et al. (2013) for the 2EVRP. More precisely, we tailored the method described by
Baldacci et al. to handle the multigraph G’ described in Section 3. The exact method consists
of the following two main steps.

1. The set of all 1%*-level routes is generated and a lower bound LB0 on the E2EVRP is
computed. The computation of LBO0 is based on a integer relaxation that results in a
multiple-choice knapsack problem. In computing lower bound LB0, we extended the
ng-routes relaxation used in Baldacci et al. to the case of our multigraph G’ (see below).

2. The set of all possible subsets of 1%t-level routes that could be used in any optimal
E2EVRP solution is generated. For each subset of 13°-level routes the following steps are
executed:

(i) Lower bound LBO is computed by fixing the selected set of 1%*-level routes in solution.
If the resulting lower bound is greater than or equal to the cost of the best incumbent
E2EVRP solution, then the current subset is rejected, otherwise the next step is
executed;

(ii) The E2EVRP problem obtained by considering only the selected set of 1%-level
routes is solved to optimality. The resulting problem is a MDCVRP, that is
solved using the method proposed by Baldacci and Mingozzi (2009). The optimal
solution cost of the E2EVRP corresponds to the minimum solution cost of such
MDCVRPs. In solving problem MDCVRP, we extended the procedure used to
generate elementary routes described in Baldacci and Mingozzi (2009) to the case
of our multigraph G’.



The procedure is initialized with the best upper bound computed by the heuristic algorithm
described in Section 5. In the computational results of Section 6, we will denote with LB1
(LB2) the minimum of the lower bounds computed at Step 2-(i) (Step 2-(ii)) over the set of
subsets of 15%-level routes. Lower bound LB2 is computed using the lower bounds provided by
the method of Baldacci and Mingozzi (2009).

In the following, we describe how we extended the ng-routes relaxation to graph G’ and,
for the sake of space, we omit the details of the procedure used to generate elementary routes,
which is indeed a straightforward adaptation of the procedure used by Baldacci and Mingozzi
(2009).

Pricing ng-routes. The computation of the lower bounds at steps 1, 2-(i) and 2-(ii) and the
procedure used to generate elementary routes rely on the use of the ng-routes relaxation. In
this section, we describe the extension of the relaxation described in Baldacci et al. (2011)
to multigraph G’. We describe the relaxation for a generic satellite k € Ng that, for sake of
notation, is denoted with the index 0 in the description reported below.

Let Q(w, j,4,p) be the subset of battery consumption values from vertex j to arrive at
vertex ¢ with a consumption equal to w, with w < L, when j is visited immediately before i
using arc of index p of arc (j,i) € A’. Set Q(w, 7,4, p) is defined as follows:

{w —cji} if s(j,4,p) =0 and ¢;; <w
Qw, j,i,p) = ¢ {w : 0 <w' +¢j, <L} ifs(j,i,p) =k#0and ¢ =w (1)
() otherwise.

Let N; € N¢ be a set of selected customers for vertex i such that NV; 3 4 and |N;| < A(LV;)
(A(N;) is an a priori defined parameter). The sets N; allow us to associate with each
forward path P = (0,14y,...,4) in G’ the subset II(P) C V(P), V(P) = {0,41,...,ix_1, i},
containing customer i, and every customer ¢, r = 1,..,k — 1, of P that belongs to all sets
Ni .1»-..,N;, associated with the customers 4,,1,...,4, visited after 4,. The set II(P) is
defined as: TI(P) = {i, : i, € ﬂ];:rﬂ Ni,r=1,...,k =1} U {ix}.

A ng-path (NG, q,w,1) is a non-necessarily elementary path P = (0,41,...,ix_1,ix = 1)
starting from the satellite 0 with an initial consumption equal to 0, visiting a subset of customers
(even more than once) of total demand equal to ¢ such that NG = II(P), ending at customer i
with a total consumption equal to w, and such that i ¢ TI(P’), where P’ = (0,41, ...,ix_1) is
an ng-path. We denote by f(NG,q,w, 1) the cost of the least cost ng-path (NG, ¢, w,i). An
(NG, q,w,i)-route is an (NG, q,w, 0)-path where i is the last customer visited before arriving
at the satellite.

Functions f(NG,q,w,7) can be computed using dynamic programming (DP). The
state space graph # = (&,V) is defined as follows: & = {(NG,q,w,1) : ¢
qg < @Q,VNG C N;st. NG > i, ZjENqu < @9, Vi € {O} U Ng,Vw,0 < w
L}7 v = {(<NG/7 qla wlvj)v (NG, q,w, Z))p : V(NGla qla wlvj) S \I]_1<NG7 4, w’j’ i’p)’p
1,...,h(5,1),Y(j,1) € A V(NG,q,w,i) € &}, where V"1 NG, q,w,j,i,p) = {(NG',q —
¢,w',j) : VNG C N, st. NG'3 jand NG'NN; = NG\ {i}, Vu' € Qw, j,i,p)}.

[ IAIA



The DP recursion for computing f(NG, q,w, 1) is:

(4,)€A’, 1<p<h(j,i)
(NG ¢’ ' ,j)e¥—1(NG,q,w,j,i,p)

using as initial state f({0},0,0,0) =0 and f({0},q,w,0) = oo for ¢ > 0 and w > 0. In the
computational experiments (Section 6), we set A(N;) = 12, Vi € N¢, and N; contains ¢ and
the 11 nearest customers to 7.

From the experimental analysis presented in Section 6, we observed that this mathematical
programming algorithm can solve small and medium size instances to optimality and provide
good lower bounds otherwise. Yet, this method requires a good initial upper bound to be
truly effective, especially when the problem size grows. To produce these upper bounds, the
following section introduces a metaheuristic based on large neighborhood search.

5. Large Neighborhood Search

Our metaheuristic, called LNS-E2E, follows the basic principles of ruin and recreate (Shaw
1998). At each iteration, some parts of the solution are destroyed by a selected destroy operator
(Section 5.1), and then repaired again (Section 5.2) with a three-steps repair operator which
reconstructs, in turn, the 2°%-level routes, the 1%*-level routes, and completes the reconstruction
with an optimal insertion of visits to charging stations. Subsequently, a sophisticated local
search (Section 5.3) is applied to improve the resulting solution. During the local search, the
labeling algorithm is used in combination with the moves to evaluate their impact.

The general structure of the method is presented in Algorithm 1. The sequence of
destruction, reconstructions and local search is repeated until i,,,, iterations have been
performed without improvement of the incumbent solution (Lines 4-8). Once this termination
criterion is attained, the best solution is stored (Lines 9-10) and the method performs a restart
from a new random initial solution. This process repeats until a maximum time T,y is
attained (Lines 2-10).

In contrast with the adaptive large neighborhood search of Pisinger and Ropke (2007),
LNS-E2E makes uses of a very limited number of destroy operators, and a single repair operator.
Moreover, the probabilities of use of each operator are fixed, i.e., the method does not rely on
adaptive mechanisms. This design is in line with the study of Breunig et al. (2016), where it
was observed that the algorithm with a simple fixed probability selection equaled its adaptive
counterpart on the 2EVRP. The following subsections now describe each component of the
method in deeper details.

5.1. Destroy operators

At each iteration, one out of three destroy operators is selected with equal probability:

e A) Related nodes removal. A seed customer is randomly chosen. A random number of
its Fuclidean closest customers as well as the seed customer are removed from the current
solution and added to the list of nodes to re-insert. This operator receives a parameter pq,
which denotes the maximum percentage of nodes to remove. At most [p; - n.| nodes are
removed.



Algorithm 1: LNS-E2E

1

o N & ook W N

10

11

Sbest — g
while CPU time < Ty ,x do
S « LocalSearch(Repair(@)) /* (re-)start: new solution */
for i + 0 to i,,,, do
StemP «— LocalSearch(Repair(Destroy(S)))
if Cost(S™™) < Cost(S) then
S « Stemp /* accept better solution */
L 140

if Cost(S) < Cost(Sb*!) then
t Stest . S /* store best solution */

return Stest

B) Random routes removal. Randomly selects routes and removes the associated
customers visited, adding them to the list of nodes to re-insert. This operator randomly
selects a number of routes in the interval [0, [ps - 42+]]. The last term gives a lower bound
on the number of routes needed to serve all customers.

C) Close satellite. Chooses a random satellite. If the satellite can be closed and the
remaining open ones still can provide sufficient capacity for a feasible solution, the chosen
satellite is closed temporarily. All customers that are assigned to it are removed and added to
the list of nodes to re-insert. The satellite stays closed until it is opened again in a later phase.

Moreover, the following two other operators may be applied right after one of the destroy

operators described above:

D) Open all satellites. With a probability of ps, all currently closed satellites are set to
be available again in future repair phases.

E) Remove single customer routes. This operator removes all routes which contain
only one single customer. Typically, a complete solution does not often contain any route
matching this criterion, but this can happen after a partial destruction. Therefore, with
a probability of ps, all those customers which remain on a single node route after the
destruction phase are also added to the list to re-insert. As there is a limit on the number of
vehicles available, removing short routes also allows to use a vehicle originating from another
satellite in the next repair phase.

5.2. Repair operator and initial solution construction

We propose a repair operator based on three steps, which first reinserts customer-visits in

2"d_Jevel routes, then reconstructs 1%-level routes, and finally completes the solution with
recharging stations visits. Note also that the creation of the initial solution can be seen as a
totally destroyed or empty solution (&), and therefore follows the same principle.
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Reinsertion of customer visits. The classic cheapest insertion calculates every possible
insertion position for every node to insert and selects the least-cost one. LNS-E2E uses a
simplified version of this greedy heuristic with lower complexity, which iteratively inserts the
first node from the insertion list in its cheapest position, until all nodes have been inserted. As
a consequence, the outcome of the reconstruction depends on the order of the nodes in the list,
favoring diversification.

The order of nodes in the list is randomly shuffled prior to insertions. In the exceptional
case where this method fails to generate a feasible solution, another construction is attempted,
this time ordering the nodes in the list by decreasing demand quantity. Such an ordering
has a better chance to result in a feasible solution with respect to the capacity (i.e., packing)
constraints, since no split deliveries are allowed on the second level. Overall, this first phase of
the 2"d-level routes reconstruction respects all constraints of the problem except those related
to charging levels and recharging stations visits.

Construction of first level tours. After itineraries for the 2"4-level routes have been found,
the quantities needed at the satellites are known. With this information, the 15°-level routes
can be reconstructed. We opted for a complete reconstruction, as the number of satellites
is usually small and the 2"-level routes can very significantly change from one iteration to
another. On the first level, split deliveries are not only allowed, but sometimes also necessary
to find a feasible solution. Depending on the customers associated to a satellite, it can occur
that the requested quantity at the satellite is larger than a full truckload. Therefore, we use a
simple preprocessing step: for any satellite with a demand larger than a full truckload, we
create a back-and-forth trip from the depot, until the remaining demand is smaller than
a truck’s capacity. The simplified cheapest insertion is then used to complete the 15%-level
solution. In practical settings with up to 10 or 20 satellite facilities, this method finds optimal
1%%-level routes in a majority of cases in a very limited computational effort.

Optimal insertion of charging stations visits. At this point, the algorithm has recon-
structed a solution which is feasible in terms of load capacities but usually infeasible in
terms of battery capacities. To restore feasibility, it uses a DP algorithm which finds the
optimal charging stations positions for each 2"d-level route. The problem of inserting charging
stations visits in a route o = (09, 01,...,0k) can be reduced to a shortest path problem
with resource constraints (SPPRC) in a directed acyclic multigraph H = (N, A), such that
N ={0}u{l,...,K —1} U{K}. The nodes 0 and K correspond to depot visits (such that
09 = o = 0), while the other nodes represent customer visits. Each arc (i,i + 1,73) € A
corresponds to a non-dominated arc between o; and o;,;, with the same characteristics as
(04,0441,7) € A’ defined in Section 3 and possible en-route recharging. This multigraph is
illustrated in Figure 1.

Solving this SPPRC can be simply done using Bellman’s algorithm in the topological
order (0,1,..., K). Using the same notations as in previous sections, the state space graph
H = (&,7) is defined as & = {(w,i) : Vw,0 <w < L,Vi € N} and ¥ = {((w',i— 1), (w,i))? :
V(w'i—1),w € Qw,0;_1,04p),p=1,...,h(ci_1,0:),Y(w,i) € &}. Defining f(w,i) as the
minimum cost of a path starting from 0 and reaching node ¢ with battery consumption w, the
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— Intermediate stop at a charging station
No charging station visit

(Or 11 r5)
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Figure 1: Illustration of the multigraph H. Non-dominated choices of charging stations visits are represented
by parallel arcs.

DP recursion can be expressed as:

flw,i) = min {f(w',i—1)+d(oi1,060)},Y(w,i) € &, (3)
1<p<h(oi-1,04)
w' €Q(w,04-1,04,p)

and the initial state is set as f(0,0) =0 and f(w,0) = oo for w > 0.

In the rare case where no feasible path can be found at the end of the DP recursion, a second
execution of the DP algorithm is done, with a minor modification of the label propagation
function allowing to use and penalize battery capacity excesses. In this case, any consumption
over the battery level w > L is converted into a proportional penalty of M x (w — L), where M
is a large constant. Therefore, the method seeks a route with the smallest penalty in priority,
and then the shortest distance. Due to its large impact on the objective, this infeasibility will
generally be resolved in the next steps of the method: the local search or the next destroy and
repair phase.

5.8. Local search with systematic charging stations relocations

After solution reconstruction, LNS-E2E applies a local search procedure on the 2"-level
routes based on 2-0PT, 2-0PT*, RELOCATE, SWAP and SWAP2-1 moves (see, e.g.,
Vidal et al. 2013, for a detailed description of these neighborhoods). The 2-0PT* moves
are only tested between routes originated from the same satellite. Moreover, when testing
moves that involve routes from different satellites, the algorithm checks that enough capacity is
available in the satellites and the associated 1%*-level routes. The moves are tested in random
order and a first-improvement acceptance policy is used, i.e., any move which results in an
improvement in terms of cost is directly applied, until no more improvement can be found.
Similarly to the granular search by Toth and Vigo (2003), the moves are limited to node pairs
(1,7) such that j belongs to one of the I' closest vertices from i.

Most modification of the sequence of customer visits or their assignment to vehicles induce
some necessary changes in the planning of charging stations visits. Ideally, one would like
to apply the labeling algorithm described in Section 5.2 to obtain the ezact cost of each
move, with an optimal placement of recharging stations in each newly-created route. Such an
evaluation would be, however, prohibitive in terms of computational effort. To speed up the
method with only a minimal impact on solution quality, we propose some heuristic move filters,
which are quite similar in principle to the techniques used by Taillard et al. (1997) for the
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VRP with soft time windows. We first evaluate each move without the labeling algorithm to
obtain an approximation of its impact on the total distance. When doing this calculation, the
current locations of the charging stations are unchanged. Any move which is feasible in terms
of load capacity and does not deteriorate the total distance by more than 3% is then evaluated
exactly in combination with the labeling algorithm, so as to find better charging stations
locations which may lead to an improvement. After this exact evaluation, any improving move
is applied.

6. Computational Experiments

We conducted extensive experimental analyses with two aims. Firstly, we evaluate the
performance of the proposed algorithms for different types of instances, and measure the
benefit of integrated routing and recharging-stations planning (Section 6.1). For this analysis,
we extend classical 2EVRP instances into E2EVRP instances in order to obtain diverse and
challenging datasets and allow possible comparisons with previous algorithms. Secondly, we
analyze the impact of two defining features of electric-fueled city-distribution networks: the
density of charging stations in a city, and the vehicles’ battery capacities (Section 6.2). For this
analysis, we produced a new set of medium-scale instances which simulates a realistic delivery
scenario in a metropolitan area, using battery specifications from recent electric vehicles.

The mathematical programming algorithm was coded in Fortran 77, and run on a sin-
gle thread of a 3.6 GHz Intel i7-4790 CPU with 32GB of RAM. It relies on CPLEX 12.5.1
for the resolution of the linear programs and some integer subproblems. The metaheuris-
tic was coded in Java (JRE 1.8.0-151), and run on a single thread of a 3.4 GHz Intel
i7-3770 CPU. All benchmark instances used in this paper are available for download at
https://www.univie.ac.at/prolog/research/electric2EVRP and https://wl.cirrelt.
ca/~vidalt/en/VRP-resources.html.

6.1. Method performance and benefits of integrated planning

Our benchmark instances for this first analysis are natural extensions of the 2EVRP
instances known as Set 2 and 3 by Perboli et al. (2011), Set 5 by Hemmelmayr et al. (2012),
and Set 6 by Baldacci et al. (2013). The depot, satellite and customers locations remain
unchanged. The new information is associated to the electric vehicles (maximum charging
level and energy consumption) and to the charging stations (coordinates).

The selection of charging stations follows the guidelines of Schneider et al. (2014)
(instances of the electric vehicle routing problem with time windows and recharging
stations (EVRPTWRS)) and Desaulniers et al. (2016). The ratio between charging stations
and customers is chosen between 1/10 and 1/5. Firstly, every depot and satellite location
provides charging abilities vehicles. To pick the remaining locations, we defined a grid of
100 x 100 candidate locations based upon the range of x- and y-axis coordinates from the
existing 2EVRP instances. For each location, we counted the number of customers in “close
proximity”, defined as half the average tour length in the best known 2EVRP solution.
The more customers one candidate location has in proximity, the more likely it is selected
as a charging station. This was achieved by a roulette wheel selection of the remaining
charging stations among those 10,000 locations. Finally, all distances are calculated as
Euclidean and rounded to the nearest integer value. To reduce the effect of rounding, all x-
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and y-coordinates from the classical 2EVRP instances have been multiplied by a factor ten.
For each instance, the battery capacity has been defined as L = max{0.6;,2.072}, where
v1 represents the average route length of all second-level routes in the best-known 2EVRP
solution, and v, is the largest distance of a customer to its closest recharging station. For the
sake of simplicity, the energy consumption per distance unit is always set to 1 (d;; = ¢;;). As
highlighted in our computational experiments, this approach leads to feasible solutions for all
the instances, whereas the best-known 2EVRP solutions are generally not feasible for the
corresponding E2EVRP instances.

Parameters calibration. To produce suitable values for the new parameters of the LNS,
we used a preliminary meta-calibration based on the covariance matrix adaptation evolution
strategy (CMA-ES) of Hansen (2006). During meta-calibration, the parameters are considered
to be the decision variables, and the associated objective corresponds to the average solution
quality of LNS-E2E over ten runs on a set of training instances. This training set includes six
larger-scale instances from Set 5: {100-5-1, 100-5-2b, 100-10-1, 100-10-2b, 200-10-1, 200-10-2b}.
Table 1 lists the method parameters, the allowed range for each parameter, and the final
values found by the meta-calibration process. These values will be used for the rest of the
experiments.

After calibration, we evaluated the proposed mathematical programming algorithm and
the metaheuristic on the complete set of benchmark instances. The termination criterion of
LNS-E2E has been set to Ty,,x = 150 seconds for the small instances of Sets 2, 3 and 6a, and
900 seconds for the large-scale instances of Set 5.

Table 1: Range of parameters used during meta-calibration, and final values found

Parameter Search interval Final value

p1 Related removal (%) 0-100 11
pe  Random route removal (%) 0-100 37
ps  Open all satellites (%) 0-100 12
ps Remove single customer routes (%) 0-100 18
7 Granularity threshold for move evaluations 0-40 25
tmae Number of non-improving iterations before restart 0-1000 385

Results on small instances. Table 2 reports the results on the smaller instances of Set 2
and Set 3 with 21 customers. The leftmost group of columns reports the characteristics
of the instances: number of customers n., satellites n,, trucks m!, (electric) second level
vehicles m? and charging stations n,. The next group of columns shows the performance of
the mathematical programming algorithm. The column UB reports the best upper bound at
the end of the algorithm, and the solutions marked with an asterisk are proven optimal. The
lower bounds obtained at different steps of the exact method are also displayed along with the
associated CPU time values, using the same notations as described in Section 4. The next
group of columns reports the performance of LNS-E2E: the average (Avg) and best (Best)
solution quality over five runs, the average computational time per run (T(s)), and the average
time per run needed to reach the final solution of the run (T*(s)). The overall best known
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solution (BKS) found during all experiments (including calibration and testing) is reported in
the rightmost column.

The exact algorithm produced optimal solutions (marked with an asterisk) for all instances
except one. A notable improvement is visible when comparing LB2, obtained by repeated
resolutions of MDCVRP with side constraints, with LBO and LB1. The CPU time of the
method remains below one minute for 4/12 instances, but can rise up to six hours in other
cases, illustrating the difficulty of the E2EVRP, as the presence of the battery capacity
constraints significantly increases the time needed for route enumeration. For these instances,
the metaheuristic always found the optimal solutions in at least one run out of five. Still,
we observe some variance in the results of different independent runs. This is due to the
combination of multiple classes of decision variables (two-echelon routing, satellite selection
and charging stations selection), which make the problem very intricate and favors the creation
of many local minima. The LNS-E2E remains nonetheless accurate, with an average gap of
1.18% from the optimal or best known solutions. The time taken to attain the final solution of
the run varies from 2 to 132 seconds, depending on the instance.

Results on medium instances. Table 3 displays the results on the medium instances
of Sets 2, 3 and 6a, containing between 32 to 75 customers. The same convention as the
previous table is used. For this scale of instances, the mathematical programming algorithm
does not generate proven optimal solutions in the allotted time and was stopped after the
computation of bound LB1. The average optimality gap between the best solution found by
LNS-E2E and the bound LB1, for this group of instances, amounts to 3.57%, demonstrating
the good accuracy of both approaches. As usual when comparing exact algorithms with
metaheuristics, the difference of CPU time between the two methods becomes more marked
for larger instances. For some instances with 75 customers, the time needed to compute LB1
grows as high as 25 hours, whereas the termination of the heuristic is guaranteed after 150
seconds.

Results on large instances, and impact of integrated routing and recharging sta-
tions optimization. The larger instances of Set 5 contain 100 or 200 customer visits. To
the best of our knowledge, only 3/18 instances have been solved to proven optimality for the
classical 2EVRP (without considering electric vehicles and recharging stations). The E2EVRP
appears to be even harder to solve, and our exact approach could not produce optimal solutions
or good lower bounds in reasonable time. For this set of instances, we therefore concentrate
our analysis on the results of the metaheuristic, with the aim of assessing the performance of
the algorithm and the impact of an integrated optimization of routing and recharging stations
decisions. To that end, we compared four algorithms. The first two algorithms solve the
2EVRP without electric vehicles:
e LINS-2E: the algorithm presented in Breunig et al. (2016) (LNS-2E), which produces the
current state-of-the-art results for that problem,;
e LNS-E2E oo: the proposed algorithm, in which the range of the electric vehicles is set to
oo to make recharging-stations visits unnecessary.
The two other solution methods are designed for the problem with electric vehicles:
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e LNS-2E post: resolution of the classical 2EVRP (disregarding battery constraints) with
LNS-2E, followed by a post-optimization using the labeling algorithm to insert charging-
stations visits;

e LNS-E2E: the proposed algorithm, with integrated routing and planning of charging
stations.

Each method was run until a time limit of 15 minutes, and the same rounding convention

(integer distances) have been adopted to allow direct solution comparisons. Table 4 reports

the average (Avg) and best (Best) solution quality of each method over ten runs, as well as

the average CPU time to reach the final solution of each run (T*(s)). For future reference, the

BKS found on Set 5 for the LNS-E2E during preliminary calibration and testing are also listed

in the rightmost column.

Firstly, these results highlight the good accuracy of the proposed LNS-E2E, even for the
particular case of the 2EVRP without electric vehicles. In comparison with the current state-
of-the-art algorithm LNS-2E, better average quality solutions are found on all 200-customer
instances, with improvements rising up to 2.41%, while solutions of slightly lower quality are
obtained on the 100-customer test cases.

Secondly, we observe the large benefits of an integrated routing and charging stations visits
planning. Even when starting with good 2EVRP solutions, a post-ex insertion of charging
stations results in solutions of poor quality for the E2ZEVRP in comparison with the integrated
LNS-E2E approach. The average gain related to an integrated optimization in comparison to
post-optimization amounts to 3.28%, and can reach as high as 7.93% for instance 100-10-2b.
Finally, in terms of computational effort, we observe that the proposed LNS-E2E approach
finds solutions in a similar time as LNS-2E, despite the joint optimization of charging stations.
This is essentially due to the heuristic move filters described in Section 5.3, allowing to
evaluate and discard a large proportion of non-promising local search moves without a call to
the labeling algorithm. The next section will study in deeper details the impact of some of
these method components.
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Table 3: Performance analysis on medium-scale instances of Set 2, 3 and 6a

Characteristics Lower Bounds LNS-E2E

Instance ne ns m' m? n, UB %LBO LBO Tpgo(s) %LB1 LB1 Tipi(s) Avg Best BKS T(s) T*(s)
Set 2
n33-k4-s1-9 32 2 3 4 5 7617 98.46% 7499.4 73.3 98.46% 7499.4 149.4 7751.0 7617 7617 150 75.3
n33-k4-s2-13 32 2 3 4 5 7925 94.81% 7513.4 44.7 94.81% 7513.4 112.7 8025.0 7925 7925 150 103.3
n33-k4-s3-17 32 2 3 4 5 8090 92.88% 7514.2 69.7 92.88% 7514.2 181.3 8280.2 8090 8090 150 107.0
n33-k4-s4-5 32 2 3 4 5 8870 93.84% 8323.8 79.2 93.84% 8323.8 257.1 8925.2 8870 8870 150 91.0
n33-k4-s7-25 32 2 3 4 5 8318 95.51% 7944.1 77.0 95.74% 7963.3 168.9 8374.8 8318 8318 150 92.7
n33-k4-s14-22 32 2 3 4 5 8621 98.42% 8484.4 218.5 98.42% 8484.4 529.5 8680.4 8621 8621 150 90.2
Average 8240.2 95.65% 7879.9 93.7 95.69% 7883.1 233.1 8339.4 8240.2 8240.2 150 93.3
Set 3
n33-k4-s16-22 32 2 3 4 6 7561 91.60% 6926.2 89.4 91.60% 6926.2 328.4 7656.2 7561 7561 150 94.5
n33-k4-s16-24 32 2 3 4 6 7501 94.77% 7108.5 168.4 94.77% 7108.8 607.1 7520.0 7501 7501 150 102.7
n33-k4-s19-26 32 2 3 4 6 7212 94.42% 6809.5 98.6 94.42% 6809.5 253.4 7223.2 7212 7212 150 47.3
n33-k4-s22-26 32 2 3 4 6 7334 95.81% 7027.0 290.5 96.85% 7103.1 738.5 7498.4 7334 7334 150 131.3
n33-k4-s24-28 32 2 3 4 6 7443 95.40% 7100.5 234.2 96.80% 7204.6 569.9 7371.6 7443 7443 150 116.2
n33-k4-s25-28 32 2 3 4 6 7429 93.68% 6959.7 258.4 93.68% 6959.7 579.8 7490.4 7429 7429 150 108.3
Average 7413.3 94.28% 6988.6 189.9 94.69% 7018.6 512.9 7460.0 7413.3 7413.3 150 100.0
Set 6a
A-n51-4 50 4 2 50 5 7663 95.27% 7300.8 121.9 98.76% 7568.0 762.9 7879.4 7663 7663 150 109.4
A-n51-5 50 5 2 50 6 8268 95.77% 7918.0 98.4 98.16% 8116.0 2783.6 8386.4 8268 8268 150 64.5
A-n51-6 50 6 2 50 7 7795 93.08% 7255.9 117.1 98.18% 7653.4 15723.7 7943.8 7795 7795 150 106.0
A-n76-4 75 4 3 75 7 10599 95.40% 10111.7 214.9 97.23% 10305.4 6463.9 10692.0 10599 10599 150 97.0
A-n76-5 75 5 3 75 7 11178 95.18% 10638.9 175.5 98.17% 10973.6 16406.4 11242.4 11178 11178 150 88.8
A-n76-6 75 6 3 75 7 10156 95.60% 9709.2 242.2 98.92% 10046.1 85538.4 10250.0 10156 10156 150 110.7
B-n51-4 50 4 2 50 5 6589 97.20% 6404.4 163.2 97.96% 6454.8 342.4 6791.2 6589 6589 150 111.6
B-n51-5 50 5 2 50 6 7252 94.73% 6869.8 116.3 95.53% 6928.0 1859.6 7446.4 7252 7240 150 90.8
B-n51-6 50 6 2 50 7 6583 95.02% 6255.0 256.0 97.51% 6419.3 3054.1 6787.6 6583 6583 150 61.4
B-n76-4 75 4 3 75 7 9945 95.99% 9546.7 198.4 98.02% 9748.0 2184.4 9995.8 9945 9943 150 99.5
B-n76-5 75 5 3 75 7 9139 94.70% 8655.1 210.4 98.26% 8980.0 9903.7 9209.2 9139 9139 150 71.9
B-n76-6 75 6 3 75 7 8238 94.44% 7780.1 427.0 97.80% 8056.5 79962.3 8287.6 8238 8238 150 82.4
C-n51-4 50 4 2 50 5 8407 94.57% 7950.2 137.0 95.74% 8048.5 888.4 8596.2 8407 8407 150 80.4
C-n51-5 50 5 2 50 6 8810 94.99% 8368.3 261.1 95.77% 8437.3 1346.5 9276.0 8810 8810 150 82.4
C-n51-6 50 6 2 50 7 8160 93.73% 7648.6 180.3 95.83% 7819.7 7092.7 8390.6 8160 8160 150 72.9
C-n76-4 75 4 3 75 7 12162 94.61% 11506.7 199.0 98.30% 11955.7 3996.1 12381.2 12162 12147 150 99.3
C-n76-5 75 5 3 75 7 13033 92.00% 11990.5 402.2 93.33% 12163.4 38723.3 13247.0 13033 13033 150 79.3
C-n76-6 75 6 3 75 7 11808 93.28% 11014.5 285.0 97.11% 11466.6 93643.4 12129.8 11808 11806 150 92.8
Average 9210.3 94.75% 8718.0 211.4 97.25% 8952.2 20593.1 9385.1 9210.3 9208.6 150 88.9
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Impact of the main LNS components. We conducted additional experiments to measure
the contribution of each operator of the LNS-E2E. Starting from the current algorithm (baseline
configuration), we deactivated one separate destroy operator listed in Section 5.1, in turn, and
measured the solution quality of resulting algorithm. In the specific case of the configuration
“No open”, all candidate satellites are made available again (re-opened) at each restart, instead
of using this component as a destroy operator. These experiments were conducted on the
18 large instances of Set 5, using 10 independent runs and a time limit Ty;,x = 15 minutes.
The solution quality is reported as an average percentage gap from the baseline. Table 5
summarizes the results.

Table 5: Sensitivity analysis on the contribution of each operator.

Baseline ~ A) Norelated  B) Noroute C) Noclose D) Noopen E) No single

11829.8 2.70% 2.44% 1.52% 3.10% 1.61%

From these results, we first observe that the “open all satellites” operator (D) is essential
for the performance of the method, as it allows to control the frequency of the exploration of
different satellite configurations. Without the explicit use of a dedicated operator to re-open
satellites, the solutions are 3.10% worse on average. The operator “closes satellite” (C) has
a smaller but still very significant impact on the overall solution quality, with a deviation of
1.52% from the baseline when deactivated. Therefore, forcing the elimination of some satellite
choices at different phases of the method is essential to evaluate structurally different solutions
which would not be attained otherwise by the cheapest insertion repair heuristic.

No related measures the deterioration due to the deactivation of the related nodes destruction
operator (A), which destroys specific areas around a seed customer. Analogously, no route
measures the performance deterioration when the operator targeting random routes (B) is
deactivated, and column no single shows the impact of not using the destruction operator
which removes single-customer routes (E). All these operators appear to contribute significantly
to the performance of the method, and the deactivation of any of these elements leads to an
overall drop of method performance.

We finally tested a version of the method without a restart process after each i,,,, iterations
without improvement. In this configuration, the loop of Algorithm 1, Line 4-8 is executed until
reaching a maximum time of T},,x. We observed a deterioration of solution quality of 1.90%
with respect to the baseline, demonstrating again the importance of diversification components,
in this case the restarts mechanism, for the E2E-VRP.

6.2. Sensitivity analysis — Density of charging stations and battery capacity

Our second set of experiments focuses on the impact of two defining features of battery-
powered distribution networks: the density of the charging stations, and the range of the
vehicles. To that extent, we created two additional sets of instances with n. = 50 customers
and n, = 4 satellites each, approximating as closely as possible real delivery conditions in a
metropolitan area while pertaining to the E2EVRPs class. Set 7 contains 10 groups of 20
instances with a number of charging stations n, € {2, 3,5, 10, 15, 20, 25, 30,40, 50} (in addition
to the satellites) and a battery capacity L = 1000, whereas Set 8 contains 10 groups of 20
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instances with n, = 20 charging stations and a battery capacity L € {800,900, 1000, ...,1700}.
When varying the number of charging stations or the battery capacity, all other instance
characteristics (satellite locations, customers locations and demands as well as the existing
charging stations locations) are kept identical.

In each instance, 40 customers have been located randomly (with uniform probability) in
an ellipse X centered in (1000,500), with x-axis of dimension 800 and y-axis of dimension 400,
and 10 additional customers have been located randomly in an ellipse X5 with the same center,
an x-axis of dimension 1000 and y-axis of dimension 500. The locations of the satellites are
picked randomly in the area formed by X, — X, and the depot is fixed in position (300,0).
Moreover, 80% of the charging stations are randomly located in X, and 20% in X,. The
demand quantity of each customer is randomly selected in [1,25]. Six 1%-level vehicles with
capacity Q1 = 250 are available, and ten 2"%-level electric vehicle with capacity Qs = 125 are
available at each satellite.

Considering that one distance unit in each instance corresponds to 0.1km on a map, the
area considered for the location of customers and charging stations covers 15708 km?, a size
similar in magnitude with the metropolitan area of Paris. We set a baseline of L = 1000 for
the battery capacity, equivalent to a range of 100km. This value matches the specifications of
the Renault Kangoo Zoe and Nissan Leaf 2015/2016 minus a safety range of 30km. Varying
this parameter allows to evaluate the impact of the battery capacity.

Figure 2 depicts the evolution of the operational costs as a function of the number of
charging stations n,, and Figure 3 shows the impact of the battery capacity L. The results
are expressed as percentage gaps between the cost of the LNS-E2E solution with and without
battery restrictions (i.e. percentage detour miles due to recharging), and averaged over all 20
instances of each class. The average number of visits to charging stations in the solutions is
also represented on each graph.
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Figure 2: Impact of the number of available charging stations on the detour costs due to recharging and the
number of visits to stations.

These experiments highlight the significant impact of the charging stations density and
vehicles batteries capacities in the instances under study. As the number of charging stations
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grows, the detour costs due to recharging stations visits rapidly decreases: e.g., from 5.45% in
average when n, = 5 to 1.53% when n, = 15. Conducting a power-law regression of the form
f(n,) = a/n? (least-squares regression of an affine function on the log-log graph), the extra
detours due to recharging diminish proportionally to 1/p'?*. In these conditions, doubling the
number of charging stations allows to reduce extra recharging costs by approximately 58%.

Interestingly, the number of visits to charging stations slightly increases with n,.: from 9.5
in average when n, = 2 to 11.75 when n, = 50. Indeed, when the recharging station network
is sparse, most detour options to recharging stations involve significant extra costs, and the
vehicle routing algorithm tends to reduce to a strict minimum the number of such detours.
In contrast, in the presence of a dense recharging stations network, the solutions converge
more closely towards the 2E-VRP cost (disregarding battery constraints) as there are always
multiple options of charging stations on the way:.
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Figure 3: Impact of the vehicle range (i.e., battery capacity) on the detour costs due to recharging and the
number of visits to stations.

The vehicles’ range (i.e., battery capacity), has an even larger impact (see Figure 3). For
most of the considered instances, a range below 700 distance units (= 70km) would lead to an
infeasible problem, as it becomes impossible to travel between some pairs of customers and find
adequate recharging locations en-route. Therefore, adequate battery technology is a key factor
for the viability of battery-powered delivery networks. The extra costs due to recharging and
number of visits to recharging stations tend to be high when considering vehicles’ ranges close
to the feasible limit (L = 800). These values then rapidly decrease to become close to zero
when the range L exceeds 1500 (i.e., 150km), a value which may be soon attained by lightweight
electric trucks. Once this regime is attained, the battery capacity becomes sufficient to do
most tours without en-route recharging visits. Still, manufacturing the current best-performing
batteries on a global scale requires a large supply of minerals (e.g., nickel and cobalt) which
are only accessible in limited quantities in the environment. As illustrated in Figure 2, the
development of good fast-charging infrastructures is another strategic development path to

22



obtain operational efficiency, which may turn out, in the long run, to be more sustainable and
economical than a race towards heavier and more robust batteries.

7. Conclusions

In this paper, we have formulated the E2EVRP, an extension of the 2EVRP involving
electric vehicles for second-echelon deliveries, battery capacity constraints, and possible visits to
charging stations, and used it as a prototypical problem for the study of multi-echelon battery-
powered supply chains. We introduced an efficient exact algorithm, based on the enumeration
of candidate solutions for the first echelon and on bounding functions and route enumeration
for the second echelon, along with a problem-tailored large neighborhood search metaheuristic
(LNS-E2E). A comparison of the solutions found by the LNS-E2E with lower bounds and
optimal solutions produced by the mathematical programming algorithm demonstrates the
excellent performance of both algorithms. In particular, all known optimal solutions for
small instances were retrieved by the LNS-E2E, and an average optimality gap of 3.57%
between the best known upper and lower bounds was obtained on medium-scale instances. The
metaheuristic was also evaluated on the classical 2EVRP (without electric vehicles), producing
new state-of-the-art solutions on large-scale instances with 200 customers. Finally, thanks
to the use of efficient heuristic move filters in the local search and labeling algorithms, the
computational effort of LNS-E2E remains comparable with that of previous metaheuristics for
the classical 2EVRP.

Beyond the usefulness of these optimization algorithms for the operational planning of
electric fleets, this paper brought new managerial insights related to the incorporation of
electric vehicles into two-echelon delivery networks and to the recharging-stations infrastructure
required for an efficient supply chain. For this additional study, we created 400 additional test
instances simulating typical requests patterns and delivery infrastructures in a metropolitan
area with varying density of charging stations vehicles’ battery capacities. We observed that
the detour miles due to recharging decrease in O(1/p") with  ~ 5/4 as a function of the
number of charging stations. Moreover, the range of the electric vehicles has an even bigger
impact: an increase of battery capacity to a range of 150km helps performing the majority of
suburban delivery tours without need for en-route recharging, but a battery capacity below
80km render electric deliveries unviable in our setting. Between these two extremes, the extra
costs due to recharging quickly decrease as a function of the battery capacity.

The future research perspectives are multiple. Firstly, we recommend to pursue the study
of exact methods and metaheuristics for multi-echelon electric VRPs. These optimization
problems involve a large number of decision classes, related to satellite choices, recharging
stations choices, and vehicle routing at two levels, posing a formidable challenge for exact
and heuristic algorithms alike. With the rapid development of battery-powered vehicles and
green supply chains, efficient algorithms for large scale problems are critically needed, but the
current methods still need to be improved in terms of accuracy, scalability, and generality,
e.g., considering possible extensions to multi-echelon electric delivery schemes arising in city
logistics (Cattaruzza et al. 2017), other vehicle routing attributes (Vidal et al. 2013) and
stochastic settings.

Secondly, our sensitivity analyses on electric vehicles characteristics and other strategic
decisions (number and placement of charging stations) could be extended further. One
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limitation of the current study relates to the placement of the charging stations, which is
randomized in a fixed area. However, during urban planning, recharging stations are placed in
strategical locations to meet the needs of the population, or based on competitive location
approaches. Solving this strategic location optimization problem may be necessary for a more
accurate sensitivity analysis. Yet, it is an intricate problem, which can be viewed as a variant of
location routing problems (Schiffer and Walther 2017a,b), or modeled as a bilevel optimization
problem and congestion game (Xiong et al. 2015). To this date, the optimization of charging
stations locations has never been considered in the context of a multi-echelon delivery network,
forming a promising research avenue.
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