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Geometric and LP-based heuristics for the

quadratic travelling salesman problem
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Abstract

A generalization of the classical TSP is the so-called quadratic travelling salesman
problem (QTSP), in which a cost coefficient is associated with the transition in every
vertex, i.e. with every pair of edges traversed in succession. In this paper we consider
two geometrically motivated special cases of the QTSP known from the literature,
namely the angular-metric TSP, where transition costs correspond to turning angles
in every vertex, and the angular-distance-metric TSP, where a linear combination of
turning angles and Euclidean distances is considered.

At first we introduce a wide range of heuristic approaches, motivated by the
typical geometric structure of optimal solutions. In particular, we exploit lens-shaped
neighborhoods of edges and a decomposition of the graph into layers of convex hulls,
which are then merged into a tour by a greedy-type procedure or by utilizing an ILP
model. Secondly, we consider an ILP model for a standard linearization of QTSP
and compute fractional solutions of a relaxation. By rounding we obtain a collection
of subtours, paths and isolated points, which are combined into a tour by various
strategies, all of them involving auxiliary ILP models. Finally, different improvement
heuristics are proposed, most notably a matheuristic which locally reoptimizes the
solution for rectangular sectors of the given point set by an ILP approach.

Extensive computational experiments for benchmark instances from the literat-
ure and extensions thereof illustrate the Pareto-efficient frontier of algorithms in a
(running time, objective value)-space. It turns out that our new methods clearly
dominate the previously published heuristics.

1 Introduction

The travelling salesman problem (TSP) is one of the best-known and most widely invest-
igated combinatorial optimization problems with several famous books entirely devoted
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to its study [19, 25, 4, 16]. Plenty of variations of this problem have already been studied
(see e. g. [16]).

In the quadratic travelling salesman problem (QTSP) we are still looking for a tour,
i. e. a Hamiltonian cycle; however, different from the TSP, not only the costs of direct
movements from one vertex to the next vertex are considered, but beyond that, costs
arising for the successive use of two edges are taken into account. This means that we
consider the transition in each vertex i which depends both on the predecessor and on
the successor of i in the tour. Thus, transition costs, such as the effort of turning in
path planning [1], changing the equipment in scheduling or the change of transportation
means in logistic networks from one edge to another [3], can be modelled.

Mathematically, this aspect can be expressed by a quadratic objective function. The
resulting optimization problem is known as the (symmetric) quadratic travelling salesman
problem (QTSP) [12]. Note that the quadratic objective can also be extended to include
costs for every pair of edges contained in the tour. Such a definition of quadratic costs
was used for the quadratic minimum spanning tree problem (QMSTP) introduced in [5]
and recently treated in [26] and [6] (see the references therein). Our version of costs only
for successive edges is called adjacent QMSTP in these papers. The same terminology
applies for the quadratic shortest path problem recently considered in [27] and [17].

In this paper we consider two relevant special cases of the QTSP, where the transition
costs correspond to i) turning angles or to ii) a linear combination of turning angles and
Euclidean distances. In both cases, vertices correspond to points in the Euclidean plane.
The first problem was introduced by Aggarwal et al. [1] and is called the angular-metric
TSP (AngleTSP). It arises from an application in robotics where changing the driving
directions of a robot is more energy consuming for larger turning angles. Thus, one would
prefer a tour which keeps the movement of the robot as closely as possible to a straight
line. This is also relevant for steering-constrained robots and vehicles with high weight,
were a straight movement is easier to control than narrow curves. Another application
is the planning of trajectories of high-speed aircraft.

The second problem is the angular-distance-metric TSP (AngleDistanceTSP) which
was first considered by Savla et al. [29] and later in [20]. It was introduced for an
approximate solution of the TSP for Dubins vehicles, which also has applications in
robotics.

In this paper we follow two lines of research: On one hand we focus on geometric
properties of “good” solutions for both of these problems and derive a number of con-
structive heuristic solution algorithms. On the other hand we consider relaxations of a
linearized ILP formulation for the QTSP studied in [2] and derive heuristic methods to
generate feasible solutions from them. Some of our algorithms are matheuristics in the
sense that they apply ILP models to (exactly) solve subproblems arising in the heuristic
approach.
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1.1 Related literature

The AngleTSP was introduced by Aggarwal et al. [1], who also showed that it is NP-
hard. Thus, the AngleDistanceTSP and the QTSP are NP-hard as well, as they are
generalizations of the AngleTSP. It was also shown that the AngleTSP allows a polyno-
mial time approximation algorithm guaranteeing an approximation ratio within O(log n).

Several papers deal with the general QTSP in the context of applications in bioinform-
atics. The first contribution in this area is Jäger and Molitor [18] where the asymmetric
version of QTSP is introduced. In that case, the cost of traversing vertices may differ
between one direction and the other. The authors provide seven different heuristics and
two exact solution approaches for the asymmetric version.

More recently, two papers extensively studied the symmetric QTSP and its bioinform-
atic application. The first one, due to Fischer et al. [13], gives three exact approaches
and several heuristic algorithms. The exact approaches are a transformation to the TSP
(which is then solved by an available software package), a Branch-and-Bound scheme
and a Branch-and-Cut framework. However, these are able to solve only instances of
moderate size within reasonable running time. Therefore, the authors also develop seven
heuristics in [13]. The computational experiments do not give conclusive results, but
suggest that the so-called Cheapest-Insertion Heuristic (generalizing the corresponding
heuristic for the TSP, see Section 3.2) can be seen as the best currently known non-
exact algorithm for the AngleTSP and the AngleDistanceTSP. Thus, it will be used as
a reference method for our tests.

The second paper [14] by the same group of authors focuses on the bioinformatic
details and tries to explore the boundaries of problem sizes that can still be solved to
optimality by exact algorithms. To this purpose three different approaches are tested,
namely Dynamic Programming, Branch-and-Bound and an improved Branch-and-Cut
model, where the latter turns out to be vastly superior.

Polyhedral studies were done for the general symmetric QTSP by Fischer and
Helmberg [12], who also derived several classes of strengthened subtour elimination con-
straints and proved that many of them are facet defining. In addition, they provided
computational comparisons based on an ILP linearization and on the standard separa-
tion approach known from the TSP literature. Further polyhedral studies were provided
in [11]. Recently, Fischer also analyzed the polytope of the asymmetric QTSP in [10]
and presented involved lower bounding procedures based on an extended LP formulation
which is solved by column generation in [28].

A simple ILP-based approach, based on integral separation of subtours, instead of
the previously used standard fractional separation, was presented in [2] and performed
remarkably well. Also a different linearization with a linear number of additional vari-
ables was developed in that paper. Moreover, the maximization version of the QTSP
was introduced and some surprising structural properties for the case of the AngleTSP
were shown.

Considering the QTSP from an approximation point of view, only few results are

3



known. It is easy to see that the standard TSP with distances dij can be represented
as a special case of QTSP with identical solution value by defining costs 1

2(dij + djk) for
any transition from vertex i via j to k. Thus, the well-known fact that no constant-ratio
approximation can exist for the TSP immediately carries over to the QTSP. For the
special case of Halin graphs, it was shown in [31] that QTSP can be solved in linear
time.

1.2 Our contribution

Looking at many optimal solutions of the AngleTSP plotted on the screen, we observed
a certain recurrent pattern: tours tend to consist of large circular arcs trying to avoid
sharp corners, resembling in some sense the structure of snail-shells, or the superposition
of several circles. Moreover, solving an ILP model and relaxing the classical subtour
elimination constraints, we often obtain a fairly moderate number of subtours, which is
very different from the behaviour of the standard TSP.

In this paper we tried to exploit these empirical (although anecdotical) insights in a
number of different ways:

1. Based on the observation that vertices near to an existing straight line (i. e. edge) of
a preliminary path may be inserted into the path with little extra cost, the so-called
lens procedure is introduced in Section 2, followed by some standard construction
heuristics in Section 3.

2. The snail-shell shape of optimal tours mentioned above gives rise to several solution
approaches based on the construction of convex hulls (Section 4). Peeling away
convex hulls provides an onion-style set of subtours which can be merged together
by different patching procedures, also with the help of ILP models.

3. Starting from existing ILP models, relaxing both integrality and subtour elim-
ination constraints, but keeping the degree-two-constraint for every vertex, and
rounding-up the obtained (fractional) solution, provides us with three types of
components: subtours, paths and isolated points. We develop several procedures
to transform these building blocks into one tour as described in Section 5. Some
of the used (sub)procedures utilize again auxiliary ILP models of smaller size.

4. As for the standard TSP, it often makes sense to apply an improvement heuristic
as a postprocessing step. We explore some ideas in this direction in Section 6 with
particular emphasis on a matheuristic, which locally reoptimizes the solution with
respect to all vertices lying in a rectangular sector of the given Euclidean plane;
this procedure is then applied on different areas of the graph.

5. It is obvious that only extensive and carefully performed computational experi-
ments can shed some light on the pros and cons of the individual algorithmic ideas
and on the difficult question for their “best” combination. We pursued many more
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possibilities than could be reasonable reported in the paper, but tried to narrow
down the results to the most promising variants for each concept as reported in
Section 7. All together, it turned out that the LP-based algorithms significantly
dominate all other approaches for the AngleTSP. For the AngleDistanceTSP the
situation is more diffuse: apart form the LP-based algorithms, a variant of the well
known nearest-neighbour heuristic yields competitive solutions as well. Compared
to the heuristics proposed in [13], our algorithms improve either the objective func-
tion values or the running times, and some of them dominate for both parameters.

Although our approaches were mainly motivated by the structure of AngleTSP, it turned
out that many of them worked quite well also for the AngleDistanceTSP. Of course,
the actual performances depends heavily on the weighting of the angle- and distance-
component.

1.3 Formal problem definition

Let G = (V,E) be an undirected complete graph with vertex set V = {1, 2, . . . , n}
and edge set E =

{
{i, j} : i, j ∈ V, i 6= j

}
. A path P is an ordered sequence of ver-

tices, i. e. P = (p1, p2, . . . , p|P |) with pi ∈ V . Note that we will only consider simple
paths, i. e. paths containing each vertex at most once. A subtour T is a path with the
additional interpretation that all vertices should be visited in the given order and fi-
nally the edge from p|T | to p1 is traversed. If T contains all vertices of V , we simply
call T a tour in the graph, i. e. we have a Hamiltonian cycle. Alternatively, a tour
T can be described by T =

(
σ(1), σ(2), . . . , σ(n)

)
for a permutation σ of the vertices

1, 2, . . . , n. For a tour T = {t1, t2, . . . , tn} we define the set of all tour edges as
E(T ) ..=

{
{t1, t2}, {t2, t3}, . . . , {tn, t1}

}
. Finally, for auxiliary graphs Ĝ = (V̂ , Ê), we

denote the set of all neighbouring vertices of a vertex v ∈ V̂ by δ(v).
In the QTSP we associate costs with every pair of adjacent edges traversed in suc-

cession. So, using the (incident) edges e and f one after the other in a tour gives rise
to a certain cost value cef ∈ R

+
0 , which is assigned to the edge pair (e, f). Note that

in this paper we only consider the symmetric case where cef = cfe for all e 6= f ∈ E.
Equivalently, we can state costs for every triple of vertices (i, j, k) ∈ V ×V ×V by setting
cijk = cef for e = {i, j} and f = {j, k}. Clearly, cijk = ckji. The QTSP asks for a tour
T minimizing the objective function

z(G,T ) ..=

(
n−2∑

i=1

cσ(i)σ(i+1)σ(i+2)

)
+ cσ(n−1)σ(n)σ(1) + cσ(n)σ(1)σ(2) . (1)

In analogy, the cost of a subtour is defined. For convenience, we define the contribution
to the objective function of a path P = (p1, p2, . . . , p|P |):

z̄(G,P ) ..=

{
0 if |P | ≤ 2
∑|P |−2

i=1 cpi,pi+1,pi+2 otherwise
(2)
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Although the costs cijk ∈ R
+
0 can be arbitrary non-negative real numbers in general,

in this paper we focus on a geometric scenario where vertices correspond to points in the
Euclidean plane. However, some of our approaches also work in the general case.

For the AngleTSP we define costs representing the turning angle of a tour based on
the coordinates (xi, yi) ∈ R

2 of a vertex i ∈ V , i. e.

cijk = αijk
..= arccos[0,π]




(
xj

yj

)
−
(
xi

yi

)

∥∥∥
(
xj

yj

)
−
(
xi

yi

)∥∥∥
·

(
xk

yk

)
−
(
xj

yj

)

∥∥∥
(
xk

yk

)
−
(
xj

yj

)∥∥∥


 (3)

for all i 6= j 6= k ∈ V . Here · denotes the scalar product. For the AngleDistanceTSP a
weighted sum of the above turning angles and the Euclidean distances between successive
vertices is used in the objective function, i. e. for arbitrary non-negative real multipliers
λ1, λ2 we define:

cijk = λ1 · αijk +
λ2

2

(∥∥∥∥
(
xj
yj

)
−

(
xi
yi

)∥∥∥∥+
∥∥∥∥
(
xk
yk

)
−

(
xj
yj

)∥∥∥∥
)

(4)

2 Lens procedure

Before dealing with the particular solution approaches, we introduce an extension pro-
cedure, which can be applied in different algorithms as a subroutine. Given a partial
solution consisting of subtours and/or paths and isolated points, the lens procedure inserts
some of the isolated vertices into the subtours and/or paths and thus moves the partial
solution closer to feasibility. At the same time the resulting increase of the objective
function value is upper-bounded.

Let P = (p1, p2, . . . p|P |) be a path in G and denote its non-empty complement as
F = V \ P 6= ∅. Furthermore, let pi and pi+1, 1 ≤ i < |P |, be two vertices of P
traversed in succession. In the lens heuristic we try to include one or more vertices
f ∈ F into the path P between the vertices pi and pi+1. In particular, we position a lens
between the two vertices pi and pi+1 in such a way that their two positive curvatures
intersect at these vertices and consider the set of points L ⊆ F contained in this lens.
The motivation for this new idea comes from the fact that the inclusion of any point
inside such a lens causes an additional turning angle that is upper-bounded by the angle
γ of the curvatures’ tangent in pi (and pi+1 as well) and the line between pi and pi+1.
Moreover, the distance added by inserting l ∈ L, namely ∆ = dpi,l + dl,pi+1

− dpi,pi+1 ,
which is also part of the objective function value in the AngleDistanceTSP, is relatively

small. In fact, one can bound ∆ ≤ dpi,pi+1

(√
2

1−cos(π−2γ) − 1
)
. Using parameter γ,

the thickness of a lens can be controlled and thus the number |L| of potential insertion
candidates: the higher γ, the larger |L| can get.

Now we choose the locally best vertex l′ ∈ L for inclusion in the path by minimizing
the increase of the objective function value and selecting

l′ = argmin
l∈L

{
z̄(G,P ) : P = (p1, . . . , pi, l, pi+1, . . . , p|P |)

}
, (5)

6



and set P = (p1, . . . , pi, l
′, pi+1, . . . , p|P |). This procedure is repeated recursively on the

edges {pi, l
′} and {l′, pi+1} until there exists no more candidate, which could be included.

Note that non-recursively including all l ∈ L at once could lead to an unwelcome increase
of the objective function value since not only the total sum of all Euclidean distances,
but also the sum of all turning angles has to be taken into account. In fact, not all
vertices l ∈ L are necessarily contained in the lenses, which are stretched out in the
further recursion steps.

Example 1. Let us consider the graph G = (V,E) with V = {1, . . . , 6} depicted in
Figure 1, let P = (1, 2, 3, 4) be a path and let us assume that we are solving the Ang-
leTSP. Starting from the edge {2, 3} and choosing γ = 30◦ (≈ 0.5236) we obtain a lens
(dashed in Figure 1) containing both remaining vertices 5 and 6, i. e. L = {5, 6}. Since
z̄(G, (1, 2, 6, 3, 4)) ≈ 1.4201 < 1.8082 ≈ z̄(G, (1, 2, 5, 3, 4)), vertex l′ = 6 is chosen and
the process starts recursively with the new path P = (1, 2, 6, 3, 4) and the two new edges
{2, 6} and {6, 3} (see Figure 2). The lens stretched out on the edge {2, 6} contains just
one vertex 5 and the other lens is empty. Thus the process stops with the new path
P = (1, 2, 5, 6, 3, 4).

1

2 3

4

5 6

Figure 1: lens heuristic idea started from
the edge {2, 3}: step 1

1

2 3

4

5 6

Figure 2: lens heuristic idea started from
the edge {2, 3}: step 2

Although the approach described does not solve the problem itself, it can be used in
combination with many other heuristics. Such combinations usually yield significantly
better results than the original heuristics alone as documented in Section 7. We will
denote the lens procedure by LENS.

3 Simple construction heuristics and related approaches

3.1 Nearest-neighbour heuristics

The nearest-neighbour heuristic is one of the most common constructive heuristics used
for the TSP (for details see e. g. [25]). The original TSP-idea is to start from a vertex
and move to the nearest neighbour (not yet visited) in every step until no vertex remains
unvisited. Finally, the tour is closed. In our problem we cannot start just from a vertex
since we need two (incident) edges e and f to be able to estimate the cost value cef of using
them in succession. Thus we start from an arbitrary edge e = {i, j} ∈ E and look for a
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vertex k ∈ V , which minimizes the additional cost, i. e. k = argmink∈V \{i,j}{ckij, cijk}.
This vertex is added either at the beginning or at the end of the path (i, j) depending
on the respective costs. Similarly to the TSP, this can be repeated until no unconnected
vertex remains. In the last step, the tour is closed. This basic variant of the nearest-
neighbour heuristic will be denoted by NN. Note that NN always looks for the best next
vertex in both path directions; in the literature this variant is sometimes also called
the two-directional-nearest-neighbour heuristic. Jäger and Molitor [18] and Fischer et al.
[13], however, understand a slightly different algorithm under this name.

A common idea is to run NN from all possible starting points, in our case from every
start edge e = {i, j} ∈ E, and to choose the best solution. This variant will be denoted
as NNS.

Based on NNS, one can use an improvement heuristic on every generated NN-solution
and then choose the best one. We used the well known 2-opt heuristic (for details see
e. g. [25]), however, in order to reduce the computation time, we do not start from every
possible edge e = {i, j} ∈ E, but from every edge e = {i, j} ∈ E for a prespecified vertex
i. We denote this NNS-variant by NN2

S.
An extended approach includes the lens procedure LENS, described in Section 2, in

the nearest neighbour heuristic: Whenever a new vertex is selected, LENS is applied
on the new edge to possibly include further vertices into the existing path. We denote
the resulting extended approach NNL (resp. NNL

S) for the underlying basic heuristic NN
(resp. NNS). Because of the high running times of NN2

S together with LENS, we did not
pursue this combination any further.

Since NN is highly myopic, a look-ahead strategy might be employed which takes the
next few potential iterations into account. In particular, we consider not only the nearest
neighbour, but the w ∈ N nearest neighbours; for each such candidate we tentatively
select it and repeat the whole process for h ∈ N steps, i. e. we evaluate the h next steps
of the algorithm and in every step we consider again the w best possible successors.
In this way we construct a decision tree with tree width w and tree depth h. Finally,
among all candidates generated in the first step, we choose the vertex, which led to
the best solution in the last iteration, i. e. the best leaf of the decision tree. This idea
has similarities with the piloting strategy described by Duin and Voß [8], where w ∈ N

candidates are considered, but the whole algorithm is evaluated for every such candidate
(i. e. no decision tree is constructed, but the heuristic is run to the end for every candidate
generated in the first step). We tested this look-ahead strategy for all four variants NN,
NNS, NN

L and NNL
S . However, it turned out that the objective function values were not

better than the values produced by other “good” algorithms, while – as can be expected
– the running times increased considerably. Thus, we did not follow this idea to the end.

3.2 Cheapest-insertion heuristic

The next construction approach, again well-known from the TSP-context, is the cheapest-
insertion heuristic (for more details see e. g. [25]). A small tour is enlarged step by step
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until it contains all vertices. In particular, among all not visited vertices and all possible
insertion positions the cheapest possibility is chosen in every step. Theoretically, the
whole process could be started, similarly to NN, with a random tour just having 3
vertices, Fischer et al. [13], however, offer a smarter rule: they start with the subtour
(u′, v′, w′), where

(u′, v′) = arg min
u 6=v∈V

(
min

x∈V \{u,v}
cxuv + min

y∈V \{u,v}
cuvy

)
and (6)

w′ = arg min
w∈V \{u′,v′}

z(G, (u′, v′, w)). (7)

We will denote this algorithm CIF.
This algorithm exactly corresponds to the Cheapest-Insert Heuristic (CI) in [13],

where it can be seen as the winner under the presented non-exact algorithms if the
instance classes are restricted to the AngleTSP and the AngleDistanceTSP; thus it will
be used as a “reference method” in this paper.

4 Approaches based on convex hulls

Although the majority of the test instances used in [12, 9, 13] are AngleTSP- or
AngleDistanceTSP-instances (for exact definitions of these instance-types see Sec-
tion 7.1.1), all heuristics presented in these papers are designed for the general QTSP
setting and hardly make use of the geometric properties of AngleTSP and AngleDis-
tanceTSP. Focusing on the AngleTSP we observed that optimal solutions consist of
collections of large “circles” or “spiral” shapes (compare Aichholzer et al. [2]). We try
to use this observation to design the following approach for the AngleTSP (note that we
do not target the AngleDistanceTSP in this section). Recall that vertices are points in
the Euclidean plane.

If all vertices v ∈ V of G lay on a convex hull, an optimal AngleTSP-tour is obvious:
it simply corresponds to the convex hull. Thus the main idea of our approach can be
described as follows. First, the convex hull H1 ⊆ V of all vertices in V is computed and
defines the first (outermost) subtour T 1. In the next step, all vertices in H1 are removed
from the graph and a new convex hull H2 ⊆ V \H1 is computed on the remaining vertex
set, defining a new subtour T 2. This process is repeated until at most two unused vertices
remain; these vertices are included into the innermost (last) subtour by the CIF-idea.
Finally, all τ obtained subtours T 1, T 2, . . . , T τ are merged into one single tour. We tested
two different merging approaches.

4.1 Greedy merging approach

Consider two different arbitrarily chosen subtours T i and T ℓ with 1 ≤ i 6= ℓ ≤ τ and an
arbitrary edge from each of them denoted by e = {ue, ve} ∈ E

(
T i
)
and f = {uf , vf} ∈

E
(
T ℓ
)
. There are two possibilities of merging the subtours T i and T ℓ: either we connect
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them by the new edges {ue, uf} and {ve, vf} or by the new edges {ue, vf} and {uf , ve}. In
our algorithm we try both possibilities for all edge pairs e ∈ E

(
T i
)
and f ∈ E

(
T ℓ
)
and

for all pairs of subtours T i and T ℓ. Among all possibilities, we choose the one with the
smallest sum of objective function values over all subtours contained in the respective
solution. The number of subtours decreases by one in this step. This procedure is
repeated until a single tour is obtained. The algorithm in this form (i. e. convex-hull
approach combined with the described Greedy procedure) is abbreviated CH.

This simple Greedy idea can be enhanced by using piloting, i. e. a look-ahead probing
strategy, applied in an analogous way as it was done to NN-based approaches in Sec-
tion 3.1. However, in most cases the resulting algorithm yields the same tours as the
basic Greedy approach while considerably worsening the computational time, so we did
not follow this idea.

4.2 ILP merging approach

Another possibility is to merge all subtours T 1, T 2, . . . , T τ , k ≥ 2, at once by using a
single ILP model. The idea is to remove exactly one edge in every subtour and then to
connect the resulting paths into a single tour in an optimal way.

In order to do so, we define an auxiliary graph Ĝ = (V̂ , F ) where each vertex i ∈ V
is represented by a pair of vertices a, b ∈ V̂ . The edge set F ..= FL ∪ FS ∪ FC contains
three types of edges: FL, called long edges, replaces the original edges in a subtour, FS ,
called short edges, joins two vertices a, b arising from one vertex i ∈ V and FC , called
connecting edges, joins vertices of different subtours. Formally, each subtour T i consists

of
(
vi1, v

i
2, . . . , v

i
|T i|

)
for 1 ≤ i ≤ τ with vij ∈ V . We define for 1 ≤ i ≤ τ :

V̂ i =
{
aij, b

i
j : 1 ≤ j ≤

∣∣T i
∣∣}

F i
S =

{
{aij , b

i
j} : 1 ≤ j ≤

∣∣T i
∣∣}

F i
L =

{
{bij , a

i
j+1} : 1 ≤ j ≤

∣∣T i
∣∣− 1

}
∪
{
{b|T i|, a

i
1}
}

For every pair of subtours T i and T ℓ with 1 ≤ i 6= ℓ ≤ τ we define all possible connecting
edges:

F iℓ
C =

{
{u, v} : u ∈ V̂ i, v ∈ V̂ ℓ

}

Finally, we have

V̂ ..= ∪τ
i=1V̂

i, (8)

FS
..= ∪τ

i=1F
i
S , FL

..= ∪τ
i=1F

i
L, FC

..= ∪τ
i=1 ∪

τ
ℓ=1, ℓ 6=i F

iℓ
C (9)

F ..= FS ∪ FL ∪ FC (10)

Example 2. Consider the graph G = (V,E) depicted in Figure 3 and let T 1 =(
v11 , v

1
2 , v

1
3 , v

1
4

)
and T 2 =

(
v21 , v

2
2 , v

2
3 , v

2
4

)
be two subtours. The corresponding graph
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Ĝ = (V̂ , F ) is depicted in Figure 4. The edges {aij , b
i
j} ∈ F i

S, i = 1, 2, are depicted

densely dotted, the edges in F i
L, i = 1, 2, solid and some of the edges in FC incident to

a12 dashed.

v11 v12

v13v14

v21 v22

v23v24

T 1 T 2

Figure 3: graph G = (V,E) with subtours
T 1 and T 2

a11

b11 a12

b12

a13

b13a14

b14

a21

b21 a22
b22

a23
b23a24

b24

Figure 4: graph Ĝ = (V̂ , F ) (not all edges
FC are depicted)

The goal of this auxiliary graph Ĝ = (V̂ , F ) is to transform the quadratic costs
(depending on two edges) into linear weights (depending on just one particular edge).
Obviously, by opening for each tour T i one long edge li ∈ F i

L and its two incident short
edges si1, s

i
2 ∈ F i

S , and choosing exactly one connecting edge ri ∈ ∪k
ℓ=1, ℓ 6=iF

iℓ
C for each

tour T i, 1 ≤ i ≤ τ , we can build one single subtour in the auxiliary graph Ĝ = (V̂ , F ),
which corresponds to a tour in the original graph G = (V,E).

Example 3. Let us again consider the graphs depicted in Figures 3 and 4. By taking all
long and short edges except for the long edges

{
b12, a

1
3

}
and

{
b24, a

2
1

}
(one for every i = 1, 2)

and the incident short edges
{
a12, b

1
2

}
,
{
a13, b

1
3

}
,
{
a21, b

2
1

}
and

{
a24, b

2
4

}
(two for every i =

1, 2) and by taking the two connecting edges
{
a12, b

2
1

}
and

{
a24, b

1
3

}
(one for every i = 1, 2)

we clearly obtain the single subtour T =
(
a11, b

1
1, a

1
2, b

2
1, a

2
2, b

2
2, a

2
3, b

2
3, a

2
4, b

1
3, a

1
4, b

1
4

)
in the

auxiliary graph Ĝ = (V̂ , F ) corresponding to the tour T =
(
v11 , v

1
2 , v

2
1 , v

2
2 , v

2
3 , v

2
4 , v

1
3 , v

1
4

)
in

the original graph G = (V,E). Note also that the vertices b12, a
1
3, b

2
4 and a21 (i. e. two

vertices for every i = 1, 2) remain unconnected in the auxiliary graph Ĝ = (V̂ , F ) after
our merging procedure.

Now, we assign linear weights we ∈ R
+
0 to all edges e ∈ F . We also write wuv for we

if e = {u, v}. For the short edges s ∈ FS , we set

waijb
i
j
= cvij−1v

i
jv

i
j+1

for all 1 ≤ i ≤ τ with the obvious cyclic completion around j =
∣∣T i
∣∣. This means that

the weight of a short edge represents the quadratic cost arising from the turn in the
corresponding vertex vij in the particular subtour T i for 1 ≤ i ≤ τ . For the long edges
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l ∈ FL we set wl = 0 and for the connecting edges FC we set

waija
ℓ
k
= cvij−1v

i
jv

ℓ
k
+ cvijvℓkv

ℓ
k−1

waijb
ℓ
k
= cvij−1v

i
jv

ℓ
k
+ cvijvℓkv

ℓ
k+1

wbija
ℓ
k
= cvij+1v

i
jv

ℓ
k
+ cvijvℓkv

ℓ
k−1

wbijb
ℓ
k
= cvij+1v

i
jv

ℓ
k
+ cvijvℓkv

ℓ
k+1

,

i. e. the weights reflect the additional costs arising by the new connections. Again, the
wrapping around of indices at the beginning and end of each subtour follows in a natural
way.

Example 4. Let us again consider the graphs depicted in Figures 3 and 4. Then

wa12b
1
2
= cv11v12v13 , wa13b

1
3
= cv12v13v14 , wa24b

2
4
= cv23v24v21 , wa21b

2
1
= cv24v21v22 , wa22b

2
2
= cv21v22v23 ,

wa12b
2
1
= cv11v12v21 + cv12v21v22 , wa12a

2
1
= cv11v12v21 + cv12v21v24 , etc.

If we would merge the original two subtours T 1 =
(
v11 , v

1
2 , v

1
3 , v

1
4

)
and T 2 =(

v21 , v
2
2 , v

2
3 , v

2
4

)
to one tour T =

(
v11 , v

1
2 , v

2
1 , v

2
2 , v

2
3 , v

2
4 , v

1
3 , v

1
4

)
(in the same way as in Ex-

ample 3), then we would decrease the total costs by cv11v12v13 , cv12v13v14 , cv24v21v22 and cv23v24v21 and

increase them by cv11v12v21 , cv12v21v22 , cv23v24v13 and cv24v13v14 . In the auxiliary graph Ĝ = (V̂ , F ),

this exactly corresponds to omitting the long and short edges
{
b12, a

1
3

}
,
{
b24, a

2
1

}
,
{
a12, b

1
2

}
,{

a13, b
1
3

}
,
{
a21, b

2
1

}
and

{
a24, b

2
4

}
and inserting the connecting edges

{
a12, b

2
1

}
and

{
a24, b

1
3

}
.

Note that we omit exactly 6 edges (one long and two incident short edges for every
i = 1, 2) and insert 2 connecting edges (one for every i = 1, 2).

After having defined the weights, for every 1 ≤ i ≤ τ in the graph Ĝ = (V̂ , F ), we
want to remove one long edge li ∈ F i

L and its two incident short edges si1, s
i
2 ∈ F i

S , and
choose exactly one new connecting edge ri ∈ ∪k

ℓ=1, ℓ 6=iF
iℓ
C in order to obtain one single

subtour T̂ (which can be subsequently transformed into one single tour T in the original
graph G = (V,E)). The edges of this process are chosen such that the total costs of the
merging are minimized. This is realized by the following ILP. Let xf ∈ {0, 1} be a binary

variable indicating whether the edge f ∈ F is included in the tour T̂ or not. Then we
can model the described problem as follows.

min
∑

f∈F

wfxf (11)

s.t.
∑

u∈δ(v)

xuv ≤ 2 ∀ v ∈ V̂ , (12)

∑

u 6=v∈S

xuv ≤ |S| − 1 ∀ S ⊂ V̂ , S 6= ∅, (13)

12



∑

l∈F i
L

xl =
∣∣T i
∣∣− 1 ∀ 1 ≤ i ≤ τ, (14)

∑

s∈F i
S

xs =
∣∣T i
∣∣− 2 ∀ 1 ≤ i ≤ τ, (15)

2xl ≥
∑

{t,u}∈FS∪FC

t∈δ(u)

xtu +
∑

{v,t}∈FS∪FC

t∈δ(v)

xvt ∀ l = {u, v} ∈ FL, (16)

xl ≤ xs1 + xs2 ∀ l ∈ F i
L, ∀ 1 ≤ i ≤ τ,

s1 6= s2 ∈ F i
S , |s1 ∩ l| = |s2 ∩ l| = 1, (17)

∑

u∈V̂ i, v∈V̂ \V̂ i

xu,v = 2 1 ≤ i ≤ τ, (18)

xf ∈ {0, 1} ∀ f ∈ F. (19)

The constraints (12) ensure that the vertex degree is at most 2. Note that we cannot en-
force equality since we leave some vertices unconnected in graph Ĝ (see also Example 3).
(13) define the standard subtour elimination constraints while (14) and (15) guarantee
that exactly one long edge l ∈ F i

L and two short edges si1 6= si2 ∈ F i
S are excluded for

every 1 ≤ i ≤ τ . (16) and (17) imply that each of the two excluded short edges si1,
si2 shares a vertex with the removed long edge l. Moreover, the constraints (16) ensure

that all vertices, which are not included in the final tour T̂ , are isolated and not con-
nected among each other. The cut constraints (18) make sure that every vertex set V̂ i,
1 ≤ i ≤ τ , is connected to its complement V̂ \V̂ i by exactly two connecting edges e ∈ FC .
Finally, the integrality constraints are expressed in (19). Note also that (18) does not
follow from (13) since we do not ensure equality in (12).

This model has similarities to the ILP known for the TSP (the objective function (11)
and the constraints (13) and (19) are the same and the constraints (12) are similar). To
solve the above ILP, which has an exponential number of subtour elimination constraints
(13), we adapt the solution approach proposed by Pferschy and Staněk in [21]. In
particular, we relax the constraints (13), solve the remaining ILP to integrality, add one
subtour elimination constraint for every subtour and repeat the whole process until just
one tour T̂ exists.

Unfortunately, it turns out that the ILP approach for merging the subtours
T 1, T 2, . . . , T τ representing the collection of convex hulls does not outperform the Greedy
approach (see Section 4.1) since the objective function values are fairly similar and the
ILP approach always needs more time. Nevertheless, the ILP model introduced is used
later in Section 5.1 in a different context, where it yields very good results in competitive
computational times. Note that the above model contains much more restrictions than
the related ILP for the standard TSP and therefore can be solved much faster than a
pure TSP of the same size.
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4.3 Enhanced convex hull strategies

The solutions generated by the merging of convex hulls as described above yield fairly
well-structured solutions in general. However, this positive aspect deteriorates towards
the inner vertices, i. e. for the convex hulls computed in the last few convex hull building
iterations. It can be observed that the outer convex hulls (from the first iterations)
usually contain a larger number of vertices, while the inner convex hulls (from the last
iterations) often consist of just a few vertices. Since the sum of all turning angles in a
convex polygon is always 2π, the average contribution to the objective function value of
each vertex is usually much larger for these subtours with a small number of vertices.

Therefore we introduce the following matheuristic: We stop the convex hull building
process as soon as the number of remaining vertices is at most a prespecified parameter
C ∈ N. Thus, we obtain at the end of the process the convex hulls H1, H2, . . . ,
Hτ ′ , τ ′ ∈ N with the corresponding subtours, and a set of remaining vertices R =
V \ {H1 ∪H2 ∪ . . . ∪Hτ ′}. Then we compute an optimal subtour T τ ′+1 on the induced
subgraph G[R]. This is done by the integral ILP based approach described in [2]. By
choosing the value of parameter C the trade-off between running time and solution
quality can be controlled. This approach is denoted by CHC. Clearly, for C = 2 we
obtain CH.

A second enhanced strategy incorporates LENS procedure: After computing the
vertices H i of the current convex hull and the corresponding subtour T i in iteration i,
1 ≤ i ≤ τ , we run LENS procedure on every edge in T i and thus possibly enlarge the
subtour with an only moderate increase of the objective function value. We will denote
this variant by CHL. The combined variant including the features of both CHC and CHL

will be denoted by CHL
C.

5 LP-based approaches

In this section we present a different solution strategy based on the utilization of LP
relaxations. The general approach can be described as follows. First, QTSP is modelled
via an ILP. In the next step, the LP relaxation of this model is solved and the fractional
values of variables are rounded to integrality. In this way, one obtains either a partial
solution or an infeasible solution with only limited violations of feasibility. Finally, the
result of the rounding process is modified to either complete a partial solution or to reach
feasibility. This is a standard approach for designing approximation algorithms (see e. g.
[30, 15]) and heuristics.

The QTSP can be written as the following quadratic integer program with binary
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edge variables xuv for {u, v} ∈ E.

min
∑

u 6=v 6=t∈V

cuvtxuvxvt (20)

s.t.
∑

u∈δ(v)

xuv = 2 ∀ v ∈ V, (21)

∑

u 6=v∈S

xuv ≤ |S| − 1 ∀ S ⊂ V, S 6= ∅, (22)

xuv ∈ {0, 1} ∀ {u, v} ∈ E. (23)

In the objective function (20) costs cuvt are taken into account for the pair of con-
secutive edges {u, v}, {v, t} ∈ E, u 6= v 6= t, if both edges {u, v} and {v, t} are contained
in the tour. Equations (21) are the degree constraints ensuring that each vertex is vis-
ited exactly once, (22) are the well-known subtour elimination constraints and, finally,
(23) are the integrality constraints on the edge variables. In comparison to the standard
model for the TSP by Dantzig et al. [7] only the objective function is changed.

This quadratic integer program can be linearized as suggested in [12]. We intro-
duce a cubic number of additional integer variables yuvt for all pairs of incident edges
{u, v}, {v, t} ∈ E, u 6= v 6= t, where yuvt = 1 if and only if the vertices u, v and t are
visited in the tour in consecutive order.

min
∑

u 6=v 6=t∈V

cuvtyuvt (24)

s.t. (21), (22), (23),

xuv =
∑

t∈V \{u,v}

yuvt =
∑

t∈V \{u,v}

ytuv ∀ {u, v} ∈ E, (25)

yuvt ∈ {0, 1} ∀ u 6= v 6= t ∈ V. (26)

The x-variables have to correspond to a tour due to the constraints (21)–(23). Apart
from that, this model has a linear objective function (24). Constraints (25) couple the
x- and the y-variables. Finally, conditions (26) ensure the integrality of the y-variables.

Our approach works as follows. Based on this ILP, we relax the integrality constraints
(23) and (26) and the subtour elimination constraints (22) and solve the obtained LP
(obviously having polynomial size) to optimality. Let us denote by x′e the obtained
solution value of the x-variable for each edge e ∈ E. To construct a partial solution we
first set xe = 0 for all e ∈ E and choose a rounding parameter ρ. Then we consider all
x′-variables with x′e > ρ in decreasing order and set xe = 1 if and only if the following
two conditions are fulfilled:

C1. The degree of each vertex remains at most 2, i. e.
∑

u∈δ(v) xuv ≤ 2 for all v ∈ V .
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C2. The rounding does not imply any cycle in the resulting partial solution.

By this rounding procedure we obviously obtain a set of paths and isolated points.
From these building blocks we construct a tour, i. e. a feasible QTSP-solution, with the
following two steps. First, all paths are combined into one cycle by using an auxiliary
ILP. Secondly, the isolated points are inserted into this cycle by the CIF-idea. The details
of the resulting algorithm, denoted by LPP, can be described as follows.

For the merging of paths into a single cycle we proceed similarly to the merging
procedure described in Section 4.2 and transfer the quadratic costs depending on two
incident edges in the original graph into linear weights depending on one edge in

a new auxiliary graph. Let P 1 =
(
v11 , v

1
2 , . . . , v

1
|P 1|

)
, P 2 =

(
v21 , v

2
2 , . . . , v

2
|P 2|

)
, . . . ,

P τ =
(
vτ1 , v

τ
2 , . . . , v

τ
|P τ |

)
, where ∪τ

i=1P
i ⊆ V , be the τ paths obtained from our round-

ing procedure (putting aside the isolated vertices for the time being). We now define
an auxiliary graph Ĝ = (V̂ , F ), where each path P i, 1 ≤ i ≤ τ , is represented by two
vertices ai, bi ∈ V̂ . The edge set F ..= FP ∪ FC contains two types of edges: Path edges
in FP represent the original paths and connect the a-vertices with their b-counterparts.
Connecting edges in FC join vertices representing different paths. Formally we define

V̂ ..=
{
ai, bi : i = 1, . . . , τ

}
,

FP
..=
{
{ai, bi} : i = 1, . . . , τ

}

FC
..=
{
{u, v} : u 6= v ∈ V̂

}
\ FP

Example 5. Consider the graph G = (V,E) given in Figure 5 and let P 1 =
(
v11 , v

1
2

)
,

P 2 =
(
v21 , v

2
2 , v

2
3

)
and P 3 =

(
v31 , v

3
2 , v

3
3

)
be three paths obtained from the rounding proced-

ure. The auxiliary graph Ĝ = (V̂ , F ) is depicted in Figure 6. Edges FP , where {ai, bi}
corresponds to path P i, i = 1, 2, 3, are depicted solid, edges FC incident to a1 dashed and
the edges FC incident to b1 densely dotted (other edges of FC are not depicted).

a1
b1

a2

b2
a3

b3
v11

v12

v21

v22
v23

v31

v32

v33
P 1

P 2

P 3

Figure 5: LP-based approach: graph G =
(V,E) with paths P 1, P 2 and P 3

v11
v12

v21

v22
v23

v31

v32

v33
a1

b1

a2

b2
a3

b3

Figure 6: LP-based approach: graph Ĝ =
(V̂ , F ) (not all edges FC are depicted)

Similarly to the auxiliary graph described in Section 4.2 Ĝ = (V̂ , F ) transforms
the quadratic costs depending on two edges into linear weights depending only on one
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particular edge. Obviously, by choosing one edge r ∈ FC , one can compute the cost of
the new connection in the original graph G = (V,E). Formally, we set wuv = 0 for all
{u, v} ∈ FP and

waiaℓ = cvi2vi1vℓ1
+ cvi1vℓ1vℓ2

,

waibℓ = cvi2vi1vℓ|Pℓ|
+ cvi1vℓ|Pℓ|

vℓ
|Pℓ|−1

,

wbiaℓ = cvi
|Pi|−1

vi
|Pi|

vℓ1
+ cvi

|Pi|
vℓ1v

ℓ
2
,

wbibℓ = cvi
|Pi|−1

vi
|Pi|

vℓ
|Pℓ|

+ cvi
|Pi|

vℓ
|Pℓ|

vℓ
|Pℓ|−1

for the connecting edges FC , 1 ≤ i 6= ℓ ≤ τ . Note that in this way, the costs incurred
along the paths are not explicitly included in the merging model, since they remain
constant anyway.

Example 6. Let us again consider the graphs depicted in Figures 5 and 6. Then

wa1b1 = 0, wa2b2 = 0, wa3b3 = 0, wa1a2 = cv12v11v21 + cv11v21v22 , wa1,b2 = cv12v11v23 + cv11v23v22 ,

wb1a2 = cv11v12v21 + cv12v21v22 , wb1,b2 = cv11v12v23 + cv12v23v22 , etc.

Now, we want to merge the paths into one cycle T̂ in an optimal way. Assume that
τ ≥ 2 (other cases will be considered below) and let xf ∈ {0, 1} be a binary variable

indicating whether edge f ∈ F is included in the cycle T̂ or not. Then we can model the
merging problem as follows.

min
∑

f∈F

wfxf (27)

s.t.
∑

u∈δ(v)

xuv = 2 ∀ v ∈ V̂ , (28)

∑

u 6=v∈S

xuv ≤ |S| − 1 ∀ S ⊂ V̂ , S 6= ∅, (29)

xf = 1 ∀ f ∈ FP , (30)

xf ∈ {0, 1} ∀ f ∈ F. (31)

The objective function value (27) and the constraints (28), (29) and (31) are equivalent
to the standard ILP model for the TSP. The additional constraints (30) guarantee that all
paths in the original graph are included in the resulting cycle. Similarly to Section 4.2 we
adapt the solution approach proposed by Pferschy and Staněk in [21] for this problem, i. e.
we relax the subtour elimination constraints (29), solve the remaining ILP to integrality,
add one subtour elimination constraint for every subtour and repeat the whole process
until just one tour T̂ exists. This cycle can then be easily transformed into a subtour T
in the original graph G = (V,E).
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At the end, the remaining isolated points are inserted into the tour T by the CIF-
idea. Now let us briefly consider the special case that the rounding procedure yields only
one path (τ = 1): If

∣∣P 1
∣∣ ≥ 3, we just close the path to a cycle instead of solving the

auxiliary ILP and then insert the remaining isolated points by CIF. If
∣∣P 1
∣∣ = 2, we use

this path as a starting edge of CIF similar to (6), choose the next vertex according to
(7) and continue by running CIF. If no path is formed (τ = 0), the default version of
CIF is performed.

The choice of the rounding parameter ρ influences the number of (undesired) isolated
points generated by the rounding procedure. However, there is a trade-off: Decreasing
ρ, the number of isolated points decreases, but the generated paths tend to be of lower
quality, and vice-versa. Therefore a careful setting of this parameter is required.

Finally, let us remark that in theory we only know that the size of the auxiliary graph
Ĝ = (V̂ , F ) is smaller or equal to the size of the original graph G = (V,E), but in practice
it is observed to be much smaller. Roughly spoken, this approach transforms the QTSP
instances to TSP instances of at most equal size, i. e. in the described algorithm we solve
the quadratic problem by using its linear version without increasing the instance size.
Since the size of usual QTSP test instances is perceived as quite small if the data is used
for TSP instances, the exact solution of the auxiliary TSP (with one additional set of
constraints) does not increase the running time too much.

5.1 Enhanced LP-based strategies

In this section we introduce some enhanced strategies, which lead to better results for the
LPP-algorithm. A summary of the different improvement strategies is given in Figure 7.
LPP corresponds to the left-most possibility, i. e. after the rounding to paths and isolated
points, no cycles step, merging the paths to a cycle yields one cycle, which is enlarged by
the remaining isolated points in the last step.

The rerun strategy is the first possibility for enhancing LPP: After solving the LP
relaxation and performing the rounding procedure, we have xe = 1 for some e ∈ E. Now,
we fix xe = 1 for all such edges and resolve the LP with a smaller number of free variables
and start the rounding procedure again in order to obtain xe = 1 for more edges e ∈ E.
This process is repeated until the number of isolated points remains unchanged. LPP
combined with this rerun strategy will be denote as LPPR.

The next idea focuses on the rounding procedure. In LPP (and in LPPR) xe is set
to 1 only if the edge e ∈ E does not close a cycle. Due to this condition we obtain only
paths and isolated points in the next step, but we “lose” some information provided by
the solution of the LP relaxation. Instead, we can also permit to close cycles in the
rounding procedure, i. e. omit the condition C2, and stick only to the degree condition
C1. Then we have to deal with a structure consisting of subtours, paths and isolated
points. One obvious possibility is to merge the paths to one cycle in the same way as
it is done in LPP and then merge all cycles (i. e. the ones directly obtained from the
rounding procedure and the one created from the paths) to one subtour. This can be
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LP relaxation

rounding to paths and
isol. points, no cycles

rounding to paths,
cycles and isol. points

merging the paths to a
cycle

merging the paths and
cycles to a cycle

merging the paths to a
cycle

merging the cycles to
one cycle

insertion of the
remaining isol. points

rerun strategy rerun strategy

LPP, LPPR LPC1, LPC
R
1

LPC2, LPC
R
2

Figure 7: enhanced LP-based strategies

done by subsequently solving two auxiliary ILPs, namely (27)–(31) and then (11)–(19)
as described in Section 4.2. As the last step, the isolated points are included by the
CIF-idea. This approach corresponds to the right-most possibility in Figure 7 and can
be used with or without the rerun strategy. We will denote the resulting algorithms by
LPCR

2 and LPC2, respectively.
LPCR

2 and LPC2 use both auxiliary ILPs described in Sections 5 and 4.2 in succession.
A natural idea is to combine these ILPs and to merge all cycles and paths at once. In
particular, we deal with all cycles in the same way as in Section 4.2 and with all paths
in the same way as in Section 5. The only difference is that we add connecting edges
FC also between all transformed cycles and all shrunk paths. The weights wc of these
new connections can be computed according to the same principle as it is done for other
connecting edges. This variant corresponds to the middle possibility in Figure 7 and will
be denoted by LPCR

1 (with rerun) and LPC1 (without rerun).
Note that LPC1 does not necessarily lead to the same or better results than LPC2: if

the paths and cycles are merged at once (LPC1), no path edge is allowed to be removed.
If, however, the paths are merged to a cycle first and then all cycles are merged together,
the possibility of opening a path edge in the second step of LPC2 is added.

Finally, we tested algorithms based on randomised rounding as introduced by
Raghavan and Tompson [23]. Its main principle is to use the optimal solution values
of the variables of a LP relaxation as probabilities for rounding up. We tested more
variants of this approach applied to LPP and LPC2 and although the obtained objective
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function values are good for small values of n, the algorithms fail to produce good solu-
tions in a reasonable computational time for larger instances. Thus we did not follow
this idea any further.

6 Improvement approaches

The 2-opt-heuristic and the 3-opt-heuristic belong to the standard improvement al-
gorithms used in the TSP context (for more details see [25]). Both algorithms work
as follows: Basically, for a starting tour T , 2 or 3 edges are removed and the remaining
segments of T are reconnected to obtain a new tour T ′. If z(T ′) < z(T ), an improved
tour was found and T ′ replaces T , otherwise T ′ is discarded. This process is repeated
until no improvement is possible. We tested both algorithms and will denote them by
+2O and +3O respectively. Note that depending on the precise definition, +3O is not
always +2O-inclusive; we decided to use the +2O-inclusive variant.

In our computational experiments (see Section 7.3), we made two observations which
are in line with the behavior observed for the analogous heuristics applied to the TSP.

1. +2O has relatively small running times in comparison to all stand-alone heuristics
described in Sections 3, 4, and 5 and improves the solutions significantly.

2. +3O has running times comparable to the slower stand-alone heuristics, such as
the LP-based ones, and yields significantly better solutions than +2O.

The naive extension of this approach to a 4-opt-heuristic can be expected to yield further
improvements while the running times would increase dramatically. Therefore, we follow
a different and more structured approach for removing parts of an existing solution while
trying to find improvements.

6.1 Magnifying glass matheuristic

The magnifying glass heuristic can be understood as a large neighborhood search, where
a (starting) solution is partially destroyed and repaired by corresponding operators; a
process, which is iteratively repeated until a local optimum is reached (see [22]). The
underlying idea of our approach works as follows: We consider a subset S ⊂ V of vertices
and remove all edges adjacent to S from the tour. Thus, we are left with several paths
and isolated points. A new, possibly improved tour containing these paths is computed
optimally by means of a quadratic programming model.

Formally, our algorithm works as follows. Let T = (t1, t2, . . . , tn) be a tour in the
graph G = (V,E) and remember that E(T ) =

{
{t1, t2}, {t2, t3}, . . . , {tn, t1}

}
is the set of

all tour edges. Then for a set of vertices S ⊂ V , we remove all tour edges, which have at
least one vertex in S, i. e. all {u, v} ∈ E(T ) with {u, v}∩S 6= ∅. The remaining tour edges
form a number of τ paths denoted by P 1, P 2, . . . , P τ , where P i = (vi1, v

i
2, . . . , v

i
|P i|),

1 ≤ i ≤ τ . The idea is to reconnect these paths and the remaining isolated points
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I = V \{P 1∪P 2∪ . . .∪P τ} (mainly consisting of the vertices in S) in an optimal way to
build a new tour T ′ as a possible improvement of T . This whole process is repeated for
different choices of S, which constitutes a matheuristic type of improvement procedure.

Although the general procedure is defined for arbitrary sets S, the practical motiv-
ation is based on the consideration of vertex sets S corresponding to points in a geo-
graphical neighbourhood. If S contains all vertices of a certain region of the Euclidean
plane, it can be expected that the removal of all connections within S yields only a small
number of unconnected paths. Thus, the optimization should be mainly concerned with
the improvement of the tour in a limited part of the given graph. This is the reason for
using the expression “magnifying glass”, meaning that we look at a small region of the
graph and insert its vertices in a locally optimal way into the existing solution.

Following this intuition, we want to avoid short path fragments arising from the
removal process which can be expected to lie close to the region of S. Therefore, in our
implementation we enlarge S by all vertices of paths consisting of at most 3 vertices and
reduce τ accordingly. Also all isolated points outside S arising from the removal of edges
are added to S thus setting I equal to the enlarged set S.

Let us now consider the reconnecting procedure. We have a set of paths P i, 1 ≤ i ≤ τ ,
and set of isolated points I. In order to connect them into a new tour, we define a
complete auxiliary graph Ĝ = (V̂ , F ) with vertex set V̂ representing all isolated points I
and containing two vertices ai, bi for each path P i, 1 ≤ i ≤ τ . We model the reconnecting
problem as an instance of QTSP with a smaller number of vertices and the following
coefficients:

wuvt = cuvt for all u 6= v 6= t ∈ I,

waibit = cvi
|Pi|−1

vi
|Pi|

t



for all 1 ≤ i ≤ τ. and for all t ∈ I

wtaibi = ctvi1vi2

Now, an optimal tour can be obviously found by using the standard QTSP integer
program, i. e. by (20)–(23) or, as we do, by the linearisation (24), (21)–(23), (25), (26)
described in Section 5, with the additional constraints

xaibi = 1 ∀ 1 ≤ i ≤ τ. (32)

These constraints ensure that the edges {ai, bi}, 1 ≤ i ≤ τ , representing the paths P i are
contained in the tour. To solve this ILP to optimality, we adopt the integral approach
proposed by Aichholzer et al. in [2], i. e. we relax the subtour elimination constraints
(22), solve the remaining ILP to integrality, add one subtour elimination constraint for
every generated subtour and repeat the whole process until the solution consists of just
one tour T̂ ′. This cycle can then be easily transformed into a new tour T ′ in the original
graph with z(T ′) ≤ z(T ). Again note that in this way, all costs incurred along the paths
are not explicitly included in the model, since they remain constant anyway.

21



Example 7. Consider the graph G = (V,E) with the tour T and with the set S consist-
ing of all vertices inside the square area bounded by the dotted line in Figure 8. After
removing all tour edges having at least one vertex in S (dashed in Figure 8), we obviously
obtain two paths P 1 and P 2 (solid in Figure 8) and 8 isolated vertices.

S
P 1

P 2

Figure 8: graph G = (V,E) with subset S
and paths P 1 and P 2

a1

b1

a2

b2

Figure 9: graph Ĝ = (V̂ , F ) (depicted are
only edges fixed by (32))

The auxiliary graph Ĝ = (V̂ , F ) can be seen in Figure 9. It consists of all isolated
vertices I and of the vertices a1, b1 and a2, b2 representing the paths P 1 and P 2, respect-
ively. Although Ĝ is complete, for a better representation only the edges {a1, b1}, {a2, b2}
fixed by (32) are depicted.

This procedure could be performed for any subset S. Since we deal with the Ang-
leTSP and the AngleDistanceTSP and all our test instances are based on points in the
Euclidean plane, we generate a sequence of sets S systematically by moving a square (our
magnifying glass) over the set of points. Given a fixed parameter s, we place a square
of size s × s in the left upper corner of the point set of the instance. All vertices inside
form the first set S. After obtaining a new tour T ′, we shift the square to the right by
2/3 · s (rounded to the nearest integer) and find a new tour T ′′. This process is repeated
until we reach the right upper corner of the instance. Then we proceed with the next
row, placed 2/3 · s (rounded to the nearest integer) below the first one. In this way, row
after row, we continue to sweep over the point set until we reach the bottom right corner
of the instance. Clearly, this approach guarantees that every vertex v ∈ V is contained
in at least one set S ⊂ V . To stimulate a consideration of point connections in multiple
directions, we use overlapping sets S.

Concerning the choice of s we note that all our test instances are based on points in
the Euclidean plane, which are uniformly distributed on {0, . . . , 500}2 (for further details

see Section 7.1). Thus, by setting s = 500
√

k
n
(rounded to the nearest integer), we have

k vertices in every square of size s × s in expectation. This improvement heuristic will
be denoted +Mk, where k is the expected number of vertices in each square.
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6.2 Lens metaheuristic

A natural improvement strategy is given by the use of metaheuristics, which offer possib-
ilities of escaping local optima, as they may occur e.g. in +2O and +3O. While the design
options for metaheuristics are unlimited, we decided to restrict ourselves to approaches
based on the lens neighbourhood. This neighbourhood can be evaluated quickly and still
allows a substantial diversification of the current solution.

6.2.1 Lens neighbourhood

Let T = (t1, t2, . . . , tn) be a tour in G = (V,E). Then, for a fixed thickness parameter γ,
we position a lens on all tour edges et ∈ E(T ) in the same way as described for the lens
procedure in Section 2. Let tl be a vertex in the lens, which is positioned on the tour edge
{ti, ti+1} (the wrapping around of indices at the beginning and at the end of the tour T
follows in a natural way). Then we can remove the tour edges {tl−1, tl}, {tl, tl+1} and
{ti, ti+1} from the tour T and add the edges {ti, tl}, {tl, ti+1} and {tl−1, tl+1} in order to
obtain a new tour T ′.

Example 8. Let us consider Figure 10 depicting the graph G = (V,E) and the tour
T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Assuming that we are solving the AngleTSP, z(T ) ≈
13.0661. The lens positioned on the edge {1, 2} with γ = 30◦ (≈ 0.5236) is depicted
dashed in Figure 10 and contains only the vertex 8. By removing the edges {7, 8}, {8, 9}
and {1, 2} and by adding the edges {1, 8}, {8, 2} and {7, 9} we obtain the new improved
tour T ′ = {1, 8, 2, 3, 4, 5, 6, 7, 9, 10, 11} with z(T ′) ≈ 12.5664 depicted in Figure 11.
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T

Figure 10: graph G = (V,E) with tour T
and with a lens on edge {1, 2}
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11

T ′

Figure 11: graph G = (V,E) with tour T ′

The lens neighbourhood L(T ) of a tour T is defined as the set of all tours T ′ obtained
by considering all edges et ∈ E(T ), positioning a lens on et and creating a new tour T ′ for
every vertex tl contained in such a lens as described above. Obviously, the lens neighbour-
hood is a subset of the 3-opt-neighbourhood. Since the metaheuristics we design below
are based on the evaluation of a large number of iterations, the 3-opt-neighbourhood
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would be impractical, while our lens neighbourhood reduces the 3-opt-neighbourhood,
allows a parametrization of this reduction and keeps “good” neighbours in the tour.

Of course, one could use the lens neighbourhood as a simple local search heuristic
most probably yielding worse solutions than +3O with lower running times. However,
our goal is to escape from local optima. Thus we allow a worsening of the solution by
using the concept of simulated annealing. This metaheuristic is very well-known and has
been widely used during the last decades, thus we only refer to [24] for more details.

Given a tour T in G = (V,E) let L(T ) = {T ′
1, T

′
2, . . . , T

′
|L(T )|} be the lens neighbour-

hood of this tour. Then we define the positive and the negative neighbourhood as

L+(T ) ..=
{
T ′ ∈ L(T ) : z(T ′) < z(T )

}
and L−(T ) ..= L(T ) \ L+(T ),

respectively. We tested three variants of applying the acceptance rule of simulated an-
nealing with the lens neighbourhood:

Random choice: Choose a random tour T ′ ∈ L(T ) among all neighbours, accept it if
T ′ ∈ L+(T ) and use the acceptance rule if T ′ ∈ L−(T ).

Least-cost choice: Take T ′ = argmint′∈L(T )

{
z(t′)

}
and deal with it in the same way

as in the previous case, i. e. T ′ is taken if T ′ ∈ L+(T ) and the acceptance rule is
applied if T ′ ∈ L−(T ).

Combined choice: If L+(T ) 6= ∅, choose and accept a random T ′ ∈ L+(T ). Otherwise
take T ′ = argmint′∈L−(T )

{
z(t′)

}
and apply the acceptance rule.

The acceptance rule accepts the new tour T ′ ∈ L−(T ) with probability

P = e

z(T )−z(T ′)
z(T )

n

t(ℓ) , (33)

where t(ℓ) is a so-called temperature parameter depending on the iteration number ℓ ∈
{0, 1, . . . , I} with I denoting the maximum number of iterations. In our implementation,
one iteration corresponds to one choice of T ′ ∈ L(T ). We use a linearly decreasing
temperature function t(ℓ) with t(0) = 1 and t(I) = 0, i. e. we set

t(ℓ) ..=
I − ℓ

I
. (34)

Note that the algorithm can stop before reaching I iterations, e. g. if the lens neighbour-
hood is empty.

Our preliminary computational experiments have shown that among these three vari-
ants, least-cost choice leads to slightly better results than the random and the combined
choice. Therefore we perform only least-cost choice in the reminder of the paper and
denote it by +L.

24



7 Computational results

7.1 Test set-up

We describe the setup of our computational tests in this section.

7.1.1 Benchmark instances

Our benchmark instances are based on the instance specification developed in [9] and
[12] and also used in [2] from where we take over the integer point sets. As in [2] we do
not round the costs to integers. Furthermore, we add point sets for new sizes n = 5 and
85 ≤ n ≤ 200 generated by the same algorithm as used by the previous papers.

We test two types of quadratic instances1:

AngleTSP-instances are based on points in the Euclidean plane: First, we randomly
choose n points independently from the discrete uniform distribution {0, . . . , 500}×
{0, . . . , 500}. Then we compute the turning angles α, multiply by 1000, in the same
way as [9] and [2], and then we round them to 12 decimal places.

AngleDistanceTSP-instances extend the above AngleTSP-instances by combining
the turning angles with the Euclidean distances between the points in a weighted
sum. Taking the same point sets in the plane we denote the Euclidean distances
between vertices i and j as dij . Following the literature, we construct QTSP-
distances for a weighting parameter ρ ∈ R

+
0 , setting λ1 = 100ρ and λ2 = 100, the

cost coefficients (4) reduce to:

cijk ..= 100

(
ρ · αijk +

dij + djk
2

)
(35)

Again, all distances are rounded to 12 decimal places.

These instances were introduced in [29] for an approximate solution of the TSP for
Dubins vehicle. They lie between AngleTSP-instances (for ρ → ∞) and standard
TSP instances (for ρ = 0). For compatibility with the literature we set ρ = 40 for
all our tests as done in [9] and [2].

For each size n = 5, 10, . . . , 200 we took/generated 10 point sets used for 10 AngleTSP-
and 10 AngleDistanceTSP-instances.

7.1.2 Test environment

All tests were run on an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with 32 GB RAM
under Linux2 and all programs, including the reference algorithm from the literature,

1All instances, the lower bound values, the optimal objective function values (whenever they are
available) as well as the complete test results for all combinations of algorithms are available on arXiv.

2Precise version: Linux 4.4.0-75-generic #96-Ubuntu SMP x86 64 x86 64 x86 64 GNU/Linux.
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were implemented in Python3. ILPs were set up using PuLP4 and solved with Gurobi5.
Moreover, in order to guarantee the relative reproducibility of our computational results,
we (i) allowed no additional swap memory and (ii) ran all tests separately without other
user processes in background.

7.1.3 Evaluation layout

As a basis for comparisons for smaller instances with n ≤ 75 (AngleTSP-instances) resp.
n ≤ 100 (AngleDistanceTSP-instances) we computed optimal objective function values
by using the integral ILP based approach described in [2]. For larger instances (i. e.
n ≥ 80 resp. n ≥ 105) running times become prohibitive and we settled for lower bounds.
These were computed by using the linearisation (24), (21)–(23), (25), (26) described in
Section 5, relaxing the subtour elimination constraints (22) and the integrality constraints
(23) and (26) and by solving the remaining LP using an LP solver. I. e. we used the same
LP relaxation as in Section 5 for our LP-based approaches.

For every instance X and every heuristic H we define the objective function value

ratio

rXH
..=

z(HX)

z(X)
, (36)

where z(HX) denotes the objective function value of the solution given by the heuristic
H for instance X and z(X) is the lower bound for instance X. Obviously, rXH ≥ 1 for
all H and X; rXH − 1 expresses the relative gap between the objective function value
of the heuristic solution and the lower bound. We always report the geometric mean
ratio values for the heuristic H and all instances X of the same type (AngleTSP or
AngleDistanceTSP) and the same size n. Such means of objective function value ratios
will be denoted by r g . Recall the jump implied by the change from optimal values
to lower bounds as the basis of the comparison when moving from smaller to larger
instances.

For the running times, we report the arithmetic means t
a

again for every heuristic
over all instances of the same type (AngleTSP or AngleDistanceTSP) and size n.

To estimate the meaning of gaps to the lower bound for larger instances, we try to
give an estimation for the unkown differences between lower bounds and optimal solution
values by computing these values for the smaller instances. A certain extrapolation of
these values to larger instances seems justified. It turns out that (see Table 1):

1. The objective function value ratio means r g are significantly smaller for the
AngleDistanceTSP-instances.

3Precise version: Python 3.5.2.
4Precise version: PuLP 1.6.0.
5Precise version: Gurobi 6.5.1 (Linux x86 64) in the standard setting (i. e. the solver is allowed to use

multiple threads if solving an ILP).
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2. We can expect them to be over 10% for larger AngleTSP-instances and over 6.5%
for larger AngleDistanceTSP.

n 5 10 15 20 25 30 35 40 45 50

AngleTSP 1.0000 1.0109 1.0296 1.0653 1.0956 1.0924 1.0958 1.1036 1.1122 1.1042
AngleDistanceTSP 1.0000 1.0000 1.0000 1.0029 1.0135 1.0211 1.0359 1.0306 1.0430 1.0514

n 55 60 65 70 75 80 85 90 95 100

AngleTSP 1.1029 1.1094 1.0866 1.0997 1.1035 – – – – –
AngleDistanceTSP 1.0500 1.0510 1.0498 1.0548 1.0537 1.0549 1.0578 1.0620 1.0632 1.0662

Table 1: optimal objective function value ratio means r g

7.2 Stand-alone heuristics

The proposed stand-alone heuristics can be divided into three groups: the simple con-
struction and related heuristics (see Section 3), the heuristics based on convex hulls (see
Section 4) and the LP-based heuristics (see Section 5). In the following, we first discuss
the results with respect to the objective function values and later we put them into the
context of running times.

Consider first the simple construction and related heuristics. This group contains
three parameter-free heuristics, NNS, NN

2
S and CIF, and one approach, which uses LENS

(see Section 2) as sub-procedure, namely NNL
S . We tested NNL

S with the lens thickness
parameter γ = 10◦, 20◦, . . . , 90◦ and obtained the best results for γ = 40◦ (≈ 0.6981);
thus we used this value of γ for all further experiments. The objective function value
ratio means for all four heuristics can be seen in Figure 12.

If we consider CIF, which is our “reference method” from [13]), we can see that it
is outperformed by all other heuristics of this group for AngleTSP-instances and that it
yields results similar to NNS and NNL

S for the AngleDistanceTSP-instances. A compar-
ison of the nearest-neighbour-based heuristics (NNS, NN

2
S and NNL

S) gives us NN2
S as a

clear winner. Furthermore, comparing to NNS, we can see that NNL
S performs slightly

worse for AngleTSP- and slightly better for AngleDistanceTSP-instances.
Figure 13 sums up results for CH, CHC and CHL

C, which were tested only for the
AngleTSP-instances. Again, after making preliminary tests, we fixed the lens thickness
parameter γ = 40◦ (≈ 0.6981) for CHL

C. The choice of parameter C for CHC and CHL
C

always entails a trade-off: for larger values of C, we obviously obtain better objective
function values but larger computation times. Our preliminary tests have shown that
there are relatively large objective function value differences between C = 2, C = 10
and C = 20; the step to C = 30, however, only slightly improves the objective function
values while the running times significantly increase. Thus we set C = 20 for all our
further tests.

Figure 13 gives us a clear ranking: CHL
C yields the best objective function values

followed by CHC and CH. This effect, however, seems to be less significant for larger
values of n.
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Figure 12: simple construction and related heuristics:

NNS NN2
S NNL

S

CIF

The third group of stand-alone heuristics consists of LPP, LPPR, LPCR
1 and LPCR

2 .
Again, preliminary tests gave us clear evidence for the value of the rounding parameter
ρ, which we fixed to ρ = 0.5 in all four heuristics.

The ranking, shown in Figure 14, is the same for AngleTSP- and AngleDistanceTSP-
instances: ordered from the worst to the best heuristic we get LPP, LPPR, LPCR

1 and
LPCR

2 , where the last two approaches yield very similar results. The step between
LPP and LPPR (i. e. between not using vs. using the rerun strategy) is significant, the
differences between LPCR

1 and LPCR
2 are rather marginal.

Let us now consider the efficiency of the particular algorithms shown as trade-off
between the running time and the solution quality. Therefore we plot for every heuristic

28



n

r g

0 20 40 60 80 100 120 140 160 180 200
1

1.3

1.6

1.9

AngleTSP-instances

Figure 13: heuristics based on convex hulls:

CH CHC CHL
C

the objective function value ratio r g against the running time t
a

taken as means over
all instances with 105 ≤ n ≤ 200 in Figure 15 (the exact values can be found in Tables 2
and 3 in the Appendix). Thus, each heuristic is represented by a single point in the
(running time, objective function ratio)-space. We concentrated on the larger instance
sizes 105 ≤ n ≤ 200, because

1. then, as mentioned, all objective function values are compared with the lower
bounds (and not with the optima) and

2. larger values can be expected to give a better indication for the general behavior
(note that e. g. CHC always yields an optimum if n ≤ C).

Consider now the trade-offs for the AngleTSP-instances. Among the “fast” heuristics
(CIF, CH, CHC and CHL

C), CH
L
C clearly Pareto-dominates the other ones. In this context

it is interesting that it is superior to CH in both the objective function values and the
running times. NN2

S can be seen as a good trade-off between the tour quality and the
time investment. If better objective function values are sought, LPPR, LPCR

1 or LPCR
2

would be the obvious choice, LPCR
2 , however, brings only a marginal improvement in

comparison to LPCR
1 . The results for the AngleDistanceTSP-instances are in many

aspects similar to the results for the AngleTSP-instances, there is, however, one main
difference: NN2

S significantly outperforms all other heuristics, although its running time
advantage decreases.
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Figure 14: LP-based heuristics:

LPP LPPR LPCR
1

LPCR
2

7.3 Improvement heuristics

Concerning improvement heuristics, it would not make sense to present results for all
possible combinations of stand-alone and improvement heuristics in detail. Instead, we
discuss the results for the best stand-alone heuristic combined with various improve-
ment approaches; in particular, we took LPCR

2 for the AngleTSP-instances and NN2
S

for the AngleDistanceTSP-instances as the stand-alone heuristic (results for all other
combinations are summed up in Tables 2 and 3 in the Appendix).

Again, we must fix some parameters first. Similar to CHC and CHL
C we have a trade-

off in +M: k expresses the expected number of vertices in our magnifying glass, thus
larger values of k lead to better objective function values, but worse running times. After
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Figure 15: stand-alone heuristic trade-offs for instances with 105 ≤ n ≤ 200; Pareto-
frontier is plotted dashed
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various tests we decided to use two variants, namely +M15 and +M20; the first one is
roughly half-way between +2O and +3O with respect to the computation times and the
latter one yields the overall best results with respect to the objective function values.
In our metaheuristic +L, we have just two parameters: after preliminary tests we could
set the lens thickness to γ = 20◦ (≈ 0.3491) and the maximum number of iterations to
I = 2000.
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Figure 16: improvement heuristics:

LPCR
2 LPCR

2 +2O LPCR
2 +3O

LPCR
2 +M15 LPCR

2 +M20 LPCR
2 +L

Next, consider Figure 16. We can see that the ranking is the same for the AngleTSP-
and AngleDistanceTSP-instances: ordered from the worst to the best improvement heur-
istic we get +L, +2O, +3O, +M15 and +M20, where +L and +2O yield similar objective
function values (note that +2O makes no sense for NN2

S; see Section 3.1 for more details).
By considering concrete relations between the particular improvement heuristics, +3O
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performs better for AngleTSP-instances and can be placed between +2O and +M15 as
well as +M20 for this group, for AngleDistanceTSP-instances, however, +M15 and +M20

clearly beat all other approaches.

Figure 17 sums up the trade-offs of the particular improvement heuristics. Obviously,
+2O performs much better than +L, because it reaches similar objective function values
faster. Very interesting is the performance of +M15 and +M20: +M15 beats +3O both
in solution qualities and running times. The step from +M15 to +M20 costs a significant
amount of computation time while the objective function value improvement is rather
marginal. Summing up, +2O and +M15 offer the best quality/cost ratio.

Finally, by considering Table 2 in the Appendix, we can see that the overall best mean
objective function value ratio r g could be obtained by the combinations LPCR

1 +M20 for
the AngleTSP- and LPCR

2 +M20 for the AngleDistanceTSP-instances, i. e. not by improv-
ing the outcome of the best stand-alone heuristics respectively. Of course, we cannot
estimate how far the solutions are above the optimum in these cases. However, Table 1,
allows a rough intuition that the difference between the lower bound gap and the op-
timal objective function gap is around 10 percentage points for the larger AngleTSP-
and 6.5 percentage points for the larger AngleDistanceTSP-instances. Thus the best ob-
tained objective function value ratios r g of 15.73% and 8.26% can be roughly translated
into 5% and 1.5% gaps to the unknown optimal solution values for the AngleTSP- and
AngleDistanceTSP-instances, respectively.

8 Conclusions

Quadratic variants of classical combinatorial optimization problems have received in-
creasing attention in recent years. They permit the inclusion of interdependency effects
in the objective function while the standard problems only add up the costs of elements
in a feasible solution subset selected from a given ground set. In this paper we consider
two quadratic variants of the famous TSP corresponding to the following geometric cases:
Given points in the Euclidean plane, which should be connected by a Hamiltonian cycle,
the cost of such a tour is either the sum of turning angles in every point (AngleTSP) or a
linear combination of turning angles and Euclidean distances (AngleDistanceTSP). Both
problems have applications in robotics and other planning problems for moving objects
of high inertia.

One main contribution of the paper is a number of constructive heuristics and tour
improvement algorithms, which are based on geometric properties of good solutions,
particularly encouraging the exploitation of the convex hull for the given point set and
subsets thereof. A second contribution utilizes the impressive performance of todays
ILP solvers. We use ILP models to patch together paths and subtours arising either
from constructive procedures or from relaxations of more general ILP models. Finally,
we also solve ILP models as an improvement step by iteratively selecting a subregion
of the point set and removing all solution edges from this area. Then the resulting
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Figure 17: improvement heuristic trade-offs for instances with 105 ≤ n ≤ 200; Pareto-
frontier is plotted dashed
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subproblem is solved to optimality while keeping fixed all tour connections outside this
area. This matheuristic can be thought of as a magnifying glass which is successively
placed on certain parts of the Euclidean plane and rewires the tour in this area in an
optimal way. The described principle has similarities to other well-known meta- and
matheuristic ideas, such as large neighbourhood search.

Extensive computational experiments on test instances previously used in the literat-
ure, but also on larger sized instances, were performed and reported in a condensed way.
We managed to take a major step forward compared to previously reported heuristics.
The obtained gaps to the lower bound of roughly 15% for AngleTSP (8% for AngleDis-
tanceTSP) for instances up to n = 200 points could be translated in a cursory way to an
expected gap of 5% (1.5%) to the unknown optimal solution values. Note for comparison
that the previously best performing heuristic reported in the literature (corresponding
to CIF+3O) yields average gaps to the lower bound of 31% (12%) and requires the run-
ning times for the 3-opt heuristic, which rapidly increases for larger instances. Running
times to reach our best solution values obtained on a standard PC average from 5 to 10
minutes, but with a moderate growth rate for even larger instances.

For future research the still existing optimality gaps of our approaches suggest op-
portunities for further progress. In particular, there seems to be plenty of potential for
developing sophisticated metaheuristics. Moreover, our approaches are motivated by the
geometry of the point set and the implied cost coefficients in the objective function.
Moving away from this structure to more general cost values, possibly still preserving
some weaker geometric relationship, could give rise to challenging new variants of the
QTSP. In this context, note that our LP-based approaches could be used for the gen-
eral QTSP as well. Finally, the underlying idea of our magnifying glass matheuristic,
which performed very well in our QTSP setting, can be rather easily applied to other
combinatorial optimization problems with a spatial structure of the given objects and
decomposable solution sets.
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R. Staněk, “Minimization and maximization versions of the quadratic travelling
salesman problem,” Optimization, vol. 66, no. 4, pp. 521–546, 2017.

[3] E. Amaldi, G. Galbiati, and F. Maffioli, “On minimum reload cost paths, tours, and
flows,” Networks, vol. 57, no. 3, pp. 254–260, 2011.
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[6] A. Ćustić, R. Zhang, and A. P. Punnen, “The quadratic minimum spanning tree
problem and its variations,” Discrete Optimization, vol. 27, no. 4, pp. 73–87, 2018.

[7] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale traveling-
salesman problem,” Journal of the Operations Research Society of America, vol. 2,
no. 4, pp. 393–410, 1954.

[8] C. Duin and S. Voß, “The pilot method: a strategy for heuristic repetition with
application to the Steiner problem in graphs,” Networks, vol. 34, no. 3, pp. 181–
191, 1999.

[9] A. Fischer, “A polyhedral study of quadratic traveling salesman problems,”
Ph.D. dissertation, Chemnitz University of Technology, Department of Mathemat-
ics, 2013, available at: http://www.qucosa.de/fileadmin/data/qucosa/documents/
11834/Dissertation Anja Fischer.pdf.

[10] ——, “An analysis of the asymmetric quadratic traveling salesman polytope,” SIAM
Journal on Discrete Mathematics, vol. 28, no. 1, pp. 240–276, 2014.

[11] A. Fischer and F. Fischer, “An extended approach for lifting clique tree inequalities,”
Journal of Combinatorial Optimization, vol. 30, no. 3, pp. 489–519, 2015.

[12] A. Fischer and C. Helmberg, “The symmetric quadratic traveling salesman prob-
lem,” Mathematical Programming A, vol. 142, no. 1-2, pp. 205–254, 2013.
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Appendix

In the following two tables the best value in every row is marked by an asterisk and the
best value in every column is highlighted by underlying.

no improv. +2O +3O +M15 +M20 +L min

NNS 1.6887 1.6560 1.5466 1.3637 1.3026* 1.6811 1.3026*

NN2

S
1.5928 1.5928 1.5254 1.3446 1.2867* 1.5824 1.2867*

NNL

S
1.7026 1.4266 1.2726 1.2077 1.1886* 1.6406 1.1886*

CIF 1.9892 1.4630 1.3121 1.2697 1.2336* 1.8689 1.2336*

CH 1.7128 1.6999 1.5798 1.3645 1.3069* 1.7057 1.3069*

CHC 1.6783 1.6741 1.6026 1.3736 1.3098* 1.6748 1.3098*

CHL

C
1.6652 1.4703 1.2757 1.2096 1.1882* 1.6083 1.1882*

LPP 1.5393 1.3339 1.2376 1.2118 1.1887* 1.4771 1.1887*

LPPR 1.2648 1.2313 1.1975 1.1718 1.1615* 1.2426 1.1615*

LPCR
1

1.2410 1.2210 1.1884 1.1655 1.1573* 1.2231 1.1573*

LPCR

2
1.2389 1.2202 1.1888 1.1652 1.1577* 1.2210 1.1577*

min 1.2389 1.2202 1.1884 1.1652 1.1573* 1.2210 1.1573*

AngleTSP-instances

NNS 1.2551 1.1570 1.1254 1.0993 1.0934* 1.2387 1.0934*

NN2

S
1.1179 1.1179 1.1057 1.0883 1.0856* 1.1140 1.0856*

NNL
S

1.2422 1.1484 1.1201 1.0975 1.0920* 1.2244 1.0920*

CIF 1.2366 1.1504 1.1209 1.1035 1.0953* 1.2303 1.0953*

LPP 1.1500 1.1134 1.0990 1.0880 1.0857* 1.1432 1.0857*

LPPR 1.1526 1.1077 1.0944 1.0860 1.0836* 1.1396 1.0836*

LPCR
1

1.1437 1.1064 1.0936 1.0858 1.0828* 1.1333 1.0828*

LPCR

2
1.1413 1.1058 1.0931 1.0854 1.0826* 1.1310 1.0826*

min 1.1179 1.1058 1.0931 1.0854 1.0826* 1.1140 1.0826*

AngleDistanceTSP-instances

Table 2: objective function value ratio means for all test instances with 105 ≤ n ≤ 200

no improv. +2O +3O +M15 +M20 +L min

NNS 283.8885* 284.1263 413.1111 465.3341 569.1563 356.7633 283.8885*

NN2

S
67.0159* 67.1282 193.0359 240.8241 345.4880 139.7709 67.0159*

NNL

S
417.2671* 417.8017 571.5596 517.4951 605.8565 487.5652 417.2671*

CIF 6.5365* 7.2117 168.7839 110.9418 172.3227 77.9529 6.5365*

CH 1.5028* 1.7001 137.9146 179.3441 298.8040 74.5875 1.5028*

CHC 1.8191* 1.9635 111.6876 187.8074 303.5915 74.9145 1.8191*

CHL

C
1.0236* 1.4739 165.6817 108.0078 201.2742 71.9514 1.0236*

LPP 206.2802* 206.7912 340.4795 295.4575 380.8795 277.6503 206.2802*

LPPR 368.8422* 369.1380 483.0896 455.4174 532.4050 440.6636 368.8422*

LPCR

1
391.5621* 391.8200 501.6059 475.4146 548.8180 463.3042 391.5621*

LPCR
2

406.9456* 407.1874 518.1517 491.3909 560.5582 478.6038 406.9456*

min 1.0236* 1.4739 111.6876 108.0078 172.3227 71.9514 1.0236*

AngleTSP-instances

NNS 285.9435* 286.5523 412.0495 332.5851 367.3309 357.0333 285.9435*

NN2
S

132.3110* 132.4236 230.7380 168.1561 195.0742 202.4256 132.3110*

NNL

S
468.0509* 468.6615 592.9431 513.0854 548.2855 539.1046 468.0509*

CIF 6.5468* 7.0853 127.9475 41.8982 71.4263 73.8265 6.5468*

LPP 150.3579* 150.7859 252.0784 183.6876 211.1502 220.0040 150.3579*

LPPR 276.3159* 276.7537 376.4522 310.7960 338.4974 347.1968 276.3159*

LPCR

1
275.2136* 275.6351 375.8346 309.4856 335.4789 345.7596 275.2136*

LPCR
2

293.6624* 294.0777 392.0432 327.9660 354.4542 364.1617 293.6624*

min 6.5468* 7.0853 127.9475 41.8982 71.4263 73.8265 6.5468*

AngleDistanceTSP-instances

Table 3: running time means for all test instances with 105 ≤ n ≤ 200
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