
This item is the archived peer-reviewed author-version of:

Efficiently solving very large-scale routing problems

Reference:
Arnold Florian, Gendreau Michel, Sörensen Kenneth.- Eff iciently solving very large-scale routing problems
Computers & operations research - ISSN 0305-0548 - 107(2019), p. 32-42 
Full text (Publisher's DOI): https://doi.org/10.1016/J.COR.2019.03.006 
To cite this reference: https://hdl.handle.net/10067/1602270151162165141

Institutional repository IRUA

https://repository.uantwerpen.be


 

Accepted Manuscript

Efficiently solving very large-scale routing problems

Florian Arnold, Michel Gendreau, Kenneth Sörensen

PII: S0305-0548(19)30066-8
DOI: https://doi.org/10.1016/j.cor.2019.03.006
Reference: CAOR 4660

To appear in: Computers and Operations Research

Received date: 17 May 2018
Revised date: 13 March 2019
Accepted date: 13 March 2019

Please cite this article as: Florian Arnold, Michel Gendreau, Kenneth Sörensen, Efficiently solv-
ing very large-scale routing problems, Computers and Operations Research (2019), doi:
https://doi.org/10.1016/j.cor.2019.03.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.cor.2019.03.006
https://doi.org/10.1016/j.cor.2019.03.006


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• A local search heuristic for very large-scale routing problems is developed

• Different strategies to minimize time and space complexity are explored

• The final heuristic outperforms a previously introduced heuristic

• New realistic VRP instances with up to 30,000 customers are introduced

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Efficiently solving very large-scale routing problems

Florian Arnold 1a, Michel Gendreaub, Kenneth Sörensena

aUniversity of Antwerp, Departement of Engineering Management,
ANT/OR - Operations Research Group

bPolytechnique Montréal, Interuniversity Research Centre on Enterprise Networks, Logistics and
Transportation (CIRRELT)

Abstract

The vehicle routing problem is among the most-studied and practically relevant prob-
lems in combinatorial optimization. Yet, almost all research thus far has been targeted
at solving problems with not more than a few hundred customers. In this paper, we
explore how to design a local search heuristic that computes good solutions for very
large-scale instances of the capacitated vehicle routing problem in a reasonable compu-
tational time. We investigate different ways to reduce the time complexity with pruning
and sequential search, as well as the space complexity by restricting the amount of stored
information. The resulting algorithm outperforms a previously introduced heuristic for
instances of 10,000 and more customers in relatively short computational time. In or-
der to stimulate more research in this domain, we introduce a new set of benchmark
instances that are based on a real-world problem and contain up to 30,000 customers
and use our heuristic to solve them.

Keywords: vehicle routing problems, heuristics, local search, large-scale problems

1corresponding author. Email: florian.arnold@uantwerpen.be

Preprint submitted to Computers and Operations Research Wednesday 13th March, 2019



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

Routing problems constitute one of the most studied areas in combinatorial opti-
mization. Among these, the Travelling Salesman problem (TSP) and the Vehicle Rout-
ing Problem (VRP) and its variants have resulted in thousands of publications and a
plethora of innovative optimization techniques over the last decades. Their popularity
stems both from their complexity (categorized as NP-hard) and from their applicability
in practice, both of which have stimulated a large number of contributions. Routing
problems share several characteristics: starting from a source (usually called depot) N
destinations (customers) should be visited in such a way that the length of the resulting
tour(s) is minimized. In the canonical vehicle routing problem (also called the capac-
itated VRP or CVRP), the capacity of the used vehicles is limited, and, thus, more
than one tour is usually necessary to visit all customers. A more formal introduction of
the VRP is provided by Laporte (2007). Due to the complexity of this combinatorial
optimization problem, usually only smaller instances of about 200 customers can be
solved reliably to optimality by exact methods (Pecin et al., 2017), even though some
instances with a specific structure and with up to 600 customers have been solved in
Uchoa et al. (2017), given several hours of computational time. Therefore, a major
research stream on the design of heuristics for the CVRP has evolved, the aim of which
is to find high-quality solutions in a reasonable amount of computational time.

Recent research has focused on developing algorithms that are able to solve routing
problems of at most a few hundred customers. The reason for the focus on instances of
this size is unclear. One potential explanation is that it is a result of the size of most
popular benchmark instances. The often used instances by Golden et al. (1998) contain
up to 483 customers, and the largest problem in the more recent benchmark set by
Uchoa et al. (2017) involves 1000 customers. Since a good performance on the standard
benchmark instance sets significantly increases a paper’s publication potential, it is
natural to see heuristics developed that specifically target this problem size.

Even though routing problems with up to 1000 customers cover a wide range of real-
world applications, there are routing problems of significantly larger sizes that need to
be tackled on a daily basis. One example is waste collection, where trucks have to collect
waste from tens of thousands of customers. Waste collection is typically modeled as
an arc routing problem (Toth and Vigo, 2014; Wøhlk and Laporte, 2018) when the
density of customers along a street segment is sufficiently high to consider the street
itself as service entity (Assad and Golden, 1995). This condition is usually fulfilled in
residential waste collection, whereas in commercial waste collection the customers can
be more scattered and it is beneficial to consider the individual nodes (Buhrkal et al.,
2012). Another situation where decision-makers would prefer to model waste collection
as node routing problem is described in Kytöjoki et al. (2007). With more and more
information about, e.g., the amount of waste in each container becoming available and
with increasing standards in service level and cost pressure, there is a need to model
and optimize these large-scale systems more accurately.

As another example, vehicle routing can play a key role in improving the movement

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of goods in cities as pointed out by Cattaruzza et al. (2017). The authors found, based
on the French Surveys on Urban Goods Movement database (Patier and Routhier,
2009), that a large number of deliveries in cities concerns the transportation of small
parcels from third-parties on longer delivery routes with 31 and more deliveries per
route. Especially the continuing growth of e-commerce results in a steady increase in
the number of parcels that need to be delivered to customers every day. In Belgium,
for example, the daily quantity of delivered parcels correspond to about 1% of the
population, so that in cities like Brussels 20,000 and more deliveries need to be carried
out every day. It is useful to model these problems as node routing problems, if only
one or a few customers are delivered on any given street. Larger delivery problems in
cities are sometimes tackled by partitioning the geographical region into territories, and
assigning each vehicle to a territory. This approach allows to account for the familiarity
of the driver with a territory (Zhong et al., 2007), and to keep routing solutions flexible
(Janssens et al., 2015). However, the optimization of the delivery routes without prior
partitioning can increase the efficiency of the global routing plan, which is especially
important given that the delivery business is largely cost-driven.

Consequently, there is a practical motivation to develop solution methods that can
tackle much larger vehicle routing problems than those available in the standard bench-
mark instance sets. In the following we will use the term ‘very large-scale’ to denote
such instances, whereas the term ‘large-scale’ is commonly used to describe problems of
several hundred customers. A first, and so far only, step in this direction has been taken
a decade ago in Kytöjoki et al. (2007), who develop a variable neighborhood search al-
gorithm that is able to solve instances with up to 20,000 customers. Solving such very
large instances can also contribute to the generation of new theoretical ideas, since ad-
ditional obstacles, specifically related to the size of this NP-hard optimization problem,
have to be overcome. The literature on the TSP, for example, has covered very large
instances since several decades, solving instances with 85,900 nodes and more (Reinelt,
1991). Of course, the development and testing of heuristics that are able to tackle very
large instances requires that a benchmark set with such instances is available.

Efficiently solving instances of this size puts additional requirements on heuristics,
both in terms of computational complexity and memory usage. A widely-used approach
to reduce computational complexity is heuristic pruning. With pruning only promising
parts of the solution space are investigated. For instance, the famous heuristic by Lin
and Kernighan (1973) only considers local search moves that connect relatively close
nodes. Helsgaun (2000) bases the decision of whether to consider a certain edge in
a TSP solution on its α-nearness, defined as the cost difference between the optimal
1-tree of all nodes and the minimum 1-tree that contains this edge. Since every TSP
solution is a 1-tree, the cost differences in 1-trees provide a good intuition about the
likelihood that an edge will be included in an optimal TSP solution. Similar approaches
can be used to reduce memory usage. Helsgaun (2000) only stores distance entries of
candidate edges computed with the approach above, and all other requested distance
values are computed and cached during runtime. Applegate et al. (2003) minimize the
representation of large TSPs by building a neighbor graph. Rather than limiting the

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

amount of stored information, it is possible to store information in a highly compressed
format as proposed by Kytöjoki et al. (2007). The authors replace distance values by
a more condensed representation of speed and twisty-road-curve factors, and the exact
distances are recomputed during runtime.

In this paper, we explore how such concepts can be applied in the context of local
search to compute good solutions for VRPs with several thousands or more customers
in a reasonable amount of computational time. In previous work, we have demonstrated
that a well-implemented and well-configured local search is sufficient to compute high-
quality solution for VRPs with up to 1000 customers (Arnold and Sörensen, 2019),
and the question arising is whether similar ideas can be used to tackle instances of
larger magnitudes. On the basis of previous findings about local search for smaller
instances (Section 2), we outline the challenges of very large-scale VRPs, and propose
corresponding solutions in Section 3. These ideas are tested in various experiments in
Section 4 to shed light on the questions ‘how complex should local search operators be?’,
‘how much pruning is necessary?’, and ‘how much information should be stored?’. As
the second main contribution, we generate 10 very large-scale VRP instances in Section
5. These instances are based on parcel demand data in Belgium and, thus, reflect
real-world problems. The instance set is publicly available to stimulate more research
in the domain of very large-scale VRPs. Finally, we conclude with a summary of our
findings in Section 6. The heuristic, together with benchmark instances, is available at
http://antor.uantwerpen.be/routingsolver/.

2. Effective local search for the VRP

Local search has been shown to be one of the few approaches that can successfully
tackle a wide range of combinatorial optimization problems (Johnson et al., 1988). It
has been particularly successful to solve the TSP (Lin and Kernighan, 1973) and is a
major ingredient of many successful heuristics for the VRP (Mester and Bräysy, 2007;
Subramanian et al., 2013; Vidal et al., 2012). The fundamental idea of local search is
to iteratively improve a solution with small (local) modifications. These modifications
are called moves, and can either improve a single route (intra-route optimization) or
change multiple routes simultaneously in such a way that the overall solution is im-
proved (inter-route optimization). The set of all solutions that can be generated by
applying the respective move on a solution s is called the neighborhood N (s) of s.
Larger neighborhoods are more likely to contain a solution s∗ that improves upon s,
but they also exhibit a higher computational complexity since more solutions need to
be generated and evaluated.

In Arnold and Sörensen (2019), we investigated this trade-off, and found that larger
neighborhoods can yield a good performance if the underlying local search operators
are complementary, well-implemented, and effectively pruned. We developed a heuristic
that is based on three local search operators. At first, an initial solution is constructed
with the heuristic by Clarke and Wright (1964) (CW), and the individual routes are
then improved with the heuristic by Lin and Kernighan (1973) (LK). LK has been

5



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

c1

c4

c3

c2
c1

c2

c3

c4

Figure 1: Illustration of the implemented local search operators for inter-route optimization.
(left) A CROSS-exchange move, where substrings of two customers are exchanged between two
routes. We only consider the exchange of substrings starting from c2 and c4, if the removal
and addition of incident edges results in an improvement, i.e., c(c1, c2) + c(c3, c4)− c(c1, c4)−
c(c3, c2) ≥ 0. (right) A relocation chain with two subsequent relocations. We only consider a
relocation of node c1 next to its nearest nodes, e.g., c2.

shown to be a highly efficient heuristic to optimize TSPs and, therefore, represents a
fitting operator for intra-route optimization in a VRP. For the optimization between
two routes the CROSS-exchange operator (CE) (Taillard et al., 1997) is used, and for
the optimization of more than two routes a relocation chain (RC) is proposed, which is
based on the concept of the ejection chain introduced in Glover (1996).

These three operators generate complementary and very large neighborhoods, but
they can be implemented efficiently if the neighborhoods are not explored exhaustively.
Rather than generating and evaluating all possible moves, we determine promising
moves with the concepts sequential search (Irnich et al., 2006) and pruning (Toth and
Vigo, 2003).

The idea of sequential search is the deconstruction of complex moves into exchanges
of edges. Instead of generating a complete move in one step, existing edges are itera-
tively exchanged with new edges, and subsequent exchanges are only considered as long
as overall improvements are obtained. In the context of LK this concept is also called
partial gain criterion. The same idea can be applied to CE, which attempts to exchange
two substrings in two different routes. Both substrings have an initial node and a final
node, for both of which an edge to a node in the previous route is removed and an
edge to a node in the other route is added. It is sufficient to only consider those sub-
strings in which the removal and insertion of the respective edges for the initial nodes
improves the solution value, as depicted in Figure 1. Finally, RC presents a compound
move which performs a series of simple relocation moves simultaneously, such that the
resulting solution is improved and feasibility is maintained. Starting with a relocation
of a customer node from route ri into route rj, this relocation can be followed by a
relocation of a customer node from route rj into route rk (where i = k is possible).
Using the idea of sequential search, subsequent relocations are only considered as long
as the sum of all previous relocations results in an improved solution.

The size of neighborhoods can be further reduced with heuristic pruning. A common

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

idea is to only consider those moves that involve short edges (Toth and Vigo, 2003),
and we applied this type of pruning to all three operators. In the context of LK, only
edges between a node and its ten nearest nodes within the same route are considered
in moves. Initial nodes of the two substrings in CE can only be connected to their
C = 30 nearest nodes, and a node in a RC can only be relocated next to one of its
C = 30 closest nodes. Finally, the best candidate move in the pruned neighborhood is
executed, an approach called steepest descent.

At some point, the local search will inevitably reach a local optimum s∗ for which
the generated neighborhoods N (s∗) of all three local search operators do not contain a
better solution. At this point s∗ needs to be perturbed to escape the local optimum, and
we proposed the use of a guided local search (GLS) (Voudouris and Tsang, 2003). GLS
changes the cost evaluation of s∗, rather than s∗ itself. A ‘bad edge’ is determined and
penalized by increasing its cost to cg(i, j) = c(i, j)+λp(i, j)L, where c(i, j) indicates the

original cost of the edge, p(i, j) counts the number of penalties of edge (i, j), L = c(sCW )
N

constitutes a proxy for the average cost of an edge in the initial solution sCW , and λ
controls the impact of penalties (we always set λ = 0.1). Previous heuristics proposed
to penalize edges with a high cost (Mester and Bräysy, 2007). Additionally, we found in
a data-mining study that the penalization of wide edges can result in performance gains
(Arnold and Sörensen, 2018). The width w(i, j) is computed as the distance between
nodes i and j measured along the axis perpendicular to the line connecting the depot
and the route’s center of gravity. For a more formal derivation of this metric, as well as
a corresponding experimental study, we refer to the paper above. We condensed these
findings in three functions that express the badness of an edge (i, j):

bw(i, j) =
w(i, j)

1 + p(i, j)
bc(i, j) =

c(i, j)

1 + p(i, j)
bw,c(i, j) =

w(i, j) + c(i, j)

1 + p(i, j)
(1)

After each perturbation phase we change the applied badness function in a deter-
ministic manner, from bw(·) to bc(·), from bc(·) to bw,c(·), from bw,c(·) to bw(·) and so
forth. The worst edge according to the current badness function is penalized, and the
local search operators CE and RC subsequently attempt to remove it. Moves that
improve the solution under cg(·) are considered as candidate moves, and the best can-
didate move is executed. Thus, with more received penalties it becomes more likely to
find a move that removes a certain edge. After a sufficient number of moves have been
executed under cg(·), we obtain a perturbed solution sp. We found that P ≤ 100 moves
are sufficient to effectively perturb the solution, and in the remainder of this paper we
use P = 100. Note that sp might constitute a worse solution than the previous local
optimum s∗, since a move that improves the solution under cg(·) does not necessarily
improve the solution under c(·).

The perturbed solution is then improved with the local search operators, using the
standard evaluation c(·). In this optimization step, first CE and then RC are iteratively
applied on the perturbed solution, and each found inter-route move is immediately fol-
lowed by an intra-route optimization of the involved routes with LK. If in one iteration

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1 Knowledge-guided local search heuristic (KGLS), as developed in Arnold
and Sörensen (2019).

1: Construction. Construct an initial solution with the heuristic by Clarke and Wright
(1964). Optimize the individual routes with LK.

2: Initial optimization. Iteratively apply CE and RC on initial solution until a local
optimum is reached. Whenever a route is changed, re-optimize it with LK. Set
b(·) = bw(·).

3: while time limit not reached do
4: Perturbation.
5: while not P = 100 moves have been made do
6: Penalize edge (i, j) with the highest value b(i, j) by incrementing p(i, j).
7: Apply CE and RC on (i, j), using cg(·) as evaluation criterion.
8: end while
9: Apply LK on all routes that were changed during perturbation. Change b(·).

10: Optimization. Iteratively apply CE and RC on all routes that were changed
during perturbation until a local optimum is reached (c(·) as evaluation
criterion). Whenever a route is changed, re-optimize it with LK.

11: end while

neither CE nor RC find an improving move, a local optimum is reached and the cor-
responding solution is perturbed. In summary, we obtained the heuristic outlined in
Algorithm 1, which we denote as knowledge-guided local search (KGLS) in the follow-
ing.

KGLS is entirely based on a local search with the steepest descent acceptance cri-
terion, and thus, it works in a deterministic fashion. We observed that it computes
high-quality solutions on a wide range of benchmark instances in short computational
times. For most instances with up to 1000 customers, it does not require more than
a few minutes to compute a solution with a gap of 1% and less to the best known
solutions, as demonstrated in Figure 2 (we want to remark that gaps between 0.5% and
1% may be considered large gaps from a theoretical point of view, but are perfectly
acceptable in many real applications). This effective time-quality trade-off can be at-
tributed to a good scalability. In the following, we investigate how this scalability is a
suitable basis to extend the heuristic to solve instances of larger magnitudes.

3. From large VRPs to very large VRPs

Solving very large instances with several thousands or tens of thousands of cus-
tomers poses additional challenges to heuristics. Firstly, the computational complexity
increases rapidly as a function of the problem size. In Figure 3 we plot the computa-
tional times of two state-of-the-art heuristics, the hybrid genetic heuristic (HGSADC)
by Vidal et al. (2012) and the iterated local search (ILS) by Subramanian et al. (2013)
against problem size, as reported in Uchoa et al. (2017). If we were to extrapolate these

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

200 400 600 800 1,000
0

5

10

15

20

25

Instance size

C
o
m

p
u

ta
ti

o
n

al
ti

m
e

in
m

in

200 400 600 800 1,000
0

0.5

1

1.5

Instance size

G
a
p

to
B

K
S

in
%

Figure 2: Computational time (left) versus performance (right), expressed as gap to the best
known solutions (BKS), in dependence of instance size on the 100 instances by Uchoa et al.
(2017). KGLS computes solutions of a similar high quality within computational times that
grow approximately linear in the instance size.

trajectories, we would conclude that the solution of a problem of, e.g., 10,000 customers
(while keeping a similar solution quality) would require several months of computational
time. Even though these observations have to be treated carefully, since the runtime of
HGSADC and ILS could probably be reduced by decreasing the termination criterion
or removing some neighborhoods for larger instances without suffering a large loss in
solution quality, the central statement is that very large-scale VRPs demand heuristics
to scale well in problem size. KGLS appears to scale well for instances with up to 1000
customers, but care must be taken to reduce the size of the considered neighborhoods
as much as possible.

Secondly, the amount of memory used (RAM) might present an obstacle for very
large instances. For instance, storing the complete distance matrix between each pair
of nodes requires N2 entries, where N is the number of nodes, and if a distance entry
is represented by a float (4 bytes), the complete matrix for a 20,000 customer instance
would require about 1.5GB memory. Additionally to the distance matrix, information
about penalized cost values and received penalties per edge need to be stored, a solution
needs to be encoded and candidate local search moves have to be saved. All of this
data might increase memory usage beyond available memory.

Both of these issues can be addressed by ignoring parts of the solution space. For
instance, it is generally assumed that long edges do or should not appear in high quality
solutions and, thus, moves that contain such edges can simply be ignored. Going one
step further, it might not even be necessary to store information about such edges. If
distance entries between far-away nodes are never retrieved because the corresponding
edges will not be taken into consideration, then there is no need to store their value.
In short, we can drastically reduce computational complexity and the amount of used
memory by asking the question ‘Which edges should be considered during runtime?’.

We approach this question by investigating the relative ‘closeness’ of connected

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 200 400 600 800 1,000
0

100

200

300

400

500

600

700

800

Instance size

C
om

p
u

ta
ti

on
a
l

ti
m

e
in

m
in ILS

HGSADC

KGLS

Figure 3: Computational time (normalized to an Intel Xeon CPU with 3.07 GHz) as a
function of instance size on the instances of Uchoa et al. (2017) for two state-of-the-art
heuristics from the literature (ILS and HGSADC) and KGLS. The data shows that the runtime
of both heuristics grows in a nonlinear fashion, and much faster than the runtime of KGLS (we
want to remark that ILS and HGSADC were not configured to achieve minimal runtime, but
rather maximal quality). All three heuristics produce high-quality solutions on these instances
with average gaps ILS 0.52%, HGSADC 0.19%, KGLS 0.44%.

customers in high-quality VRP solutions. Let ri(j) denote the rank of customer j in the
sorted distance list of customer i which contains the distances to all other customers. If
j is the closest customer of i, we define ri(j) = 1. Given a VRP solution, we determine
for each customer i the closeness oi = max(ri(n1), ri(n2)) as the maximal ‘distance
rank’ of its two connected neighbors n1 and n2. If one of the neighbors is the depot, we
automatically choose the rank of the other neighbor. By looking at the closeness of all
nodes in a high-quality solution, we get an intuition about how many neighbors need
to be considered. We performed this analysis on various instances of the instance set
of Uchoa et al. (2017), computing and then analyzing a solution obtained with KGLS.
All of these solutions have a gap of around 1% or less to the best known solutions.

The results in Figure 4 indicate that, for many instances, the connections for 95% of
the nodes are with some of the 20 closest neighbors. Furthermore, 99% of the customers
have two (or one, if connected to the depot) of their nearest 50 nodes as route neighbors.
Only for instances that contain clusters or that have a high variance in demand we do
frequently observe edges that are formed between further away nodes. Instances with
customer clusters require long edges that lead out of a cluster, and a high variance in
demand complicates the bin-packing problem of assigning customers to routes, which
results in more chaotic routes with longer edges. These findings are consistent for
different instance sizes, which demonstrates that we do not necessarily need to consider
more neighbors when facing larger instances.

Moreover, these result suggest that, for most nodes in high-quality solutions, it
is sufficient to store information about the nearest neighbors. Of course, there are
exceptions, and we also found good solutions in which some nodes had a very poor

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

189 208 213 302 321 438 501 765 782 800 855 875 894 956 978 1000

20

40

60

80

100

120

Instance size

C
lo

se
n

es
s

Figure 4: Maximal closeness of 95% of the customers (bars), as well as maximal closeness
of 99% of the customers (error bars) for different instances. Instances with a high variety in
demand (1-100) are underlined, instances with clusters are highlighted in bold.

closeness of up to 300. However, it is reasonable to assume that one can obtain solutions
of similar quality if those edges are excluded, since (1) they occur very rarely, and (2)
they are relatively long, so it is likely that similar or only slightly worse alternatives
are available.

4. Effective local search for very large-scale VRPs

In the following, we use the observations from the previous section to investigate the
functioning of local search for very large-scale instances. We hypothesize that an effec-
tive local search on larger instances requires a more drastic reduction of the considered
neighborhoods. The size of neighborhoods can be reduced by using less complex local
search operators, and by pruning the neighborhoods of those operators more effectively.
Finally, we investigate in how far information storage impacts algorithmic performance.

We perform all experiments on the eight instances introduced by Kytöjoki et al.
(2007). The first group of instances (R-instances) contains randomly and uniformly
distributed customers that are visited from a centrally located depot. Those instances
have a size between 3000 and 12,000 customers. The vehicle capacity is defined in
such a way that a route can visit about 15 customers, which is more typical for short-
haul problems. The second group of instances (W-instances) were extracted from a
real-life waste collection application in Eastern Finland. Outgoing from the depot,
waste collection trucks need to visit between 7798 and 10,227 specific points to pick up
waste bins. The capacity of the trucks is quite large, and one route can cover 500 and
more customers. Therefore, the large number of rather short routes in the R-instances
requires a heavy inter-route optimization, whereas the long routes in the W-instances
put a stronger focus on intra-route optimization. Examples of both instance types are

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
1

1

Figure 5: Solutions for the very large-scale instances introduced in Kytöjoki et al. (2007).
Random placement of customers (left) and waste collection (right). For a better visibility, the
edges connected to the depot are not displayed.

displayed in Figure 5.
We test different configurations of KGLS to solve each instance. The performance

of a certain configuration is expressed as the average gap between the best solutions
found within a specific time and the best known results, as reported by Kytöjoki et al.
(2007). KGLS has been implemented in Java and all tests have been performed within
the Eclipse development environment on an AMD Ryzen 3 1300X CPU working at
3.5GHz on Windows 10, using a single thread. According to PassMark Software (2018)
this setup is about 4 times faster than the setup used in Kytöjoki et al. (2007) (AMD
Athlon64 3000+).

4.1. Construction of an initial solution

KGLS uses CW to construct an initial solution for a VRP instance. The route
computation in CW is based on a savings list that contains, for each pair of nodes,
the savings that could be obtained when connecting the respective nodes. As a conse-
quence, the savings list and the number of computational steps grow quadratically in
the instance size, which might render this standard version inefficient for larger prob-
lems. We have observed in the previous section that nodes in high-quality solutions are
typically connected to nearby nodes, and thus conjecture that it is sufficient to limit the
savings list to savings between each node and its 100 nearest nodes, thereby linearizing
the length of the list and the number of computational steps. Another construction
heuristic with a linear number of steps is the famous sweep heuristic. This heuristic
transforms the Cartesian coordinates of nodes into polar coordinates (described by an-
gular and radial coordinates), where the depot is the center of the polar coordinate
system. The nodes are then sorted according to their angular coordinates, and each
node is iteratively connected to the previously unconnected node with the next larger
angular coordinate. This process is iterated until the capacity limit is reached, in which

12



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

case a new route is started. After all customers have been assigned to routes, each route
is optimized in itself. As a result, the customers are bundled in geographic corridors,
which resembles the idea of districting we mentioned in the introduction.

Table 1: Results of different construction heuristics on the very large-scale instances by
Kytöjoki et al. (2007) (N denotes the number of nodes). The gaps are reported in % to the
results in the same paper, along with the time T in seconds.

Instance (N) CW CW100 Sweep

Value ∗ Gap T Value Gap T Value Gap T

W (7,798) 4,600,457 0.89 79 4,594,582 0.76 19 4,929,615 8.11 34
E (9,516) 4,758,438 0.02 103 4,771,803 0.30 31 5,100,387 7.21 54
S (8,454) 3,370,304 1.10 85 3,467,753 4.02 22 3,650,841 9.51 37
M (10,217) 3,162,326 -0.27 136 3,396,401 7.11 30 3,360,857 5.99 51

R3 (3,000) 188,650 1.30 8 188,523 1.24 3 232,212 24.70 5
R6 (6,000) 355,361 0.75 31 355,481 0.79 9 462,084 31.01 11
R9 (9,000) 521,311 0.75 77 521,646 0.81 18 696,312 34.57 20
R12 (12,000) - - - 685,975 0.76 34 931,042 36.75 33

∗ For some instances, we could not compute a solution with a heap space of 4GB.

In the following, we compare the suitability of these three construction heuristics
CW, CW100 and Sweep for very large instances. Sweep requires a post-optimization
step in which the routes are improved, and to allow for a fair comparison we apply
intra-route optimization with LK on all constructed initial solutions. Additionally, the
computational time required to read and store information about the instance and
distances (between 2 seconds for R3 and 30 seconds for R12) is added to the overall
time.

From the results in Table 1 we observe that CW is a powerful heuristic for very
large instances, and can compute reasonable solutions within seconds. However, the
size of the entire savings list can quickly exceed the available heap space (in our case
4GB), which becomes a problem when facing even larger instances with 20,000 or 30,000
customers. This problem can be circumvented with CW100, which only considers the
savings between a node and its 100 nearest neighbors. This version also speeds up
the construction process while the solution quality is only marginally affected. Only for
some W-instances CW100 does not sufficiently minimize the numbers of routes (which is
important on those instances where the depot is far away from the customers), resulting
in larger gaps. In contrast to that, it appears that Sweep does not compute good initial
solutions for the R-instances with many short routes. For those instance types one can
certainly find better districting strategies, while for instances with long routes Sweep
performs decently. Overall, CW100 appears to be a well-scaling construction heuristic
for very large instances, and we will use it for all instances except for the W-instances
for which we will use the standard version of CW to obtain initial solutions with fewer
routes.

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Local search operators used in the different setups

Intra-route operators Inter-route operators

LS0 2-opt relocate, swap, crossover
LS1 LK (κ = 4) CE
LS2 LK (κ = 4) CE, RC (ρ = 2)
LS3 LK (κ = 4) CE, RC (ρ = 3)
LS4 LK (κ = 5) CE, RC (ρ = 3)

4.2. Complexity of operators

We have observed that a local search composed of LK, CE and RC functions effec-
tively for instances with up to 1000 customers. However, the inherent complexity of
these operators might be too large when facing instances of greater magnitude. This
raises the question whether a local search needs to be adapted to successfully solve very
large-scale instances.

LK has an excellent scaling performance, and is used as the basis to tackle large-
scale TSPs of tens of thousands of customers (see, for instance, Applegate et al. (2003);
Helsgaun (2000)). Since LK exhibits a non-linear time complexity, the scaling of LK in
the context of VRPs is determined by the length of routes. An important lever to adjust
the runtime behavior of LK is the maximum number κ of edge exchanges per move.
CE exchanges substrings in two different routes, and more combination of substrings
have to be considered if routes increase in length. This complexity can be tackled by
imposing a limit on the length of considered substrings, as suggested by Taillard et al.
(1997). We found that the preceding sequential search already sufficiently reduces the
neighborhood, and a restriction on the length of substrings does not yield performance
gains in our implementation of CE. Finally, we observed that RC requires the highest
runtime among the three operators, while the considered neighborhood grows rapidly
in the number of subsequent relocations. Therefore, it is sensible to define an upper
bound ρ for the number of combined relocations. For smaller instances we found ρ = 3
to be a good choice.

On the basis of these ideas, we compare the performances of the different local search
configurations in Table 2 within KGLS. LS0 contains simple neighborhoods that can be
readily implemented. The move relocation changes the route of one customer, the move
swap exchanges the route positions of two customers, and crossover exchanges two sub-
strings of customers between different routes, where both substrings are connected to
the depot (a special case of a CROSS-exchange with only two edge exchanges). LS1

generates larger neighborhoods with LK and CE, LS2 additionally includes the reloca-
tion chain operator, which is further extended in LS3 to three simultaneous relocations.
Finally, LS4 allows for a more complex intra-route optimization with up to five edge
exchanges. In all configurations, we keep the degree of inter-route pruning (C = 30)
as well as the memory usage (the 100 shortest distances for each node are computed
prior to the start of the heuristic, and all other requested distance values are computed

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

during runtime, see Section 4.4) fixed.

5 10 15

−1

−0.5

0

0.5

1

T

A
ve

ra
ge

g
ap

to
B

K
S

s

5 10 15

−3

−2

−1

0

1

2

3

T

LS0

LS1

LS2

LS3

LS4

Figure 6: Average gap (in %) to the best known solutions (BKSs) over time (T in minutes)
on the R-instances (left) and W-instances (right) for different local search configurations.

The experimental results reported in Figure 6 demonstrate that the more complex
local search operators work surprisingly well on both benchmark sets, and each config-
uration containing LK and CE quickly improves upon the best known solution of each
instance. On the R-instances we observe that all configurations with a more complex
inter-route optimization perform similarly well, with LS3 computing the best results
within 15 minutes. This setup is also the best configuration on the W-instances, while
an increase in the complexity of intra-route optimization appears to slightly diminish
performance. Overall, complex intra-route operators appear to work well on these very
large instances, while care should be taken to not dedicate too much computational
time for intra-route optimization.

4.3. Pruning

Heuristic pruning attempts to limit the explored neighborhoods by only considering
promising moves. The more restrictive the respective pruning strategies are, the faster
the neighborhoods can be explored, while, on the other hand, the local search explores
less moves, which might prevent it from finding improvements. The result is a possible
trade-off between runtime and solution quality.

In the following experiments we investigate this trade-off with the best local search
configuration LS3. The inter-route operators CE and RC only consider moves in which
a node is connected to one of its C closest nodes, and we investigate the effect of pruning
on performance by varying C ∈ {10, 20, 30, 50}. On the basis of the results in Figure 4,
we would expect that a more restrictive pruning can be beneficial, since edges in high-
quality solutions are typically between spatially close nodes. Instead of considering the
C nearest nodes in terms of cost c(·), one could also define nearness with a different
metric. A good example is the α-nearness defined in Helsgaun (2000) for the TSP. The
α-nearness cα(i, j) between two nodes i and j is defined as the cost difference between
the optimal 1-tree and the minimum 1-tree that contains edge (i, j). Since every TSP
solution is a 1-tree, both problems have a certain degree of similarity, but a minimal

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5 10 15

−1

−0.5

0

0.5

1

T

A
ve

ra
g
e

ga
p

to
B

K
S

s

5 10 15

−3

−2

−1

0

1

2

3

T

C = 10

C = 20

C = 30

C = 50

Cαbest

Figure 7: Average gap (in %) to the best known solutions (BKSs) over time (T in minutes) on
the R-instances (left) and W-instances (right) for different pruning strategies. For the larger
R-instances, the inital optimization for C = 50 requires too much time and the corresponding
results are excluded.

1-tree can be computed more efficiently than a TSP solution. We implemented this
idea for the VRP, and construct the 1-trees out of all customer nodes.

The results in Figure 7 indicate that a restrictive pruning (C ≤ 20) appears to be
effective on the R-instances, with C = 20 yielding the best performance (on smaller in-
stances with up to 1000 customers we obtained the best results with C = 30). The gain
in computation speed through a tighter pruning seems to compensate for the reduction
in neighborhood size, so that more iterations can be executed in the same computational
time. On the other hand, for the W-instances a looser inter-route pruning (C = 50)
appears to be the best choice. This difference could be explained by the occurrence of
customer clusters, which require longer edges to enter and exit the clusters. Addition-
ally, due to the long routes many of a customer’s nearest neighbors are likely to be in
the same route and cannot be used as the starting point for inter-route moves.

These characteristic differences between the two instance types are also reflected in
the results with cα(·). For reasons of clarity, we only plot the performance curves of the
best configurations (Cα

best = 20 for the R-instances and Cα
best = 50 for the W-instances).

Whereas on the R-instances with evenly distributed customers and relatively short
routes the ‘pure’ distance seems to be a good metric to filter promising moves, the
α-nearness appears to be the more effective metric on instances with long routes and
customer clusters. We want to remark that the absolute differences in performance
are rather small because both metrics compute similar sets of nearest neighbors. For
instance, for C = Cα = 20 we observed that 86% of the nearest nodes in terms of c(·)
are also nearest nodes in terms of cα(·).

4.4. Memory usage

In a last set of experiments we investigate the effect of limiting the amount of
stored information. Instead of storing the complete distance matrix, only the distance
between a customer and its S closest nodes as well as the distance to the depot is
stored. The distance between any other pair of customers outside of this range is

16



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

automatically set to infinity. Since none of the local search operators will consider a
move that involves such an edge, the set of edges that will be taken into consideration
is thereby indirectly restricted. Note that the determination of the S nearest neighbors
per customer requires the computation and sorting of possibly all distance values. The
tuples < neighbor, distance value > for the S nearest neighbors are then stored in a
hashmap.

5 10 15

−1

−0.5

0

0.5

1

T

A
ve

ra
ge

ga
p

to
B

K
S

s

5 10 15

−3

−2

−1

0

1

2

3

T

S = 0∗

S = 100

S = 100∗

S = 500

Figure 8: Average gap (in %) to the best known solutions (BKSs) over time (T in minutes)
on the R-instances (left) and W-instances (right) for memory usage strategies.

We compare the performance for S ∈ {100, 500}, keeping the pruning C = 20 (R)
and C = 50 (W), and the best local search configuration LS3 fixed. Since it was not
possible to store the whole distance matrix for some instances (KGLS already requires
up to 2.8GB of RAM during runtime for S = 500), we restrict the maximum storage
to S = 500. Additionally, we also investigate a setup marked as 100∗, in which the 100
shortest distances are stored prior to the start of the heuristic, while all other requested
distance values are computed during runtime as in Helsgaun (2000). If the evaluation
of a local search move requires a distance value that is not included in the hashmap,
the Euclidean distance between the respective nodes is computed once without storing
it. In other words, in this strategy distances between further-away nodes are not set to
infinity, but computed on request only. To test whether the storage of some information
is beneficial, we also investigate the setup 0∗, in which all distance values are computed
on request and none are stored.

We observe from the results in Figure 8 that the storage of more information, beyond
a certain point, does not seem to benefit performance on the R-instances. A strict
pruning with S = 100 and S = 500 even deteriorates the performance on the W-
instances, for which the consideration of long edges is important. Finally, it appears
beneficial to pre-process and store at least the most frequently requested distance values
since S = 100∗ dominates S = 0∗ on both instance sets. In summary, the storage of
often-requested information about short edges, complemented with a computation of
the remaining edge information on request appears to be a good approach to tackle the
memory challenges of very large instances.

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.5. An effective configuration for very large instances

On the basis of the above findings, we obtain the following configuration (which
we call KGLSXXL) for very large instances. The initial solution is constructed with
CW100 by only considering savings between a customer and its 100 nearest nodes. The
W-instances with very long routes constitute an exception for which we resort to the
standard CW version. Memory usage is reduced by storing the distance values between
a customer and its 100 nearest neighbors, while all other distance values are computed
on request during runtime. We use the local search configuration LS3 with relatively
complex inter-route operators, and a slightly less complex intra-route operator. The
intra-route operators are pruned more restrictively (C = 20) for VRP instances with
shorter routes, while for instances with very long routes a looser pruning (C = 50)
appears beneficial.

Table 3: Results of the presented heuristic on the very large-scale instances by Kytöjoki et al.
(2007), the instance size is given in parenthesis. The gaps are reported in % to the results in
the same paper, given different computational times (T in minutes).

Instance (N) GVNS KGLSXXL (short runtime) KGLSXXL (long runtime)

Value T∗ Value Gap T Value Gap T

W (7,798) 4,559,986 34.5 4,498,958 -1.34 8.6 4,481,423 -1.72 39.0
E (9,516) 4,757,566 83.9 4,522,940 -4.93 21.0 4,507,948 -5.25 47.5
S (8,454) 3,333,696 56.2 3,204,376 -3.88 14.1 3,189,850 -4.31 42.5
M (10,217) 3,170,932 77.6 3,095,119 -2.39 19.4 3,071,090 -3.15 51.0

R3 (3,000) 186,220 4.8 183,113 -1.67 1.2 182,206 -2.16 15.0
R6 (6,000) 352,702 24.4 347,872 -1.37 6.1 347,224 -1.55 30.0
R9 (9,000) 517,443 57.7 511,656 -1.12 14.4 511,378 -1.17 45.0
R12 (12,000) 680,833 108.4 672,870 -1.17 27.1 672,456 -1.23 60.0

Average 55.8 -2.23 14.0 -2.57 41.3
∗ Based onPassMark Software (2018), the used CPU is about 4 times slower.

We test KGLSXXL on the R-instances and the W-instances for differing running
times, and compare the performance to the results of the guided variable neighborhood
search (GVNS) introduced by Kytöjoki et al. (2007). In the ‘short’ runtime setup we
allow the same computational time as that used by the GVNS, given that our machine
is about 4 times faster. In the ‘long’ runtime setup we allow 5 minutes per 1,000
customers. From the results in Table 3 we observe that KGLSXXL outperforms the
GVNS and improves the results on each instance in less than an hour. These results
suggest that a local search with larger neighborhoods, combined with a fitting pruning
and memory strategy, works effectively for very large instances.

4.6. Analysis of the local search configuration

In the following, we investigate the behavior of KGLSXXL more accurately and
explore how many and which local search moves are evaluated and executed during

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

runtime. A move is defined to be ‘evaluated’ if all involved cost computations have
been completed. Note that due to sequential search and preceding feasibility checks
even more moves might be evaluated partially. We conduct this analysis for the smaller
instances X-n139-k10 and X-n561-k42 of Uchoa et al. (2017) as well as for the larger
instances R3 and R9 of Kytöjoki et al. (2007). All of these instances share many
characteristics (randomly distributed customers are delivered from a central depot on
routes that visit around 15 customers), which should allow to investigate the impact of
instance size on the behavior of the local search.

Table 4: Performance statistics for each local search operator on four instances with different
size N : The number of evaluated moves per second Ev./s, the number of executed moves per
second Ex./s, and the proportion of runtime required by each operator %T.

N LK CE RC

Ev./s Ex./s %T Ev./s Ex./s %T Ev./s Ex./s %T

138 539,895 370 37% 205,782 581 26% 4,129,918 497 37%
560 389,575 131 26% 137,611 257 26% 3,192,632 241 48%
3000 104,638 37 9% 98,043 87 39% 4,905,093 80 52%
9000 17,415 3 2% 95,911 29 49% 6,356,900 7 49%

Table 5: Number of executed moves per second (rounded) for different move types. The
overall proportion of the respective move is given in parenthesis.

N LK CE RC

2-opt 3-opt 4-opt relocation∗ swap CROSS-ex. ρ = 2 ρ = 3

138 177 137 59 17 165 407 92 397
(12.2%) (9.5%) (3.9%) (1.2%) (11.4%) (28.1%) (6.3%) (27.5%)

560 69 47 15 33 87 154 46 177
(11.0%) (7.4%) (2.4%) (5.3%) (13.8%) (24.5%) (7.4%) (28.2%)

3000 20 13 4 2 55 31 35 44
(9.6%) (6.3%) (2.2%) (1.1%) (27.1%) (15.1%) (17.2%) (21.5%)

9000 1 1 0.4 3 19 9 5 1
(3.4%) (2.4%) (1.0%) (8.7%) (48.0%) (23.0%) (11.4%) (2.0%)

∗ also includes RC moves with ρ = 1.

Table 4 displays the average number of evaluated and executed moves per second,
as well as the proportion of time that is required by each operator. We observe that
the number of evaluated inter-route moves does not seem to depend on instance size,
and on an instance with 9000 customers the local search evaluates almost as many
CE and RC moves as on an instance with 138 customers. With growing instance size
there are more routes of the same length, and thus, less time is proportionally spent on
intra-route optimization which results in fewer LK evaluations per second. Note that
the number of evaluations per time unit spent on LK remains almost constant. On
the other hand, we observe that the number of executed moves per second decrease
with larger instances. This observation can be attributed to the larger neighborhoods

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1 1 1

Figure 9: Solutions for the new instances based on parcel distribution in Belgium: Antwerp
(central depot), Ghent (eccentric depot), and Brussels (eccentric depot). The edges connected
to the depot are not displayed.

that occur in larger instances, and since the evaluation of larger neighborhoods requires
more time, less moves can be executed overall.

In Table 5 we investigate in more detail which moves are executed during runtime.
Hereby, swap denotes the exchange of two customers, while CROSS-ex. denotes the
exchange of longer substrings between two routes. RC performs ρ relocations simulta-
neously. As observed above, the proportion of intra-route moves (LK) decreases with
the instance size, where the less complex moves 2-opt and 3-opt are executed more
frequently than a complex 4-opt move. In the context of inter-route moves, we observe
that the simple swap move gains more importance with growing instance size, and
constitutes almost 48% of all executed moves for N = 9000. On the other hand, we ob-
serve that the complex moves CROSS-ex. and RC remain important even on very large
instances. Notably, a single relocation is executed much less frequently than multiple
relocations in parallel, which highlights the benefits of the RC operator. These findings
appear to be consistent for different instance sizes.

5. New Instances

To foster research in the area of very large-scale vehicle routing, we develop an
additional set of very large-scale and realistic benchmark instances. These instances
are based on parcel distribution in Belgium. Logistics service providers face the daily
task to deliver parcels via vans or trucks from a distribution center to their customers’
doorsteps. With the rise of e-commerce in recent years, the number of delivered parcels
has grown at a steady pace, and in a relatively large city like Brussels more than 20,000
parcels have to be delivered every day. With parcel-delivery being a mostly cost-driven
business, it is crucial to optimize this distribution. Having fewer delivery vans and
fewer delivery kilometers can decrease significantly the costs of service providers, but it
also reduces emissions and congestion and thereby increases the quality of life in cities.

On the basis of a dataset containing deliveries in the Flemish and Brussels regions
of Belgium, we were able to extract the density of parcel demand for different zones,

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
Figure 1: Flanders

1

Figure 10: A solution to distribute parcels within the whole region of Flanders (Instance F2
- 30,000 customers), with a zoom-in on Brussels.

i.e., the number of delivered parcels per km2. We use this demand density to sample
the location of customers for one delivery day for the cities of Leuven, Antwerp, Ghent
and Brussels as well as for the whole region of Flanders. For each of these geographic
areas we fix the number of customers and locate them according to the given demand
density. Each customer is assigned a demand of either one, two or three parcels with
probability 50%, 30% and 20%, respectively. Furthermore, we consider two delivery
scenarios for each of these five regions.

In the first scenario, the customers are delivered by vans from a distribution center
outside of the city, where the capacity of a van is, depending on the instance, set to
100-200 parcels. In the second scenario, the distribution center is located within the
city, and customers are delivered from there via cargo-bikes or electric tricycles that
can carry 20-50 parcels at a time. Thus, the routes in the first case are rather long
and in the second case rather short. We obtain 10 instances that are diverse with
respect to customer placement (more clustered versus more evenly distributed), depot
location (central versus eccentric), and route length (many customers per route versus

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: Results on the new very large-scale instances for KGLSXXL and LKH-3 for different
computational times T in minutes. The gap is computed with respect to KGLSXXL. The depot
location D can be central (C) or eccentric (E), and the average route length (L) varies across
instances.

Instance (N) D L CW KGLSXXL (short time) KGLSXXL LKH-3

Value Gap T Value Gap T Value T Value Gap T∗

L1 (3,000) C 14.8 200,957 3.34 0.1 194,528 0.04 15.0 194,456 60.0 194,381 -0.04 >3000.0
L2 (4,000) E 85.1 126,122 9.85 0.1 116,479 1.45 20.0 114,817 80.0 113,484 -1.16 >3000.0
A1 (6,000) C 17.5 497,441 3.29 0.2 482,078 0.10 30.0 481,583 120.0 481,338 -0.05 >3000.0
A2 (7,000) E 58.3 322,073 8.79 0.2 300,277 1.43 35.0 296,055 140.0 297,478 0.48 >3000.0
G1 (10,000) C 20.6 489,556 3.38 0.4 474,382 0.17 50.0 473,568 200.0 474,164 0.13 >3000.0
G2 (11,000) E 100 288,942 9.24 0.4 267,354 1.07 55.0 264,512 220.0 265,763 0.47 >3000.0
B1 (15,000) C 29.3 531,980 4.91 0.9 510,218 0.61 75.0 507,103 300.0 509,457 0.46 >3000.0
B2 (16,000) E 87.9 384,437 8.06 1.1 361,804 1.69 80.0 355,779 320.0 357,382 0.45 >3000.0
F1 (20,000) C 29.2 7,518,845 3.06 1.7 7,326,975 0.43 100.0 7,295,447 400.0 7,300,772 0.07 >3000.0
F2 (30,000) E 117.2 4,803,502 6.64 3.8 4,566,287 1.37 150.0 4,504,416 600.0 4,499,422 -0.11 >3000.0

Average 6.05 0.6 0.84 61.0 244.0 0.07 >3000.0

∗ Results were obtained after several days up to a month of computational time, the exact times could not be retrieved (Helsgaun, 2018).

few customers per route). Solutions for instances with an eccentric depot location tend
to have longer edges between the depot and the first and the last customer of a route,
and thereby differ from instances with a central depot location (Figure 9 visualizes some
examples). All distances are Euclidean and rounded to the nearest integer.

These instances complement the W and R-instances in several ways: (1) The in-
stances have a greater variety and also include instances with more clustered cus-
tomers that are delivered from a central depot, (2) they comprise instances with
up to 30,000 customers, and (3) they have more moderate route lengths which are
typical for parcel distribution. The new instances are, along with an explanation
of the format, publicly available at http://antor.uantwerpen.be/xxlrouting and
http://vrp.atd-lab.inf.puc-rio.br, and examples are displayed in Figure 9 and
Figure 10.

For each of the new instances we compute solutions with KGLSXXL to serve as a
first benchmark, given 3 minutes (short runtime) and 12 minutes (longer runtime) of
computational time per 1000 customers, with LS3 as local search, C = 20 for intra-
route pruning and S = 100∗ to handle memory. The results are displayed in Table
6. We observe that a well-implemented CW algorithm with a pruned savings-list com-
putes reasonable solutions almost instantaneously. Note that the given computational
times also include the time required to read the instance and to pre-process distance
information. If one neglects this setup time, it does not take more than 3 seconds to
compute an initial solution for the largest instance F2. Given a few minutes up to a
few hours of computational time, the initial solutions can be improved by more than
6% with local search. It appears that KGLSXXL can improve the solutions of instances
with longer routes and an eccentric depot location more drastically over time, which
might be due to the fact that it is more difficult to compute good initial solutions.

We further obtained results from Helsgaun (2017) (LKH-3). This heuristic is an
extension of a heuristic for the TSP (Helsgaun, 2000) and transforms a VRP into a
standard TSP, while checking for constraint violations after each λ-opt move. Whereas

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

a move is performed in O(
√
n) time, a constraint violation check takes O(n) time. The

heuristic focuses on solution quality rather than speed and, thus, the results were ob-
tained after several days up to a month of computational time. LKH-3 produces results
comparable to those of KGLSXXL for the new instances, which suggests that heuristics
that work well for TSPs can also be adapted to effectively solve VRPs, especially if
variation in demand is low (between 1 and 3) and routes visit many customers. LKH-3
also computed excellent solutions for the W-instances with very long routes which were
more than 2% better than the ones reported above. We want to remark that it is diffi-
cult to make a statement about the absolute quality of the reported solutions, since no
decent lower bounds could be derived to estimate the optimality gap.

6. Conclusion

In this work we have developed a heuristic that is able to solve VRP instances of
several thousands and even tens of thousand of customers within a reasonable amount
of computational time. We outlined the main challenges of very large-scale problems —
reduction of time and space complexity — and demonstrated how to tackle them in the
context of the VRP by limiting information storage and the size of neighborhoods with
heuristic pruning. These ideas were embedded into an already efficient heuristic that
uses well-implemented local search operators as its key driver. We further investigated
the effect of these pruning techniques, and demonstrated the advantages of a stricter
pruning in the context of very large-scale problems, both in the construction of initial
solutions and in the improvement with local search. The resulting heuristic significantly
improves the results of a previous heuristic in relatively short computational times.
Finally, we used real-world data to generate a set of very large-scale instances that
reflect problems in parcel distribution to promote more research in this domain.

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

Applegate, D., Cook, W., and Rohe, A. (2003). Chained Lin-Kernighan for large
traveling salesman problems. INFORMS Journal on Computing, 15(1):82–92.

Arnold, F. and Sörensen, K. (2018). What makes a VRP solution good? The generation
of problem-specific knowledge for heuristics. Computers & Operations Research.
Advance online publication. doi:10.1016/j.cor.2018.02.007.

Arnold, F. and Sörensen, K. (2019). Knowledge-guided local search for the vehicle
routing problem. Computers & Operations Research, 105:32 – 46.

Assad, A. A. and Golden, B. L. (1995). Arc routing methods and applications. Hand-
books in Operations Research and Management Science, 8:375–483.

Buhrkal, K., Larsen, A., and Ropke, S. (2012). The waste collection vehicle routing
problem with time windows in a city logistics context. Procedia-Social and Behav-
ioral Sciences, 39:241–254.

Cattaruzza, D., Absi, N., Feillet, D., and González-Feliu, J. (2017). Vehicle rout-
ing problems for city logistics. EURO Journal on Transportation and Logistics,
6(1):51–79.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4):568–581.

Glover, F. (1996). Ejection chains, reference structures and alternating path methods
for traveling salesman problems. Discrete Applied Mathematics, 65(1):223–253.

Golden, B. L., Wasil, E. A., Kelly, J. P., and Chao, I.-M. (1998). The impact of meta-
heuristics on solving the vehicle routing problem: algorithms, problem sets, and
computational results. In Fleet Management and Logistics, pages 33–56. Springer.

Helsgaun, K. (2000). An effective implementation of the Lin–Kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130.

Helsgaun, K. (2017). An extension of the lin-kernighan-helsgaun TSP solver for con-
strained traveling salesman and vehicle routing problems: Technical report.

Helsgaun, K. (2018). Results of LKH-3. Personal communication. 2018-02-20.

Irnich, S., Funke, B., and Grünert, T. (2006). Sequential search and its application to
vehicle-routing problems. Computers & Operations Research, 33(8):2405–2429.

Janssens, J., Van den Bergh, J., Sörensen, K., and Cattrysse, D. (2015). Multi-objective
microzone-based vehicle routing for courier companies: From tactical to operational
planning. European Journal of Operational Research, 242(1):222–231.

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. (1988). How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100.

Kytöjoki, J., Nuortio, T., Bräysy, O., and Gendreau, M. (2007). An efficient vari-
able neighborhood search heuristic for very large scale vehicle routing problems.
Computers & Operations Research, 34(9):2743–2757.

Laporte, G. (2007). What you should know about the vehicle routing problem. Naval
Research Logistics (NRL), 54(8):811–819.

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21(2):498–516.

Mester, D. and Bräysy, O. (2007). Active-guided evolution strategies for large-
scale capacitated vehicle routing problems. Computers & Operations Research,
34(10):2964–2975.

PassMark Software (2018). Cpu benchmarks. https://www.cpubenchmark.net/. Ac-
cessed: 2018-02-05.

Patier, D. and Routhier, J.-L. (2009). How to improve the capture of urban goods
movement data? In Transport Survey Methods: Keeping up with a Changing
World, pages 251–287. Emerald Group Publishing Limited.

Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017). Improved branch-cut-and-
price for capacitated vehicle routing. Mathematical Programming Computation,
9(1):61–100.

Reinelt, G. (1991). TSPLIB–A traveling salesman problem library. ORSA Journal on
Computing, 3(4):376–384.

Subramanian, A., Uchoa, E., and Ochi, L. S. (2013). A hybrid algorithm for a class of
vehicle routing problems. Computers & Operations Research, 40(10):2519–2531.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F., and Potvin, J.-Y. (1997). A tabu
search heuristic for the vehicle routing problem with soft time windows. Trans-
portation Science, 31(2):170–186.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the
vehicle routing problem. Informs Journal on Computing, 15(4):333–346.

Toth, P. and Vigo, D. (2014). Vehicle routing: problems, methods, and applications.
SIAM.

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian, A. (2017).
New benchmark instances for the capacitated vehicle routing problem. European
Journal of Operational Research, 257(3):845–858.

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A hybrid
genetic algorithm for multidepot and periodic vehicle routing problems. Operations
Research, 60(3):611–624.

Voudouris, C. and Tsang, E. P. (2003). Guided local search. Springer.

Wøhlk, S. and Laporte, G. (2018). A fast heuristic for large-scale capacitated arc
routing problems. Journal of the Operational Research Society, pages 127–141.

Zhong, H., Hall, R. W., and Dessouky, M. (2007). Territory planning and vehicle
dispatching with driver learning. Transportation Science, 41(1):74–89.

26


