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a b s t r a c t 

The financial crisis and the market uncertainty of the last years have pointed out the shortcomings of
traditional portfolio theory to adequately manage the different sources of risk of the investment process.
This paper addresses the issue by developing an alternative portfolio design, that integrates risk parity
into the cardinality constrained portfolio optimization model. The resulting mixed integer programming

problem is handled by an improved multi-objective particle swarm optimization algorithm. Three hybrid
approaches, based on a repair mechanism and different versions of the constrained-domination principle,
are proposed to handle constraints. The efficiency of the algorithm and the effectiveness of the solution
approaches are assessed through a set of numerical examples. Moreover, the benefits of adopting the
proposed strategy instead of the cardinality constrained mean-variance approach are validated in an out- 
of-sample experiment.

1. Introduction

The approach developed by Markowitz in 
Markowitz (1952) models the portfolio construction process 
as an optimization problem involving the selection of promising 
assets and the allocation of capital among them. In this frame- 
work, the expected return of the portfolio is maximized while 
its variance, perceived as a risk for the investment, is minimized. 
A portfolio is efficient if it provides the maximum return for a 
given level of risk or, equivalently, if it has the minimum risk for 
a given level of desired return. Hence, the set of optimal portfolios 
requires the formulation and solution of a quadratic program. In 
the risk-return space, the set of optimal mean-variance tradeoffs 
forms the so-called efficient frontier, or Pareto front. 

Several variants of the basic model have been investigated to 
render it more realistic ( Guerard Jr, 2009; Kolm et al., 2014 ). Re- 
cently, it has been suggested the inclusion of a cardinality con- 
straint that limits the number of assets to hold in the portfo- 
lio in an attempt to control costs and improve its performance 
( Liagkouras and Metaxiotis, 2015 ). The associated mixed-integer 
quadratic program represents the so-called cardinality constrained 
portfolio optimization problem (CCPOP). It has been proven to 
be NP-hard ( Moral-Escudero et al., 2006 ) and, consequently, the 
computation of the entire efficient frontier becomes computa- 
tionally challenging. The various algorithms studied to solve this 
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issue can be roughly grouped in the following two categories. 
From one hand, there are exact methods ( Bertsimas and Shioda, 
2009; Li et al., 2006; Shaw et al., 2008 ), that provide optimal 
solutions but, as the problem size grows, they present unman- 
ageable computational times. From the other hand, heuristic ap- 
proaches ( Chang et al., 20 0 0; Crama and Schyns, 20 03; Cura, 20 09; 
Jobst et al., 2001; Mutunge and Haugland, 2018; Woodside-Oriakhi 
et al., 2011 ), that guarantee the identification of approximate good, 
and sometimes optimal, solutions even for large size instances of 
CCPOP within reasonable time. 

In the last decade, researchers have tried to tackle the CCPOP in 
its multi-objective form, by optimizing both objectives at the same 
time with the so-called multi-objective evolutionary algorithms 
( Anagnostopoulos and Mamanis, 2010; Anagnostopoulos and Ma- 
manis, 2011; Liagkouras and Metaxiotis, 2017 ). The main advantage 
of these procedures, with respect to single objective algorithms, is 
that they are able to find the efficient frontier in a single run. 

From an economic point of view, the traditional Markowitz’s 
model treats both the above and the below target returns equally, 
while investors are more concerned about the probability of in- 
vestment returns falling below the target return. Therefore, risks 
are under-estimated and portfolios that are downside efficient are 
ruled out. An alternative approach that properly models the loss 
aversion of investors is the replacement of variance with a down- 
side risk measure. Nowadays, due to the regulatory importance of 
quantifying large losses in banking and insurance sectors, the so- 
called value-at-risk (VaR) occupies a leading position as risk man- 
agement tool. It is defined as the maximum loss occurring over a 
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given period at a given confidence level. Although it is apparently 
simple and intuitive, VaR presents several disadvantages. Primar- 
ily, it ignores losses exceeding VaR and is not sub-additive, i.e., di- 
versification of the portfolio may increase it ( Artzner et al., 1999 ). 
In order to deal with these shortcomings, Rockafellar and Uryasev 
introduce the conditional value-at-risk (CVaR), which is the condi- 
tional expectation of losses above the VaR ( Rockafellar et al., 20 0 0 ). 

The financial crisis of 2008 pointed out two other drawbacks of 
the Markowitz portfolio selection model: from one hand, relying 
on the estimates of expected returns, the optimal portfolio may be 
highly unstable; from the other hand, this approach tends to pro- 
vide solutions excessively concentrated on few assets, thus failing 
in diversifying risks. A period characterized by uncertainty has fol- 
lowed. Consequently, investors have moved their attention toward 
novel portfolio strategies able to capture risk premia at lower risk 
levels ( Roncalli, 2013 ). The management of different sources of risk 
involved in the investment process has thus become of primary 
relevance. Contrary to the Markowitz approach, risk-based strate- 
gies only encompass the risk dimension and neglect the perfor- 
mance one. In this manner, they do not require any explicit stock 
return forecasts and take into account solely drift and changes in 
risk views. Risk parity is certainly one of the most promising no- 
tions in this context ( Chaves et al., 2011 ). It is defined in terms 
of risk contributions, where weights are adjusted so that all as- 
sets equally contribute to portfolio risk ( Qian, 2006 ). Its theoret- 
ical properties have been studied in Maillard et al. (2010) , while 
the empirical comparisons conducted in Braga (2015) indicate that 
risk parity portfolios have a lower risk than naive portfolios and 
have higher Sharpe ratio than the minimum variance portfolios. 
However, the existence and uniqueness of a solution to the risk 
parity portfolio selection problem can be guaranteed only in some 
special cases, for which ad hoc methods have been proposed in 
literature ( Bai et al., 2016; Griveau-Billion et al., 2013; Maillard 
et al., 2010; Spinu, 2013 ). The only effective tool for the general 
case is represented by the use of a heuristic algorithm that is able 
to find approximate solutions ( Hochreiter, 2015; Vijayalakshmi Pai 
and Michel, 2012 ). 

The mutated economic conditions of the recent years have 
encouraged scholars and practitioners to develop investment 
strategies that balance performance and risk concentration by 
combining aggressive active portfolios, based on the Markowitz op- 
timization model, with more conservative risk control approaches. 
A first attempt in this direction is represented by Roncalli (2014) , 
where a generalized risk measure is introduced that takes into ac- 
count both the portfolio return and volatility. The author suggests 
the use of the cyclical coordinate descent algorithm ( Tseng, 2001 ) 
to solve numerically the resulting risk parity portfolio allocation 
problem. Feng and Palomar (2015) develop a framework gather- 
ing the most used risk parity formulations present in the literature 
with different performance objectives, and propose the use of a 
successive convex optimization method as solver. An extension of 
the procedure, that includes asset selection, is given in Feng and 
Palomar (2016) . The novel formulation represents portfolio cardi- 
nality as a regularization term added to the objective function. 

Unlike the aforementioned studies, that tackle the portfolio 
selection problem by optimizing a weighted sum of the involved 
criteria, we develop a multi-objective optimization framework in 
order to generate an even spread of points that accurately rep- 
resents the complete Pareto optimal set. Our approach intro- 
duces risk parity in the definition of the admissible set of the 
mean-variance portfolio optimization model through mixed integer 
constraints. Furthermore, we use a tolerance threshold to identify 
solutions that are approximately at parity for the cases in which 
optimal portfolios do not exist. 

Risk parity has been usually considered in asset-class strategies, 
while its application to equities is limited due to the large size of 

the investable sets and to the corresponding elaborate risk mod- 
els (see, for instance, de Carvalho et al., 2012; de Carvalho et al., 
2014 and Siu, 2014 ). 

From a modelling point of view, we contribute to the literature 
by proposing a novel equity portfolio design that aims at over- 
coming these difficulties with the introduction into the classical 
mean-variance framework of both a cardinality constraint and a 
risk parity condition. The first is used to limit the number of as- 
sets in the portfolio, while the second properly controls the dis- 
tribution of risks among its constituents. The resulting risk parity 
based cardinality constrained portfolio optimization problem will 
be denoted by RP-CCPOP. From a computational point of view, we 
develop a variant of the multi-objective particle swarm optimiza- 
tion (MOPSO) algorithm proposed by Coello et al. (2004) . In our 
algorithm, candidate solutions are represented by a pair of vec- 
tors. The first of them includes portfolio weights, while the sec- 
ond conveys possible rebalancing information, that will be used 
to modify the first vector according to the paradigms of particle 
swarm optimization. Further, a swap mutation operator has been 
added to increase exploration capabilities. The implementation of 
a novel scheme to handle at the same time cardinality, buy-in 
thresholds, budget and risk parity constraints is also considered. 
This procedure combines a repair mechanism for the first three 
constraints with a domination principle to compare solutions in 
terms of deviations from risk parity. Three alternatives are taken 
into account to this end, namely the constrained domination prin- 
ciple by Deb (20 0 0) , a self-adaptive tolerance method similar to 
the one developed by Zhang and Rangaiah (2012) and the self- 
adaptive penalty technique presented in Woldesenbet et al. (2009) . 
Once a constraint-handling method is selected from these alterna- 
tives, the resulting hybrid constraint-handling multi-objective par- 
ticle swarm optimization algorithm will be generally denoted by 
HMOPSO. Table 1 points out the contributions of the proposed al- 
gorithm with respect to some popular PSO variants adopted in the 
portfolio optimization field. 

The rest of the paper is organized as follows. In Section 2 , 
we formally describe the equity portfolio optimization problem, 
and discuss different implementations of the risk parity principle. 
Section 3 reports the description of the developed multi-objective 
evolutionary optimization algorithm with its three variants of the 
constraint-handling technique. Section 4 is devoted to the dis- 
cussion and assessment of the proposed algorithms on a set of 
real-world experiments. The best alternative is then used to val- 
idate the novel portfolio investment strategy with respect to the 
standard cardinality constrained portfolio optimization model in 
an out-of-sample setting. Finally, the concluding remarks are pre- 
sented in Section 5 . 

2. Problem formulation

2.1. Cardinality constrained portfolio optimization 

Consider a financial market consisting of n risky assets mod- 
eled through a probability space. A portfolio is represented by a 
weight vector x = ( x 1 , . . . , x n ) 

� 
, where x i ∈ R denotes the propor- 

tion of capital invested in asset i . Assume that agents act their de- 
cisions over a one-period horizon and the random rate of return of 
asset i at the end of the investment period, denoted as R i , has a 
continuous probability density function (pdf), then the rate of re- 
turn of a portfolio x is the random variable 

R (x ) = 
n ∑ 

i =1

x i R i (1) 

having the pdf f R ( x ) induced by that of (R 1 , . . . , R n ) 
� . R ( x ) is mea- 

surable in (R 1 , . . . , R n ) with expected value 
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Table 1
Particle swarm optimization algorithms adopted for solving portfolio optimization problems with cardinality constraints and risk parity. In the third column, SO and MO

indicate single-objective and multi-objective optimization, respectively.

Algorithm Portfolio model Methodology Contribution

PSO Cura (2009) CCPOP SO the hybrid solution representation by Streichert et al. (2004) is used for the particles; PSO and
discrete PSO are integrated; a repair mechanism handles contraints

VC-HPSO Yaakob and
Watada (2010)

CCPOP SO particle velocity is clamped; a mutation operator is added and parameters are adaptively updated

NS-MOPSO

Mishra et al. (2014)
CCPOP MO the hybrid solution representation by Streichert et al. (2004) is used for the particles; the

non-dominated sorting is adapted to satisfy both the objectives and the constraints; velocity is
clamped and its direction changes with a fixed probability

DMS-MOPSO Liang and
Qu (2013)

mean-variance with

no-short selling
MO solutions are represented by real vectors; the non-dominated sorting is adapted to satisfy both the

objectives and the constraints; a set of small sized swarms and a self-learning strategy are used
HMOPSO CCPOP and

RP-CCPOP

MO solutions are represented by real vectors; the non-dominated sorting is adapted to satisfy the
objectives; velocity is clamped and its direction changes with a fixed probability; a swap mutation

operator is added for obtaining more efficient solutions; three hybrid mechanisms are added to
handle constraints

μp (x ) = E (R (x )) = x � μ (2) 

and variance given by 

σ 2 
p (x ) = x � Cx (3) 

where E (·) denotes the expectation, μ = (μ1 , . . . , μn ) � and C are 
the vector of expected values and the covariance matrix of the 
rates of return of the risky assets, respectively. 

According to the modern portfolio theory ( Markowitz, 1952 ), in- 
vestors’ decisions are based on the first two moments of the rate 
of return distribution of portfolios. The preference relation is thus 
the following 

Definition 1. Let X ⊆ R n and x , y ∈ X . Then x (Pareto) dominates 
y with respect to X , in symbols x ≺y , if and only if μp ( x ) ≥μp ( y ) 
and σ 2 

p (x ) ≤ σ 2 
p (y ) with at least one strict inequality. 

The asset allocation problem reduces to a bi-objective optimiza- 
tion problem where portfolio expected return (2) is maximized 
and portfolio variance (3) is minimized. Thus, a portfolio x ∗ ∈ X 
is (Pareto) optimal if and only if it is non-dominated with respect 
to X , i.e., there does not exist another portfolio x ∈ X that domi- 
nates x ∗. The subset of non-dominated portfolios in X represents 
the so-called Pareto set. Its image in the mean-variance space is 
called efficient frontier, or Pareto front. 

The starting point of our portfolio design is the model devel- 
oped by Chang et al. (20 0 0) , which extends the standard mean- 
variance formulation by adding a cardinality constraint to control 
the number of active positions, i.e., assets with positive weight, 
taken in the portfolio and the corresponding costs. 

Assuming each asset weight lies between a lower bound l i and 
an upper bound u i , with 0 < l i < u i ≤1, i = 1 , . . . , n, the resulting 
mixed-integer bi-objective optimization problem can be written 
as 

minimize 
(
−μp (x ) , σ 2 

p (x ) 
)

(4) 

subject to 
n ∑ 

i =1

x i = 1 (5) 

n ∑ 

i =1

δi = K (6) 

δi ∈ { 0 , 1 } i = 1 , . . . , n (7) 

δi l i ≤ x i ≤ δi u i i = 1 , . . . , n. (8) 

Eq. (5) represents the budget constraint and ensures that all the 
capital is invested in the portfolio. The cardinality constraint given 

in (6) imposes that exactly K active positions from the n assets 
present in the investible universe are selected. Note that K is a pa- 
rameter decided by the decision-maker. The binary variables δi in 
(7) , i = 1 , . . . , n, are employed to model the inclusion or exclusion
of asset i in the portfolio and have the following meaning

δi = 

{
0 , if asset i is not included in the portfolio 
1 , if asset i is included in the portfolio . 

(9) 

Constraint (8) ensures that, if asset i is in the portfolio, i.e. δi = 
1 , its proportion x i lies between l i and u i . In the case the asset 
is not included in the portfolio, i.e., δi = 0 , constraint (8) imposes 
the corresponding weight x i to be 0. Floor constraints, related to 
l i , are used to control costs while ceiling constraints, related to u i ,
prevent portfolios from excessive concentration on a singular asset.
Note that the assumption l i > 0 imposes no-shortselling.

From now on, the cardinality constrained portfolio optimization 
problem (4) –(8) will be denoted by CCPOP. 

2.2. Risk-parity portfolios 

CCPOP simultaneously manages profit and risk ( Beasley, 2013 ). 
However, this approach may be unsuitable for investors having re- 
duction of large losses and diversification across sources of risk as 
primary goals. An allocation strategy solely relying on risk views 
to manage risk may be advisable in this case ( de Carvalho et al., 
2012 ). 

The level of diversification within a portfolio can be mea- 
sured by the distribution of risk contributions of its constituents 
( Kolm et al., 2014 ). By representing the risk of a portfolio as the 
volatility of its rates of return, i.e. σp (x ) = 

√ 
x � Cx , we have the fol- 

lowing risk decomposition 

σp (x ) = 
n ∑ 

i =1

x i 
∂σp (x ) 

∂x i 
= 

n ∑ 

i =1

x i 

(
Cx√
x � Cx 

)

i

= 
n ∑ 

i =1

x i 
( Cx ) i√ 
x � Cx 

(10) 

where ( Cx ) i is the i th component of the vector Cx . Denote the risk 

contribution from asset i by RC i (x ) = x i 
∂σp (x ) 

∂x i 
, and define the cor- 

responding relative risk contribution as 

RRC i (x ) = 
RC i (x )
σp (x ) 

= 
x i ( Cx ) i 
σ 2 
p (x ) 

. (11) 

The paper will focus on the following risk control strategy known 
as risk parity ( Roncalli, 2013 ). 

Definition 2. Let C be a positive definite covariance matrix of or- 
der n , a portfolio x ∈ X with K active positions is called a risk 
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parity (RP) portfolio with respect to C if it satisfies the condition 

RC i (x ) = 
σp (x )

K 
(12) 

for all i such that δi = 1 , where δi is given in (9) . 

An RP portfolio is thus characterized by the requirement of hav- 
ing equal risk contributions from each active asset. Based on (11) , 
a portfolio x ∈ X attains risk parity if and only if RRC i (x ) = 1 /K, 
for all i such that δi = 1 . 

This type of portfolio presents appealing properties for diversi- 
fication purposes, as reported in Maillard et al. (2010) . However, 
existence and uniqueness of a solution satisfying (12) are only 
guaranteed in the full invested and long-only setting ( Kaya and 
Lee, 2012 ). Thus, using numerical methods becomes fundamental 
to solve RP portfolio selection problems with more complex con- 
straints. 

The problem of identifying an RP portfolio in a feasible set X 
can be rewritten as an optimization problem with a cost function 
quantifying the deviation from risk parity. A first example of such 
a function considers all pairwise differences in squared among the 
active assets as follows 

f RP 1 (x ) = 
n ∑ 

i =1

n ∑ 

j=1

δi δ j 
(
x i ( Cx ) i − x j ( Cx ) j

)2
. (13) 

One can alternatively measure deviations of RRCs from the average 
value in squared or absolute sense, obtaining the following cost 
functions 

f RP 2 (x ) = 
n ∑ 

i =1

δi 

(
x i ( Cx ) i 
x � Cx 

− 1

K

)2

(14) 

and 

f RP 3 (x ) = 
n ∑ 

i =1

δi 

∣∣∣x i ( Cx ) i
x � Cx 

− 1 
K

∣∣∣ (15) 

respectively. In all the proposed cases, portfolios with cost function 
value equal to zero achieve risk parity. 

Due to the non-smoothness and non-convexity of f RP 
1 , f RP 

2 
and f RP 3 , approximation and heuristic approaches are used to 
solve the corresponding minimization problems (see, for instance, 
Hochreiter, 2015 and Feng and Palomar, 2015 ). 

2.3. Reconciling profit with risk control 

In this paper, we propose to manage performance and risk 
dimensions at the same time by integrating the RP condition 
(12) into CCPOP. The resulting portfolio optimization problem,

which will be denoted by RP-CCPOP, can be formulated as fol- 
lows 

minimize 
(
−x � μ, x � Cx 

)
(16) 

subject to 
n ∑ 

i =1

x i = 1 (17) 

n ∑ 

i =1

δi = K (18) 

δi ∈ { 0 , 1 } i = 1 , . . . , n (19) 

δi l i ≤ x i ≤ δi u i i = 1 , . . . , n. (20) 

x i ( Cx ) i = δi 
x � Cx 
K 

i = 1 , . . . , n (21) 

where 0 < l i < u i ≤1, for i = 1 , . . . , n, and the equality constraint 
(21) represents the risk parity condition.

3. Constrained multi-objective particle swarm optimization

Particle swarm optimization (PSO) is a distributed behavioral al- 
gorithm that performs multidimensional search by mimicking the 
movements of a bird flock or a fish schooling that searches for food 
( Eberhart and Kennedy, 1995 ). The PSO mechanism is based on 
the communication of information about good solutions through 
the swarm. In this manner, the particles will tend to move toward 
good areas in the search space. 

The adaptation of this paradigm to deal with portfolio manage- 
ment problems has proved to be very effective (see, for instance, 
Ertenlice and Kalayci, 2018 and the references therein for a survey 
on the subject). In particular, the promising results in the solution 
of CCPOP obtained by Mishra et al. (2014) justify our development 
of a new version of the multi-objective particle swarm optimiza- 
tion (MOPSO) algorithm to handle cardinality, quantity and risk 
parity constraints at the same time. 

3.1. Multi-objective particle swarm portfolio optimization 

The algorithm that we propose operates on a set of S can- 
didate solutions, denoted as P . At each iteration t , the s th can- 
didate solution is formed by a pair of n -dimensional real vec- 
tors ( x s ( t ), v s ( t )), for s = 1 , . . . , S, where x s (t) = ( x s 1 (t ) , . . . , x sn (t ) ) 

�

gathers the weights of the s -th portfolio to be optimized and 
v s (t) = ( v s 1 (t ) , . . . , v sn (t ) ) 

� 
is an update vector conveying the in- 

formation about possible rebalancing of x s . The set of decision vari- 
ables δi , i = 1 , . . . , n, in Problem (16) –(21) are implicitly handled as 
follows: for each weight vector x s ( t ), the K assets with the highest 
weights enter the corresponding portfolio while zero weight is as- 
signed to the remaining n − K assets. In this manner, the cardinal- 
ity constraint is implicitly satisfied while the assumption l i > 0 for 
all i = 1 , . . . , n avoids the indecisiveness case represented by δi = 1 
and x i = 0 . 

Using a Pareto ranking scheme based on Definition 1 , there are 
two types of promising solutions that play a part in determin- 
ing v s ( t ): from one hand, the most recent non-dominated portfolio 
x best s related to candidate solution s and, from the other hand, all 
the non-dominated portfolios found along the optimization pro- 
cess. We denote this second set as G best and fix its maximal size 
to S . Following the procedure stated in Coello et al. (2004) , if the 
number of elements of G best exceeds S , some portfolios are pruned 
as follows: first, an adaptive grid divides the mean-variance space 
into a number div of squares, then the most densely populated 
squares are truncated. At this point, a fitness value is assigned to 
each square that contains members of G best equal to the result of 
dividing any number γ > 1 by the number of resident portfolios. 
Thus, a more densely populated square is given a lower score. A 
roulette wheel selection of a square in the objective space accord- 
ing to its score is performed and a member g best s of that square is 
randomly chosen. The update rule for v s becomes 

v s (t + 1) = w v s (t) + c 1 rand 1 (x 
best 
s − x s (t)) + c 2 rand 2 (g 

best
s − x s (t))

(22)

for s = 1 , . . . , S. The term w v s ( t ), called in literature momentum, 
regulates the importance of v s ( t ) in v s (t + 1) through the inertia 
weight w . The second term, called cognitive component, quantifies 
how much displacement, starting at x s ( t ), is needed to reach the 
corresponding non-dominated portfolio x best s . The social component 
is represented by the third addend and quantifies the performance 
of portfolio s relative to the best portfolio selected in G best . 

Higher values for w result in a good global search characteristic, 
while lower values produce a refined localized search. Parameters 
c 1 and c 2 are positive acceleration coefficients used to weight the 
contribution of cognitive and social components respectively, while 
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rand 1 and rand 2 represent two random numbers generated by a 
uniform distribution on the interval [0,1]. 

The portfolio composition of the s th candidate solution can now 
be modified according to the following formula 

x s (t + 1) = x s (t) + v s (t + 1) (23) 

for s = 1 , . . . , S. 
All the weight vectors x best s and the external archive G best are 

updated after every iteration. 

3.2. Solution clamping and mutation 

Since large weight updates may cause portfolios to leave the 
domain boundaries, we consider the following clamping procedure 
proposed by Xu and Chen (2006) to control the portfolio rebalanc- 
ing components 

v si (t) =
� 

v min 
i , if v si (t) < v min

i 
v max 
i , if v si (t) > v max

i 
v si (t) , otherwise 

(24) 

for s = 1 , . . . , S and i = 1 , . . . , n, where v min 
i and v max 

i are minimum 
and maximum percentage of capital that are allowed to be moved 
for asset i respectively. 

In order to promote diversity and higher explorative capability, 
we assign to v si ( t ) a probability p m 1 of being specified in a differ- 
ent direction as in Mishra et al. (2014) . Moreover, a swap mutation 
operator is applied to each portfolio x s ( t ) in order to explore un- 
reached areas of the search space. The operator swaps the weights 
of two constituents in every candidate solution with a probability 
p m 2 as follows. Let x ∈ X be a portfolio subject to swap mutation 
and a and b be two randomly chosen positions such that x a = 0 
and l b ≤ x b ≤u b then the mutated x is defined componentwise as 

˜ x i = 

⎧⎪ ⎨ 

⎪⎩

x i , if i � = a and i � = b 

l a + x b − l b
u b − l b

(u a − l a ) , if i = a

0 , if i = b . 

(25) 

The new candidate solution ˜ x maintains K active positions and sat- 
isfies quantity constraints for a and removes asset b from the port- 
folio. 

3.3. Candidate solutions initialization and constraint-handling 
techniques 

The set of candidate solutions is initialized randomly with 
assets positions uniformly distributed between their respective 
bounds l i and u i . By applying the proposed selection method, we 
obtain a set of particles that satisfy cardinality, floor and ceiling 
constraints. The repair transformations reported below deal with 
the full investment condition. 

Proposition 1 ( Meghwani and Thakur, 2017 ) . Let x ∈ R n and I + = 
{ i = 1 , . . . , n | x i > 0 } , | I + | = K, and assume

1. l i ≤ x i ≤u i for all i ∈ I + ,
2. 

� 
i ∈ I + l i < 1 , 

3. 
� 

i ∈ I + u i > 1 . 

Then, the portfolio ˜ x = ( ̃  x 1 , . . . , ̃  x n ) 
� defined as ˜ x i = 0 for i / ∈ I + ,

and, for all i ∈ I + , 

˜ x i = 

⎧⎪⎪ ⎪ ⎨
⎪⎪⎪⎩ 

u i −
(u i − x i )� 
j∈ I + (u j − x j )

��
j∈ I + u j − 1

�
, if 

� 
j∈ I + x j < 1 

x i , if 
� 

j∈ I + x j = 1 

l i + 
(x i − l i )� 
j∈ I + (x j − l j ) 

�
1 − � 

j∈ I + l j
�
, if 

� 
j∈ I + x j > 1 

(26) 

preserves the invested positions of x , satisfies the constraints l i ≤ ˜ x i ≤
u i , for all i ∈ I + , and 

� n 
j=1 ˜ x j = 1 . 

This update rule does not modify portfolio constituents and in- 
volves proportionate distribution of allocation over non-zero assets 
in order to follow the required budget, floor and ceiling constraints. 

The risk parity equality constraints in (21) are dealt with by 
applying a suitable constraint-handling technique based on the 
Pareto dominance principle. In particular, we will analyze the hy- 
bridization capabilities of the following procedures with the repair 
mechanism (26) : 

1. The constrained-domination principle proposed in Deb (20 0 0) ;
2. The constrained method developed in Zhang and Ranga- 

iah (2012) ;
3. The self-adaptive penalty technique presented in

Woldesenbet et al. (2009) .

Before introducing the characteristics of these constraint- 
handling methods, we transform (21) into inequality constraints as 
follows ����x i ( Cx ) i − δi 

x � Cx 
K 

���� ≤ τ, i = 1 , . . . , n (27) 

where τ ≥0 is a tolerance parameter according to which infeasi- 
ble solutions close to the feasible region are retained in order to 
improve the search effectiveness. 

The violation of constraint i in (21) for an individual x can be 
measured as 

c i (x , τ ) = max 

�����x i ( Cx ) i − δi 
x � Cx 
K 

���� − τ, 0

�
, i = 1 , . . . , n. (28) 

Let c max 
i denote the maximum of c i ( x , τ ) over all portfolios in the 

current iteration and define 

φi (x , τ ) = 

� 
c i (x , τ ) 
c max 
i 

, if c max 
i > 0

0 , otherwise 
(29) 

for i = 1 , . . . , n, the overall constraint violation can be expressed as 

φ(x , τ ) = 
1 
n 

n � 

i =1

φi (x , τ ) . (30) 

Note that c max 
i varies during the evolution in order to balance the 

contribution of each constraint in the problem irrespective of their 
differing ranges. 

3.3.1. Constrained domination principle 
The constrained-domination principle, shortly CDP, compares 

pairwise solutions according to the following three feasibility cri- 
teria: 

i) When two feasible portfolios are compared, the one Pareto
dominating the other is chosen;

ii) When a feasible portfolio is compared with an infeasible port- 
folio, the feasible one is chosen;

iii) When two infeasible portfolios are compared, the one with the
lowest overall constraint violation is chosen.

Therefore, the CDP always considers feasible solutions better 
than infeasible ones. When two feasible solutions are considered, 
they are only compared in terms of their objective function val- 
ues since the corresponding overall constraint violations are zero. 
In the case of two infeasible solutions, the comparison is based on 
the sum of constraints violations. This rule aims at pushing infea- 
sible individuals to the feasible region. 
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3.3.2. Self-adaptive tolerance constrained domination method 
Our variant of the self-adaptive tolerance constrained method 

proposed in Zhang and Rangaiah (2012) first exploits the projec- 
tion mechanism of Proposition 1 for the budgeting and quantity 
constraints and then adaptively relaxes the risk parity constraint 
(21) according to Eqs. (28) –(30) , with τ changing over time as fol- 
lows

τ (t) = 

�
median { φ(x s (t) , 0) | s = 1 , . . . , S } , if t = 0
τ ( t − 1) 

�
1 − r f ( t) 

�
, otherwise 

(31) 

where r f ( t ) denotes the feasibility ratio of the portfolios at iteration 
t , i.e. the ratio of the number of feasible portfolios at time t to the 
size S of the set P . 

Since the extent of relaxation depends on the feasibility of the 
elements in P, when fewer portfolios are feasible, the rate of re- 
ducing τ will be slower. Hence, more generations will be required 
to find feasible solutions. For example, when all individuals in the 
current set are infeasible, τ will not be reduced until some feasible 
portfolios are found. 

By incorporating this adaptive relaxation of constraints into the 
CDP approach, the method provides a dynamic sorting that de- 
pends on the number of risk parity deviations in P . More specifi- 
cally, we have the following 

Definition 3. Let x, y be two portfolios satisfying (17) –(20) and τ
be defined as in (31) , then we say that x τ -dominates y and write 
x ≺τ y if and only if 

� 
x ≺ y , if φ(x , 0) ≤ τ (t) and φ(y , 0) ≤ τ (t) 
x ≺ y , if φ(x , 0) = φ(y , 0) 
φ(x , 0) < φ(y , 0) , otherwise 

(32) 

where x ≺y denotes Pareto dominance as stated in Definition 1 and 
τ ( t ) is the tolerance level at time t . 

This ordering compares two solutions using only their objec- 
tive function values if both solutions are feasible, slightly feasible 
(as determined by the value of τ ) or even if they have the same 
sum of constraint violations. Conversely, if both solutions are in- 
feasible, they are compared based on only their overall constraint 
violations. In the extreme case in which r f (t) = 1 , (32) reduces to 
the CDP feasibility rules in that generation. 

3.3.3. Self-adaptive penalty constrained domination method 
Similar to the method just described, the self-adaptive penalty 

technique uses the information gathered from the search process 
to control the amount of penalty added to infeasible individuals. 
More specifically, two types of penalty are added to each infeasi- 
ble individual to identify the best infeasible individuals in the cur- 
rent population. The amount of the added penalties depends on 
the number of feasible individuals present in the current popula- 
tion. On the one hand, if there is a small proportion of feasible in- 
dividuals, then infeasible individuals with a higher amount of con- 
straint violation will have a higher amount of penalty. On the other 
hand, if there is a large number of feasible individuals, then small 
penalties will be added to infeasible individuals with high fitness 
values. These two penalties will allow the algorithm to switch be- 
tween finding more solutions that are feasible and searching for 
optimal solutions at any time during the search process. 

The procedure involves the following computations. First, the 
values of the two objective functions, namely μp and σ 2 

p , of each 
candidate portfolio x s in P are normalized using the formulas 

f 1 (x s ) = 
max 

s � 
μp (x s � ) − μp (x s ) 

max 
s � 

μp ( x s � ) − min 
s � 

μp (x s � ) + �
(33) 

and 

f 2 (x s ) = 
σ 2 
p (x s ) − min 

s � 
σ 2 
p (x s � ) 

max 
s � 

σ 2 
p ( x s � ) − min 

s � 
σ 2 
p (x s � ) + �

(34) 

where � is a positive value for preventing the denominators 
from becoming zero in the case min 

s� 
μp (x s � ) = max 

s� 
μp (x s � ) or 

min 
s� 

σ 2 
p (x s � ) = max 

s� 
σ 2 
p (x s � ) . We have set � = 10 −6 in the numerical

analysis as Ishibuchi et al. (2017) . These scaling functions map the 
original objective space R 2 to [0, 1] 2 . 

The overall constraint violation of the risk parity is then calcu- 
lated according to Eqs. (28) –(30) . 

Depending on the feasibility ratio r f , the final value of the j th 
modified objective function for x s is defined as 

F j (x s ) = 

⎧⎪ ⎨ 

⎪ ⎩ 

φ(x s , τ ) , if r f = 0 � 
f j (x s ) 2 + φ(x s , τ ) 2 

+(1 − r f ) φ(x s , τ ) + r f f j (x s ) , if r f � = 0 and x s / ∈ X 
f j ( x s ) , if r f � = 0 and x s ∈ X 

(35) 

with j = 1 , 2 . The population can now be sorted by CDP based on 
F 1 and F 2 . 

The pseudocode of HMOPSO is outlined in Algorithm 1 , where 

Algorithm 1: HMOPSO for RP-CCPOP. 

Input : l , u , t max , S, c 1 , c 2 , w , p m 1 , p m 2 , di v , γ , v min , v max , τ ,
CHT 

Output : G best 
1 Randomly generate a set of portfolios x s (0) , s = 1 , . . . , S 
2 Set the corresponding rebalancing vectors v s (0) = 0 
3 Set P = { ( x s (0) , v s (0) ) : s = 1 , . . . , S } 
4 Modify each member of P using (26) and evaluate its overall 
constraint violation for the risk parity constraint using 
(28)–(30) 

5 Initialize x best s = x s (0) , s = 1 , . . . , S 
6 Initialize G best based on CHT 
7 Let t = 0 
8 while t ≤ t max do 
9 for s = 1 to S do 

10 Select g best s ∈ G best on the basis of CHT 
11 Update x best s on the basis of CHT and x s (t) 
12 end 
13 t = t + 1 
14 Update v s (t) using (22) and adjust it through (24) 
15 for i = 1 to n do 
16 if rand < p m 1 then 
17 v si (t) = −v si (t) 
18 end 
19 end 
20 Update P using (23) 
21 Modify P using (26) 
22 Mutate P using (25) 
23 Evaluate P according to CHT 
24 Update G best according to CHT 
25 end 

CHT indicates the variant of the hybrid operator that is imple- 
mented. 
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4. Performance metrics

Several criteria are considered to assess the quality of the pro- 
posed HMOPSO and the profitability of the designed portfolio op- 
timization model. 

4.1. In-sample performance metrics 

According to the prescriptions in Fonseca et al. (2005) , multiple 
runs are employed in order to obtain a sample of competing fronts 
for each algorithm and for each instance of the test problems. 

Since the true Pareto fronts are unknown, the effectiveness of 
each procedure has been measured on the basis of three criteria: 

i) The diversification level attained by the optimal portfolios;
ii) The capacity to generate an appropriate number of non- 

dominated solutions that satisfy the risk parity principle at
least approximately;

iii) The capacity of the approximated Pareto front to converge to- 
ward the true Pareto front by spanning a suitable portion of
non-dominated risk-return profiles.

Accordingly, optimal solution sets with large number of well- 
diversified feasible non-dominated portfolios, enclosing large areas 
of the risk-return space and scattering evenly are generally desir- 
able. 

Two performance metrics are used to summarize the in-sample 
experimental results. The first indicator is the Herfindahl index of 
risk contributions ( Roncalli, 2013 ), defined as 

h (x ) = 
n ∑ 

i =1

(
x i ( Cx ) i 
x � Cx 

)2

. (36) 

It simultaneously quantifies the magnitude of deviations from risk 
parity and the diversification level of the portfolio x ∈ X . If there 
are K active positions, then it is easy to verify that 1/ K ≤h ( x ) ≤1. 
When h (x ) = 1 , the risk contribution is concentrated in only one 
asset. For h (x ) = 1 /K the portfolio is fully diversified among the 
active assets, thus satisfying condition (12) . 

Preliminary to the introduction of the second performance 
metric, which will be used to compare the overall quality of 
the approximation sets, is the notion of hypervolume indicator 
( Zitzler and Thiele, 1998 ). The hypervolume of a given (approxi- 
mated) Pareto front PF measures the size of the region of the ob- 
jective space dominated by at least one of the members of PF and 
bounded by a selected reference point, that is dominated by all the 
points of PF . In our context, with two objectives to minimize, the 
reference point is r = (r 1 , r 2 ) and the hypervolume is computed by 

HV (P F , r ) = Leb 
(
∪ ( y 1 ,y 2 ) ∈ PF [ y 1 , r 1 ] × [ y 2 , r 2 ] 

)
(37) 

where Leb (A ) is the Lebesgue measure of a set A . In this man- 
ner, HV evaluates the closeness of the solutions to the optimal set 
and captures the spread of the solutions over the objective space. 
Thus, larger hypervolume indicator values imply a larger distance 
from the reference point and indicate solutions are scattered more 
evenly in the objective space. 

Despite its effectiveness in evaluating an approximation, the hy- 
pervolume indicator presents some drawbacks. From one hand, it 
is sensitive to the relative scaling of the objectives and to the pres- 
ence or absence of extremal points in a front ( Zitzler et al., 2007 ; 
Li et al., 2015 ). This results in favoring an approximation set which 
has better converged for the least-scaled objective function or has 
more points that are extremal. On the other hand, hypervolume 
depends strongly on the choice of the reference point ( Auger et al., 
2009 ). Different reference points may result in different evalua- 
tions. Moreover, all possible vectors in the comparison must dom- 
inate the reference point; otherwise, the evaluations of the indica- 

tor may not make any sense, for example, reporting negative val- 
ues ( Lizárraga, 2009 ). 

In this study, assuming the approximation sets have cardinality 
S ≥2, the following procedure is proposed to avoid these pitfalls. 
First, the objective function values are projected onto the interval 
[0, 1] by Eqs. (33) and (34) . Second, noting that in the [0, 1] 2 space 
the worst solution for our optimization problem is represented by 
the point (1, 1), we choose as reference point the vector 

r = ( 1 + r, 1 + r ) (38) 

where r > 0. In the experiments we will set r = 
√ 
2 / (S − 1) , adapt- 

ing ( Cao et al., 2015 ). With this choice of r , fronts with uniformly 
distributed points are preferred. The evaluation of the hypervol- 
ume is conducted as follows. 

Proposition 2. Let ̂ P F =
{(

y s 
1 , y 

s 
2 
)

∈ [0 , 1] 2 | s = 1 , . . . , S 
}
, S ≥2, be a 

normalized discrete Pareto front for the RP-CCPOP, then the corre- 
sponding hypervolume indicator with respect to the reference point 
(38) can be formulated as

HV 
(̂ P F , r 

)
= 

S−1 ∑ 

s =1

(
y s +1 
1 − y s1

)
( 1 − y s 2 ) +

(
1 − y S1

)(
1 − y S2

)

+ r(1 − y 1 1 ) + r(1 − y S 2 ) + r 2 . (39) 

Proof. Without loss of generality, let us assume that the solutions 
in ̂ P F are sorted by the first criterion in ascending order, i.e., y s 

1 ≤
y s +1 
1 , for s = 1 , . . . , S − 1 . The hypervolume indicator with respect 

to r = ( 1 + r, 1 + r ) is then (̂ P F , r
)

= 
(
y 2 1 − y 11

)(
1 − y 1 2 + r

)
+ . . . +

(
y S 1 − y S−1

1 
)(
1 − y S−1 

2 + r
)

+ 
(
1 − y S 1 + r

)(
1 − y S 2 + r

)

= 
S−1 ∑ 

s =1

(
y s +1 
1 − y s1

)
( 1 − y s 2 ) +

(
1 − y S1

)(
1 − y S2

)
+ r(1 − y 1 1 ) 

+ r(1 − y S 2 ) + r 2 .

�

We can now describe the second performance metric used 
in the experiments, the so-called contribution rate indicator 
( Cao et al., 2015 ). To this end, let PF 1 , PF 2 and PF 3 be the approx- 
imation fronts generated by the three versions of HMOPSO and 
denote by PF their combination based on Pareto dominance defi- 
nition. Since the true Pareto front is unknown and PF is the best 
available approximation, PF is regarded as a surrogate for the true 
Pareto front. The procedure to compute the contribution rate indi- 
cator is as follows. 

1. From each approximated Pareto front PF i , i = 1 , 2 , 3 , obtain the
subset P F � 

i = P F i ∩ P F , i.e., the set of criterion vectors in PF i 
which are not dominated by PF . 

2. Normalize PF and P F � 
i , i = 1 , 2 , 3 , by employing (33) and 

(34) with � = 0 and using as extreme values those in PF . De- 
note these sets as ̂ P F and ̂ P F i , i = 1 , 2 , 3 , respectively.

3. Calculate the hypervolume indicators HV
(̂ P F , r

)
and HV 

(̂ P F i , r
)
,

i = 1 , 2 , 3 , with respect to the reference point (38) according to 
Eq. (39) . 

4. Define the contribution rate associated to each approximation

set as

CR 
(̂ P F i , ̂  P F , r

)
= 

HV 
(̂ P F i , r

)
HV 

(̂ P F , r
) , i = 1 , . . . , n. (40) 

Values of CR 
(̂ P F i , ̂  P F , r

)
close to 1 suggest that the i th approxi- 

mation front is very close to the surrogate Pareto front. Moreover, 
if C R 

(̂ P F i , ̂  P F , r 
)

> C R 
(̂ P F j , ̂  P F , r 

)
, with i � = j , then PF i is a better ap- 

proximation than PF j , and the comparison of the contribution rate 
gives a sense of the magnitude of the difference. 



8

Table 2
Data sets from Bruni et al. (2016) with corresponding time window,

number of weeks and number of market constituents ( n ) used in the
estimation of parameters, and portfolio cardinalities K imposed in each
application of HMOPSO.

Data set name Time window Weeks Assets ( n ) Cardinality ( K )

DowJones 02/1990 – 04/2016 1363 28 5 10 15 20

FF49Industries 07/1969 – 07/2015 2325 49 5 10 20 40

NASDAQ100 11/2004 – 04/2016 596 82 5 10 20 40

Table 3
Configuration of HMOPSO parameters for the
experimental analysis.

Parameter Value

w 0.4

c 1 1.494

c 2 1.494

v min 0.002

v max 0.2

p m 1 0.5

p m 2 0.1

div 10

γ 10

S 200

t max 10 0 0

Table 4
Average number of non-dominated solutions included into the external archive
G best of the proposed algorithm adopting the constrained domination principle 
(HMOPSO-CDP), with self-adaptive tolerance (HMOPSO-ST) and using self-adaptive
penalty (HMOPSO-SP) classified by data set and cardinality instance ( K ).

Data set K HMOPSO-CDP HMOPSO-ST HMOPSO-SP

DowJones

5 199.00 198.90 58.95

10 186.20 165.75 56.45

15 126.75 119.95 42.55

20 10 0.0 0 101.50 25.25

FF49Industries

5 199.95 197.90 36.00

10 171.30 150.45 46.95

20 86.25 77.50 21.00

40 79.65 80.85 9.70

NASDAQ100

5 199.10 199.55 33.50

10 20 0.0 0 199.90 55.60

20 162.95 145.30 34.50

40 57.80 62.50 16.15

Table 6
Wilcoxon rank-sum test for the Herfindahl index of risk contributions
(36) : HMOPSO using self-adaptive penalty (HMOPSO-SP) vs HMOPSO

adopting the constrained domination principle (HMOPSO-CDP) and
HMOPSO with self-adaptive tolerance (HMOPSO-ST) classified by data
set and cardinality ( K ). The symbol “↑ ” means that HMOPSO-SP has
yielded better results than the algorithm in the column at a 5% con- 
fidence level, “↓ ” indicates that the algorithm in the column is statisti- 
cally better than HMOPSO-SP and “↔ ” is used when there is no statis- 
tical difference between algorithms.

Data set K HMOPSO-CDP HMOPSO-ST

DowJones

5 ↓ ↑
10 ↑ ↑
15 ↑ ↑
20 ↑ ↑

FF49Industries

5 ↔ ↓
10 ↑ ↓
20 ↑ ↓
40 ↑ ↑

NASDAQ100

5 ↑ ↑
10 ↔ ↔ 
20 ↑ ↓
40 ↑ ↓

A rigorous assessment of the robustness of the results can then 
be performed on the basis of nonparametric inference testing. In 
particular, we use the Wilcoxon’s rank-sum test for independent 
samples at the 5% significance level to judge whether the results 
obtained with the best performing procedure differ from the re- 
sults of the rest of competitors in a statistically significant way. 

4.2. Out-of-sample performance metrics 

We evaluate the out-of-sample performance of each portfolio 
optimization model with a set of statistics. Let us denote by t 0 and 
T the last in-sample and the last out-of-sample time respectively 
and let us indicate by r out t , t = t 0 + 1 , . . . , T , the portfolio rates of 
return for each strategy in the out-of-sample period, respectively. 
The first performance measure we introduce is the Sharpe ratio 
( Sharpe, 1966 ), which evaluates the compensation earned per unit 
of portfolio total risk. It is defined as the ratio between the an- 
nualized average μout of r out t , and the annualized sample standard 
deviation σ out as follows 

SR = 
μout 

σ out . (41) 

Table 5
Optimal values of Herfindahl index of risk contributions, h min , with the corresponding mean and standard deviation
values attained by the proposed algorithm adopting the constrained domination principle (HMOPSO-CDP), with self- 
adaptive tolerance (HMOPSO-ST) and using self-adaptive penalty (HMOPSO-SP) classified by data set and cardinality
instance ( K ).

Data set K h min HMOPSO-CDP HMOPSO-ST HMOPSO-SP

Mean std Mean std Mean std

DowJones

5 0.2 0.2177 0.0427 0.2341 0.0734 0.2081 0.0037

10 0.1 0.1203 0.0328 0.1245 0.0429 0.1092 0.0043

15 0.0667 0.0956 0.0332 0.0986 0.0441 0.0758 0.0039

20 0.05 0.0889 0.0350 0.0896 0.0391 0.0572 0.0034

FF49Industries

5 0.2 0.2163 0.0307 0.2150 0.0306 0.2092 0.0045

10 0.1 0.1136 0.0187 0.1102 0.0186 0.1078 0.0035

20 0.05 0.0682 0.0189 0.0608 0.0168 0.0564 0.0030

40 0.025 0.0366 0.0075 0.0358 0.0077 0.0268 0.0015

NASDAQ100

5 0.2 0.2072 0.0107 0.2140 0.0262 0.2052 0.0027

10 0.1 0.1073 0.0067 0.1082 0.0125 0.1068 0.0027

20 0.05 0.0580 0.0054 0.0564 0.0049 0.0567 0.0024

40 0.025 0.0302 0.0041 0.0287 0.0032 0.0283 0.0013
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Table 7
Mean and standard deviation values of the CR performance metric (40) for the proposed algorithm adopting
the constrained domination principle (HMOPSO-CDP), with self-adaptive tolerance (HMOPSO-ST) and using self- 
adaptive penalty (HMOPSO-SP) divided by data set and cardinality ( K ).

Data set K HMOPSO-CDP HMOPSO-ST HMOPSO-SP

Mean std Mean std Mean std

DowJones

5 0.8635 0.0506 0.9916 0.0049 0.4616 0.2104

10 0.9634 0.0144 0.9506 0.0220 0.5480 0.0561

15 0.9644 0.0165 0.9408 0.0165 0.4226 0.1212

20 0.9744 0.0089 0.9445 0.0222 0.1258 0.1614

FF49Industries

5 0.9750 0.0119 0.9636 0.0175 0.5824 0.0589

10 0.9823 0.0104 0.9205 0.0334 0.5763 0.0651

20 0.9788 0.0180 0.6527 0.2332 0.3835 0.0824

40 0.9712 0.0175 0.9488 0.0329 0.0748 0.1270

NASDAQ100

5 0.8779 0.0867 0.9877 0.0093 0.5048 0.2633

10 0.9559 0.0282 0.9733 0.0218 0.3772 0.3204

20 0.9250 0.1065 0.8526 0.0852 0.3671 0.3115

40 0.9279 0.0756 0.7940 0.1415 0.5391 0.1931

Table 8
Wilcoxon rank-sum test for the CR performance metric (40) : HMOPSO

adopting the constrained domination principle (HMOPSO-CDP) vs.

HMOPSO using self-adaptive tolerance (HMOPSO-ST) and HMOPSO with

self-adaptive penalty (HMOPSO-SP) classified by data set and cardinal- 
ity ( K ). The symbol “↑ ” means that HMOPSO-CDP has yielded better 
results than the algorithm in the column at a 5% confidence level, “↓ ”
indicates that the algorithm in the column is statistically better than
HMOPSO-CDP and “↔ ” is used when there is no statistical difference 
between algorithms.

Data set K HMOPSO-ST HMOPSO-SP

DowJones

5 ↑ ↑
10 ↔ ↑
15 ↑ ↑
20 ↑ ↑

FF49Industries

5 ↑ ↑
10 ↑ ↑
20 ↑ ↑
40 ↑ ↑

NASDAQ100

5 ↓ ↑
10 ↓ ↑
20 ↑ ↑
40 ↑ ↑

Table 9
Mean total CPU times (in seconds) for the proposed algorithm adopting the
constrained domination principle (HMOPSO-CDP), with self-adaptive tolerance

(HMOPSO-ST) and using self-adaptive penalty (HMOPSO-SP) classified by data set
and cardinality ( K ).

Data set K HMOPSO-CDP HMOPSO-ST HMOPSO-SP

DowJones

5 33.43 32.36 19.15

10 43.57 44.20 32.15

15 52.89 53.41 45.26

20 62.91 63.39 58.61

FF49Industries

5 43.40 45.35 32.14

10 67.69 70.10 57.91

20 112.95 115.75 111.15

40 214.67 218.95 215.45

NASDAQ100

5 67.85 68.62 55.29

10 114.49 118.31 104.98

20 209.73 216.05 201.56

40 404.56 406.80 396.87

The attractiveness of the two investment opportunities is also eval- 
uated by the so-called Omega ratio ( Keating and Shadwick, 2002 ), 
which gauges favorable and unfavourable excess returns with re- 
spect to a user-defined threshold. In this paper, the threshold is 

set to 0 and the resulting measure can be written in the form 

� = 

∑ T
t= t 0 +1 r 

out 
t 1 { r out t > 0 }

−∑ T
t= t 0 +1 r 

out 
t 1 { r out t < 0 }

(42) 

where, for a logical proposition q , 1 q = 1 if q is true, and 1 q = 0 
otherwise. Higher values of SR and � are preferable. 

The downside risk is measured by the maximum drawdown, 
which represents the maximum loss from a peak to a trough, be- 
fore a new peak is attained. More precisely, let us consider the cu- 
mulative out-of-sample portfolio returns, which correspond to the 
values of wealth after t periods 

W t = W t−1 (1 + r out t ) (43) 

with t = t 0 + 1 , . . . , T and W t 0 +1 = 1 , then the drawdowns are de- 
fined as 

DD t = −W t − max t 0 +1 ≤s ≤t W s 
max t 0 +1 ≤s ≤t W s 

.

The maximum drawdown, which corresponds to the largest loss 
achieved over the out-of-sample, is 

MDD = max t 0 +1 ≤s ≤t DD t . (44) 

Two other statistics we also consider to provide further informa- 
tion about the left tail of the portfolio return distribution, namely 
the value-at-risk and the conditional value-at-risk. After sorting 
out-of-sample portfolio returns in ascending order, i.e. r out 

(t 0 +1) ≤
r out 
(t 0 +2) ≤ . . . r out 

(T ) , the value-at-risk at the confidence level α can be 

defined as 

V aR α = −r out 
( � α( T −t 0 −1 ) � ) (45) 

where α ∈ (0, 1). The conditional value-at-risk at the confidence 
level α can be estimated as 

CV aR α = −
∑ T

t= t 0 +1 r 
out 
(t) 1 { r out (t) ≤−VaR α} ∑ T

t= t 0 +1 1 { r out (t) ≤−VaR α} 
. (46) 

In the experimental comparison we will set α = 10% . 
The average of the diversification index introduced by 

Woerheide and Persson (1993) is used to measure the diversifica- 
tion level of optimal portfolios. It is given by 

DI = 
1 

T − t 0 

T ∑ 

t= t 0 +1 

(
1 −

n ∑ 

i =1

x 2 i,t

)
(47) 

in which x i,t is the portfolio weight of asset i at time t . A greater 
value of DI implies a greater diversification level. 
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Fig. 1. Efficient frontiers for CCPOP and RP-CCPOP models related to the DowJones data set with K in {5, 10, 15, 20}. The top left chart refers to portfolios with cardinality
K = 5 , the top right displays portfolios with K = 10 , the remaining plots regard solutions with K = 15 (on the left) and with K = 20 (on the right), respectively. 

Table 10
Mean and standard deviation values of the CR performance metric (40) for the
NS-MOPSO and HMOPSO ∗ algorithms classified by data set and cardinality ( K ). 
The “rank-sum” column reports the corresponding results for the Wilcoxon rank- 
sum test. The symbol “↑ ” means that NS-MOPSO has yielded better results than 
HMOPSO ∗ at a 5% confidence level, “↓ ” indicates that the algorithm in the column 
is statistically better than NS-MOPSO.

Data set K NS-MOPSO HMOPSO ∗

Mean std Mean std Rank-sum

DowJones

5 0.7663 0.0389 0.9810 0.0087 ↓ 
10 0.6806 0.0378 0.9784 0.0137 ↓
15 0.4493 0.1959 0.9999 0.0 0 01 ↓ 
20 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 0.0 0 0 0 ↓ 

FF49Industries

5 0.8636 0.0375 0.8085 0.0730 ↑
10 0.7799 0.0332 0.8981 0.0490 ↓ 
20 0.2977 0.0979 0.9933 0.0045 ↓ 
40 0.0 0 0 0 0.0 0 0 0 1.0 0 0 0 0.0 0 0 0 ↓ 

NASDAQ100

5 0.9217 0.0733 0.9798 0.0118 ↓
10 0.8257 0.2372 0.9869 0.0141 ↓
20 0.1772 0.2805 0.9986 0.0046 ↓ 
40 0.0342 0.1158 1.0 0 0 0 0.0 0 0 0 ↓ 

Finally, to get an impression of the transaction costs involved, 
we calculate the average turnover over the out-of-sample period 

as defined in DeMiguel et al. (2007) 

turnov er = 
1 

T − t 0 

T ∑ 

t= t 0 +1 

n ∑ 

i =1

| x i,t+1 − x i,t | (48) 

in which x i,t is the portfolio weight of asset i at time t and x i,t+1 
is the portfolio weight after rebalancing. The value of this statistic 
equals the average weekly amount of buy and sell transactions as a 
percentage of the portfolio value. Thus, a greater value of turnover 
indicates a more expensive investment strategy. 

5. Computational analysis

This section is divided into two parts. First, we assess the capa- 
bilities of the variants of HMOPSO to generate well-distributed ap- 
proximations to the Pareto front for the RP-CCPOP. Then, we com- 
pare the performance of the portfolios optimized in terms of the 
CCPOP with and without the risk parity constraint in order to high- 
light strengths and weaknesses of the proposed investment strat- 
egy. 

5.1. Comparison of HMOPSO variants 

The behavior of the aforementioned variants of HMOPSO is ana- 
lyzed on the public data sets available in Bruni et al. (2016) . Specif- 
ically, the following three groups of stocks are considered: Dow 
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Table 11
Out-of-sample performance measures for the investment strategies related to CCPOP and RP-CCPOP 
models classified by cardinality ( K)  relative to the last 53 weeks of the DowJones data set with 
weekly rebalancing. “SR ” is  the annualized Sharpe ratio, “�” is  the weekly Omega ratio, “MDD” 
denotes the maximum drawdown, “VaR 10% ” and  “CVaR 10% ” represent respectively the value-at-risk 
and the conditional value-at-risk at the 10% significance level, “DI ” is  the mean of the diversification 
index for the portfolio weights and “turnover” provides the mean turnover.

K CCPOP RP-CCPOP

5 10 15 20 5 10 15 20

SR 0.4006 0.3538 −0.0293 0.0728 0.4150 1.0302 0.6449 0.3836

� 0.7931 0.9084 0.8497 0.8201 0.8647 0.8389 0.7967 0.8496

MDD 0.1362 0.1219 0.1486 0.1073 0.1345 0.0832 0.0549 0.0480

VaR 10% 0.0291 0.0282 0.0297 0.0226 0.0304 0.0208 0.0169 0.0101

CVaR 10% 0.0573 0.0539 0.0516 0.0443 0.0562 0.0349 0.0265 0.0189

DI 0.0280 0.0312 0.0312 0.0322 0.0289 0.0328 0.0344 0.0349

turnover 0.2544 0.5183 0.7180 0.6966 0.2577 0.5170 0.4668 0.2878

Table 12
Out-of-sample performance measures for the investment strategies related to CCPOP and RP- 
CCPOP models classified by cardinality ( K ) relative to the last 53 weeks of the FF49Industries
data set with weekly rebalancing. “SR ” is the annualized Sharpe ratio, “�” is the weekly Omega

ratio, “MDD ” denotes the maximum drawdown, “VaR 10% ” and “CVaR 10% ” represent respectively the
value-at-risk and the conditional value-at-risk at the 10% significance level, “DI ” is the mean of
the diversification index for the portfolio weights and “turnover ” provides the mean turnover.

CCPOP RP-CCPOP

K 5 10 20 40 5 10 20 40

SR 2.0705 1.6621 1.2413 0.6384 2.0896 1.6291 1.0705 0.4317

� 1.6368 1.4159 1.0378 0.9862 1.5285 1.3914 0.9761 1.3565

MDD 0.0320 0.0492 0.0551 0.0563 0.0279 0.0527 0.0592 0.0359

VaR 10% 0.0107 0.0158 0.0183 0.0173 0.0102 0.0194 0.0203 0.0079

CVaR 10% 0.0183 0.0207 0.0234 0.0247 0.0183 0.0225 0.0257 0.0117

DI 0.0159 0.0179 0.0189 0.0198 0.0160 0.0180 0.0192 0.0195

turnover 0.1779 0.3693 0.6267 0.6674 0.1849 0.3226 0.5494 0.5573

Table 13
Out-of-sample performance measures for the investment strategies related to CCPOP and RP-CCPOP mod- 
els classified by cardinality ( K ) relative to the last 53 weeks of the NASDAQ100 data set with weekly rebal- 
ancing. “SR ” is the annualized Sharpe ratio, “�” is the weekly Omega ratio, “MDD ” denotes the maximum

drawdown, “VaR 10% ” and “CVaR 10% ” represent respectively the value-at-risk and the conditional value-at- 
risk at the 10% significance level, “DI ” is the mean of the diversification index for the portfolio weights

and “turnover ” provides the mean turnover.

CCPOP RP-CCPOP

K 5 10 20 40 5 10 20 40

SR −0.3287 −0.2462 −0.3536 0.0271 −0.0503 −0.0603 0.0141 0.2433

� 0.5972 0.5675 0.5437 0.6 84 8 0.6644 0.6618 0.6285 0.6872

MDD 0.2423 0.2405 0.2453 0.1802 0.1943 0.1958 0.1871 0.1547

VaR 10% 0.0449 0.0427 0.0384 0.0410 0.0396 0.0383 0.0342 0.0382

CVaR 10% 0.0798 0.0760 0.0739 0.0697 0.0760 0.0715 0.0648 0.0663

DI 0.0096 0.0108 0.0113 0.0119 0.0097 0.0109 0.0115 0.0119

turnover 0.3299 0.4330 0.5479 0.5079 0.3465 0.4053 0.5487 0.5728

Table 14
Out-of-sample performance measures for the investment strategies related to CCPOP and RP- 
CCPOP models classified by cardinality ( K ) relative to the last 53 weeks of the DowJones data
set with monthly rebalancing. “SR ” is the annualized Sharpe ratio, “�” is the weekly Omega ra- 
tio, “MDD ” denotes the maximum drawdown, “VaR 10% ” and “CVaR 10% ” represent respectively the
value-at-risk and the conditional value-at-risk at the 10% significance level, “DI ” is the mean of
the diversification index for the portfolio weights and “turnover ” provides the mean turnover.

CCPOP RP-CCPOP

K 5 10 20 40 5 10 20 40

SR 0.4073 0.3253 0.1876 0.2919 0.2246 0.0584 −0.0158 0.1387

� 0.7936 0.8925 0.7842 0.8160 0.7408 0.8126 0.8528 0.7168

MDD 0.1372 0.1272 0.1338 0.1084 0.1387 0.1345 0.0725 0.0564

VaR 10% 0.0304 0.0273 0.0314 0.0276 0.0287 0.0270 0.0150 0.0119

CVaR 10% 0.0615 0.0542 0.0552 0.0504 0.0601 0.0531 0.0275 0.0220

DI 0.0280 0.0312 0.0319 0.0317 0.0287 0.0325 0.0343 0.0350

turnover 0.0734 0.1408 0.1618 0.1602 0.0744 0.1362 0.1071 0.0740
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Table 15
Out-of-sample performance measures for the investment strategies related to CCPOP and RP- 
CCPOP models classified by cardinality ( K)  relative to the last 53 weeks of the FF49Industries 
data set with monthly rebalancing. “SR ” is  the annualized Sharpe ratio, “�” is  the weekly Omega 
ratio, “MDD” denotes the maximum drawdown, “VaR 10% ” and  “CVaR 10% ” represent respectively the 
value-at-risk and the conditional value-at-risk at the 10% significance level, “DI ” is  the mean of 
the diversification index for the portfolio weights and “turnover” provides the mean turnover.

CCPOP RP-CCPOP

K 5 10 20 40 5 10 20 40

SR 1.8358 1.4360 1.2331 0.3629 1.9389 1.6371 0.9724 1.1034

� 1.3864 1.2955 1.2148 0.9001 1.3294 1.3932 1.0200 1.3740

MDD 0.0375 0.0505 0.0607 0.0689 0.0376 0.0411 0.0599 0.0209

VaR 10% 0.0139 0.0185 0.0198 0.0234 0.0127 0.0150 0.0212 0.0087

CVaR 10% 0.0194 0.0216 0.0247 0.0273 0.0188 0.0209 0.0253 0.0115

DI 0.0159 0.0180 0.0189 0.0199 0.0159 0.0180 0.0192 0.0196

turnover 0.0665 0.0831 0.1607 0.1496 0.0814 0.1020 0.1402 0.1281

Table 16
Out-of-sample performance measures for the investment strategies related to CCPOP and RP-CCPOP
models classified by cardinality ( K ) relative to the last 53 weeks of the NASDAQ100 data set with

monthly rebalancing. “SR ” is the annualized Sharpe ratio, “�” is the weekly Omega ratio, “MDD ”
denotes the maximum drawdown, “VaR 10% ” and “CVaR 10% ” represent respectively the value-at-risk and
the conditional value-at-risk at the 10% significance level, “DI ” is the mean of the diversification index
for the portfolio weights and “turnover ” provides the mean turnover.

CCPOP RP-CCPOP

K 5 10 20 40 5 10 20 40

SR -0.3944 -0.2395 -0.1957 0.1566 -0.2690 -0.0820 0.0827 0.1607

� 0.6301 0.6681 0.6272 0.6121 0.7145 0.6560 0.7574 0.6656

MDD 0.3043 0.2532 0.2458 0.1749 0.2733 0.2198 0.1853 0.1599

VaR 10% 0.0475 0.0410 0.0429 0.0389 0.0402 0.0439 0.0355 0.0402

CVaR 10% 0.0850 0.0763 0.0743 0.0701 0.0853 0.0753 0.0671 0.0669

DI 0.0096 0.0108 0.0114 0.0119 0.0097 0.0109 0.0115 0.0119

turnover 0.1511 0.1146 0.1593 0.1361 0.1472 0.1216 0.1486 0.1454

Jones Industrial Average, Fama and French 49 Industry and NAS- 
DAQ 100. Columns 2–4 of Table 2 report the periods involved in 
the experiments with the corresponding number of weeks and as- 
sets. In order to analyze robustness and scaling of HMOPSO, and 
to identify the best choice among the proposed hybrid constraint- 
handling techniques, we have considered 12 instances of the RP- 
CCPOP by varying the number K of assets to include in the optimal 
portfolios according to the dimension n of the investible universe. 
The last column of Table 2 presents the cardinalities chosen. 

The expected rates of return and covariance matrices of the 
stocks are calculated as sample estimates based on all the weekly 
data available in the corresponding data sets. 

The algorithms have been implemented in a MATLAB environ- 
ment and are run on a PC with Intel Core i7 3.0 GHz with 8 GB 
RAM. 

5.1.1. Parameters setting 
Before performing the experiments, HMOPSO parameters have 

been tuned over the Dow Jones market following the procedure in 
Eiben and Smit (2011) . The best values are listed in Table 3 . 

Moreover, the tolerance parameter τ for equality constraints re- 
laxation has been fixed to 5 × 10 −5 . 

For each RP-CCPOP instance, we carried out 20 independent 
runs of the three versions of HMOPSO to collect statistics. The 
lower and upper bounds for the stocks weights are l i = 0 . 001 and 
u i = 1 , i = 1 , . . . , n, respectively. These are usual constraint values 
utilized in the literature (see, Anagnostopoulos and Mamanis, 2011; 
Meghwani and Thakur, 2017 and Lwin et al., 2014 ). Note that with 
this choice of bounds, conditions 2 and 3 of Proposition 1 are au- 
tomatically verified by any combination of assets. 

5.1.2. Experimental results and discussion 
The first analysis focuses on the capability of HMOPSO to gen- 

erate an appropriate number of feasible non-dominated solutions. 

Table 4 reports the mean number of optimal solutions included 
in the external archive G best , for each variant of the proposed algo- 
rithm, and for all instances of RP-CCPOP. Table 5 shows mean and 
standard deviation values of the Herfindahl index for risk contri- 
butions computed as in (36) . Table 6 displays the Wilcoxon’s rank- 
sum test for the h values of the optimal portfolios. We can no- 
tice that the variants of HMOPSO adopting the constrained domi- 
nation principle and the self-adaptive tolerance to manage risk par- 
ity produce, on average, comparable number of optimal portfolios. 
Whereas, HMOPSO using the third constraint-handling mechanism 
generates archives with a size less than a quarter of those of its 
competitors. It should be noticed that, if we compare the h values 
of the optimal portfolios identified by the solvers with the corre- 
sponding attainable minimum values reported in the second col- 
umn of Table 5 , HMOPSO with self-adaptive penalty provides, on 
average, the best performance with the lowest standard deviation. 
The next table confirms the superiority of this variant with respect 
to that based on the constrained domination principle. The com- 
parison with HMOPSO using self-adaptive tolerance is more com- 
plex. The implementation of a self-adaptive penalty outperforms 
the application of a self-adaptive tolerance in all instances of the 
Dow Jones data set. However, as the dimension of the market in- 
creases, the second mechanism attains better results. 

Convergence and diversity are assessed in a single scale through 
the CR indicator (40) . Table 7 displays the corresponding mean 
and standard deviation values. The results for this metric indicate 
the use of the constrained domination principle as be the best 
choice in HMOPSO. The version based on the self-adaptive tol- 
erance presents, in general, slightly worse results. Moreover, the 
Wilcoxon rank-sum test given in Table 8 corroborates these find- 
ing from the statistical point of view. 

The mean total CPU times (in seconds) for the examined test 
problems are listed in Table 9 . You can see that the proposed 
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Fig. 2. Out-of-sample evolution of the wealth for the portfolios related to CCPOP and RP-CCPOP models over the last 53 weeks of the DowJones data set, taking into account
weekly and monthly rebalancing strategies. The top left chart refers to portfolios with cardinality K = 5 , the top right displays portfolios with K = 10 , the remaining plots 
regard solutions with K = 15 (on the left) and with K = 20 (on the right), respectively. 

algorithms present similar performance, with a slightly lower com- 
putational time for the HMOPSO with self-adaptive penalty. 

Summing up, the developed algorithm exploiting the con- 
strained domination principle is able to generate a large number 
of approximated RP portfolios with satisfactory risk-return tradeoff. 
The introduction into HMOSPO of a self-adaptive penalty provides 
the closest results to risk parity, but the sets of efficient portfolios 
it identifies are very small. In general, the integration of a self- 
adaptive tolerance to risk parity into HMOPSO guarantees the best 
balance between the number of optimal solutions produced and 
the quality of risk parity approximations. 

5.2. Comparison between CCPOP and RP-CCPOP in terms of Pareto 
fronts 

In this section, we compare the portfolios obtained by RP- 
CCPOP with those identified by the cardinality constrained mean- 
variance model. The comparison is based on the corresponding ef- 
ficient frontiers. 

We obtain a solver for mean-variance problems with car- 
dinality, buy-in thresholds and budget constraints, denoted by 
HMOPSO ∗, by removing the mechanism related to the risk par- 
ity constraints from HMOPSO. We compare HMOPSO ∗ with the 
non-dominated sorting multi-objective particle swarm optimiza- 

tion (NS-MOPSO) algorithm proposed in Mishra et al. (2014) , 
customized for CCPOP. Similar to HMOPSO ∗, it bases the explo- 
ration of the search space on the non-dominated sorting, uses 
a repair mechanism for the portfolio constraints, changes ve- 
locity direction with a fixed probability and adopts a clamp- 
ing technique. The main differences are the following. First, NS- 
MOPSO implements the hybrid solution representation proposed 
by Streichert et al. (2004) for defining a portfolio. According to 
this approach, a binary vector specifies whether a particular as- 
set participates in the portfolio, and a real-valued vector is used to 
compute the proportions of the budget invested in the assets. Sec- 
ond, it does not consider any mutation operator for the portfolio 
weights. 

The structure of the experiments is the same as that described 
in Section 5.1 , with the data sets and the cardinalities ( K ) listed 
in Table 2 . The parameters used in HMOPSO ∗ are those reported 
in Table 3 . For the NS-MOPSO algorithm, we adopt the parameter 
setting recommended by Mishra et al. (2014) , i.e., w = 0 . 862 , c 1 = 
c 2 = 2 . 05 , v min = 0 . 06 and v max = 0 . 5 . 

It is evident from the computational results given in Table 10 , 
that the proposed simplified version of HMOPSO overperforms its 
competitor in almost all test problems in terms of contribution rate 
values. The Wilcoxon’s rank-sum test values confirm these findings 
at a 5% significance level. In particular, we can note that the num- 
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Fig. 3. Out-of-sample evolution of the wealth for the portfolios related to CCPOP and RP-CCPOP models over the last 53 weeks of the FF49Industries data set, taking into
account weekly and monthly rebalancing strategies. The top left chart refers to portfolios with cardinality K = 5 , the top right displays portfolios with K = 10 , the remaining 
plots regard solutions with K = 20 (on the left) and with K = 40 (on the right), respectively. 

ber of non-dominated solutions identified by HMOPSO ∗ increases 
with respect to NS-MOSPO as the cardinality K increases. 

Based on these results and the consideration made in the pre- 
vious section, we will adopt the HMOPSO ∗ for the CCPOP strategy 
while the variant of HMOPSO using a self-adaptive tolerance will 
be used for RP-CCPOP. 

Fig. 1 displays the approximated Pareto fronts for the CCPOP 
solutions and those of the RP-CCPOP respectively, using the data 
from the Dow Jones market and varying the cardinality K in {5, 
10, 15, 20}. The RP-CCPOP strategy is able to replicate the CCPOP 
risk-return profiles for low to medium risks. However, the risk par- 
ity condition limits the investment opportunities when allowable 
risks and cardinality increase. Therefore, for higher levels of risk, 
RP-CCPOP portfolios have lower profits or even are undefined. This 
finding is similar to every risk-based strategy. 

5.3. Out-of-sample comparison of CCPOP and RP-CCPOP strategies 

We now focus on the economic implications of the proposed 
portfolio optimization model. The magnitude of the potential gains 
an investor can realize, by using this strategy instead of the CCPOP 
model, is assessed out-of-sample. 

5.3.1. Out-of-sample results and discussion 
The three data sets listed in Table 2 are also used for the out- 

of-sample analysis. For each of them, we consider the last 53 ob- 
servations as the test set and readjust optimal portfolio weights at 
regular calendar intervals, employing the so-called calendar based 
rebalancing procedure ( Eakins and Stansell, 2007 ). In particular, 
two rolling window strategies are implemented: one combining 
104 weeks to determine optimal portfolios and 1 week for the 
out-of-sample period, the other using 104 weeks in-sample and 
4 weeks out-of-sample. For each in-sample window, the expected 
rates of return and covariance matrices of the stocks are first calcu- 
lated as sample estimates, successively HMOPSO ∗ is used to deter- 
mine CCPOP solutions while the variant of HMOPSO using a self- 
adaptive tolerance is used for RP-CCPOP portfolios. From each set 
of non-dominated portfolios, we extract the one which presents 
the highest in-sample Sharpe ratio. The selected vectors of weights 
are then kept in the next out-of-sample period for evaluating the 
corresponding rates of return. The in-sample window is updated 
by removing the oldest data and including the most recent infor- 
mation, i.e., one week of rates of return in the case of weekly re- 
balancing and four weeks if the changes are needed monthly. This 
procedure is repeated until the last available week. Note that the 
same estimation window is used in both the procedures, since the 
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Fig. 4. Out-of-sample evolution of the wealth for the portfolios related to CCPOP and RP-CCPOP models over the last 53 weeks of the NASDAQ100 data set, taking into
account weekly and monthly rebalancing strategies. The top left chart refers to portfolios with cardinality K = 5 , the top right displays portfolios with K = 10 , the remaining 
plots regard solutions with K = 20 (on the left) and with K = 40 (on the right), respectively. 

impact of estimation error in determining optimal portfolios is not 
under investigation in the paper. In every case, the choice of a 2 
years length for the estimation window seems reasonable, since 
there were no extraordinary economic changes during the period 
2013–2016. On the other hand, we test the robustness of the solu- 
tions by varying the length of the rebalancing window. 

Tables 11–13 report the performance statistics of the CCPOP and 
the RP-CCPOP models relative to the first rebalancing procedure for 
the DowJones, FF49Industries and NASDAQ100 data sets by vary- 
ing the cardinality K . The most profitable strategies in terms of the 
annualized Sharpe ratio are those implementing RP-CCPOP. How- 
ever, the quality of the results crucially depends on the choice of 
the portfolio cardinality. Indeed, for the first two data sets, port- 
folios with K ≤20 attain the maximum values of SR (1.0302 and 
2.0896). In the last experiment, a portfolio with 40 assets guar- 
antees the best performance (0.2433). The CCPOP models involv- 
ing portfolios with 15 to 40 assets attain the worst results. The 
two strategies present comparable values for the Omega ratio (42) . 
With respect to the downside risk measures (44), (45) and (46) , we 
can see that the proposed strategy produces the lowest extreme 
losses. Moreover, the level of diversification of the RP-CCPOP port- 
folios is slightly better than that attained by the CCPOP portfolios 
with a lower turnover. 

Tables 14–16 list the results with monthly rebalancing. For the 
DowJones data set, the CCPOP portfolios are the most promising in 
terms of both the Sharpe ratio and the Omega ratio. In the second 
experiment, the SR criterion indicates the RP-CCPOP with K = 5 as 
the best choice, while � suggests the use of the CCPOP with K = 5 . 
For the NASDAQ100, the RP-CCPOP models give the best results of 
the performance ratios. Overall, analyzing the behavior of the op- 
timal solutions in terms of the tail risk, we note that RP-CCPOP 
portfolios improve their control on the losses with respect to the 
CCPOP portfolios as K increases. The proposed strategy shows a 
better level of diversification and lower turnover in all the experi- 
ments, analogously to the case of weekly rebalancing. 

Figs. 2–4 report the evolution over the out-of-sample period 
of the wealth (43) for the RP-CCPOP portfolios with weekly and 
monthly rebalancing, denoted by RP-CCPOP 1 and RP-CCPOP 4 re- 
spectively, in comparison to the corresponding CCPOP counter- 
parts, CCPOP 1 and CCPOP 4 , and the related market index. We 
assume an initial wealth of 1$ for all the portfolios. Overall, 
in the first two case studies, the analyzed strategies are more 
profitable than simply investing on the index. For the compar- 
isons involving the data from NASDAQ 100, these strategies tend 
to replicate the benchmark. However, it can be noted that the 
number of constituents and the length of the rebalancing pe- 
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riod affect in a different measure their performance in the three 
experiments. 

For the DowJones data set, the top left chart in Fig. 2 reveals 
that the strategies behave in a similar manner for small sized port- 
folios, irrespective to the frequency of the rebalancing. The next 
chart shows that CCPOP solutions do not change a lot their perfor- 
mance, as the cardinality increases. At the same time, RP-CCPOP 4 
deteriorates, almost settling on the levels of the index, while the 
RP-CCPOP strategy with a weekly rebalancing, RP-CCPOP 1 , guaran- 
tees the best performance, closing with a final rate of return of 
around 14%. RP-CCPOP 1 remains one of the most profitable choices, 
when continuing to increase the cardinality of optimal portfolios, 
even if it reduces the final wealth like all the other strategies. 
Moreover, the role of the risk parity constraint in managing ex- 
treme losses increases. 

In Fig. 3 we can see that the four strategies behave in a very 
similar way and with high profits when they are applied to the 
FF49Industries data set for small to medium sized portfolios. The 
major differences appear in the bottom right chart, where the opti- 
mal portfolios with K = 40 are compared. In this case, we invest in 
almost all the index constituents. The RP-CCPOP 4 solutions show a 
slight improvement compared to the benchmark. 

Fig. 4 points out the capability of the RP-CCPOP strategies to re- 
duce the losses compared to the CCPOP strategies, especially with 
weekly rebalancing. 

Taking into account all these findings, it could be argued that 
the best compromise between performance and risk control is at- 
tained by the RP-CCPOP strategy with a cardinality equal to 20%, 
30% of the constituents of the market and with weekly rebalanc- 
ing. 

6. Conclusions

We have proposed an extension of the Markowitz mean- 
variance asset allocation framework, where cardinality, buy-in 
thresholds, budget constraints and risk parity conditions are han- 
dled at the same time. The resulting mixed-integer bi-objective 
portfolio optimization problem has been tackled by means of a 
novel version of the multi-objective particle swarm optimization 
algorithm, called HMOPSO. This uses a swap mutation operator to 
improve the exploration capabilities of the original algorithm, and 
handles the constraints by a hybrid technique that combines a re- 
pair mechanism with different instances of the domination princi- 
ple. 

The computational analysis on a set of real-world test prob- 
lems confirms the effectiveness and the robustness of HMOPSO. 
In particular, the variant using a self-adaptive tolerance for relax- 
ing the risk parity condition provides the best compromise be- 
tween the quality of solutions produced and the number of op- 
timal risk-return profiles identified on the approximated Pareto 
front. Additional investigations, concerning the standard cardinality 
constrained portfolio optimization, have highlighted the benefits 
of the novel optimization strategy for risk management purposes. 
Indeed, the combination of cardinality constraint and risk parity 
permits to simultaneously control costs and risk contributions. The 
resulting portfolios present losses which are consistently reduced. 
At the same time, profits are comparable, or even higher, with re- 
spect to the portfolios optimized in terms of the standard cardi- 
nality constrained mean-variance model over all the out-of-sample 
period. 

In our future research, we plan to study the performance of 
other bio-inspired algorithms and constraint-handling techniques 
for the RP-CCPOP. At the same time, it will be interesting to study 
the influence of different risk measures on the structure of the in- 
vestible portfolios, when risk parity is included as a constraint. 

List of acronyms and abbreviations 

The following acronyms and abbreviations are used in the text: 

CCPOP cardinality constrained portfolio optimization problem

RP-CCPOP risk parity based cardinality constrained portfolio

optimization problem

MOPSO multi-objective particle swarm optimization

HMOPSO proposed version of MOPSO using a hybrid

constraint-handling technique

HMOPSO ∗ HMOPSO modification to solve cardinality

constrained portfolio optimization problems

NS-MOPSO non-dominated sorting multi-objective particle

swarm optimization

h Herfindahl index of risk contributions

HV hypervolume

CR contribution rate

SR Sharpe ratio

� Omega ratio

MDD maximum drawdown

VaR 10% value-at-risk at the 10% significance level

CVaR 10% conditional value-at-risk at the 10% significance level

DI average of the diversification index
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