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In practical vehicle routing problems (VRPs), important non-monetary benefits can be achieved with more

balanced operational plans which explicitly consider workload equity. This has motivated practitioners to

include a wide variety of balancing criteria in decision support systems, and researchers to examine the

properties of these criteria and the trade-offs made when optimizing them. As a result, previous studies have

provided a much-needed understanding of how different equity functions affect the resulting VRP solutions.

However, by focusing exclusively on models which balance tour lengths, a critical aspect has thus far remained

unexplored – namely the impact of the workload resource subject to the balancing.

In this work, we generalize previous studies to different workload resources, extend the scope of those

analyses to additional aspects of managerial and methodological significance, and reevaluate accordingly

previous conclusions and guidelines for formulating a balance criterion. We propose a classification of workload

resources and equity functions, and establish which general types of balanced VRP models can lead to

unintended optimization outcomes. To explore in greater detail the differences between models satisfying

the given guidelines, we conduct an extensive numerical study of 18 alternative balance criteria. We base

our observations not only on smaller instances solved to optimality, but also on larger instances solved

heuristically, to gauge the extent to which our conclusions hold also for larger VRPs.

Overall, our study counter-balances the focus of previous works and reveals the importance of selecting the

right workload resource. Although the marginal cost of equity is low for all examined models, the trade-off

structure depends primarily on the workload resource, and less on the equity function. For the same resource,

we observe a notable degree of overlap between the solutions found with different equity functions. On the

other hand, VRP solutions which are well-balanced with respect to one resource were found to be of poor

quality when evaluated in terms of other resources. Finally, we observe that solutions with similar cost

and balance tend to exhibit similar solution structure, a property which should be directly exploited by

optimization methods.
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1. Introduction

Workload equity and balanced resource utilization are becoming increasingly important issues

in real-world logistics systems. This stems from the recognition that logistics is not exclusively

cost-driven, and that the marginal cost of more balanced operations can be offset by gains through

lower overtime hours, higher employee satisfaction with lower turnover, better customer service, and

more flexible use of available capacity. These considerations are relevant in a wide variety of practical

vehicle routing problems (VRPs), including service technician routing, vendor-managed inventory

systems, waste collection, parcel delivery, public transportation, and volunteer organizations, among

others (cf. the survey in Matl, Hartl, and Vidal (2017a) for a detailed overview and analysis). The

heterogeneity of these applications is reflected in the many different forms of “balance” objectives

which have been proposed.

The implications of choosing one balance objective over another have only recently started to

be explored. Abstracting from the particularities of specific applications and considering instead

prototypical VRPs, several studies have examined how the structure of optimal VRP solutions

changes depending on the chosen balance criterion, in single-objective (Campbell, Vandenbussche,

and Hermann 2008, Huang, Smilowitz, and Balcik 2012, Bertazzi, Golden, and Wang 2015) as well

as in bi-objective contexts (Halvorsen-Weare and Savelsbergh 2016, Matl, Hartl, and Vidal 2017a).

All of these articles conclude that the choice of a balance criterion has a significant effect on the

resulting VRP solutions, and that this choice should therefore not be made arbitrarily.

However, the generality of the above studies is restricted. Specifically, only a particular class

of balance criteria has thus far been examined – namely those balancing tour distances. Yet the

articles reporting on practice also describe real-world VRPs in which alternative definitions of

workload are more appropriate, e.g. the number of stops in small package delivery, service time in

technician routing and home healthcare services, and load/demand in groceries distribution. By

focusing exclusively on the impact of the equity function used to quantify the degree of balance,

previous studies have not accounted for the choice of the workload resource subject to the balancing.

In this article we generalize and extend the previous studies to multiple workload resources, and

reassess accordingly previous conclusions and guidelines for formulating a balance objective. We

first propose a simple but accurate classification of workload resources as well as equity functions,

and identify certain combinations which should be avoided in principle. Since many important

aspects for choosing a balance criterion are not amenable to a purely analytical treatment, we also

conduct a numerical study of 18 alternative balance objectives based on different combinations of

workload resources and equity functions. By considering the bi-objective problem of optimizing

both cost and balance, we generate and examine the sets of compromise solutions which would be

found in practice with typical constraint-based or weighted-sum approaches.
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In the first half of this study we broaden the scope of the research questions examined in Matl,

Hartl, and Vidal (2017a) to consider different workload resources, specifically:

1. How is the number of compromise solutions affected by the workload resource and/or the

equity function? Do some balanced VRP models yield a wider scope for balancing than others?

2. What is the marginal cost of balance for different balance objectives? Are there notable

differences depending on the workload resource and/or the equity function?

3. To what extent do different balanced VRP models overlap and generate identical compromise

solutions?

In the second half of our study we further extend earlier analyses by exploring two previously

unexamined issues:

4. From a managerial perspective: When different balance criteria identify different solutions,

does the quality of those solutions deteriorate significantly when evaluated according to a

different balancing criterion? In other words, do solutions from different models represent very

different preference structures, or is there broad agreement between some models as to what

types of VRP solutions are “well-balanced”?

5. From a methodological perspective: How strong is the connection between solution similarity

in the objective space and similarity in the decision space? To what extent do “well-balanced”

compromise solutions share a common solution structure that can be exploited by search

algorithms?

Finally, we conduct our analysis separately on smaller instances solved to optimality, and then

on larger instances solved with an adaptation of a state-of-the-art VRP heuristic (Matl, Hartl, and

Vidal 2017b). By comparing and contrasting the computational results on these two datasets, we

investigate and quantify the degree to which previous observations and conclusions still hold as

instance size grows, which has thus far not been considered by any of the previous studies.

2. Equity Objectives and their Properties

When dealing with balancing concerns, it is important to realize that the equitable distribution of

resources is in itself already a multi-objective problem. Distributing a resource between n agents

(e.g. drivers, territories, machines) corresponds to an n-objective problem in which each objective ni

represents the allocation to a different agent i. From this perspective, it is clear that any equitable

allocation must be a Pareto-optimal solution to this n-objective problem (Kostreva, Ogryczak, and

Wierzbicki 2004). In practice however, the prevalence of non-dominated or incomparable solutions

increases rapidly even for small n, and so the classical Pareto-dominance relation is of limited

help in ranking different allocations. Hence the need for inequality measures which reduce the

dimensionality of equity and provide a stricter ordering of alternative resource distributions.
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Inequality measures are designed to capture the equity of a resource allocation with a single

number. Formally, an inequality measure I(x) transforms a vector x of outcomes or workloads

{x1, x2, ..., xn} into a scalar. In this way, the resulting equity criterion may be expressed in the

form of a more standard objective or constraint. In the following, we will distinguish two essential

components of an inequality measure: the resource (or metric) that determines the workloads in x,

and the function that transforms this vector into a scalar.

2.1. Workload Resources

Despite the heterogeneous nature of the balanced VRPs presented in the literature, their models fall

into three categories of workload resources: those balancing the distance/duration of the tours, those

based on the demand/load, and those counting the number of stops/customers. These alternatives

can be generalized into more abstract groups: those in which the workload occurs on the edges of

the network (e.g. distance), at the nodes (e.g. demand), or on both (e.g. tour duration, a function

of distance and service time). This reveals that in a typical VRP, the stops/customers resource is a

special case of demand/load.

However, the distinction between edge-based and node-based resources can be misleading, since the

meaning of edges and nodes can be arbitrary – consider for instance VRPs and arc routing problems

(Pearn, Assad, and Golden 1987) – and other problems might be more intuitively formulated without

the explicit use of network or graph structures. Rather, the essential distinction to be made is

whether the total workload to be distributed is constant for all feasible solutions to the problem, or

whether it can vary from one solution to another.

Definition 1. A workload resource is constant-sum if
∑n

i=1 xi is identical for all feasible

workload allocations x∈X, and variable-sum otherwise.

Recall that an equitable allocation should be a Pareto-optimal solution to the n-objective

allocation problem. It is easy to verify that any constant-sum resource satisfies this property – any

change in one outcome corresponds to a change of equal magnitude in another outcome, leading

to a non-dominated alternative allocation. In contrast, the more general category of variable-sum

resources does not guarantee the satisfaction of the Pareto-optimality principle. Either way, a

suitable equity function still needs to be selected in order to introduce a stricter ordering among

all the potential allocations. For variable-sum resources, the equity function should additionally

prevent the acceptance of dominated alternatives.

2.2. Equity Functions

There exists a large body of research on equity functions in the economics and sociology literature,

predominantly in the fields of income inequality and wealth distribution (see e.g. Sen 1973, Allison
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1978). It is important to note that from a theoretical perspective, there is no consensus on a

“perfect” equity function – even by approaching this issue from an axiom-based direction, there

is disagreement about which axioms should or should not be considered, and this tends to vary

depending on the intended area of application. This is not surprising – and perhaps unavoidable –

given the inherently multi-objective nature of equity and fairness.

Under these circumstances, it is not our intention here to identify an ideal equity function, nor

is it to review all potential issues surrounding any specific function. Instead, we will focus our

attention on two properties that are, in our view, particularly critical in practice and which interact

directly with the type of workload resource. A review of other axioms can be found in Matl, Hartl,

and Vidal (2017a).

Axiom 1. Monotonicity: Let x′ be formed as follows: xi = xi + δi for all i in x. If δi ≥ 0 for

all i with at least one strict inequality, then I(x′)≥ I(x).

The monotonicity axiom is closely related to the Pareto-optimality principle discussed in the

previous section. It states that if one or more outcomes are strictly worsened while leaving all others

unchanged, then inequality should increase (strong monotonicity) or at least not be reduced (weak

monotonicity). In effect, this penalizes Pareto-dominated allocations. As a result, monotonic equity

functions minimize inequality in a way that is consistent also with the minimization of individual

outcomes (Ogryczak 2014).

Axiom 2. Transfer Principle: Let x′ be formed as follows: x′i = xi− δ, x′j = xj + δ, x′k = xk,

for all k /∈ {i, j}. If δ > 0 and xj ≥ xi, then I(x′)≥ I(x).

The Pigou-Dalton (PD) principle of transfers is one of the most commonly accepted axioms

for equity functions. Originating in the context of income distribution, the transfer principle is

expressed in terms of maximization objectives, but minimization objectives such as workload can

be transformed by subtracting from a sufficiently large constant (i.e. x′i =M −xi).

Informally, the transfer principle states that taking from the poorer and giving to the richer should

lead to a numerical increase in inequality (strong version), or at least not reduce it (weak version).

More formally, a transfer refers to shifting δ units from an individual i to another individual j,

such that x′i = xi− δ and x′j = xj + δ. A transfer is said to be regressive (favoring the party who is

already better off) if xi ≤ xj , and progressive if 0≤ δ≤ xi−xj . If an allocation x′ can be reached by

a finite series of only regressive transfers from an allocation x, then I(x′)> I(x) (strong version),

or at least I(x′) ≥ I(x) (weak version). Note that the transfer principle is ambiguous between

allocations connected by a combination of regressive and progressive transfers, and it applies only

if the allocations do not differ in the number and the sum of their outcomes.
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Workload Resource Monotonicity Transfer Principle
constant-sum irrelevant useful
variable-sum critical marginal

Table 1 Importance of an equity function’s satisfaction of the monotonicity axiom and the Pigou-Dalton

transfer principle, according to the type of workload resource.

2.3. Implications

The formulation of an equity or balance objective (an inequality measure) implies the selection of

both a workload resource as well as an equity function – the question thus arises about the potential

interactions between these two decisions. In that regard, we can make the following observations:

1. For the special case of constant-sum resources, the Pareto-optimality of every allocation is

guaranteed regardless of the selected equity function. The monotonicity property is therefore

of no consequence for constant-sum resources, and so even non-monotonic functions can be

used freely. In contrast, the transfer principle is much more relevant, because the constant-sum

character of the resource guarantees that all allocations are connected by mean-preserving

transfers and thus comparable.

2. For the general case of variable-sum resources, the Pareto-optimality of every allocation is

not guaranteed, and so care must be taken to avoid an active search for and acceptance

of dominated solutions to the n-objective allocation problem. This makes the monotonicity

property critical for the choice of the equity function – a non-monotonic equity function may

imply a preference even for those allocations in which all outcomes are worse than those

of another feasible allocation. On the other hand, the transfer principle is of only limited

importance: it will apply only in the comparatively rare case when two competing allocations

have the same sum of outcomes.

These guidelines are summarized in Table 1.

Balance objectives which do not satisfy these criteria can lead to pathological optimization

outcomes. This is especially the case for the combination of a variable-sum resource and a non-

monotonic function – which is unfortunately the most common combination, as it places no

particular requirements on the function and variable-sum resources represent the general case. In

routing problems such as the VRP with route balancing (VRPRB), combining tour lengths with

non-monotonic functions can lead to optimal solutions with non-TSP-optimal tours (Jozefowiez,

Semet, and Talbi 2002) or even TSP-optimal solutions whose tours are all longer than in other

feasible solutions (Matl, Hartl, and Vidal 2017a). But similar observations can be made also for

other problem classes. For example in facility location problems, using non-monotonic functions

to balance customers’ distance to their nearest facility leads to solutions in which all facilities are
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located far away, providing an equal lack of service (Marsh and Schilling 1994, Eiselt and Laporte

1995, Ogryczak 2000). In a scheduling environment, balancing the makespans of individual machines

according to a non-monotonic function could lead to plans with artificially long idle times but

perfectly equal makespans. Outcomes such as these clearly undermine the credibility, usefulness,

and acceptance of the models, methods, and solutions proposed by researchers. Balance objectives

should therefore be chosen carefully.

Although the presented guidelines are general, models which satisfy them can still differ greatly

depending on the particular workload resource and equity function used. Many important factors for

choosing a balance objective – such as the number of potential trade-off solutions, the marginal cost

of improving balance, or the effect on solution structure – defy meaningful description exclusively

through analytical means. We have therefore conducted an extensive numerical study to examine

how the choice of the workload resource, the equity function, and their combinations, affect the

obtained VRP solutions. In the next section we describe in detail our experiments and report the

most relevant observations made from the study.

3. Numerical Study

We examine in turn the three workload resources identified in Section 2.1: the distance/duration, the

demand/load, and the number of stops/customers served per tour. For each of these resources, we

consider six commonly used equity functions: minimization of the maximum workload, lexicographic

minimization, the range, the mean absolute deviation, the standard deviation, and the Gini

coefficient. This yields a total of 18 alternative objectives for the balancing criterion.

Bi-objective Models. Equity and balancing are typically not the primary optimization objective

in VRPs. However, the inclusion of an equity or balance constraint in standard single-objective

models implies that the resulting solution will be (in the best case) one of the Pareto-optimal

compromise solutions to the bi-objective extension of the original problem. The proper choice of a

balancing criterion – and especially the specific constraint value – is therefore just as impactful

as the primary optimization objective. Hence, we consider the bi-objective problem of minimizing

both cost and imbalance, and analyze the resulting Pareto-optimal or non-dominated solution sets

obtained with each of the 18 alternative models. This allows us to make broader observations about

the models and to make statements about the compromise solutions in general, rather than only

about the objective function extremes or some other arbitrarily chosen solutions.

Instances. Our numerical study is based on two groups of instances. The first group consists

of small instances of the Capacitated VRP (CVRP) (n= 20 customers, K = 5 vehicles). A total

of 40 such instances were generated based on the CVRP benchmark of Uchoa et al. (2017): by
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taking the first, second, third, etc. set of 21 customers and labeling the first customer of each set as

the depot, we created 20 instances with various customer-depot configurations from the data of

instance X62 (demands qi from [50,100], i.e. small variance), and another 20 small instances with

the data of instance X64 (demand values in [1,100], i.e. large variance). The vehicle capacity was

set to Q= d 1
K−1

∑n

i=1 qie− 1 so that all vehicles are required while allowing some excess capacity

for balancing. We solve this set of instances to optimality by means of enumeration.

The second group of instances consists of the benchmark sets A and B introduced by Augerat

et al. (1995) and the first 20 instances with non-unitary demands from the X benchmark of Uchoa

et al. (2017) (unitary instances were disregarded as they would produce identical solutions for the

load and stops resources). This yields a total of 70 diverse instances with between 30 and 200

customers, 5 to 50 vehicles, random, clustered, and mixed customer locations, as well as various

demand distributions.

We solve the larger instances using the Iterated Hybrid Genetic Search (IHGS) described in

Matl, Hartl, and Vidal (2017b). IHGS significantly outperforms the current state-of-the-art on the

VRPRB benchmark. In addition, we have validated its performance on all 18 alternative balance

objectives using the 40 smaller instances solved to optimality: IHGS was able to identify over 95%

of the approx. 18,000 Pareto-optimal solutions to these instances. In order to identify solutions of

as high a quality as possible also for larger instances, we deactivated the neighborhood granularity

parameter, quadrupled the number of iterations per sub-problem, and solved each instance 10

times. We then generated the best known reference set for each model and instance by forming the

non-dominated union of all solutions identified in all test runs on that instance and the cost-optimal

solutions from the literature (available on the CVRPLIB repository).

The instances used in this study and their optimal/best-known solution sets are included with

the online version of this article, and also available upon request from the authors.

Tour Structure. As mentioned in Section 2.3, combining a variable-sum workload metric with

a non-monotonic equity function generally leads to Pareto-optimal VRP solutions with non-TSP-

optimal tours (Jozefowiez, Semet, and Talbi 2002), or TSP-optimal tours whose lengths are all

longer than those of other Pareto-optimal solutions, i.e. total cost is higher, all workloads are

worse, yet the solution is deemed Pareto-efficient (Matl, Hartl, and Vidal 2017b). Clearly this

contradicts the intent of balanced VRP models. In our study, this affects those models combining

the distance resource with a non-monotonic equity function. In those cases, we therefore enforce

a TSP-optimality constraint on the instances solved to optimality, and move, swap, and 2-opt

neighborhood optimality constraints on the instances solved heuristically. In addition, the generated

Pareto sets contain only solutions which are workload consistent, i.e. if total cost is higher than in

another solution, at least one workload must be strictly lower, otherwise the solution is discarded.
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3.1. Number of Compromise Solutions

We start by first considering the cardinality of the Pareto sets generated by different balanced

VRP models. Pareto set cardinality has an impact on the usefulness of bi-objective models for

decision-makers. Generally, a larger number of compromise solutions increases the likelihood that a

solution which reflects the decision-maker’s true preferences actually exists, since (ceteris paribus)

a larger part of the objective space will contain corresponding solutions. This is especially critical

when balance considerations are handled with constraints – the more solutions there are, the higher

the likelihood that one exists close to the specified constraint value. Of course, Pareto set cardinality

is also a factor in the appropriateness and efficiency of corresponding optimization methods.

Figure 1 visualizes the average Pareto set cardinality according to the chosen workload resource

and equity function. One of the first observations we can make is that regardless of the instance

size, models balancing distance tend to generate the most trade-off solutions, while those balancing

stops have the fewest, with load-based models lying in between. Of course, the larger instances

usually lead to larger Pareto sets, but given the size of the smaller instances, the cardinality of their

Pareto sets is surprisingly large for the distance- and load-based models.

These differences with respect to the workload resource most likely stem from the combinatorial

nature of the possible allocations of these resources: the number of different tour lengths is much

higher than the number of unique tour loads, which in turn is much higher than the number of tour

stops. As a result, fewer unique allocations exist for load and stops, which directly leads to fewer

unique balance values and limits the potential for improvement.
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Figure 1 Average solution set cardinality for various balanced VRP models.
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When it comes to the equity functions used to measure the balance of different allocations, we can

see that the simpler functions (max, range) usually generate smaller Pareto sets, whereas the more

complex functions (e.g. lexicographic, standard deviation) generate larger sets. These differences

become more pronounced on the larger instances. This is particularly visible with the outstandingly

small Pareto sets generated by the max function, regardless of the resource.

The explanation for these differences lies most likely in the varying numerical ranges and precision

of these equity functions: the number of unique function values places an upper bound on the

number of Pareto-optimal trade-off solutions. For example, every workload allocation has a unique

lexicographic rank, but millions of allocations may share the same range of workloads. Furthermore,

the number of unique values returned by functions like the standard deviation and the Gini coefficient

is affected by the number of vehicles, unlike the values taken by the max and range functions.

Overall, we find that richer sets of compromise solutions can be found with the distance and

load resources and the more sophisticated equity functions. If a combination of these resources and

functions corresponds to a meaningful definition of workload in a given application case, then such

models can potentially identify better opportunities to improve balance.

3.2. Cost of Equity

In the preceding section we observed that certain combinations of workload resources and equity

functions can lead to larger numbers of compromise solutions, offering a greater degree of opportunity

for improving balance. However, the question of whether these opportunities are worthwhile depends

critically on the relative cost of improving balance. After all, cost-oriented factors are likely to

remain the primary optimization objective in most real-life logistics systems, and better balanced

operations are usually of interest if their marginal costs are low. In this section we therefore analyze

more closely the typical distribution in the objective space of the trade-off solutions identified by

different balanced VRP models.

Figure 2 plots for each combination of workload resource and equity function all the Pareto-

optimal solutions identified for each of the smaller instances. In this way, both the general trend

as well as outliers are visible and comparable on the same plot. Since equity functions quantify

the degree of imbalance, the balance objective is modeled as a minimization problem. The balance

objective function values (y-axis) have been normalized to the range [0,1] in order to make

balance improvements (i.e. imbalance reductions) comparable across different functions and different

instances. Similarly, cost values (x-axis) are reported as increases relative to the corresponding

cost-optimum (known for all instances in our study).

Figure 3 plots the same data as Figure 2, but for the larger instances solved heuristically. Although

the optimally balanced solutions are not known, in many cases our heuristic was able to identify

solutions with the best possible balance value (e.g. 0), so they are at least weakly Pareto-efficient.
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Figure 2 Smaller instances solved to optimality – distribution of Pareto-optimal solutions according to workload resource and equity function. Cost is plotted
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Figure 3 Larger instances solved heuristically – distribution of best known non-dominated solutions according to workload resource and equity function.

Cost is plotted on the x-axis as the relative increase above the optimal cost. Balance (modeled as the minimization of imbalance) is plotted along

the y-axis and normalized to the interval [0,1] in order to make values comparable across different functions and different instances. Each plot

contains all solutions of the corresponding model over all instances in order to visualize the overall trend while also showing outliers.
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Considering first the smaller instances solved to optimality, we can see that the cost vs. balance

trade-off structure depends primarily on the chosen workload resource, and not on the equity

function. For any of the three workload resources, the trade-off structure is remarkably similar for

all six equity functions. On the other hand, the differences between models using different workload

resources are more pronounced. First, we observe that the solutions of the distance-based models

have a more variable distribution in the objective space, meaning that the actual trade-off structure

tends to vary more from instance to instance. For the load-based models, we can see that all the

Pareto sets combined fall within a narrower region of the objective space, and for stops-based

models, the concentration is narrower still. A second observation is that cost and equity appear to

be more conflicting objectives when balancing distance-based metrics – solutions balancing distance

tend to be further from the ideal point at the origin than solutions balancing load or stops.

We can identify the same trends also on the larger instances solved heuristically. Here too, the

trade-off structure is determined more by the workload resource than by the equity function, and

the variability of that structure is also higher for distance-based models than for those balancing

load or stops. However, one important difference on the larger instances is that the cost and balance

objectives become less conflicting, with most solutions being relatively low-cost, as well as closer to

the origin. This suggests that the greater degree of flexibility on larger instances allows for more

cost-efficient workload balancing, and overall this appears to hold for all the considered models.

Despite some of these differences, all the considered models have one important aspect in common:

the marginal cost of balance is low. For nearly all the models and instances examined in our

study, balance can be improved dramatically at little additional cost – especially on the larger

instances, near-optimal balance can be achieved within 10% or even 5% of the corresponding cost

optimum. Although the actual trade-off structure depends to some extent on the workload resource,

all of them allow significant balance improvement at comparatively low cost, and this potential

grows with instance size. From a managerial perspective, this allows to more easily take advantage

of the various non-monetary benefits of balanced operations discussed in the literature. From a

methodological perspective, we can expect that typical weighted-sum approaches need not place

overly large weights on balance to find noticeable improvements, and constraint-based methods can

use relatively ambitious balance targets without impacting cost severely.

3.3. Overlap Between Different Models

In the previous section we observed that for a given workload resource, the choice of the equity

function appears to have limited impact on the overall trade-off structure. The question thus arises

to what extent these different functions actually produce different solutions.

To explore this further, we first present in Table 2 the Pareto-optimal solution sets for a typical

instance balancing tour loads. For each solution we list its total cost, its corresponding balance
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Sol. Nr. Cost Max Lex Range MAD St.Dev. Gini Tour 1 Tour 2 Tour 3 Tour 4 Tour 5

1 6654 279 1 186 52.08 67.89 0.1495 279 275 239 230 93
2 6715 - 2 - - 66.93 0.1430 279 257 257 230 93
3 6739 275 - 182 - - - 275 273 262 213 93
4 6739 - 3 - - 66.27 0.1387 275 262 247 239 93
5 6755 - - 148 38.56 50.64 0.1197 279 257 230 219 131
6 6761 257 4 126 36.88 47.39 0.1007 257 255 247 226 131
7 6784 - - 125 - - - 279 275 239 169 154
8 6793 - 5 - - 46.97 0.0978 257 251 247 230 131
9 6839 - - 110 - 46.27 - 279 275 213 180 169
10 6862 - - 106 - - - 275 273 213 186 169
11 6862 - - - 36.56 39.55 - 275 247 239 186 169
12 6877 - 6 - - - 0.0957 257 248 247 233 131
13 6880 - - - 30.24 35.82 0.0885 275 247 213 212 169
14 6900 - 7 - - - - 257 247 247 234 131
15 6904 - - 104 - - - 273 257 231 186 169
16 6922 - 8 88 26.16 31.09 0.0756 257 247 231 212 169
17 6941 - 9 - 25.76 30.97 0.0753 257 247 230 213 169
18 6952 256 10 - - - - 256 255 248 226 131
19 6970 252 11 83 - 30.41 0.0720 252 247 236 212 169
20 6989 248 12 79 - 30.09 0.0692 248 247 240 212 169
21 6990 - - 71 - - - 257 247 239 187 186
22 6991 247 13 - - 29.99 0.0677 247 245 243 212 169
23 7008 - - 70 - 25.49 0.0627 257 247 213 212 187
24 7008 - - - 22.16 - - 248 247 230 222 169
25 7038 - 14 - 21.68 - 0.0581 247 236 234 230 169
26 7057 - - 62 - - - 248 248 247 187 186
27 7075 - - 61 19.44 22.89 0.0563 248 247 222 212 187
28 7105 - 15 60 18.96 21.37 0.0516 247 236 234 212 187
29 7151 - - 58 - - - 248 247 240 191 190
30 7153 - - 57 - - - 247 245 243 191 190
31 7166 - 16 - 16.56 20.33 0.0487 247 234 230 218 187
32 7171 - - 44 - 20.03 0.0466 248 247 212 205 204
33 7199 - 17 - 14.48 19.66 0.0441 247 229 227 226 187
34 7201 - - 42 13.84 15.28 0.0380 247 234 218 212 205
35 7234 - 18 - 12.96 - - 247 229 226 223 191
36 7241 - 19 - - 15.17 0.0376 247 229 226 210 204
37 7251 245 20 - - - - 245 243 232 227 169
38 7253 - - 41 - 15.07 0.0369 247 229 226 208 206
39 7300 - 21 - - - - 245 236 234 232 169
40 7301 239 22 - - - - 239 238 236 234 169
41 7351 - - - 12.24 14.63 0.0366 247 230 222 212 205
42 7365 236 23 - - - - 236 234 232 227 187
43 7365 - - 39 - - - 247 234 218 209 208
44 7384 - - - 12.16 14.55 0.0355 247 227 226 210 206
45 7406 - - - 10.64 - - 247 226 223 220 200
46 7424 - - 37 - 13.99 - 247 230 219 210 210
47 7424 - - - - - 0.0330 257 217 216 213 213
48 7431 - - - - 13.59 0.0323 247 226 223 210 210
49 7455 - - - 9.52 - 0.0319 247 223 223 218 205
50 7460 - 24 - - - - 236 234 229 227 190
51 7461 234 25 29 9.36 10.65 0.0258 234 232 227 218 205
52 7497 - - 28 - - - 236 234 227 211 208
53 7500 - - - - 10.53 - 236 234 221 217 208
54 7521 - - 23 - 9.74 0.0229 236 234 217 216 213
55 7550 230 26 18 6.16 6.73 0.0161 230 228 227 219 212
56 7555 229 27 17 5.36 6.24 0.0147 229 228 226 221 212
57 7557 228 28 16 4.56 5.84 0.0129 228 227 226 223 212
58 7573 - - 11 4.24 4.49 0.0108 230 227 221 219 219
59 7578 - - 10 3.44 3.71 0.0090 229 226 221 221 219
60 7580 227 29 8 2.64 2.99 0.0075 227 226 223 221 219
61 7689 - 30 6 1.84 2.14 0.0050 227 224 222 222 221
62 7884 - 31 5 1.52 1.94 0.0039 227 223 222 222 222
63 7909 226 32 - - - - 226 224 224 221 221
64 8062 - 33 - 1.44 1.72 - 226 224 223 222 221
65 8089 224 34 2 0.64 0.75 0.0018 224 224 223 223 222
66 8274 - 35 1 0.32 0.4 0.0007 224 223 223 223 223

Table 2 Pareto-optimal solution sets for a sample instance balancing tour loads. A dash indicates that the

solution is not Pareto-optimal for the respective equity function. The lexicographic objective is replaced with a

ranking, as the workload vectors are given on the right.
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according to each of the six equity functions, and its workload allocations. A dash indicates that

the solution is not Pareto-optimal for the respective equity function. The lexicographic objective

has been replaced with a ranking since the respective workload vector is given on the right.

Considering this sample instance, we can see that there are relatively few solutions which are

Pareto-optimal for every examined function. Excluding the cost optimum, only seven other solutions

fall into this category, out of over 60 total. At the same time, there exist solutions which are unique

to only a single function: e.g. solutions 14, 39, and 50 are identified only by the lexicographic

objective, over 10 solutions are unique to the range function, solutions 24 and 45 are found only

with the mean absolute deviation, solution 53 only with standard deviation, and solution 47 only

with the Gini coefficient. Furthermore, even for the same total cost, alternative workload allocations

can be preferred by different functions, e.g. there is no obvious agreement when it comes to solutions

3 and 4, 10 and 11, 23 and 24, 42 and 43, or 46 and 47. We note also the special case of solutions 3

and 4, where the max function can be indifferent to a lexicographically better allocation with the

same maximum workload.

Despite the limited occurrence of solutions identified by every examined function, there are

generally more solutions shared between different objectives than unique to any single one. For

example, the six individual Pareto sets in Table 2 have a combined cardinality of 200, but after

removing duplicates only 66 of these solutions are unique. Except for the max function, the other

Pareto sets have between 31 and 41 solutions, which implies a considerable degree of overlap if only

66 different solutions are identified overall.

In order to make more general observations, we have conducted the above analysis for each of

the workload resources and all instances. Specifically, we consider for each workload resource the

combined set of all Pareto-optimal solutions found with all six equity functions over all instances.

For each equity function F , this set of solutions can be divided into four categories:

(A) solutions found by F and all other examined functions,

(B) solutions common to F and a strict subset of the other functions,

(C) solutions identified only with F , and

(D) solutions not found by F .

Figure 4 presents this data for the sets of smaller and larger instances.

We can see that in general, full overlap between all six functions is uncommon even on the

smaller instances, and virtually disappears on the larger ones. The share of solutions unique to

any particular function is likewise relatively small, but this tends to increase with instance size as

larger Pareto sets and a larger solution space widen the scope for unique workload allocations. As

expected, a larger share of solutions lies between these two extremes, being found by some, but not

all functions.
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Figure 4 Overlap between non-dominated solution sets found with different equity functions balancing the same resource. The stacked bars indicate in

relative terms the size of each category as a share of all the non-dominated solutions found for a given workload resource on all examined instances,

i.e. 100% corresponds to the union of all non-dominated solution sets identified with all equity functions for a given resource.
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However, Figure 4 also illustrates a certain paradox: if we consider the combined Pareto sets

of each function in isolation (i.e. categories A, B, and C only), then a significant majority of the

identified solutions are shared with at least one other function. This would suggest that regardless

of which equity function is chosen, it will find largely the same solutions as those found by the other

functions. Yet looking at the complete set of all solutions for each model (i.e. including category D),

it is clear that the solutions not found by our chosen function (category D) constitute the majority

of all potentially “well-balanced” solutions, especially on the larger instances. This means that

although no single function is particularly unique in terms of the solutions it finds, the fact that

only one equity function can be chosen means that any model will disregard a majority of solutions

which would still be considered well-balanced otherwise.

3.4. Agreement Between Different Models

Based on our analysis thus far, we have established that the workload resource has a notable impact

on the trade-off structure between cost and balance, and that even for the same resource, no single

equity function captures a majority of the potentially well-balanced allocations of that resource.

However, all the presented resources and functions are intended to quantify minor variations of the

same – to an extent subjective – concept. It therefore seems intuitive that even if the models do

not produce exactly the same solutions, there might be at least some degree of agreement between

them as to which VRP solutions are “well-balanced”, and which are not. In this section we therefore

examine to what extent the solutions optimizing one balance objective are still of high quality when

considered for another objective.

We quantify the degree of agreement as follows: For each instance, the Pareto-optimal or best

known reference set is given for each of the 18 alternative balance objectives. For each objective, its

Pareto set is re-evaluated according to each of the other 17 objectives, discarding any solutions

which become dominated. We then compare these 17 re-evaluated Pareto sets to the corresponding

optimal Pareto set of each objective, using the well-known hypervolume indicator as a measure of

overall solution quality (we refer the reader to Zitzler, Knowles, and Thiele (2008) for a detailed

discussion of quality indicators for multi-objective optimization). The hypervolume represents the

volume of the objective space dominated by a solution set, so the optimal Pareto set for each

objective corresponds to 100% of the attainable hypervolume. We note that this indicator is sensitive

to the choice of the reference point delimiting the objective space – we therefore use the nadir point

of each objective’s optimal Pareto set since this is the strictest valid reference point.

Tables 3 and 4 report the results of the above analysis on the set of smaller instances solved to

optimality, and the larger ones solved heuristically. The values in the tables represent the attained

hypervolume as a percentage of the optimal or best known hypervolume, averaged over all the

instances in the respective set. Values of 90% or more are shaded and printed in bold.



Re-evaluation Objective B
Distance Load Stops

Max Lex Range MAD St.Dev.Gini Max Lex Range MAD St.Dev.Gini Max Lex Range MAD St.Dev. Gini
Max 100 99.0 67.4 65.1 65.0 73.6 26.9 25.1 44.7 44.3 45.9 40.6 89.4 18.6 67.5 42.0 41.7 36.2
Lex 100 100 82.5 81.5 81.7 86.7 41.0 39.5 61.1 59.4 61.4 56.5 93.3 29.4 84.8 69.1 69.8 64.2
Range 81.0 84.9 100 93.5 98.0 98.0 48.5 47.3 70.2 69.2 70.9 66.4 93.5 37.2 91.4 69.9 76.5 69.8
MAD 66.6 71.7 95.1 100 98.7 98.6 51.3 50.0 71.4 72.4 72.9 68.8 95.3 45.5 92.4 80.5 82.8 79.5
St.Dev. 73.7 78.0 98.8 98.4 100 99.6 53.6 52.5 73.1 73.0 74.2 70.2 95.5 53.2 94.5 80.0 84.0 80.1

Distance

Gini 77.5 80.3 98.8 98.4 99.6 100 53.9 52.9 72.8 72.7 73.8 69.9 95.4 52.8 94.3 80.1 84.3 80.7
Max 40.0 37.7 55.5 56.4 56.1 61.4 100 100 95.3 95.0 94.9 96.0 91.7 45.8 81.7 68.4 66.9 62.2
Lex 45.4 44.4 60.9 61.9 61.3 66.7 100 100 97.8 97.6 97.6 98.4 93.2 51.7 88.8 79.0 78.2 74.1
Range 43.7 41.5 64.7 65.3 65.3 69.5 98.1 98.2 100 99.0 99.6 99.5 93.0 63.4 94.1 83.8 86.6 84.3
MAD 40.0 39.9 63.9 64.0 64.5 68.9 95.4 95.6 98.7 100 99.6 99.2 94.2 61.4 93.5 83.9 86.1 83.4
St.Dev. 45.2 43.5 66.0 66.3 66.2 70.6 98.2 98.3 99.9 99.9 100 100 95.2 65.7 95.4 86.9 89.5 87.1

Load

Gini 44.7 42.8 65.5 66.3 66.1 70.4 98.4 98.5 99.8 99.9 99.9 100 95.0 63.0 94.7 86.0 88.3 85.9
Max 24.1 23.7 42.4 43.4 44.6 46.5 39.4 37.8 58.4 56.0 58.4 54.0 100 98.3 66.7 24.8 26.7 28.6
Lex 34.2 32.4 50.6 50.1 52.0 53.9 45.5 43.9 67.3 64.9 67.5 62.4 100 100 99.9 99.9 99.8 100
Range 30.5 29.1 49.4 47.5 50.0 51.8 42.2 40.6 65.6 62.2 65.3 59.8 99.6 97.9 100 63.9 77.6 73.7
MAD 32.4 30.8 49.8 49.7 51.4 53.3 43.7 42.1 65.5 63.8 66.2 61.1 96.8 93.1 93.4 100 94.0 94.9
St.Dev. 34.0 32.3 50.7 50.2 52.0 53.9 45.5 43.8 67.3 65.0 67.5 62.4 99.7 99.3 99.9 100 100 100
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Gini 34.0 32.3 50.6 50.1 52.0 53.9 45.5 43.8 67.3 64.9 67.5 62.4 99.7 99.4 99.9 100 99.9 100

Table 3 Hypervolume values attained by Pareto-optimal solution sets identified by an objective A and re-evaluated according to an alternative objective B.

Values represent the attained hypervolume as a percentage of the optimal hypervolume, averaged over the set of smaller instances solved to optimality.

Values of 90% or more are shaded and typeset in bold.



Re-evaluation Objective B
Distance Load Stops

Max Lex Range MAD St.Dev. Gini Max Lex Range MAD St.Dev. Gini Max Lex Range MAD St.Dev. Gini
Max 100.0 98.6 51.0 41.7 43.2 49.8 35.6 6.9 36.6 25.9 29.7 23.1 72.4 27.8 51.1 23.8 24.9 22.8
Lex 100.0 100.0 68.9 67.9 67.6 72.7 39.5 11.5 46.7 37.0 41.1 33.0 79.6 40.1 61.4 36.8 38.0 35.5
Range 81.8 82.2 100.0 89.0 94.9 95.9 39.4 11.2 55.2 42.4 49.7 38.2 75.0 32.4 66.6 40.7 43.9 38.8
MAD 60.9 64.3 90.6 100.0 97.3 98.2 41.8 13.9 56.9 47.1 52.4 42.7 76.0 33.1 64.4 43.3 43.5 41.3
St.Dev. 69.2 71.6 97.2 98.0 100.0 99.5 43.8 16.4 60.7 48.4 55.4 44.1 77.3 35.2 70.0 47.1 49.3 45.4

Distance

Gini 69.9 71.3 97.0 98.3 99.3 100.0 42.3 14.3 60.0 48.3 54.8 43.9 78.5 38.5 69.0 47.0 48.0 45.0
Max 32.2 26.0 25.9 25.0 24.9 27.3 100.0 97.1 77.7 75.3 73.9 77.1 69.2 21.9 54.3 24.9 27.2 24.6
Lex 40.7 33.8 32.8 32.0 31.9 34.2 100.0 100.0 94.0 96.2 95.6 97.3 76.7 34.9 65.6 43.4 44.7 41.9
Range 38.8 31.9 33.8 32.0 32.6 34.0 91.0 88.2 100.0 92.1 96.0 93.8 71.8 28.9 67.0 40.6 43.8 39.9
MAD 39.7 32.9 33.7 32.3 32.7 34.6 87.7 83.9 95.2 100.0 98.2 98.4 75.6 33.9 67.5 46.1 47.7 44.8
St.Dev. 41.1 33.9 34.7 33.5 33.7 35.4 91.2 88.9 99.4 99.2 100.0 99.5 77.0 36.1 70.4 47.7 49.0 47.0

Load

Gini 39.4 32.6 34.4 33.1 33.3 35.3 92.9 90.2 98.5 99.6 99.5 100.0 77.6 36.9 69.5 47.1 49.3 46.5
Max 27.3 19.3 20.9 17.4 18.0 18.9 34.2 6.0 34.5 23.5 28.0 21.0 100.0 95.7 74.0 47.0 50.0 53.3
Lex 36.3 29.3 32.2 27.8 29.2 29.7 40.9 12.7 54.1 43.1 49.1 39.0 100.0 100.0 97.8 97.3 98.2 98.2
Range 30.5 22.8 29.5 25.6 26.9 27.8 37.7 9.2 52.7 37.7 45.5 34.3 96.8 90.2 100.0 70.9 81.5 77.7
MAD 34.3 28.3 32.4 27.8 29.4 30.0 39.9 11.4 53.7 41.9 48.2 38.3 91.7 88.4 92.4 100.0 96.3 98.1
St.Dev. 35.0 27.9 32.5 27.7 29.4 29.7 40.2 11.7 55.3 43.3 50.2 39.6 96.9 92.2 98.6 97.9 100.0 98.3
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Gini 35.7 28.8 32.8 28.4 29.7 30.2 40.6 12.3 55.4 44.3 50.6 40.4 96.3 94.7 97.7 99.4 99.1 100.0

Table 4 Hypervolume values attained by Pareto-optimal solution sets identified by an objective A and re-evaluated according to an alternative objective B.

Values represent the attained hypervolume as a percentage of the optimal hypervolume, averaged over the set of larger instances solved heuristically. Values

of 90% or more are shaded and typeset in bold.
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The most immediate observation we can make is that solutions balancing one resource are

generally not of good quality in terms of balancing the other potential resources. Nearly all the

inter-resource comparisons result in hypervolume values well below 90%, and the values worsen

further on the larger instances. In Section 3.2 we identified noticeable differences in the trade-off

structure when the resource is changed, but those differences were considerably smaller than those

observed here. This suggests that although well-balanced solutions can be found at low cost for

all the examined resources, those solutions tend to differ quite dramatically in structure despite

sharing very similar cost totals.

Compared to the effect of changing the workload resource, using a different equity function has

only limited impact. We can see that most of the intra-resource comparisons in Tables 3 and 4 result

in values well above 90%, in stark contrast to the inter-resource comparisons. Although this reflects

the trends observed in Section 3.2 with regard to similar trade-off structures, it is not a trivial

outcome given that in Section 3.3 the degree of strict overlap between any two functions was found

to be much lower. This implies that for a given resource, the Pareto-optimal solutions generated by

different equity functions are seldom identical, but their quality is often similar. In other words,

high-quality solutions balancing the same resource tend to be of similar quality regardless of the

equity function, but not vice versa.

Tables 3 and 4 also illustrate two relevant exceptions to the above trends. Looking at the

comparisons within the distance resource, we can see that the two monotonic functions (max,

lexicographic) are not particularly good at approximating the types of solutions found with non-

monotonic functions, and vice versa. Although we accounted for the TSP-optimality and workload

consistency issues that arise when balancing a variable-sum resource with non-monotonic equity

functions, it is clear that significant differences remain. The other important observation is that

simpler functions like max and range are less effective at providing good approximations of the

other Pareto sets, even for the same resource. This is most likely a direct consequence of the lower

cardinality of the Pareto sets identified with these functions, which reduces the probability of finding

solutions which are also of high quality for other functions. This also makes it easier for the more

sophisticated functions to better approximate the small Pareto sets found with the max and range

functions – this is particularly visible for the stops resource on the smaller instances.

3.5. Solution Similarity in the Decision Space

We close our numerical study by considering the degree to which different Pareto-optimal VRP

solutions for the same model share a common solution structure. Most multi-objective methods –

and particularly genetic algorithms – implicitly assume that Pareto-optimal solutions share common

characteristics, especially if those solutions have similar objective function values. This intuition
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has been a subject of research in the broader literature on fitness landscape analysis (Pitzer and

Affenzeller 2012), also for single-objective problems. In this last section we examine – in our specific

context of balanced VRPs – whether there is a connection between solution similarity in the

objective space and similarity in the decision space.

In the following, we quantify solution similarity as the percentage of edges common to a pair of

solutions from the same Pareto set. For the instances used in our study, all vehicles are required

and so all solutions of a given instance have the same number of edges, namely n+K. With E(xi)

being the set of edges used in solution xi, we define the similarity of a pair of solutions i, j as:

s(xi, xj) =
|E(xi)∩E(xj)|

n+K

We are interested in determining how this similarity differs between all pairs of Pareto-optimal

or best known non-dominated solutions (average case), and those solution pairs with the closest

objective function values. In our bi-objective setting, the latter subset consists simply of all

consecutive pairs of solutions after sorting the Pareto set according to one of the two objectives. We

performed these calculations for both sets of instances and for each of the 18 alternative balance

objectives. Figure 5 presents the overall frequency distributions of common edges between (a)

all pairs of solutions in each Pareto set, and (b) all pairs of consecutive solutions (“neighboring”

solutions in the objective space).

From the figure we can see that there are very clear differences in solution similarity between the

average case and solutions with the most similar objective function values. Considering all pairs of

Pareto-optimal solutions, the percentage of common edges between pairs follows approximately a

normal distribution with a mean of around 55% to 65% of shared edges, depending on the size of

the instances. In contrast, this distribution is highly skewed toward more edges in common when

we consider only the subset of “neighboring” Pareto-optimal solutions, i.e. those closest to each

other in the objective space. These pairs of solutions have a median similarity of around 75% to

80% edges in common.

These observations are in line with previous research on fitness landscape analysis for the single-

objective CVRP (Kubiak 2007), and they reinforce some of the methodological approaches proposed

for solving bi-objective VRPs. Clearly there is much potential for exploiting this type of solution

similarity within optimization methods. From a managerial perspective, our results suggest that

better balanced solutions do not necessarily represent significant departures from the structure of

low-cost solutions, and hence are likely to find acceptance in practical settings, especially in light of

the generally low marginal cost of balance observed previously.
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Figure 5 Frequency distributions of solution similarity between different pairs of balanced VRP solutions. Solution

similarity is measured as the percentage of edges shared by a pair of solutions.

4. Conclusion

In this article, we generalized previous analyses of balanced VRPs to alternative workload resources

encountered in practice, and then extended the scope of those analyses to examine further questions

of managerial and methodological importance. By considering workload resources which had thus

far been unexamined, our study provides more comprehensive insights into the many potential types

of balance objectives, and the implications of choosing one such objective over another. Since the

VRPs encountered in practice are many times larger than the small instances upon which previous

studies have been based, we also replicated our analysis on larger instances to determine the extent

to which our conclusions also hold under those circumstances.

Using the analysis of Matl, Hartl, and Vidal (2017a) as a point of departure, we categorized

balance objectives according to (a) the workload resource which is to be balanced, and (b) the equity

function used to quantify the degree of balance. Workload resources are either constant-sum or

variable-sum, depending on whether the total workload to be distributed is the same for all solutions,

or not. Equity functions can be classified in various ways, and we identified two characteristics

which directly interact with the type of workload resource – monotonicity, and compatibility with

the Pigou-Dalton transfer principle. Based on this analysis we point out some general guidelines for

formulating a balance objective. In particular, we emphasize the incompatibility between variable-

sum resources and non-monotonic functions, and the greater relevance of the Pigou-Dalton transfer

principle when considering functions for constant-sum resources.
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Despite the generality of those guidelines, objectives and models satisfying them can still differ

significantly in ways which do not lend themselves to a purely analytical treatment. We therefore

extended our analysis with a numerical study examining all combinations of three potential workload

resources and six alternative equity functions. By considering the bi-objective problem of optimizing

both cost and balance, we analyzed the types of compromise solutions which would be found in

practice with standard constraint-based or weighted-sum approaches. Our observations can be

summarized as follows:

• More complex equity functions provide more potential compromise solutions, as does balancing

distance compared to load, and load compared to the number of stops per tour. In practice, if

balance considerations are handled with constraints, then a larger set of compromise solutions

increases the likelihood that a solution close to a specific constraint value actually exists.

• The trade-off between cost and balance depends primarily on the workload resource, and

not the equity function. However, the marginal cost of balance was found to be low for all

combinations of resource and function, and it was observed to decrease with instance size. This

reinforces the practicality of pursuing better balance.

• For a given resource, most of the solutions identified by an equity function are not unique to

that function and found by at least one other alternative. However, no single equity function

finds much more than half of all the potentially “well-balanced” solutions for a given resource

(according to all considered functions). This implies that there is a large number of well-balanced

solutions, of which any function identifies only a limited subset.

• Solutions which are well-balanced in terms of one resource are usually not well-balanced in terms

of another. However, for the same resource, solutions optimizing one of the examined equity

functions tend to be of high quality also for the others, if not exactly the same. This further

underlines the importance of choosing the proper workload resource for a given application –

once a resource has been selected, the equity function has a comparatively limited impact.

• Solutions with similar objective values tend to exhibit similar solution structure. The pairs of

solutions closest to each other in the objective space were found to have a median of 75% to

80% of their edges in common. This lends some credibility to multi-objective solution methods

which implicitly assume some form of common structure among high-quality solutions.

In light of the somewhat subjective nature of equity, our study emphasizes the importance of

selecting the correct resource to balance. As outlined above, we observed that the subsequent choice

of the equity function has relatively less impact on the solutions found – a conclusion which runs

counter to the focus of previous studies which considered only the choice of function. However, we

have found that balance – in all the examined forms – can be significantly improved at only limited

extra cost, allowing the non-monetary benefits of balance to be realized in practice.
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