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Abstract

This study addresses short-term scheduling problems with throughput and make-
span as conflicting objectives, focusing on a priori multi-objective methods.
Two contributions are presented. The first contribution is to propose a priori
methods based on the hybridization of compromise programming and the ε-
constraint method that have computational benefits over the original methods.
The second is to present short-term operational objective functions, that can
be used within short-term scheduling to optimize desired long term objectives.
Two numerical case studies, one in a semiconductor processing plant and a sci-
entific services facility, are presented using a rolling horizon framework, which
demonstrate the potential for the proposed methods to improve solution quality
over a traditional a priori approach.

Keywords: multi-objective short-term scheduling rolling horizon
compromise programming a priori method ε-constraint

1. Introduction

With improving hardware technologies and computation techniques, indus-
tries are increasingly looking to implement decision making techniques based
on data and advanced optimization-based methods. Short-term scheduling of
operations based on mathematical optimization is a field that has been gain-
ing traction [35, 6, 42, 29, 27]. Such approach involves the use of short-term
scheduling models to determine the optimal timings of operations subject to
operational objectives and constraints. One common challenge is that, inside
an organization, there are multiple conflicting objectives. These issues can be
addressed using one single objective function, or combining objectives into a sin-
gle function with arbitrarily selected weights; however, it can be advantageous
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to use an appropriate multi-objective optimization method. For instance, two
conflicting objectives often considered in operations scheduling are maximiza-
tion of the total throughput (TTP) and minimization of the average makespan
(AMS).

Furthermore, short-term scheduling models provide operational level day-to-
day decisions, and often solutions need to be provided within a short amount
of time, using only information available up to a limited time horizon, such as
availability of raw materials and resources. One challenge that arises from these
situations is that the short amount of time available for a decision maker (DM)
to take a decision means that one needs to carefully consider that, whatever
approach is considered, it must not take too long to provide a solution. Due
to this situation, some multi-objective approaches may be too time consuming
for the purposes of short-term scheduling, e.g. a posteriori methods, which
consumes more CPU time than a priori methods [34]. While a priori methods
such as compromise programming and ε-constraint method are quite popular
[2, 34], they heavily rely on the DMs expertise to select appropriate weights that
may return non-dominated solutions that comply with the DMs expectations.
Therefore, there is a need to develop practical computationally attractive multi-
objective approaches that rely on intuitive weights that can be followed by DMs.

Moreover, another challenge often found inside organizations is that TTP
and AMS are objectives that are realized over a longer period of time (e.g.
weeks) than what is considered in short-term scheduling (e.g. days or hours).
For instance, a sequence of operations to be scheduled may not have any mea-
surable AMS or TTP after several days, which would in turn make it no better
than just scheduling no operations (from the point of view of the optimization
model that only considers a limited time horizon, e.g. one day of operations).
Thus, there is a need to consider short-term objective functions that are not the
actual TTP or AMS, but instead objective functions designed with the aim of
achieving high TTP or low AMS over multiple periods of operation.

One of the goals of this work is to present a priori multi-objective algo-
rithms that can provide practical solutions to multi-objective problems that
emerge in short-term scheduling. The key idea is to combine the features of
compromise programming and ε-constraint methods to generate two hybrid op-
timization algorithms that take into account the DMs preferences using intuitive
weights based on reference point methods, but that are guaranteed to provide
alternative a-priori solutions to such methods. The proposed hybrid algorithms
are expected to be computationally efficient since they do not require itera-
tions, i.e. they will search for acceptable solutions in a reduced space, which is
mostly determined by the specific objectives (i.e. weights) that the DM would
like to consider in the analysis. This is particularly relevant in an industrial
setting where large-scale (intensive) multi-objective optimization formulations
may need to be formulated and solved in short computational times. To our
knowledge, the solution of industrial-scale multi-objective problems using a pri-
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ori optimization methods still remains an open challenge. In addition, this work
will also study objective function formulations that can account for TTP and
AMS in short-term scheduling. These two issues will be studied within the con-
text of two application settings: a semiconductor manufacturing plant and an
actual scientific services facility.

The organization of this paper is as follows. The rest of this section reviews
the prominent contributions on multi-objective approaches. Section 2 presents
two new methods considered in this work to address multi-objective problems
in short-term scheduling, which are hybridizations of compromise programming
and the ε-constraint method. The specific objective functions to address TTP
and AMS in short-term scheduling are presented in Section 3. The two case
studies featuring multi-objective problems for short-term scheduling are pre-
sented in Section 4. Finally, concluding remarks are presented in Section 5.

1.1. Background and literature review on multi-objective approaches

A general multi-objective optimization problem can be formulated as follows:

min f(~x) = [f1(~x), . . . , fπ(~x)]T (1)

s.t. ~x ∈ χ

where χ ∈ Rn denotes the set of feasible solutions. f(~x) ∈ Rπ is a vector of
objective functions of length π; each element in f(~x) is called an individual
objective, cost or performance function.

There are two main types of methods to dealing with multi-objective op-
timization problems: a priori and a posteriori methods. A posteriori meth-
ods aim to provide a DM with efficient trade-off solutions called Pareto opti-
mal/Pareto efficient/non-dominated solutions [10, 15]. The DM can then af-
terwards look at the set of Pareto solutions provided and select one that com-
plies with the DM’s needs. However, the DM often has a limited amount of
time to make a decision, particularly for short-term scheduling applications.
Thus, obtaining a set of alternative solutions may be unnecessary or imprac-
tical in such cases. Given that the present work aims at providing practical
solutions in reasonable computational times, this study will focus on a priori
methods. Comprehensive reviews on multi-objective methods can be found else-
where [10, 34, 15, 28, 41, 9, 45, 18, 49, 11].

In contrast to a posteriori methods, the DM’s preferences are selected in
advance in a priori methods; hence, a single trade-off solution is obtained after
a unique search [10, 15], rather than a set of solutions for the DM to evalu-
ate. Reference point methods, such as compromise programming [46], are very
popular a priori methods that have been widely used in practice [16, 4].

These methods aim to minimize the difference between the potential optimal
point and a utopia (ideal) point f∗ defined as follows:
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f∗ := [f∗1 , f
∗
2 , . . . , f

∗
π ]T

where
f∗l = min{fl(~x) : ~x ∈ χ},∀l = 1, . . . , π

For most of the applications, the utopia point is often unattainable. Hence,
different methods have been developed to identify a (compromise) solution point
that is as close as possible to the utopia point. Most of the compromising pro-
gramming methods differ in the way the methods specify the distance between
the utopia point and the optimal point. One of the most popular compromise
programming methods is based on the finding the point in χ that minimizes the
distance to the utopia point, i.e.

min

(
π∑

l=1

(fl(~x)− f∗l )p

) 1
p

(2)

s.t. ~x ∈ χ

where p (1 ≤ p ≤ ∞) is a parameter selected by the DM that denotes the Lp
norm used to measure the distance between the optimal (compromise) point
and the utopia point. Setting p = 1 or p = ∞ leads to a natural way to re-
formulate the objective function using only linear expressions. Setting p = 1
will always return a non-dominated solution even if the feasible solution space
is non-convex whereas p = ∞ may not necessarily return a non-dominated
solution for a non-convex feasible solutions space [17]. Note that the imple-
mentation of compromise programming methods often requires the application
of transformation methods (e.g. fractional deviation or normalization) to spec-
ify dimensionless (normalized) optimization problems. More details about this
method are presented in the next section.

In general, the benefit of compromise programming lies in that it returns the
compromise solution that best approximates an ideal unattainable solution [32,
4]. The ε-constraint method [21] is another method that has enjoyed popularity
due to its relative simplicity [10, 8]. In this method, a prioritized objective is
optimized with other objectives being transformed into bounding constraints to
guarantee the minimum/maximum values (ε) of the non-prioritized objectives.

For a bi-objective problem (i.e. π = 2), the ε-constraint formulation can be
posed as follows. Consider the following two optimization problems:

min f1(~x)
s.t. ~x ∈ χ

f2(~x) ≤ ε2

(P1)

and

min f2(~x)
s.t. ~x ∈ χ

f1(~x) ≤ ε1

(P2)
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where ε1 and ε2 represent the limits imposed on each objective function, re-
spectively. The ε-constraint method consists in first obtaining f∗1 - equivalently
solving (P1) for a high value of ε2 - and then iteratively solving (P1) for smaller
and smaller values of ε2. Alternatively, a similar procedure can be done itera-
tively by solving (P2) and changing the values of ε1. Details about this method
can be found elsewhere [36, 7]. Such a method is an a-posteriori method, in
that it computes several candidate points that the DM can choose a-posteriori.
However, one concern is that, at any iteration, the point obtained by solving
(P1) or (P2) may not be strong Pareto efficient. Özlen and Azizolu [37] propose
an alternative to this method that changes the objective function of (P1) and
(P2) so that all computed solutions are strong Pareto efficient. In fact, their
method can compute all possible strong Pareto efficient solutions, with a careful
choice of ε1 and ε2.

While the ε-constraint method is typically classified as a posteriori method [36,
13, 8], there are studies that have classified it as a priori method [34, 11], as
the DM’s preferences can be expressed in the choice of the prioritized objective,
and the selection of the ε values. As mentioned above, we focus on the a priori
aspect of the ε-constraint method in this work, and propose two methods that
use a hybridization of compromise programming and the ε-constraint method
in order to obtain computationally cheaper algorithms.

There have been relatively few studies on scheduling problems that have
applied reference point methods [1] or the ε-constraint method [20, 47, 5]. Al-
louche et al. [1] solved a small job shop scheduling problem (5 jobs, 2 machines)
using compromise programming to simultaneously consider the makespan, the
total flow time, and the total tardiness. Gutierrez-Limon et al. [20] applied
the ε-constraint method to solve a problem in simultaneous scheduling and
control of a single reactor with 3 to 5 products with potentially simultaneous
reactions to manage the trade-off between economic profits and dynamic per-
formance. Both Yue and You [47] and Castro et al. [5] applied the ε-constraint
method for problems in batch plant scheduling with 4-11 products and 3-14
stages, respectively. While Yue and You [47] considered the economic and en-
vironmental objectives, Castro et al. [5] considered the makespan and the total
utility demand. A common factor in those studies is that the size of the prob-
lems considered are relatively small. Furthermore, to the authors’ knowledge,
a multi-objective short-term scheduling study that considers a rolling horizon
approach is not available; hence the motivation to develop new a priori multi-
objective approaches to address these issues.

2. Multi-objective a priori scalarization methods

In this section, we first present a reference point method of relevance to the
present study, i.e., minimizing the 1-norm distance to the utopia point (1NM
method). We then present two new methods that are based on the hybridization
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Figure 1: 1-norm minimum trade-off solution on trade-off surface

of the 1NM method and the ε-constraint method.

Throughout this section, and from this point forward in the study, we will
switch slightly from the generic notation of Section 1 to the more particular case
that we are interested in solving, namely, the following bi-objective problem:

max f1(~x)

min f2(~x) (3)

s.t. ~x ∈ χ

2.1. 1-norm minimization (1NM) method

Assume χ is the set of constraints, ~x is the vector of decision variables,
and f1, f2 are functions that we wish to maximize/minimize, respectively. In
this study, we choose as the reference point the utopia point at the coordinate
f∗ := (UB(f1), LB(f2)) as shown on Figure 1. The coordinates UB(f1) and
LB(f2) represent the upper and lower bounds of the output efficiency range,
which are computed by solving the single-objective problems max{f1(~x) : ~x ∈ χ}
and min{f2(~x) : ~x ∈ χ}, respectively. The coordinates LB(f1) and UB(f2) in
Figure 1 can be obtained by solving max{f1(~x) : ~x ∈ χ, f2(~x) = LB(f2)} and
min{f2(~x) : ~x ∈ χ, f1(~x) = UB(f1)}, respectively. A compromise solution on
the trade-off surface is obtained by minimizing a p-norm distance (δp) from the
utopia point [46]. This approach is also referred to as compromise programming,
and it is considered to be a special case of more general reference point meth-
ods, which may use any reference point, not just the utopia point [44, 15, 39, 32].

In the a priori compromise programming approach, the DM’s preference can
be expressed in the selection of the p-norm distance to minimize, or through a
strategy of selecting weights [46, 32]. In the 1NM method, we minimize the 1-
norm distance (δ1) to the utopia point, and we refer to the obtained compromise
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solution as the 1NM Point. For (3), the 1NM Point is computed by solving the
following aggregated and scalarized problem [19]:

min (1− f̂1(~x)) + f̂2(~x) (4)

s.t. ~x ∈ χ

where f̂1(~x) and f̂2(~x) are normalizations of f1(~x) and f2(~x):

f̂1(~x) =
f1(~x)− LB(f1)

UB(f1)− LB(f1)
f̂2(~x) =

f2(~x)− LB(f2)

UB(f2)− LB(f2)
(5)

The 1NM method thus has the advantage of simplifying decision making by
providing the DM with a single ideal compromise solution, which best approx-
imates the unobtainable utopia point. The 1NM method is also guaranteed to
return a non-dominated solution even if the output space is nonconvex [46]; also,
this 1-norm based approach leads to a linear formulation given linear objective
functions and constraints as shown in problem (4). While the 1NM method is
popular, one downside is that the DM preferences are inherently assumed, i.e.,
p = 1, and the DM has no freedom to express other preferences. Indeed, one
of the main motivations to our approach is to be able to provide to the DM
a-priori solutions that are different than the 1NM point. For instance, if the
DM considers that the 1NM point consistently gives a point with too low value
of f1(~x), we would like to provide a tool for the DM to specify a different choice
of point.

Other options that have been proposed to obtain different a-priori efficient
solutions include obtaining the closest point to the utopia point using a different
p-norm. This, however, can be challenging given that 1 < p <∞ norms lead to
nonlinear aggregating functions, and a ∞-norm solution may be a dominated
solution for a nonconvex output space [46], which are more common in pure
integer problems [19]. Furthermore, in practice, the DM may want to express
their preferences in terms of specific objectives, rather than in terms of the
p-norm which can be rather non-intuitive.

Another alternative is to use one of the weighed compromise programming
methods available, e.g. weighted sum methods [43, 2], augmented weighted
term methods [36, 32]. However, one of the downsides of such methods is not
being able to generate all Pareto optimal points. In addition, putting different
weights in the objective functions may not be very intuitive for a DM. For
example, setting a weight of 2 for f̂2(~x) says that objective function f̂2 is twice

as important as f̂1. Such a quantification of importance of the normalized
objectives seems to be a bit artificial. In addition, it is quite possible that, for
a particular weight choice, the returned point will still be the 1NM point, thus
effectively not providing the DM with any alternative to the 1NM point.

A final option that should be mentioned that can provide the DM with alter-
natives to the 1NM point is to compute all (strong) Pareto efficient points using
an a-posteriori method and then picking the one that has the desired property.
However such approach is bound to be computationally expensive since comput-
ing the Pareto frontier is an iterative process that may require many iterations
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to finish. Hence, their application to industrial-scale systems is computationally
intractable.

Therefore, we present in this work two practical approaches to address these
shortcomings. The idea is to base our methods on a parameter Υ that, with a
value of Υ = 0 is equivalent to returning the 1NM point, with a value equal to
1 is equivalent to returning a point with f1(~x) = UB(f1) or f2(~x) = LB(f2).
Any value in between measures how far from the 1NM point does the DM want
to go either increasing f1 towards the maximum value UB(f1) or decreasing f2

towards the minimum value LB(f2). In particular, any value Υ 6= 0 is guaran-
teed to find a Pareto solution that is different from the 1NM point.

2.2. Modified ε-constraint method (Mod-ε)

As previously mentioned, another option of a priori method is to compute
the Pareto frontier (a set of non-dominated solutions), and choose one trade-off
solution to implement according to a rule. In fact, the 1NM method can be
considered to be an application of such a rule to select the 1NM Point within
the Pareto frontier. In this work, it is desired to consider different solutions
that may be preferred by the DM than the 1NM Point. One alternative way to
devise an a priori approach is to compute the Pareto frontier (e.g. using the
ε-constraint method) and having a pre-determined rule on how to choose a point
from it. However, such approach is typically computationally expensive. In this
section, we propose a non-iterative hybrid method between the 1NM method
described in section 2.1 and the ε-constraint method, referred henceforth as the
Mod-ε method. We use a variant of a posteriori ε-constraint method presented
by Özlen and Azizolu [37] as the basis given that it is adapted for integer
programming problems as we would like to be able to solve in this work. We
propose two options for searching of the trade-off solution: search for a trade-off
solution in the direction of increasing objective values (i.e., from the 1NM Point
towards (UB(f1), UB(f2)) in Figure 1, or in the decreasing search direction (i.e.,
from the 1NM Point towards (LB(f1), LB(f2)) in Figure 1). We present the
Mod-ε method below for the bi-objective problem (3):

1. Compute the bounds of the output efficiency range: LB(f1), LB(f2),
UB(f1), UB(f1).

2. Compute the 1NM Point, ~x∗ (i.e. solve problem (4)).

3. Set weight w1 = 1
UB(f1)−LB(f1)+1 for the f1 objective (increasing search

direction), or set w2 = 1
UB(f2)−LB(f2)+1 for the f2 objective (decreasing

search direction).

4. Given the a priori DM preference value, 0 < Υ < 1 (Υ = 0 and Υ = 1
correspond to the 1NM Point and either the lower or upper bound of the
output efficiency range, respectively), and the 1NM Point, ~x∗, set bound
ε1 = f1(~x∗) + Υ(UB(f1)− f1(~x∗)) for the f1 objective (increasing search
direction), or set bound ε2 = f2(~x∗) − Υ(f2(~x∗) − LB(f2)) for the f2
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Figure 2: Using the DM preference value in the increasing search direction for Mod-ε

objective (decreasing search direction). This step is visualized in Figure 2
for the increasing search direction.

5. Solve the constrained weighted problem (6) (increasing search direction),
or problem (7) (decreasing search direction). This returns the final DM
preferred solution in the desired search direction.

min f2(~x)− w1f1(~x) (6)

s.t. f1(~x) ≥ ε1

~x ∈ χ

max f1(~x)− w2f2(~x) (7)

s.t. f2(~x) ≤ ε2

~x ∈ χ

Note that the weights w1 and w2 shown above are expressed such that the
solution of problem (6) or (7) are bi-objective efficient for an integer program-
ming problem (see Theorems 2.1-2.3 of Özlen and Azizolu [37]). Therefore, in
this work, we limit the discussion and implementation of the Mod-ε method to
integer programming problems. Furthermore, as mentioned in Özlen and Azi-
zolu [37], in this approach, f1 and f2 are assumed to have only integral values,
which can be attained through scaling any rational objective function, therefore
the results of Özlen and Azizolu [37] can directly be applied to this method,
thus guaranteeing that any solution obtained will be strong Pareto optimal.

The motivation for the proposed approach is that the DM preferred solution
is typically close to the 1NM Point; hence, we express the DM preferences
relative to the 1NM Point and the bounds of the output efficiency range. Note
that a different way to compute the exact same a-priori point is to run the
algorithm of Özlen and Azizolu [37] until the desired point is found. Indeed,
this can be seen as just one iteration of the algorithm of Özlen and Azizolu [37]
with a particular starting value of ε1 or ε2 being generated. The advantage of
the proposed approach is that, by starting with the 1NM point, we are ensured
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to find the desired point in one iteration, while Özlen and Azizolu [37] may
need to compute nearly the entire Pareto frontier to reach the desired point. In
addition, since the approach is based on Özlen and Azizolu [37], it overcomes
the concerns regarding compromise programming discussed in section 2.1.

Furthermore, expressing the DM preferences in Υ with respect to the 1NM
Point and the bounds of the output efficiency range can potentially give the DM
greater control over the degree of trade-off between the conflicting objectives
compared to some arbitrary selection of p-norm in compromise programming.
Note that if we consider the 1NM Point to be the ideal attainable compromise
between the conflicting objectives, then moving further away from the 1NM
Point along the Pareto frontier (i.e., higher Υ) would typically mean greater
deviation from ideal trade-off. In fact, the Mod-ε method can be considered as
an extension of the 1NM method, which allows the DM to express a priori the
degree of deviation from ideal objective trade-off the DM is willing to tolerate
in order to prioritize one objective over the other, without having to compute
the entire Pareto frontier. Therefore, such expression of Υ can be valuable if
the DM decides to stay relatively close to the 1NM Point rather than explicitly
selecting a bound within the objective range without any insight with respect
to the ideal trade-off.

2.3. 1NM ε-constraint method (1NM-ε)

In this section, we propose the 1NM ε-constraint method (1NM-ε), which
has a similar structure to the Mod-ε method described in the previous section.
While the motivation for this method is the same, i.e. that the DM’s preference
would be close to the 1NM Point, the major difference is that rather than solving
the constrained weighted problem (6) or (7), we search for the compromise
solution with the lowest 1-norm distance on the ε-constrained Pareto frontier
that excludes at least the 1NM Point. We present the 1NM-ε method below for
the bi-objective problem (3):

1. Compute the bounds of the output efficiency range: LB(f1), LB(f2),
UB(f1), UB(f1).

2. Compute the 1NM Point, ~x∗ (solve problem (4)).

3. Given the a priori DM preference value, 0 < Υ < 1, and the 1NM Point,
~x∗, set bound ε+

1 = f1(~x∗) + Υ(UB(f1)− f1(~x∗)) for the f1 objective and
set bound ε+

2 = f2(~x∗) for the f2 objective (increasing search direction);
alternatively, set bound ε−2 = f2(~x∗) − Υ(f2(~x∗) − LB(f2)) for the f2

objective and set bound ε−1 = f1(~x∗) for the f1 objective (decreasing
search direction).

4. Solve the 1-norm minimization problem (8) (increasing search direction),
or problem (9) (decreasing search direction). This returns the final DM
preferred solution in the desired search direction.

10
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min (1− f̂1(~x)) + f̂2(~x) (8)

s.t. f1(~x) ≥ ε+
1

f2(~x) ≥ ε+
2

~x ∈ χ

min (1− f̂1(~x)) + f̂2(~x) (9)

s.t. f1(~x) ≤ ε−1
f2(~x) ≤ ε−2

~x ∈ χ

By solving a 1-norm minimization problem in its last step rather than solv-
ing a constrained weighted problem like the Mod-ε method, the 1NM-ε method
has a larger emphasis on obtaining a good trade-off between the conflicting ob-
jectives compared to the Mod-ε method. This behavior arises from the fact that
for the Pareto frontier of the 1NM-ε method, moving from the 1NM Point to-
wards either the upper or lower bound of the output efficiency range, we would
inherently observe, by design, a continuous increase in the normalized 1-norm
distance (δ̂1). This is not necessarily the case for the Mod-ε method, and it is

possible to observe localized decrease in δ̂1 (i.e., localized decrease in trade-off
quality). Therefore, the Pareto frontier of the 1NM-ε method is either equiv-
alent to the Pareto frontier of the Mod-ε method, or a subset of the Mod-ε
Pareto frontier that excludes localized decrease in δ̂1. This difference is demon-
strated in Figure 3, which simultaneously shows trade-off solutions and their
corresponding normalized 1-norm distances for all relevant choices of Υ in both
increasing and decreasing directions. Note that if Mod-ε is used for all possible
Υ values, it is equivalent to using the a-posteriori method of Özlen and Azizolu
[37], thus the label on the picture specifies it as Mod-ε/O&A. We stress that
the proposed methods are a-priori and, thus for a fixed Υ would only return
one solution illustrated in Figure 3. The purpose of Figure 3 is to illustrate how
solutions may differ depending on using Mod-ε or 1NM-ε.

However, this does not necessarily mean that the 1NM-ε method would
always provide results that are more preferable to the DM. For the example
given in Figure 3, searching in the decreasing search direction (from the 1NM
Point towards LB) using the bound f2(~x) ≤ 4, the Mod-ε method returns the

solution at (f1, f2) = (28, 3.8) with δ̂1 = 0.5113, while the 1NM-ε method

returns the solution at (25, 2.6) with δ̂1 = 0.5111. In this case, while the 1NM-ε
solution is slightly closer to the Utopia Point than the Mod-ε solution, the DM
might still prefer the Mod-ε solution with higher f1 value. Furthermore, if the
two methods have equivalent Pareto frontier, then their solutions would also be
the same using the same value of Υ.
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Figure 3: Comparison of Pareto sets from Mod-ε/O&A and 1NM-ε. The dashed rectangle
represents solutions that cannot be generated by the 1NM-ε method.

3. Short-term objective functions

As discussed in the introduction, maximizing the total throughput (TTP)
and minimizing the average makespan (AMS) can often be computationally
intractable due to the difference in time scale between tactical level decision
making (TTP/AMS) and short-term scheduling. In order to address this issue
of approximating TTP and AMS for short-term scheduling, we present here a
rolling horizon approach for short-term scheduling applications. While rolling
horizon approaches to scheduling are common (e.g. [12, 33, 31]), the typical
assumption is that there is an associated given cost for each activity and the
total cost is to be minimized. Even if one looks simply at short term scheduling,
this assumption on the objective function also seems to hold (e.g. [35, 24]). Our
approach differs from those in that the objectives that are given are not in terms
of immediate costs of finishing/performing any actual task, but the long term
objectives that will unlikely be realized within a singe CH. While the present
approaches have been tested on two particular applications, i.e., a semiconduc-
tor plant and an actual scientific services facility, a wide variety of industrial
applications require this approach to schedule operations in an optimal fashion,
e.g., steelmaking [30] and industrial gases supply chain [48]. In order to provide
the necessary context and notation for the objective functions proposed in this
work, we first provide the problem definition in section 3.1 before presenting the
alternative objective functions. A number of alternative operational objective
functions are proposed in section 3.2.

3.1. Problem Definition

The following problem definition applies to both of the problems considered
in this study (see Section 4). A facility receives a set of tasks I that need to be
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processed within a rolling scheduling horizon (RH). A predetermined number
of constituent horizons (CH), each with a scheduling horizon of length H, form
the overall RH. Within the context of this study, a CH represents a single day
of operations (e.g., there can be 30 CHs (days) within the RH (month), with
H = 8 hours or 24 hours).

Each task i ∈ I is composed of a discrete number of materials. These ma-
terials are processed using a set of processing units P and each processing unit
p ∈ P consists of a set Jp of identical machines that perform a specific process.
Each task i is introduced at the beginning of a CH, but not necessarily at the
beginning of the RH, and at the beginning of a specific sequence of process-
ing units, called a path. The path of a task i, denoted by ℘i, is a sequence
of n(i) distinct processing units (pi1, . . . , p

i
n(i)), where pik ∈ P for all i ∈ I,

k = 1, . . . , n(i). The materials in task i must visit each subsequent processing
unit in ℘i sequentially, that is, pik+1 in ℘i can only be visited if pik has already
been visited. Materials are considered to have visited processing unit p if it
has been processed by one of the machines in Jp. We assume that there is no
transportation time between different processing units, and that there are no
restrictions on intermediate storage.

All machines in a processing unit p have an associated integer number
nmp ≥ 1 of operational modes. Each m ∈ Ψp := {1, . . . , nmp} represents a
predetermined value of processing time τpm associated to a machine in p used
in mode m. For each task i ∈ I and its path ℘i, there is a specific sequence
of operational modes (mi

1, . . . ,m
i
n(i)) that determines that the k-th processing

unit in ℘i must be used in mode mi
k ∈ Ψpik

, for all k = 1, . . . , n(i).

Machines in a processing unit p have a specific capacity, denoted as βp, and
a machine j ∈ Jp may be loaded with at most βp amount of materials from
potentially different tasks. Once a machine j ∈ Jp has been turned on to pro-
cess the materials for operational mode m, it will run without interruption for
a time τpm. After this time, the machine is considered to be available; also,
the materials are considered to have visited the corresponding processing unit,
and they are ready to visit the next processing unit in their path. Furthermore,
there is no minimum working capacity for any machine, that is, the machines
can be turned on with any number of samples between 0 and βp. It is assumed
that the information described above is available and known a priori.

For the problems being considered in this study, we allow a machine j ∈ Jpik
to continue to process materials for task i during the gap between the CHs, if
any, as long as the machine was turned on for mode mi

k during or at the end
of the CH. If the gap is long enough for the machine to complete processing
before the beginning of the next CH, then machine j will become available to
process more materials at the beginning of the following CH, and the materials
that completed processing during the gap will become available to be processed
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at (k + 1)th process in its path if k < n(i). Otherwise, the machine will be
occupied, and the materials unavailable for further processing until processing
has been completed at that machine. At the beginning of the RH, machines in
J may be occupied, or not, depending on the specific operating conditions of
the facility.

Given the above problem definition, we use the integer linear programming
(ILP) scheduling model based on the multitasking flexible discrete-time formu-
lation presented by Lagzi et al. [26]. That study has shown that this modeling
approach is effective in solving large-scale ILP short-term scheduling problems
where multitasking is a key operational feature. Modifications were made for
this study in order to allow for potentially different processing times for each
processing unit, and to fit with the rolling horizon approach. These modifica-
tions are presented in Appendix B. The following are the nonnegative integer
decision variables from that formulation that are relevant to the objective func-
tions being proposed in this work:

• Bikt: the amount of materials from task i that are set to start being
processed at the kth processing unit in the path of task i, pik ∈ ℘i, at the
time point t, ∀ i ∈ I, 1 ≤ k ≤ n(i), t = 1, . . . , |E(pik)|

• Wikt the amount of materials waiting to start being processed at process-
ing unit pik at time point t , ∀ i ∈ I, k = 1, . . . , n(i), t = 1, . . . , |E(pik)|
where |E(p)| represents the length of unit-specific sequence of time points.

3.2. Objective functions

The ultimate goal of this work is to either maximize throughput or minimize
makespan, or obtain a Pareto optimal solution to both these objectives over the
entire RH. However, as mentioned before, performing any of these tasks over
the entire RH is computationally intractable, even for smaller sized instances.
Thus, the need to do a RH approach arises. However, most tasks cannot be
finished over a single CH, thus any attempt to directly maximize throughput or
minimize makespan over that single CH will have zero throughput or makespan
undefined. For this reason, we needed to design objective functions for a single
CH that would make progress towards having good throughput/low makespan.
These are presented in the following subsections.

3.2.1. Objective functions for throughput maximization (f1)

Within the context of this study, we define the throughput of a task i (TP i)
as the cumulative sum of the amount of materials for task i, which have either
started or completed being processed at the last processing unit in its path, pin(i)

for the RH. We also define the total throughput as TTP :=
∑
TP i, ∀i ∈ I, and

a key objective is to maximize TTP for the RH. However, simply maximizing the

amount of materials starting from the last process
∑
i∈I
∑|E(pin(i))|
t=1 Bi,n(i),t for

each CH does not necessarily maximize TTP for the RH. For instance, if none
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Table 1: Proposed weights for the throughput maximization objective functions

f1ID weight Description/Rationale

0 1 Maximizes the sum of all materials starting to be pro-
cessed at all processing units for all tasks during the CH.

1
k

n(i)
Provides higher priority to materials starting to be pro-
cessed at processing units later in the path ℘i, relative
to the units earlier in ℘i (Closer approximation to TTP
for the CH than using the weight of 1)

2
( k

n(i)

)2

Shifts the priority towards the end of ℘i compared to
k
n(i) .

3
k

n(i)∑
j=1

j

If there are no materials for task i, which started be-
ing processed during the CH, but did not arrive at
the last processing unit by the end of the CH, then∑n(i)
k=1

∑|E(pik)|
t=1

k∑n(i)
j=1 j

Bikt = TP i for the CH (Closer ap-

proximation to TPP for the CH than other weights where∑n(i)
k=1

∑|E(pik)|
t=1 (weight)Bikt > TP i for the CH).

4

k∑
j=1

τpikmik

n(i)∑
j=1

τpikmik

Similar to the ratio of the length of ℘i up to and including
pik to the total length of ℘i in terms of processing times.
Prioritizes processing units with longer processing times
compared to other weights.

of the materials can complete the last process in their respective paths during
the CH under consideration, which may happen, for example, at the beginning
of a production campaign, the value of such objective function would be 0 for
all feasible solutions. In such instance, a schedule that does not process any
materials during the CH would be considered to be just as good as any other
feasible schedule. Therefore, we propose operational throughput maximization
objective functions (i.e. f1 in problem (3)) of the following form:

max
∑

i∈I

n(i)∑

k=1

|E(pik)|∑

t=1

(weight)Bikt (10)

The above objective function uses the weights presented in Table 1, each with
an identifying f1ID, which attempt to produce schedules with close to optimal
TTP for the RH. In this work, we consider the optimal TTP for the RH to be
the TTP that could be achieved by explicitly maximizing the TTP by solving
a single large problem with a scheduling horizon equivalent to the length of the
RH. Note that objective functions of the form shown in equation (10) can easily
account for other problem specific details, such as rush jobs, by adding another
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weight factor in front of Bikt to prioritize tasks with higher priority.

3.2.2. Objective functions for makespan minimization

Within the context of this study, we consider task i to be completed when
there are no materials waiting to start being processed at pik, 1 ≤ k ≤ n(i) (i.e.,
∑
i∈I
∑n(i)
k=1

∑|E(pik)|
t=1 Wikt = 0 for the entire RH), and we define the makespan

of task i (MSi) as the time elapsed since the task was made available (AT i)
to be processed at pi1 until the expected time of completion of pin(i) for the last
remaining materials in task i. For example, if a batch of material unit size 5
became available to be processed at the first processing unit on day 1 at 9 hours,
and all 5 units of material reached the last processing unit requiring 1 hour of
processing time on day 3 at 15 hours (i.e. 3 p.m.), then the makespan of this
task is {24 hours/day ×2 days +(15−9) hours +1 processing hour = 55 hours}.
Given this definition for MSi, we define the average makespan (AMS) for a
given set of tasks I to be the arithmetic mean of MSi for tasks i ∈ I that are
completed. For short-term scheduling problems where the system is sufficiently
constrained, or one or more tasks have paths that are longer than the length
of the scheduling horizon, explicitly minimizing AMS as the objective function
may be undesirable. For instance, if there are no tasks that can be completed
within the CH, then the value of such objective function would be 0 for all
feasible solutions. Given the above considerations, we propose the following
operational makespan minimization objective functions (i.e. f2 in problem (3))
of the following form:

min
∑

i∈I

n(i)∑

k=1

(ST −AT i +

n(i)∑

j=k

τpijmij )(variable) (11)

The above objective function uses the variables presented in Table 2, each with
an identifying f2ID, which attempt to produce schedules with close to optimal
AMS for the RH. In eq (11), ST represents the start time of the CH. Note that
in contrast to the f1 objective function, the f2 objective functions are differen-
tiated using different decision variables, rather than different weights.

The constraints (12) and (13) shown below define the binary decision variable
Sik for f2ID = 0 and f2ID = 1, respectively. When implementing the objective
functions, f2ID = 0 and f2ID = 1, Sik must be introduced as a decision variable,
in addition to the other decision variables, and the respective constraint (12) or
(13) must be added to the scheduling model presented in Appendix B according
to the f2ID.

Wik|E(pik)|

1 +
∑n(i)
j=1

∑|E(pik)|
t=1 aijt

≤ Sik ≤Wik|E(pik)| ∀i ∈ I, k = 1, . . . , n(i) (12)
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Table 2: Proposed weights for the makespan minimization objective functions (f2)

f2ID variable Description/rationale

0
Sik,

eq (12) Sik = 1 if processing unit pik has materials waiting to
be processed at the end of the CH; otherwise, Sik = 0.
Promotes materials to arrive at the last processing unit
together, since a task is not completed until all materials
get to the end.

1
Sik,

eq (13) Sik = 1 if processing unit pik has materials waiting to
be processed at the end of the CH, or materials that
started being processed at pik and expected to continue
being processed at pik after the end of the CH; other-
wise, Sik = 0. Penalizes in-process materials for being at
earlier processing units rather than later, in addition to
waiting materials.

2 Wik|E(pik)| Minimizes the amount of materials waiting to be pro-
cessed at each processing unit at the end of the CH.
Higher priorities are given to tasks with more waiting
samples.

Wik|E(pik)| +
∑
t′=1,...,|E(pik)|:ϕ

pi
k
t′+τpi

k
mi
k
>ϕ

pi
k
|E(pi

k
)|
Bikt′

1 +
∑n(i)
j=1

∑|E(pik)|
t=1 aijt

≤ Sik ≤Wik|E(pik)|

+
∑

t′=1,...,|E(pik)|:ϕ
pi
k
t′+τpi

k
mi
k
>ϕ

pi
k
|E(pi

k
)|

Bikt′ ∀i ∈ I, k = 1, . . . , n(i) (13)

For each f2, the general approach is to consider as weight, for each task
i ∈ I : AT i ≤ ST and process unit pik, 1 ≤ k ≤ n(i), the sum of elapsed time
since AT i to ST and the total processing time remaining in path ℘i, then pro-
vide incentive for task completion by promoting materials to progress through
℘i during the CH. This weight prioritizes processing of materials at process units
that are earlier in ℘i compared to the units that are later in ℘i, and completion
of tasks that are introduced earlier and tasks with longer paths.

We end this section by observing that both TTP and AMS objectives ulti-
mately aim at finishing tasks as early as possible, but ultimately these objectives
do conflict in which tasks to prioritize. Nonetheless, since the objective func-
tions proposed are merely heuristic short-term suggestions to simulate TTP and
AMS, it is also possible that an objective function designed purely with TTP
in mind performs well relative to the AMS objective (and vice-versa).
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4. Computational studies

We test the performance of our proposed multi-objective formulations using
two different case studies. The first case study is based on the semiconductor
processing case study presented by Senties et al. [40], whereas the second is
a full industrial-sized case study of the scientific services scheduling problem
previously reported in the literature [38, 25, 26]. For the different methods
(single-objective, 1NM, Mod-ε and 1NM-ε), we compare the CPU time along
with the total throughput (TTP) and the average makespan (AMS) as defined
in sections 3.2.1 and 3.2.2, respectively. For all rolling horizon (RH) results
presented in sections 4.1.1 and 4.2.1, we present mean CPU times and mean
optimality gaps as mean across the entire RH for one constituent horizon (CH).

For all a priori Mod-ε and 1NM-ε implementations, we chose the DM pref-
erence value of Υ = 0.4 to calculate the values of ε and ε+/− as defined in
sections 2.2 and 2.3. This value was chosen to obtain a trade-off solution about
half way between the 1NM Point and the bounds of the output efficiency range,
in order to produce results that were distinguishable from the single-objective
implementations and the 1NM method. However, we did not want to poten-
tially exclude the ‘half way point’ solution of Υ = 0.5. In this way, we could
compare a different range of choices of the DM: the 1NM, the extreme choices
of individual objectives, and a Pareto solution in between.

In order to simplify reference to specific objectives, we use the notation ff1ID1

and ff2ID2 when referring to f1 and f2 objectives with specific f1ID weight and
f2ID variable as presented in Tables 1 and 2, respectively. For example, f1

1

refers to f1 objective function with f1ID = 1 (weight shown in Table 1). For
both case studies, we do not implement the Mod-ε method with f1

1 and f2
1 as

these f1 objectives lead to non-integer values, and the Mod-ε method is intended
to be used for problems with integer-valued objectives as discussed in section 2.2.

All reported CPU times include operations leading up to the final optimiza-
tion run of each algorithm (i.e. model generation, solver pre-processing, obtain-
ing bounds of the output efficiency range, and computation of 1NM Point). All
implementations were performed using Julia programming language (0.6.0) [3]
and JuMP modeling language (0.18.0) [14]. Optimization runs were performed
using IBM ILOG CPLEX Optimizer (12.6.0) [22] on a shared Linux server with
250 GB of RAM and 4 CPUs, each with 12 cores and a processing speed of
2.4 GHz. For all optimization runs, we used a CPLEX solver time limit of 1
hour (unless stated otherwise) and 8 GB size limit on the MIP branch-and-cut
tree [23].

4.1. Semiconductor case study

We solved two instances of the semiconductor case study adapted from the
case study presented by Senties et al. [40], which contains 5 different product
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Figure 4: Process map for the semiconductor case study

recipes (paths) and 12 processing units with a total of 14 equipment resources,
where two of those processing units had two identical equipment resources in
parallel. The network of the processing units defined by the product recipes
are presented in Figure 4. The product recipes and the data on each processing
unit are presented in Tables B1 and B2 in Appendix C.

For this case study, we define a task as the group of wafer lots (the processed
materials) with the same arrival time belonging to the same product. For the
rolling horizon (RH) approach, we consider a constituent horizon (CH) to be
a single day, and the plant is assumed to operate 24 hours/day (i.e. H = 24
hours) for each day in the RH without any interruption. The first instance is a
problem containing 50 tasks consisted of 90 wafer lots. The second instance is
a larger problem with 63 tasks consisted of 900 wafer lots. Full instance data
are presented in Tables B3 and B4 in Appendix C.

4.1.1. Rolling horizon results: semiconductor

We compare TTP and AMS at the end of a 15-day RH given that for both
instances, more than 80% of tasks were completed by the end of day 15 for all
approaches except single-objective f2 minimization. While more comprehensive
results are presented in Appendix D, including the number of days required to
complete all tasks for each approach and the AMS at 100% task completion, we
present the key results and comparative analysis in this section.

First, for each instance, we identified the f1ID and f2ID for the single-
objective max f1 and min f2 RH runs, which produced the highest TTP (TTP*)
and lowest AMS (AMS*) at the end of the 15-day RH, as presented in Table 3. In
order to perform easier comparisons of TTP and AMS for different approaches,
we compute the relative differences in TTP (dr(TTP)) and AMS (dr(AMS)) for
a particular approach to the best case TTP* and AMS* as follows:

dr(TTP) =
TTP − TTP ∗

TTP ∗
(14) dr(AMS) =

AMS −AMS∗

AMS∗
(15)

While we use such benchmarks against the best single-objective short-term
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Table 3: Best case TTP and AMS for single-objective runs for the semiconductor case study

f1

ID
f2

ID TTP

dr(TTP)

[%] AMS

dr(AMS)

[%]
Mean CPU
time [sec]

Mean
Gap [%]

1st
inst.

4 - 82a 0 4892 8.35 21 0.00
- 1 38 -53.66 4515b 0 84 0.00

2nd
inst.

0 - 876a 0 4800 2.29 47 0.00
- 1 605 -30.94 4692b 0 286 0.00

Values with superscripts a and b represent TTP* and AMS*, respectively

approximations for ease of comparison, TTP* and AMS* should not be consid-
ered to be optimal long-term values, i.e., dr(TTP) can be positive and dr(AMS)
can be negative. Note that each single-objective optimization run produces a
solution for a short-term constituent horizon that is optimal with respect to its
short-term approximating objective function, and does not guarantee long term
optimality in TTP or AMS, which we deem to be unobtainable, due to compu-
tationally prohibitive runtimes. In particular, a positive dr(TTP) value would
suggest that particular combination of f1 and f2 short-term objectives leads to
better results for TTP over time than the best available naive single-objective
implementation.

In Figures 5 and 6, we compare the different approaches by plotting dr(TTP)
on the horizontal axis, and dr(AMS) on the vertical axis for each instance.
For each data point, the corresponding method is identified by the marker,
the (f1ID, f2ID) combination is identified inside the parenthesis, and mean
CPU time is provided next to the parenthesis. For the 1NM-ε and Mod-ε, we
identify the search direction as the suffixes ‘Inc’ and ‘Dec’. In comparing the
dr(TTP) and dr(AMS) of different approaches, we can describe a dominance
relationship similar to the notion of Pareto efficiency: approach A dominates
over approach B if {dr(TTP)A > dr(TTP)B and dr(AMS)A ≤ dr(AMS)B}
or {dr(TTP)A ≥ dr(TTP)B and dr(AMS)A < dr(AMS)B}. Based on this
dominance relationship, we present only the results that are closer to the bottom
right quadrant, and exclude most of the dominated results for readability.

In Figure 5, three non-dominated approaches are observed for the first in-
stance: Max f0

1 , 1NM-ε Inc (f0
1 , f1

2 ), and 1NM (f4
1 , f2

2 ). In Figure 6, one
non-dominated approach is observed: 1NM-ε Inc (f4

1 , f1
2 ). These results demon-

strate that the a priori multi-objective scalarization methods can be used to
improve TTP and AMS over a rolling horizon compared to a single-objective
approach.

Furthermore, the a priori 1NM-ε and Mod-ε approaches proposed in this
work were able to improve TTP or AMS, if not both, compared to the 1NM
method. For example, for the second instance, Mod-ε Inc (f0

1 , f1
2 ) produced

both higher TTP and lower AMS (dr(TTP) = −0.41, dr(AMS) = −3.16) com-
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Figure 5: dr(TTP) vs dr(AMS) for the first instance of the semiconductor case study

Figure 6: dr(TTP)vs dr(AMS)for the second instance of the semiconductor case study
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Figure 7: Change in dr(TTP) and dr(AMS) throughout the RH for the first instance

pared to 1NM (f0
1 , f1

2 ) (dr(TTP) = −0.91, dr(AMS) = −1.48) as shown in
Figure 6. However, the improvements in TTP and AMS were generally achieved
at the expense of additional CPU time.

Based on the results of Figures 5 and 6, we compare how dr(TTP) and
dr(AMS) change throughout the RH for the two instances in Figures 7 and
8. Given that only one non-dominated approach is observed for the second
instance, we identified three additional dominant approaches excluding 1NM-ε
Inc (f4

1 , f1
2 ), and included them in Figure 8. Furthermore, we compare these

results to the single-objective Max f1 run producing TTP* for each instance as
reported in Table 3. We did not, however, compare the results to the single-
objective Min f1

2 run given that it produced significantly lower dr(TTP) at all
points throughout the RH compared to the other methods for each instance (-51
to -100% and -28 to -100% for the first and second instances, respectively).

In Figures 7 and 8, we can observe that the TTPs of the dominant ap-
proaches tend to converge around day 8 of the 15-day RH for both instances.
Given this behavior of converging TTP, the main benefit of applying a multi-
objective scalarization method over a single-objective f1 maximization approach
is to reduce AMS without a substantial trade-off in TTP. For both instances,
the 1NM-ε Inc approach provided the lowest AMS for most of the RH among
the approaches compared in Figures 7 and 8, while its dr(TTP) did not fall
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Figure 8: Change in dr(TTP) and dr(AMS) throughout the RH for the second instance

below -10.5% at any point during the RH for 1NM-ε Inc.

Overall, it was beneficial to obtain a trade-off solution within the output
efficiency range in the direction of increasing f1 from the 1NM Point using the
1NM-ε method for this particular case study. f0

1 and f4
1 were identified as

the dominant throughput maximization objectives, while f1
2 was the dominant

makespan minimization objective. However, depending on the problem being
considered, different objectives may be dominant, and the Mod-ε method may
be more appropriate (e.g., if the Mod-ε method has better or similar solution
quality, with similar or lower CPU times).

4.2. Scientific services case study

The scientific services facility model considered in this work was that pre-
sented by Lagzi et al. [26] and consists of a network of 25 processing units
defined by 11 paths. In this study, we consider a more comprehensive network
of 118 processing units and 117 unique paths; a part of this network formed
by 39 processing units and 19 paths is presented in Figure 9. In Appendix
E, the 19 paths defining this partial network are presented in Tables D1, and
capacities, resources, and processing times are presented in Table D2. Unlike
the semiconductor case, the scientific services facility in consideration does not
utilize different operational modes, i.e., each processing unit has only one pos-
sible processing time. The identity of the industrial partner and the complete

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 9: Partial process map for the scientific services case study

data are not disclosed as per our nondisclosure agreement with the industrial
partner. Refer to section 3.1 of Lagzi et al. [26] for more details, including part
of the data set used in this study.

For this scientific services case, a task consists of a group discrete samples
received from a client that must follow a specific path of processing units to be
analyzed. We consider a constituent horizon (CH) to be a single day, and the
plant is assumed to operate 8 hours/day (i.e. H = 8 hours) for each day in the
RH. The instance studied in this work was generated by first taking a snapshot
of the scientific services facility to capture the tasks that are currently in the
system, then introducing new tasks for each day within the rolling horizon. A
task for each day is generated through uniform random assignment of task size
between 1 and 100 samples, and tasks are generated in this manner until the
total number of samples arriving that day exceeds 4,000, the approximate nom-
inal daily processing capacity of this network of units considered in this study.
Paths were assigned to the tasks to generate a distribution of paths reflecting
the facility’s actual operating distribution of paths.

4.2.1. Rolling horizon results: scientific services

In this section, we compare TTP and AMS at the end of a 30-day RH,
at which point 67-78% of tasks are completed for the multi-objective meth-
ods. While more comprehensive results tables are presented in Appendix F, we
present key results and comparative analysis in this section.

For this case study, Max f1
1 and Min f1

2 single-objective RH runs produced
the highest TTP (TTP*) and lowest AMS (AMS*) at the end of the 30-day RH,
as presented in Table 4. Therefore, relative differences dr(TTP) and dr(AMS)
are presented in this section with respect to Max f1

1 and Min f1
2 in this section

as defined in eq (14)-(15).
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Table 4: Best case TTP and AMS for single-objective runs for the scientific services case
study

f1

ID
f2

ID TTP

dr(TTP)

[%] AMS

dr(AMS)

[%]
Mean CPU
time [sec]

Mean
Gap [%]

1 - 61990a 0 20,447 14.5 88 0.00
- 1 32,025 −48.34 17859b 0 251 0.01

Values with superscripts a and b represent TTP* and AMS*, respectively

In Figure 10, dr(TTP) and dr(AMS) of the different approaches are com-
pared. In this case study, bi-objective implementations were not performed
with f2

1 as each single-objective Max f2
1 iteration required 4 hours, on average,

to compute due to computationally inefficient model generation (see Table E1
in Appendix F). Furthermore, based on the observation that f2

2 consistently
provided inferior trade-off results due to producing significantly high dr(AMS)
(35-37%), the Mod-ε and 1NM-ε methods were not implemented with f2

2 objec-
tive (see Tables E2 and E3 in Appendix F). Results for the Mod-ε and 1NM-ε
methods for the search direction of decreasing f1 and f2 could not be obtained
as no feasible solution could be found in this direction on Day 1 of the RH for
any (f1, f2). During the 1NM method implementations, we also noticed that
the final 1-norm minimization run often reached the solver time limit of 1 hour.
To address this issue, we also performed bi-objective implementations using a
6 minute solver time limit, based on our observation that most single objective
runs compute the bounds of the output efficiency range in less than 6 minutes,
and the optimality gap for the 1-norm minimization runs typically reached be-
low 1% within the first 6 minutes.

In Figure 10, three non-dominated approaches are observed: Mod-ε Inc (f0
1 ,

f1
2 ), 1NM (f1

1 , f1
2 ) (6 minute time limit), and 1NM-ε Inc (f1

1 , f1
2 ). These results

demonstrate that the proposed 1NM-ε and Mod-ε methods, as well as the 1NM
method can be used to produce results that are non-inferior, if not dominant,
when compared to a single-objective approach for an industrial sized problem
using a rolling horizon approach. Furthermore, for the 1NM method, the overall
CPU time could be reduced by 67% and 78% for (f1

1 , f1
2 ) and (f3

1 , f0
2 ), respec-

tively, by setting the solver time limit to 6 minutes instead of 1 hour, while
dr(TTP) and dr(AMS) improved by 0.43 and 1.12 percentage points, respec-
tively, for (f1

1 , f1
2 ), and by 0.14 and 0.61 percentage points, respectively, for (f3

1 ,
f0

2 ). These results show that, since the operational f1 and f2 objectives do not
explicitly maximize TTP and minimize AMS, but rather approximate expres-
sions with the goals to maximize TTP and minimize AMS, it is not necessary
to solve problems to optimality when computing the 1NM Point to obtain a
good trade-off solutions in terms of TTP and AMS. However, the same success
could not be obtained for the 1NM-ε and Mod-ε methods using a 6 minute
time limit, as 5 of 8 (f1, f2) combinations failed to produce a feasible solution
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Figure 10: dr(TTP) vs dr(AMS) for the scientific services case study

in the increasing search direction within 6 minutes at some point during the RH.

In Figure 11, the changes in dr(TTP) and dr(AMS) of the three non-dominated
approaches throughout the rolling horizon are presented, along with Max f1

1 ,
as the reference for computing dr(TTP), as well as 1NM (f0

1 , f1
2 ) to provide

a comparison parallel to 1NM-ε Inc (f1
1 , f1

2 ) vs 1NM (f1
1 , f1

2 ). These results
demonstrate that the choice of the f1 objective in a bi-objective implementa-
tion produces a significant difference in TTP, as single objective max f1

1 , 1NM
(f1

1 , f1
2 ) and 1NM-εInc (f1

1 , f1
2 ) produced average dr(TTP) of -0.28% over the

RH, while 1NM (f0
1 , f1

2 ) and Mod-εInc (f0
1 , f1

2 ) produced average dr(TTP) of
-5.29%. Furthermore, the effectiveness of taking an alternative trade-off solu-
tion after finding the 1NM solution appeared to depend on the choice of f1.
On average, throughout the RH, the 1NM-ε method only increased dr(TTP)by
0.27% point and reduced dr(AMS) by 0.29% point over 1NM method for (f1

1 ,
f1

2 ), while the Mod-ε method increased dr(TTP) by 1.05% point and reduced
dr(AMS) by -4.94% point for (f0

1 , f1
2 ).

These results demonstrated potential benefits to using a priori scalarization
methods for industrial sized problems in a rolling horizon applications. For this
particular case study, the traditional 1NM approach provided good trade-off
solutions within 6 minutes, and the proposed 1NM-ε and Mod-ε methods can
be used to further increase the TTP or reduce the AMS using the dominant ob-
jective functions (f0

1 and f1
1 for throughput maximization, and f1

2 for makespan
minimization). It is worth mentioning that the results obtained can change sig-
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Figure 11: Change in dr(TTP) and dr(AMS) throughout the rolling horizon

nificantly if the computational time allowed varies. This is because some more
computationally intensive choices may be more promising if given more time.
Therefore, one needs to carefully consider this and other factors when consider-
ing these results in different contexts.

4.3. Conclusions from experiments

While there was not a single choice of approach that consistently outper-
formed all others in our experiments (two semiconductor cases and one scien-
tific services), there are certain common conclusions that apply to both and will
likely be helpful in similar situations. We outline such conclusions here.

The first observation is that the proposed multi-objective approaches indeed
perform better than the single-objective ones. Note that in all case studies, most
non-dominated approaches were obtained from multi-objective approaches. In
fact, only in the first semiconductor case there was a non-dominated approach
that arose from single-objective Max f0

1 and, in such case, its (TTP,AMS) were
(81, 4684.7) which are very close to another non-dominated approach, the 1NM-
ε Inc (f0

1 , f1
2 ), with (TTP,AMS) = (83, 4691.4). Thus, the choice of using a

multi-objective approach seems to consistently outperform single-objective ones.
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Secondly, regarding the choice of objective function to use, one relevant
observation is that the choice of f1

2 seems to be suitable and attractive. Indeed,
for all case studies, if we limit ourselves to using only approaches that consider
f1

2 , we will still keep at least one non-dominated solution. While the choice for
f1 is less clear, one additional observation is that f2

1 and f3
1 did not lead to

non-dominated solutions and thus discarding them would still leave us with all
the non-dominated solutions found. In addition, regarding the multiobjective
method, 1NM-ε Inc performs well in our experiments. Indeed, in all cases,
there is at least one non-dominated solution that uses 1NM-ε Inc. Narrowing
the choices further than what is discussed above will come with a loss of non-
dominated solutions.

These results show the value of our proposed methods and study of different
objective functions.

5. Conclusion

This study has proposed effective alternatives to address some of the is-
sues regarding short-term scheduling of multipurpose plants, where there exists
two conflicting tactical objectives in maximizing the total throughput of the
plant, and minimizing the average makespan of tasks being completed. Our
contributions in addressing these issues are a priori multi-objective optimiza-
tion methods, and approximation of the tactical objectives as alternative oper-
ational objective functions. The effectiveness and limitations of these different
approaches are studied using a semiconductor processing plant case study, and a
larger, industrial-sized scientific services sector case study. In these case studies,
we used a rolling horizon approach to compare the performances of the different
multi-objective approaches and the operational objective functions in terms of
the total throughput of the plant, and the average makespan of completed tasks.

The multi-objective methods implemented in this work were focused around
the reference point-based compromise programming approach, an a priori scalar-
ization method, which minimizes the 1-norm distance of a trade-off solution to
the utopia point (1NM method). In this work, two new algorithms, i.e., the Mod-
ε and 1NM-ε methods, are proposed based on hybridization of the ε-constraint
method and the 1-norm distance based compromise programming. The pro-
posed algorithms provide an alternative way for the DM to specify preferences
without the need to specify how much better is one objective function relative to
the other (weighted compromise programming) or specifying a particular p-norm
to be minimized. For both case studies, with appropriately selected operational
objective functions, the a priori methods provided lower average makespan
than single-objective throughput maximization approach, without a significant
reduction in the total throughput, if any. In particular, the a priori 1NM-ε
approach, searching in the direction of increasing operational objective values,
was particularly effective in this regard. However, the effectiveness and required
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CPU time varied between the different instances and the different combinations
of the operational objective functions. Therefore, it is important to understand
these problem-specific behaviors for their implementation in practice. Further-
more, when dealing with a large-scale problem, consideration should be made
to impose a relatively small solver time limit for the 1-norm minimization run,
and we showed that this approach can significantly reduce the CPU time for an
industrial-sized problem without a significant degradation in solution quality, if
any.

Several challenges had to be addressed in this work and improving on any
of these areas is an interesting area of future research. For instance, due to the
long-term nature of the true objective functions of interest no true optimal so-
lutions are available to benchmark our work against. Computing such optimal
solutions, or at least better bounds on their values by more advanced methods
would be very valuable. Related to such issues, the large scale nature of the
problem leads to tractability issues on any of the proposed approaches. Improv-
ing computational times would also be an interesting avenue of future research.

In addition, the multi-objective nature of the problem makes it difficult to
identify a “best” approach. New ways of evaluating the approaches or narrowing
down even further the possible choice of approaches would also be an interesting
follow-up study. Finally, this work was an initial and promising proof of concept,
but additional tests should be performed in a follow-up study to make sure that
its conclusions hold in a broader set of cases.
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Appendix A Nomenclature

Acronyms/short-forms
AMS = Average Makespan
CH = Constituent Horizon
dr = relative difference DM = Decision
Maker
ILP = Integer Linear Programming
LB = Lower Bound (of the output ef-
ficiency range)
Mod-ε = Modified ε-constraint
method (section 2.2)
RH = Rolling Horizon
TTP = Total Throughput
UB = Upper Bound (of the output ef-
ficiency range)
1NM = 1-norm minimiza-
tion/minimum
1NM-ε = 1NM ε-constraint method
(section 2.3)
δp = p-norm distance (from the utopia
point)

Indices
i = client job
j = machine
k = order of processing unit
m = operational mode
p = processing unit
mi
k = kth operational mode for task i

pik = kth processing unit for task i
t = time point

Sets
I = set of tasks
Jp = set of machines for processing
unit p
P = set of processing units
χ = set of constraints
Ψp = set of operational modes for pro-
cessing unit p

Parameters
ATi = arrival time of task i
H = length of constituent horizon
Mi = sequence of operational modes

for task i ST = start time of the con-
stituent horizon
w1 = weight for the f1 objective
w2 = weight for the f2 objective
ε1 = minimum value for the f1 objec-
tive (Mod-ε)
ε2 = maximum value for the f2 objec-
tive (Mod-ε)
ε+

1 = minimum value for the f1 objec-
tive (1NM-ε, increasing search direc-
tion)
ε+

2 = minimum value for the f2 objec-
tive (1NM-ε, increasing search direc-
tion)
ε−1 = maximum value for the f1 objec-
tive (1NM-ε, decreasing search direc-
tion)
ε−2 = maximum value for the f2 objec-
tive (1NM-ε, decreasing search direc-
tion)
Υ = DM preference value
℘i = path of processing units for task
i
n(i) = size of path ℘i for task i
βp = capacity for processing unit p τpm
= processing time for processing unit
p, mode m

Decision variables
~x = vector of decision variables
Bikt = the amount of materials start-
ing to be processed
Sik = binary variable used in the f2

objectives
Wikt = the amount of materials wait-
ing to start being processed
Xpmt = the number of resources start-
ing to be used

Objective functions
f1 = objective to maximize
f2 = objective to minimize
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Appendix B Flexible discrete-time formulation

The modifications made to the scheduling model presented by Lagzi et al.
[26] is presented below. Unchanged parts of the formulation are also presented
for completeness.
In addition to the decision variables Bikt and Wikt, one more variable, Xpmt, is
used for this scheduling formulation.

Xpmt: the number of machines from processing unit p that are operating in
mode m and being used at time point t, ∀ p ∈ P, m ∈ Ψp, t = 1, . . . , |E(p)|

While Bikt and Wikt did not change from the original formulation presented
in Lagzi et al. [26], the index, m was added to Xpmt (the number of machines
being used) to account for the different operational modes of processing unit p.
Thus, capacity and equipment resource constraints, i.e. equations (2) and (3)
from Lagzi et al. [26], are reformulated as follows:

∑

i,k:p=pik

Bikt ≤ Xpmtβp; ∀ p ∈ P, m ∈ Ψp, t = 1, . . . , |E(p)| (A1)

zpt +
∑

m∈Ψp

∑

θ

Xpmθ ≤ |Jp|; ∀ p ∈ P, t = 1, . . . , |E(p)|,

θ ∈ E(p) : ϕpt < ϕpθ + τpm ≤ ϕpt + τpm (A2)

βp is the capacity of a machine in processing unit p that has a set Jp of ma-
chines as defined in section 3.1. In constraint (A2), zpt is an input parameter
representing the number of machines for processing unit p that are occupied
up until time point t. For a particular CH within the RH, the values of zpt
are calculated in pre-processing based on the solutions from preceding CHs (the
number of machines turned on, the time at which a machine was turned on, and
processing time of the machine for the given operational mode). For the very
first CH in the RH, the values of zpt are based on the status of the facility being
considered. If all the machines in the facility are available at the beginning of
the RH, then zpt = 0 ∀ p ∈ P, t = 1, . . . , |E(p)|. Otherwise, zpt has a non-zero
positive value for some or all p ∈ P, t = 1, . . . , |E(p)|.

The flow conservation eq (4) from Lagzi et al. [26] has been reformulated as
follows:

Bikt +Wikt = Wik(t−1) +
∑

θ=1,...,|E(pik−1)|:
ϕ
pi
k
t−1

<ϕ
pi
k−1

θ
+τ

pi
k−1

mi
k
≤ϕ

pi
k
t

Bi(k−1)θ + aikt (A3)

∀ i ∈ I, k = 2, . . . , n(i), t = 2, . . . , |E(pik)|

In eq (A3), aikt is an input parameter representing the amount of materials from
task i becoming available to be processed at processing unit pik at time point
t. For a particular CH and aikt > 0, ∀ i ∈ I, k > 1, t = 1, . . . , |E(pik)|, aikt ma-
terials must have started being processing at pik−1 during one of the preceding
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CHs, and have completed being processed by time point t. Note that aikt, as an
input parameter, does not account for materials that started being processed at
pik−1 during the current CH, which are accounted for by the decision variable
Wikt.

The remaining eq (5) and eq (6) of the original formulation are unchanged
as presented below:

Wik1 = aik1; ∀ i ∈ I, k = 1 . . . n(i) (A4)

Bik1 = 0; ∀ i ∈ I, k = 1 . . . n(i) (A5)

In this work, we use the following time discretization scheme: E(p) =
(ST, ϕp2, ϕp3, . . . , ϕp(|E(p)|−2), ϕp(|E(p)|−1), ST + H) represents the unit-specific
sequence of time points of length |E(p)| for processing unit p along the axis of
time for a CH starting at time ST and ending at time ST +H within the RH,
where ϕpt represents the actual time value of the tth time point for processing
unit p. In this work, we set the difference in time values of two consecutive to
be the minimum value between the greatest common divisor of (τp1, . . . , τp|Ψ|)
and 60.

Appendix C Data for the semiconductor case study

Table B1: Product recipes for the semiconductor case study

Product 1 Product 2 Product 3 Product 4 Product 5
Proc. Mode Proc. Mode Proc. Mode Proc. Mode Proc. Mode

A 1 A 1 A 1 A 1 A 1
EF 4 EF 1 B 3 B 1 B 2
C 1 C 1 C 1 C 1 C 1
D 1 D 1 D 1 D 1 D 1

GH 4 GH 3 EF 4 EF 3 EF 2
C 1 C 1 C 1 C 1 C 1
D 1 D 1 D 1 D 1 D 1
I 1 I 1 GH 2 GH 4 GH 1
J 1 J 2 C 1 I 1 I 1
C 2 C 2 D 1 C 2 C 2
D 2 D 2 I 1 D 2 D 2
L 1 L 2 J 3 K 1 K 2
M 1 M 1 C 2 C 2 C 2
C 1 C 1 D 2 D 2 D 2
D 2 D 2 L 3 M 1 M 1
N 1 N 1 M 1 C 1 C 1
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Table B2: Process capacity, resources, and processing time information for the semiconductor case study
(both instances)

Processing times by lot [min]

Process
Number of
Resources Zone

Capacity
[lots] Mode 1 Mode 2 Mode 3 Mode 4

A 1 (5) Diffusion 1 (2) 120
B 1 (5) Diffusion 4 (8) 700 850 1000
C 1 (5) Photo 1 (2) 20 30
D 1 (15) Engraving 1 (2) 15 20

EF 2 (10) Diffusion 2 (4) 200 300 400 500
GH 2 (10) Diffusion 2 (4) 400 500 600 700

I 1 (5) Test 1 (2) 1
J 1 (5) Diffusion 2 (4) 350 400 500
K 1 (5) Diffusion 2 (4) 400 500
L 1 (5) Engraving 1 (2) 140 180 200
M 1 (5) Metal 1 (2) 120
N 1 (5) Metal 1 (2) 20

Values for the number of resources and capacity for each resource for the second instance are
given inside ( )

Table B3: Daily product demand for each task for the first semiconductor instance

Arrival
Day

Daily product demands [lots]
Product 1 Product 2 Product 3 Product 4 Product 5

1 6 6 6 6 6
3 1 1 2 1
4 1 2 1 1
5 1 1 2 1
6 1 3 1
7 1 2 1 1
8 1 2 1 1
9 1 2 1 1
10 2 1 2
11 1 1 2 1
12 1 1 3
13 1 2 1 1
14 1 1 2 1
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Table B4: Daily product demand for each task for the second semiconductor instance

Arrival
Day

Daily product demands [lots]
Product 1 Product 2 Product 3 Product 4 Product 5

1 60 60 60 60 60
3 7 13 5 13 12
4 7 5 15 5 18
5 15 12 11 1 11
6 8 3 25 11 3
7 25 1 24
8 1 9 3 16 21
9 5 8 14 10 13
10 11 13 15 6 5
11 5 14 1 16 14
12 18 4 7 10 11
13 33 1 3 12 1
14 24 1 7 7 11
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Appendix D Full rolling horizon results for the semiconductor case
study

In the following results tables for the semiconductor case study, ’Max Iter.’
refers to the number of days required to complete 100% of the tasks, except
for single-objective f1

2 in Table C1, which failed to complete all tasks by the
end of day 30, which was the maximum length of the rolling horizon we were
considering.

Table C1: Rolling horizon results for single-objective implementations for the semiconductor
case study

f1

ID
f2

ID
Max
Iter.

at max iter. at day 15 Mean CPU
time [sec]Inst. TTP AMS TTP AMS

1st
inst.

0 - 17 90 4,826 81 4,685 42
1 - 17 90 4,952 81 4,740 11
2 - 17 90 5,234 81 5,067 65
3 - 17 90 5,062 82 4,951 21
4 - 18 90 5,022 82 4,892 21
- 0 24 90 7,320 74 6,506 133
- 1 30 84 9,718 38 4,515 84
- 2 24 90 7,176 74 6,478 101

2nd
inst.

0 - 17 900 4,805 876 4,800 47
1 - 17 900 4,750 871 4,742 38
2 - 17 900 4,847 875 4,863 148
3 - 17 900 4,841 865 4,844 62
4 - 16 900 4,677 858 4,694 85
- 0 26 900 9,362 736 8,174 49
- 1 30 795 5,965 605 4,692 286
- 2 25 900 9,216 739 7,726 73
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Table C2: Rolling horizon results for the 1NM method for the 1st semiconductor instance

f1

ID
f2

ID
Max
Iter.

at max
iter. at day 15 Mean CPU

time [sec]
Mean
gap [%]AMS TTP AMS

0 0 18 5,078 81 5,007 77 0.00
0 1 18 5,500 82 5,534 198 0.00
0 2 17 4,969 83 4,899 94 0.00
1 0 17 4,932 83 4,852 67 0.62
1 1 17 5,102 83 5,066 231 0.00
1 2 18 4,994 81 4,886 61 0.00
2 0 18 5,148 81 5,089 140 0.00
2 1 18 5,258 82 5,008 264 0.00
2 2 17 5,172 80 5,131 184 0.00
3 0 18 4,986 83 4,905 63 0.00
3 1 18 5,303 81 5,188 152 0.00
3 2 18 4,974 82 4,944 65 0.00
4 0 17 5,086 83 5,017 144 0.00
4 1 18 5,140 82 4,903 151 0.00
4 2 18 5,086 84 5,024 61 0.00

Table C3: Rolling horizon results for the 1NM method for the 2nd semiconductor instance

f1

ID
f2

ID
Max
Iter.

at max
iter. at day 15 Mean CPU

time [sec]
Mean
gap [%]AMS TTP AMS

0 0 17 4,719 875 4,717 129 0.00
0 1 16 4,610 868 4,623 892 0.23
0 2 17 4,845 871 4,841 545 1.64
1 0 16 4,610 873 4,635 581 0.01
1 1 16 4,596 856 4,598 309 0.00
1 2 16 4,724 869 4,752 599 0.10
2 0 17 4,554 865 4,544 526 0.01
2 1 16 4,723 866 4,740 1,630 0.14
2 2 17 4,698 864 4,688 1,533 0.10
3 0 17 4,580 869 4,566 440 0.01
3 1 16 4,661 867 4,713 1,005 0.02
3 2 17 4,875 866 4,879 1,083 0.03
4 0 17 4,718 870 4,717 856 0.01
4 1 16 4,625 848 4,634 1,181 0.00
4 2 16 4,841 868 4,864 1,416 0.11
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Table C4: Rolling horizon results for the 1NM-ε and Mod-ε methods for the 1st semiconductor
instance

f1

ID
f2

ID
Max
Iter.

at max
iter. at day 15 Mean CPU

time [sec]
Mean
gap [%]Method AMS TTP AMS

1NMEps Inc 0 0 17 5,273 55 5,184 77 0.00
1NMEps Inc 0 1 17 4,825 56 4,691 282 0.00
1NMEps Inc 0 2 17 5,064 60 4,997 154 0.00
1NMEps Inc 1 0 18 5,436 52 5,420 325 0.18
1NMEps Inc 1 1 17 5,186 55 5,169 221 0.00
1NMEps Inc 1 2 18 5,221 57 5,140 70 0.00
1NMEps Inc 2 0 18 5,117 57 4,893 165 0.00
1NMEps Inc 2 1 17 5,181 52 5,157 338 0.00
1NMEps Inc 2 2 17 5,229 56 5,193 228 0.09
1NMEps Inc 3 0 17 4,816 58 4,721 111 0.00
1NMEps Inc 3 1 17 5,181 55 5,126 222 0.00
1NMEps Inc 3 2 18 5,074 58 4,993 145 0.00
1NMEps Inc 4 0 18 5,253 57 5,100 134 0.00
1NMEps Inc 4 1 18 5,265 57 5,237 217 0.00
1NMEps Inc 4 2 18 5,441 56 5,261 183 0.00
1NMEps Dec 0 0 18 5,416 57 5,301 198 0.00
1NMEps Dec 0 2 18 5,264 56 5,230 158 0.00
1NMEps Dec 1 0 18 5,278 58 5,206 193 0.00
1NMEps Dec 1 1 18 5,121 58 5,086 236 0.00
1NMEps Dec 1 2 18 5,376 56 5,300 126 0.00
1NMEps Dec 2 0 18 5,444 55 5,215 181 0.00
1NMEps Dec 2 1 17 5,689 50 5,762 508 0.00
1NMEps Dec 2 2 18 5,337 57 5,246 320 0.00
1NMEps Dec 3 0 18 5,374 57 5,248 110 0.00
1NMEps Dec 3 1 17 5,394 49 5,436 584 0.00
1NMEps Dec 3 2 17 5,301 56 5,181 140 0.00
1NMEps Dec 4 0 18 5,404 56 5,268 130 0.00
1NMEps Dec 4 1 18 5,276 58 5,138 418 0.00
1NMEps Dec 4 2 18 5,352 56 5,276 286 0.00

ModEps Inc 0 0 18 5,034 58 4,823 98 0.00
ModEps Inc 0 1 17 4,914 56 4,832 230 0.00
ModEps Inc 0 2 17 5,092 57 5,020 110 0.00
ModEps Dec 0 0 17 5,046 55 4,992 245 0.00
ModEps Dec 0 1 17 5,581 54 5,640 623 0.00
ModEps Dec 0 2 18 5,153 56 5,040 150 0.00

Note: 1NMEps Dec for (f0
1 , f1

2 ) is not included due to not being able to find a feasible
solution for the ε bounded problem on day 5 of the rolling horizon.
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Table C5: Rolling horizon results for the 1NM-ε and Mod-ε methods for the 2nd semiconductor
instance

f1

ID
f2

ID
Max
Iter.

at max
iter. at day 15 Mean CPU

time [sec]
Mean
gap [%]Method AMS TTP AMS

1NMEps Inc 0 0 17 4,579 612 4,556 638 0.11
1NMEps Inc 0 1 16 4,477 614 4,493 984 0.12
1NMEps Inc 0 2 17 4,752 598 4,750 704 0.75
1NMEps Inc 1 0 17 4,757 616 4,751 1,223 0.01
1NMEps Inc 1 1 16 4,660 585 4,686 1,918 0.55
1NMEps Inc 1 2 16 4,768 609 4,800 1,207 0.46
1NMEps Inc 2 0 17 4,739 608 4,761 1,116 0.15
1NMEps Inc 2 1 17 4,502 611 4,498 1,813 0.12
1NMEps Inc 2 2 17 4,857 604 4,875 1,117 1.25
1NMEps Inc 3 0 17 4,763 614 4,759 776 5.43
1NMEps Inc 3 1 17 4,812 578 4,815 1,333 0.36
1NMEps Inc 3 2 17 4,723 603 4,726 1,906 0.39
1NMEps Inc 4 0 17 4,800 610 4,807 792 0.00
1NMEps Inc 4 1 17 4,285 610 4,261 2,115 0.44
1NMEps Inc 4 2 17 4,722 606 4,728 1,549 0.23
1NMEps Dec 0 0 17 4,669 604 4,649 670 0.00
1NMEps Dec 0 1 16 4,552 605 4,579 1,816 0.07
1NMEps Dec 0 2 17 4,745 610 4,751 1,227 0.32
1NMEps Dec 1 0 17 4,681 598 4,663 994 0.01
1NMEps Dec 1 1 16 4,476 593 4,507 1,255 0.13
1NMEps Dec 1 2 16 4,683 604 4,713 1,163 0.39
1NMEps Dec 2 0 17 4,712 606 4,699 957 0.00
1NMEps Dec 2 1 16 4,708 524 4,732 1,609 0.00
1NMEps Dec 2 2 17 4,818 605 4,814 1,882 0.09
1NMEps Dec 3 0 16 4,683 607 4,691 804 0.00
1NMEps Dec 3 1 16 4,630 587 4,637 3,043 0.11
1NMEps Dec 3 2 17 4,851 592 4,854 1,602 0.03
1NMEps Dec 4 0 16 4,613 604 4,631 817 0.19
1NMEps Dec 4 1 16 4,305 608 4,318 1,986 0.13
1NMEps Dec 4 2 16 4,787 593 4,830 1,287 0.00

ModEps Inc 0 0 17 4,749 596 4,754 345 0.25
ModEps Inc 0 1 16 4,548 605 4,544 1,491 0.61
ModEps Inc 0 2 16 4,736 603 4,775 510 0.00
ModEps Dec 0 0 17 4,690 609 4,692 443 0.00
ModEps Dec 0 1 16 4,366 596 4,395 2,522 0.31
ModEps Dec 0 2 16 4,650 609 4,662 1,513 0.01
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Appendix E Partial data for scientific services case study

Table D1: Paths of processes defining the partial scientific services network of Figure 9

Path ID Sequence of processing units

P1 X F M P K
P2 X F E K
P3 X G M T L
P4 X F R K
P5 X F M T L
P6 Y F M Q J
P7 H M T L
P8 X W S K
P9 X W N U L
P10 X W O I V
P11 X W E K
P12 AF AC AD AN AA E Z
P13 AF AC AD AN AA AB U Z
P14 AF AC AD AN AA AE Z
P15 AF AC AD AN AA S Z
P16 AF AC AD AN AG AI AJ
P17 AF AC AD AN AA AE Z
P18 X AG AI AK
P19 X AH AI AK
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Table D2: Process capacity, resources, and processing time informa-
tion for scientific services case study

Process
Normalized
Capacity

Number of
Resources

Scaled
Processing Time

E 0.06 2 4
F 0.30 2 30
G 0.03 2 15
H 0.07 1 62
I 0.01 1 144
J 0.21 1 24
K 0.67 3 18
L 0.61 2 24
M 0.30 4 12
N 0.61 4 22

AN 0.06 2 7
Z 0.06 2 1

AA 0.12 1 6
AB 0.01 2 33
AC 0.06 2 4
AD 0.06 2 2
AE 0.06 2 8
AF 0.06 1 4
O 0.00 1 1
P 0.25 1 39
Q 0.33 1 144
R 1 10 74
S 0.67 10 47
T 0.16 8 126
U 0.19 8 114
AI 0.48 6 48
AJ 0.20 1 1
AK 0.02 1 2
AG 0.50 1 1,008
AH 0.50 1 1,008
V 0.03 1 6
W 0.61 4 162
X 0.01 6 1
Y 0.01 1 1

Reported capacities are normalized to a maximum value of
1, and processing times are scaled to a minimum value of 1.
Actual plant numbers cannot be disclosed for confidentiality.

Appendix F Full rolling horizon results for the scientific services
case study
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Table E1: Rolling horizon results for single-objective runs for the scientific services case study

f1

ID
f2

ID TTP

dr(TTP)

[%] AMS

dr(AMS)

[%]
Mean CPU
time [sec]

Mean
Gap [%]

0 - 61,321 −1.08 21,132 18.3 88 0.00
1 - 61,990 0 20,447 14.5 88 0.00
2 - 61,246 −1.20 20,540 15.0 14,343 0.00
3 - 61,205 −1.27 20,331 13.8 84 0.00
4 - 59,229 −4.45 20,729 16.1 141 0.00

- 0 58,343 −5.88 20,664 15.7 1,214 0.02
- 1 32,025 −48.34 17,859 0 251 0.01
- 2 60,049 −3.13 25,206 41.1 98 0.00

Table E2: Rolling horizon results for the 1NM method for the scientific services case study

f1

ID
f2

ID TTP

dr(TTP)

[%] AMS

dr(AMS)

[%]
CPU

t. [sec]
Gap
[%]

0 0 60,418 −2.54 20,413 14.3 3,681 0.11
0 1 60,706 −2.07 18,657 4.5 1,887 0.03
0 2 60,228 −2.84 24,546 37.4 206 0.00
1 0 60,915 −1.73 20,053 12.3 2,158 0.06
1 1 61,719 −0.44 19,512 9.3 1,894 0.03
1 2 60,399 −2.57 24,318 36.2 268 0.00
3 0 61,854 −0.22 20,052 12.3 3,244 0.06
3 1 60,422 −2.53 19,566 9.6 2,039 0.03
3 2 61,136 −1.38 24,142 35.2 165 0.00
4 0 59,739 −3.63 19,703 10.3 2,773 0.06
4 1 58,735 −5.25 19,850 11.1 2,276 0.03
4 2 60,419 −2.53 24,205 35.5 355 0.00

Table E3: Rolling horizon results for the 1NM method with 6 minute solver time limit

f1

ID
f2

ID TTP

dr(TTP)

[%] AMS

dr(AMS)

[%]
Mean CPU
time [sec]

Gap
[%]

0 0 60,335 −2.67 20,266 13.5 738 0.13
0 1 60,870 −1.81 19,694 10.3 649 0.05
1 0 61,178 −1.31 20,028 12.1 710 0.07
1 1 61,988 − 0.003 19,312 8.1 630 0.04
3 0 61,943 −0.08 19,943 11.7 713 0.09
3 1 60,885 −1.78 19,613 9.8 575 0.03
4 0 59,373 −4.22 19,709 10.4 819 0.20
4 1 58,540 −5.57 19,838 11.1 670 0.05
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Table E4: Rolling horizon results for the 1NM-ε and Mod-ε methods

Method
f1

ID
f2

ID TTP

dr(TTP)

[%] AMS

dr(AMS)

[%]
Mean CPU
time [sec]

Gap
[%]

1NM-ε Inc

0 0 60,329 −2.68 20,310 13.7 6,314 0.22
0 1 61,059 −1.50 18,567 4.0 4,014 0.09
1 0 61,490 −0.81 20,001 12.0 7,999 0.18
1 1 62,123 0.21 19,555 9.5 3,769 0.10
3 1 60,906 −1.75 19,324 8.2 5,595 0.14
4 0 59,307 −4.33 19,588 9.7 7,933 0.12
4 1 58,812 −5.13 19,763 10.7 6,175 0.11

1NM-ε Inc
(6 min)

0 0 60,214 −2.86 20,357 14.0 1,086 1.70
0 1 60,859 −1.82 19,359 8.4 1,091 0.42
1 0 61,150 −1.36 19,849 11.1 1,061 0.35

Mod-ε Inc
0 0 60,352 −2.64 20,268 13.5 4,446 0.03
0 1 61,427 −0.91 18,441 3.3 5,326 0.05

Mod-ε
Inc (6 min) 0 0 60,336 −2.67 20,308 13.7 1,113 0.09

Results for the search direction of decreasing f1 and f2 are not shown since no feasible solution
was found in this direction for any of the (f1, f2) combination on day 1 of the RH. (f3

1 , f0
2 ) is

omitted for the 1NM-ε method, since no feasible solution was found in the search direction of
increasing f1 and f2.
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