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Abstract

A Scatter Search algorithm together with an enriched Scatter Search and
an enriched Iterated Greedy for the unrelated parallel machine problem with
one additional resource are proposed in this paper. The optimisation objective
is to minimise the maximum completion of the jobs on the machines, that is,
the makespan. All the proposed methods start from the best known heuristic
for the same problem. Non-feasible solutions are allowed in all the methods and
a Repairing Mechanism is applied to obtain a feasible solution from a resource
constraint point of view. All the proposed algorithms apply different local
search procedures based on insertion, swap and restricted neighbourhoods.
Computational experiments are carried out using an exhaustive benchmark
of instances. After analysing the results, we can conclude that the enriched
methods obtain superior results, outperforming the best known solutions for
the same problem.

Keywords: Unrelated parallel machine, Scheduling, Additional scarce
resource, Metaheuristics, Makespan.

1. Introduction and problem definition

Decision-making plays a significant role in industry. Nowadays, it is
important to develop intelligent methods to solve decision-making problems
using optimisation techniques, in order to get both efficient and effective
results. All this should contribute to the smart factory concept, that is,
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sustainable and intelligent industries [[]

Problems related to scheduling involve a decision-making procedure that
is vital in manufacturing industries. Scheduling problems, in general, consist
of the assignment of a set of jobs to a set of machines and optimising one
or more objectives. There are many types of scheduling problems (Pinedo),
2016)) and one of the most studied in the literature is the parallel machine
scheduling problem, where there is a set of n jobs which have to be processed
on just one machine from a set of m machines. If the processing times of
the jobs are different because of the characteristics of the machine which
they are assigned to, the variant of the problem is known as the unrelated
parallel machine scheduling problem (UPM). Some recent papers dealing
with this problem are Fanjul-Peyro and Ruiz (2010), Fanjul-Peyro and Ruiz
(2011), Vallada and Ruiz (2011)), |Rodriguez et al.| (2013) and Arroyo and
Leung| (2017)), among others. The variant where secondary resources are also
considered is much less studied in the literature. This variant is known as
the unrelated parallel machine scheduling problem with secondary resources
(UPMR) and is a more realistic extension of the problem. Each job needs
an amount of one scarce and renewable resource (human resources, tools,
etc). Like processing times, the secondary resource consumption of a job is
also different depending on the machine it is assigned to, as is usual in real
environments, where different machines from a technical point of view are
working at the same time. The secondary resource is considered renewable,
that is, the job needs an amount of a secondary resource during its processing
time and after that, the amount of resource is freed up. As a result, the
problem consists of finding the best assignment and the best sequence for
each machine so that the secondary resource constraint is satisfied at any
time. With respect to the optimisation objective, the most studied of these
problems is the minimisation of the maximum completion of the jobs, known
as makespan and denoted as C.x.

Some assumptions are usually made regarding this problem: each job is
processed by exactly one machine, each machine can process only one job at a
time, preemption of jobs is not allowed and each job needs an amount of the
additional resource during its entire process. More specifically, the objective
of the problem is to schedule a set of n jobs (indexed by j) on one machine
selected from a set of m machines (indexed by 7) so that the resource constraint

"https://www.capgemini.com/resources/preparing-for-smart-factories/


https://www.capgemini.com/resources/preparing-for-smart-factories/

is always satisfied. Machines are also considered resources in this problem
and in order to simplify we will refer to the secondary additional resource
as "additional resource" or just "resources'. Some notation is introduced as
follows:

- pi;: processing time of job j on machine ¢.
- 131 resource consumption of job j on machine i.

- Mach;: list of jobs assigned to machine ¢ and processed following the
order of the list.

- Rpax: maximum availability of the additional resource.
- C;: completion time of machine 7.

- Chax: maximum completion time, maz{Cy, Cs, - , C;}.
- S a feasible solution.

- A: an assignment of jobs to machines without considering the additional
resource.

Example [1.1] illustrates the studied problem.

Regarding the complexity of the problem, the variant with identical
parallel machines is already NP-complete even with one additional resource
(Garey and Johnson, |1975). Also for identical machines, Blazewicz et al.
(1987)) showed that the problem is NP-hard in the strong sense, even with
only 2 machines and one type of resource. It is clear that the complexity of
the problem implies that mathematical models are only suitable for small
instances and heuristic and metaheuristic algorithms are necessary to solve
larger problems.

It is important to differentiate between a feasible solution (S) and just an
assignment (A), which is very likely to be non-feasible. Example illustrates
this difference. Figure shows a solution provided by a simple rule where
the jobs are alternatively assigned to the machines (job 1 on machine 1, job 2
on machine 2, job 3 on machine 1 and so on). In order to obtain a feasible
solution, an idle time on machine 2 is needed. In brackets we can see the
resource consumption of each job on the machine. The total consumption



at any time must be less than or equal to the maximum availability of the
resource, that is, ten units (Figure . Jobs start at time 0 and we can
observe that, on machine 2, from time 1 to time 5, there is an idle time
since jobs 3 and 4 can not be processed at the same time. Consequently, a
solution implies the computation of the start and finish time for all the jobs
and the satisfaction of the resource constraint at any time. In Figure ,
an assignment for the same example can be found. We can observe that an
assignment is always compacted and resources are not considered. As a result,
non-feasible solutions are very likely to be obtained from just an assignment.
Therefore, the makespan value for Figure is 9 (denoted as Cyax(S) = 9)

while Chax(A4) = 8 (Figure [1(b))).

Example 1.1. Consider the following instance of a UPMR with two ma-
chines (m = 2), five jobs (n =5), ten units of a scarce resource (Rpax = 10)
and the following processing times and resource needs:

(0u) = 12433‘(4)_ 26 8 7 1
Pij)=\ 3124 1) Vi =18 2 3 ¢ 2

0 1 5 8
0 1 5 8
Mach, 1 3 5
Mach, ‘1(2)‘ 3(8) ‘ 5(2) ‘
Mach, 4(6) Mach, 2 4
0o 1 5 9 0 1 5
(a) Feasible solution (S). (b) Assignment (A).

Figure 1: Example of a Feasible Solution (S) and an Assignment (A) according to Example

L1

In this paper, effective and fast algorithms to optimise a real decision-
making problem related to industry are proposed. A Scatter Search algorithm
and two enriched metaheuristics are proposed. Specifically, Enriched Scatter
Search and Enriched Iterated Greedy methods are presented for the defined
problem, where a Restricted Local Search is applied in order to enrich the
methods. The main objective and contribution of the paper is to improve on
the best known results but without the need for a large amount of CPU time.

The rest of the paper is organised as follows: In Section [2 an overview of
the literature is presented. In Section [3| details about the proposed enriched
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metaheuristics are provided. In Section [4f computational results are presented.
Finally, in Section [5| some conclusions and future avenues of research are
given.

2. Literature review

Scheduling problems have been widely studied in the literature over recent
decades. In fact, unrelated parallel machine scheduling problems have been
considered in much of the research. Some recent results are found in, |Zeidi and
MohammadHosseini| (2015)), |Chen| (2015) and |Arroyo and Leung| (2017, and in
Kravchenko and Werner| (2011) a review related to parallel machine problems
is presented. However, the variant which considers additional resources has
been much less investigated by researchers. Constraints related to resources
are extremely important in real industrial environments, where there are
several additional resources (human resources, tools, moulds, etc.) apart from
the machines. There are some papers related to real manufacturing systems:
Edis and Ozkarahan (2012) proposed an Integer Programming model and
Constraint Programming for an injection-molding case with the objective
of minimising makespan. Bitar et al.| (2016) and |Ventura and Kim| (2003)
presented methods for the semiconductor manufacturing case with different
optimisation objectives. The first one minimised the weighted flow time and
the second minimised the total absolute deviation of job completion times in
respect to their due dates.

In Edis and Ozkarahan| (2011)) and |[Edis and Oguz (2012) mathematical
models are proposed for different variants of the problem. In a very recent
paper proposed by |[Fanjul-Peyro et al.| (2017)), mathematical models together
with matheuristics (a combination of mathematical models and heuristics)
are developed for the studied problem. Moreover, in |Edis et al.| (2013]), we can
find a review and classification of methods for the parallel machine scheduling
problem with additional resources. The consideration of resources has been
simplified in most of the papers. Among them, Ventura and Kim/ (2000) and
Zheng and Wang (2016)) studied one additional resource where jobs need
one/zero units of resource. In other works (Daniels et al., [1999 and |Ruiz-
Torres et al., 2007)), the amount of resource is a fixed value for each machine
or the resource consumption of a job is independent from the machine (Bitar
et all 2016). From the literature review, we can conclude that there are
only two papers related to the general version of the problem, that is, the
unrelated parallel machine problem with one additional resource and both



processing times and resource consumption dependent on the machine. The
first one is that written by |[Fanjul-Peyro et al| (2017)) and the second one,
which is very recent, is presented by Villa et al.| (2018)), where several heuristics
are proposed for the problem. These are able to solve large instances with
very modest computational times. The objective of this paper, is to propose
effective enriched metaheuristic methods, starting from the solution provided
by the best known heuristic presented in |Villa et al. (2018), so that they
are able to improve on the results without needing a lot of computational
time. Specifically, Enriched Scatter Search and Enriched Iterated Greedy
algorithms are proposed. Both, Scatter Search and Iterated Greedy are widely
used in scheduling problems. The main concepts of the Scatter Search were
introduced by |Glover| (1977)) and extended by Laguna and Marti (2003) and
Marti (2006). Some recent works related to Scatter Search are Naderi and
Ruiz (2014)), Riahi et al.| (2017)) and |(Gonzalez et al. (2017)), among others.
Regarding the Iterated Greedy, it was originally proposed by Ruiz and Stiitzle
(2007) for the permutation flowshop scheduling problem and adapted to
several scheduling problems. Some results can be found in |Fanjul-Peyro and
Ruiz (2010)), |Vallada and Ruiz| (2011)) and Rodriguez et al.| (2013).

3. Metaheuristics

In this section, two metaheuristic algorithms are proposed, the first one
is an Enriched Scatter Search and the second one is an Enriched Iterated
Greedy algorithm. Both methods start from an initial solution provided by an
effective constructive heuristic. Source codes for all the methods are available
upon request from the authors.

3.1. Initial solution

The initial solution for both metaheuristic methods is provided by the
best heuristic method proposed by |Villa et al.| (2018). Specifically, it is a
multipass heuristic denoted as M5. In Algorithm [I] a pseudocode for the M5
heuristic is shown and a brief explanation is given below. Additionally, bin
files in order to run the heuristic are available with the paper and source code
is also available upon request from the authors.

e Step 1: Initial assignment, feasibility and Repairing Mecha-
nism. This first step consists of different parts, briefly explained in the
following;:



— Step 1.1: Initial assignment. Eight assignment rules are used,
according to the order obtained from different rules which consider
the processing times or the resource consumption. This is only an
assignment of the jobs to the machines, denoted as A. Resource
constraint is not considered so it is very likely that the assignment
is non-feasible from the resource constraint point of view. Each
assignment is analysed in order to check if it is feasible.

0 4 5 8

Mach, 3(8) 1(2) 5(1)

Mach, 4(6) 2(2)

0 4 5

Figure 2: Checking Feasibility according to Example

— Step 1.2: Checking Feasibility and Repairing Mechanism.
Example is used to illustrate how to check the feasibility of
assignment A (Figure . First, for each machine, jobs are
ordered in non increasing order according to resource consumption
(Figure . Second, we have to check if the first jobs for all the
machines can be processed at the same time, that is, the total
amount of resources needed is less than or equal to the maximum
availability of resources (10 units in our example). In this case,
job 3 (machine 1) and job 4 (machine 2) can not be processed at
the same time since they need 14 units of resource and we only
have 10 units. Then, in this example, the assignment is not a
feasible solution and a mechanism to repair the solution is applied.
In other cases, assignment A could be feasible and would result
in a feasible solution. If this is the case, a local search procedure
is applied (lines 4 to 6 in Algorithm . If assignment A is not
feasible, a mechanism denoted as Repairing Mechanism is applied.
It consists of removing jobs until a partial feasible solution is
obtained. Jobs are removed one by one starting from the job
with the maximum resource consumption. The removed jobs are
denoted as Pending Jobs and they are reallocated following two
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strategies. For each pending job, following the first strategy, the
job is scheduled at the end of the machine where the job was
originally assigned. The second one schedules each pending job
at the end of the machine so that the completion time of the
machine is minimum. In both cases resource constraints have to
be satisfied and finally the solution with the minimum makespan
(Cr..) is selected. Once a pending job is scheduled at the end
of a machine, the Repairing Mechanism swaps this pending job
with the previous one if two conditions are satisfied: 1) there is
no idle time between both jobs and 2) the resource consumption
of the previous job is less than the resource consumption of the
pending job. This swapping procedure is applied as many times as
possible. According to Example [I.1 and Figure [2] job 3 is removed
from the assignment since it is the one with the maximum resource
consumption. Then, the remaining jobs on machine 1 are shifted
left. In Figure [3| we can see this partial solution is feasible and job
3 is included in the Pending Jobs set. The next step is to insert
job 3 in the partial solution. Following the first strategy, job 3
would be located at the end of machine 1 (Figure [4(a)]). With the
other strategy, job 3 would be located at the end of machine 2.
Then, as the resource consumption of the previous job (job 2) is
less than the resource consumption of job 3 and there is no idle
time between the jobs, jobs 2 and 3 are swapped (Figure .

0 1 4

Mach, | 1(2) 5(1)

Mach, 4(6) 2(2)

0 4 5

Figure 3: Partial feasible solution according to Example

At the end of this first step, up to 8 solutions are obtained. We define
the array Sy of size 8 to save each feasible solution for each assignment
rule. Note that solutions with the same C),., are not allowed, so it
would be possible to obtain fewer than 8 solutions in the S, array if



Mach, 1(2) 5(1) 3(8) Mach; | 1(2) 5(1)

Mach, 4(6) 2(2) Mach, 4(6) 3(3) | 2(2)

0 4 5 0 4 6 7

(a) Inserting Pending Job 3 (Strategy 1). (b) Inserting Pending Job 3 (Strategy
2).

Figure 4: Inserting Pending Jobs according to Example

any of the assignment rules obtains the same Ci,,, value as another one.
The next steps are applied to each solution in a separate way.

e Step 2: Non intensive local search. This is based on insertion and
swap neighbourhoods without considering resources and is very likely to
obtain a non-feasible solution. At the end of each neighbourhood, the
Repairing Mechanism is applied to obtain a feasible solution. According
to Algorithm [1, we define the array Spg (size 8) to save each feasible
solution after the non intensive local search for each solution obtained
from the previous step.

e Step 3: Makespan machine unbalanced. After the previous step,
the local search procedure is exhausted. Machines might be too balanced
and it is difficult to improve on the solution. Consequently, a procedure
to unbalance the makespan machine is applied. The main idea is to
insert all Pending Jobs into the makespan machine and to apply the
non intensive local search again. Pending Jobs are generated from the
assignment corresponding to the solution provided by the previous step
(SLs). The array to save each solution after this step is denoted as

SunB-

e Step 4: Intensive local search. This is similar to the non inten-
sive local search however, every time a movement is carried out in a
neighbourhood, the Repairing Mechanism is applied to obtain a feasible
solution. Every solution obtained is saved in the array denoted as Syps.

After the application of the M5 heuristic, we obtain a pool with up to 32
different solutions (up to 8 solutions for each explained step), saved in the



Algorithm 1: M5 heuristic.

for a =1,...,8 (For each Assignment Rule) do
A:=Assignment Rule «;

Checking Feasibility(A);

if Feasible(A) then

L Sala] = A;

LocalSearch(Sla]) #considering resources

[= I B U

else
8 L Sala]:=Repairing Mechanism(A)

N1

9 Spslal:=NonlntensiveLocalSearch(S4[a]);
10 Sunplal:=Unbalance(C,.x machine,Sys[a]);
11 Srpsla] :=IntensiveLocalSearch(Syyglal);

defined arrays. These solutions are used as an initial solution for the proposed
metaheuristics.

3.2. Restricted Local Search (RLS)

Restricted Local Search (RLS) methods are based on restricted neighbour-
hoods with the objective of improving a solution using less computation time.
Moreover, a greater number of different solutions can be obtained after the
RLS procedures. These local search procedures can be successfully applied
to parallel machine scheduling problems according to |[Fanjul-Peyro and Ruiz
(2010). Two RLS neighbourhoods are applied based on the insertion of jobs.
The RLS method starts from a feasible solution and it is improved on after
several movements. In Algorithm [3| a pseudocode for RLS is provided. The
first step is to obtain an assignment from the initial feasible solution, that is,
the idle times due to the resource constraint are removed from the solution
which obtains a compact but probably non-feasible schedule (see Example
. Then, two RLS methods are applied. Pseudocode for both methods is
provided in Algorithm

e No Same Place (NSP): a job j is selected and placed on a machine i
where C; + p;; is minimum. Note that the job has to be placed on a
different machine from the one to which the job was originally assigned.
NSP is applied to one job from the C,.x machine and one job randomly
selected from the rest of the machines. After several tests, these values,
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already used in previous tests in the original paper, demonstrated the
best performance.

e Virtual (VIR): a job j is selected and placed on a machine i where
C; + pij is minimum. In this case, the job is also placed on the same
machine to which the job was originally assigned, that is, the p;; is
considered twice. If after considering the processing time twice the job
is assigned to the same machine, it means that the machine is the best
one from a makespan point of view. VIR is applied to 5 jobs from the
Cmax machine and another 5 jobs randomly selected from the remaining
ones. If there are fewer than 5 jobs on the C\,,, machine, all the jobs
are selected. After several tests, those values used in the original paper
performed the best.

2|
0 9 20 0 9

1 E 2 l‘i Mach, 1 :
2

PR 0
;
Mach; ‘ 4 | 5 P2 ! Mach,

X ‘ 3 ‘ Mach;

(a) NSP example. (b) VIR example.

Figure 5: Example with 6 jobs and 3 machines for the RLS.

Note that in NSP, the job is removed and inserted into a different machine.
In VIR, the job is not removed from the original machine until it is known to
which machine it is going to be inserted. Moreover, that machine can be the
same one as where the job was previously placed. In Figure 5[ an example
with 6 jobs and 3 machines is shown. Job 2 is originally assigned to Machine 1
and has to be moved to a different machine when NSP is applied (Machine 2
in this case). However, if the VIR procedure is applied, job 2 is also reinserted
into Machine 1, and in this case after considering the processing time twice,
Machine 1 is still the best option for job 2. In Algorithm [3|a pseudocode for
the RLS procedure is given.

3.3. Enriched Scatter Search

Scatter Search (SS) is an evolutionary method widely used in scheduling
problems. In this paper, an Enriched Scatter Search (ESS) is proposed. The
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Algorithm 2: NSP-VIR.

A := Assignment provided;
d := number of jobs to remove;
for j=1,...,d do

1" := Chax machine;
Mach? := List of jobs of Machine i*;
k := Select at random one job from Mach};

if NSP then

w = argmm {Cs + psi}
seM—{i*}

9 if VIR then
10 L w = argmln{C + Dsk }

o N o oA W N =

11 Remove Job k from Machine *;

12 Insert Job k in Machine w;

13 for j=1,...,d do

14 i := Select at random one machine (except i*);
15 Mach; := List of jobs of Machine i;

16 k := Select at random one job from Mach;;

17 if NSP then
18 L w = argmin{C} + pg}

seM—{i}
19 if VIR then
20 w = argmin{Cj + pg }
seM
21 Remove Job k from Machine i;
22 Insert Job k in Machine w;

12



Algorithm 3: Restricted Local Search (RLS).

Sbest =S5 )

while Not TerminationCriterion do

A := Assignment from a feasible solution S ;
NSP(A);

1
2
3
4
5 S:=Repairing Mechanism (A);
6
7
8
9

Update Spest ;

A = Assignment from the current solution S;
VIR(A);

S:=Repairing Mechanism (A);

10 Update Spest ;

11 NonlIntensiveLocalSearch(S) ;

12 Update Spest ;

main steps of the ESS can be seen in Algorithm [4] where the initial population
is provided by Algorithm (1 Lines 1 to 10 correspond to a standard Scatter
Search. An additional step based on the RLS is applied to the best solution,
obtaining the enriched version of the algorithm (ESS).

3.3.1. Building the reference set (RefSet)

According to [Marti (2006), the RefSet consists of good and diverse solu-
tions. Therefore, the best 5 solutions are selected from the initial population
obtained in [3.1] These 5 solutions are removed from the initial population
and included in the RefSet. Moreover, another 5 diverse solutions, different
from the previous ones, are also selected. This diversification means that the
5 solutions are the most different in respect to the other ones from the RefSet.
In order to compute the diversification value for each solution, the following
steps are carried out: each solution from the initial population is compared
to each solution from the RefSet, that is, a value is computed according to
the number of times that a job is processed on the same machine in both
solutions. The solution with the minimum value is selected to be in the RefSet
and removed from the initial population. The RefSet is updated each time a
new solution is included.

In Tables [I}, 2| and [3] an example is provided to illustrate how diversity is
considered. Table [I] shows the best 5 solutions from a hypothetical initial
population to form part of the RefSet. The remaining 5 solutions should be
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Algorithm 4: Enriched Scatter Search (ESS).

1 Generate Initial Population (Provided by Algorithm 1)) ;
2 Generate RefSet ;

3 Spest := BestSolution(RefSet) ;
4 for i =1,...,|RefSet| do

5 for j =i+ 1,...,|RefSet| do
6

7

8

9

for k=j+1,...,|RefSet| do
S" = Combining(RefSet[i], Re f Set[j], RefSet[k]) ;
Checking Feasibility (S’) and Repairing Mechanism(S’) ;
NonlIntensiveLocalSearch(S’) ;

10 Update Spest ;

11 S = Sbest )

12 while Not TerminationCriterion (100 iterations) do
13 S :=RLS(S) ;

14 Update Spest ;

the most diverse in respect to the ones already in the RefSet. In order to
simplify the example, we consider just two solutions to compute the diversity,
but the process should be applied to the rest of solutions in the population.
In Table 2| two candidate solutions to form part of the RefSet are shown.
Diversity is computed according to how many times a job is located on the
same machine that the best solutions of the RefSet. For example, in Solution
6 (Se) job J1 is assigned to Machine 3. From Table [1, we can see that job
J1 is located on Machine 3 for solutions S; and S5. Then, the number of
times job J1 is on the same machine is 2 (Table [3)). The rest of the values
are computed in the same way and the solution with the lowest total value is
selected to form part of the RefSet. In this case, solution Sg. The RefSet is
updated and the process is repeated until the 5 most diverse solutions are
selected.

3.3.2. Combining and repairing the RefSet solutions. Local Search

Once the RefSet is built, the solutions are combined in order to obtain
new ones. There are different strategies for combining solutions. After testing
different combination methods based on selecting the machine from each
solution with the minimum Cj, a voting procedure is applied according to

14



Solution Machine 1 Machine 2  Machine 3

Solution 1 (.57) {J1, J2, J4} {J6,J7} {J5,J3}
Solution 2 (So)  {J1,J3} (15J2y  {J6,J4)
Solution 3 (S5)  {J2, J3, J4} {J1} {75, J6, J7)
Solution 4 (Sy)  {J5J6J7}  {J2,J3}  {J1,04)
Solution 5 (S5) {J5,J7} {J6,J3, J4} {J1,J2}

Table 1: Best solutions for the RefSet.

Solution Machine 1 Machine 2 Machine 3

Solution 6 (Se) {J2, J6, J7} {J5,J4} {J1,J3}
Solution 7 (Sy)  {J3,J4,J5}  {16J7}  {J1,J2}

Table 2: Two candidate solutions for the RefSet.

Solution J1 J2 J3 J4 J5 J6 J7 Total

Solution 6 (.Se) 2 2 1 1 1 1 2 10
Solution 7 (.S7) 2 1 2 2 2 2 1 12

Table 3: Diversity computation.
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Alvarez-Valdes et al| (2006). This procedure is based on how many times a
job is located on each machine. Specifically, three solutions from the RefSet
are combined, that is, 3 solutions from a set of 10 solutions are selected which
means 120 trios are combined in order to obtain a new solution. For each trio
of solutions, there is a voting process where each job has a value according to
how many times it is processed on each machine. The job is finally placed on
the machine with the highest number of votes. Ties are broken following three
strategies: placing the job on the machine in the solution with the minimum
Cmax, placing the job on the machine with the minimum consumption of
resources of the job and placing the job on the machine in the solution with
the minimum Cj. None of the strategies outperform the remaining ones, so
one of them is randomly selected in order to break the tie. The following
example illustrates a small instance.

Example 3.1. Consider the following instance of a UPMR with three ma-
chines (m = 3) and sixz jobs (n = 6), and the following assignment for each
solution to combine (Sy, Sa and Ss):

Solution Machine 1 Machine 2 Machine 3  Chax

Solution 1 (5;)  {J1} (13.J4) {12,516} 55
Solution 2 (.Ss) {J2,J3} {J1,J5} {J4,J6} 63
Solution 3 (.S3) {J1,J2}  {J4,J6} {J3,J5} 60

Table 4: Assignment of the jobs for three solutions.

According to Table [d] job J1 gets 2, 1 and 0 votes on machines 1, 2 and 3
respectively. Then, job J1 is finally placed on Machine 1. Following the same
procedure, the final assignment is Machy; = {J1,J2}; Machy = {J3, J4};
Machs = {J5,J6}. Regarding job J3, there is a tie since job J3 gets one
vote on each machine. Following the three strategies, we assume that the
first one is selected randomly, that is, to place job J3 on the machine in the
solution with the minimum C},,4. In this case, the minimum C,, is obtained
by Solution Si, then, job J3 is placed on Machine 2. After the combination,
it is very likely that a non-feasible solution will be obtained so the Repairing
Mechanism explained in is applied. Once a feasible solution is obtained,
it is improved upon by means of a local search procedure. A non intensive
local search based on insertion and swap neighbourhoods without considering
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resources, also explained in is used. At the end of each neighbourhood,
the Repairing Mechanism is applied to obtain a feasible solution.

Other strategies combining two solutions were tested which obtained worse
results. For example, interchanging the C',.x machine between both solutions
(Alvarez-Valdes et al., [2015)).

Once the basic Scatter Search is carried out, the Enriched version (ESS)
consists of applying one hundred iterations of the RLS method (Algorithm
to the best solution. After one hundred iterations, the ESS can be compared
to the Enriched Iterated Greedy in terms of CPU time (Section [)).

3.4. Enriched Iterated Greedy

The Iterated Greedy method is a simple and effective algorithm which has
been successfully adapted to different scheduling problems, among them, un-
related parallel machine scheduling problems (Fanjul-Peyro and Ruiz| (2010)).
It is based on the partial destruction of a solution and the subsequent recon-
struction together with a local search procedure. In this paper, an Enriched
Iterated Greedy (EIG) algorithm is proposed where, apart from the main
steps, several procedures focusing on the specific problem with resources are
added to improve performance. The EIG algorithm starts from the best solu-
tion provided by Algorithm [I} In Algorithm [5] a pseudocode for the general
structure of the EIG is provided. The Iterated Greedy (IG) method only
corresponds to lines 9 to 15 and intensive work is carried out before starting
the IG part. Note that although the authors have proposed in a previous
paper (Fanjul-Peyro and Ruiz (2010)) an IG algorithm for the unrelated
parallel machine scheduling problem with the makespan objective, this is only
an assignment problem where there are no idle times and no resources. When
the resource constraint is added, the problem is completely different and
much more complex. In this case there are both an assignment problem, and
at the same time, a scheduling (including timing) problem. This new feature
implies that in some cases, when the resource constraint is not satisfied, idle
times are needed in order to obtain a feasible solution. Consequently, even
though both problems are related to parallel machines they are completely
different. Therefore, it is clear that it is necessary to include new features
in order to obtain an Enriched IG method. In this case, a basic version of
the IG method does not perform well and for this reason it is not included in
computational experiments (Section [4).
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Algorithm 5: Enriched Iterated Greedy (EIG).

N

[<2 B

10
11
12
13
14
15
16
17

18

19
20
21

Shest :=S; Initial solution (S) from heuristic M5 ;
while Not TerminationCriterionl (10 iterations) do
while Not TerminationCriterion2 (10 iterations) do

L SRLS = RLS(S) 3

if Omax(‘SRLS) < Cmax(Sbest) then
IntensiveLocalSearch(Sgrs);
Update Sbest )

S = Sbest )

Spestic: := MazInt (Large Number);
while Not TerminationCriterion3 (10 iterations) do
A := Assignment from the current solution S;
A, := Destruction(A4, PJ) ;

Sp:= Checking Feasibility (A,) and Repairing Mechanism(A4,) ;
S := Construction(S,, PJ) ;
NonlIntensiveLocalSearch(.5) ;

if Cmax(S) < Cmax(sbest[(;) then

L SbestIG =5 )

Update Speor

IntensiveLocalSearch(Spesira) ;
Update Spes: ;
B S = Sbest ;
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According to Algorithm 5], the EIG starts from the solution provided by the
heuristic M5. This solution is improved upon by means of the Restricted Local
Search (RLS) following Algorithm , in an iterative way, until a termination
criterion is met. If the solution is improved, an intensive local search is applied
in order to improve it further (line 6) and the best solution is updated. After
all this previous work, the EIG method starts from the best solution obtained.
In line 10, only the assignment of the solution is used in the destruction
phase (line 11). During the destruction step, a partial assignment (A,) is
obtained after randomly removing 10% of the jobs on the makespan machine.
The same number of jobs in total are randomly removed from the rest of the
machines. Different values for the parameter number of the destructed jobs
were tested with worse results. These removed jobs are denoted as Pending
Jobs (PJ). Next, the partial assignment (A,) is repaired in order to obtain
a partial feasible solution (S,) and in the construction phase, the Pending
Jobs are inserted into the partial solution S,. Pending Jobs are inserted
following the strategies explained in Section [3.1I} Note that the construction
step is quite different from the original IG proposed by [Ruiz and Stitzle
(2007), where each removed job is inserted into all the positions of all the
machines and finally placed in the position where the makespan is minimum.
Following Algorithm [5] after the construction process, a new feasible solution
S is obtained and it is improved by applying the non intensive local search and
finally the best solution is updated. After this, the intensive local search is
applied to the best solution obtained during the process and the best solution
is updated. This process is repeated until the termination criterion is met
(line 2). Details about all the termination criteria are given in Section [4]

4. Computational Results

An exhaustive comparison of the proposed methods against the best
known heuristic is carried out in this section. A benchmark of instances
proposed by [Fanjul-Peyro et al.| (2017)) is considered. There are three sets:
small, with n = {8,12,16}, m = {2,4,6}, medium with n = {20, 25, 30},
m = {2,4,6} and large n = {50, 150, 250, 350}, m = {10,20,30}. For each
n X m combination, different sets according to processing times and resource
consumption were generated. Uniform and correlated distributions are con-
sidered (U(1,100), U(10,100), U(100,200), Correlated Jobs and Correlated
Machines) for processing times. Resource consumption is generated according
to two distributions: uniform (U(1,9)) and correlated values (the highest
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processing time and the highest resource consumption). The total number
of the resource is computed as R,., = 5-m. In total, five replicates for
each combination were generated and there are 450 small instances, 450
medium instances and 600 large instances, available at http://soa.iti.es.
Further details about the generation are in Fanjul-Peyro et al.| (2017). The
main objective is to get an exhaustive set of instances which consider several
combinatorial levels. If most of the jobs require high levels of the secondary
resource and the availability is low, the problem is easier to solve. Jobs can
not be processed in parallel and there will be a lower combinatorial level.
Additionally, the Repairing Mechanism only will assign the jobs at the end
of the machine where the completion time is lower, in order to release the
secondary resource as soon as possible. On the contrary, jobs with low levels
of the secondary resource and a high level of availability means there are
several options to process the jobs in parallel. If the number of machines
is high, the combinatorial level will also be very high. In this case, the
Repairing Mechanism will need more computation time when looking for the
best location for each pending job (not only at the end of the machine). For
this reason the number of instances is large and has several combinations.
According the considered distributions of the consumption resource, it will
be difficult to obtain lots of jobs according to these two extreme and non
realistic cases.

All the experiments have been run on an Intel Core i7, 3.4 GHz and 20
GB RAM. Microsoft Visual Studio 2017 with C# has been used to code
the different methods. Regarding the effectiveness measure, the Relative
Percentage Deviation (RPD) is computed for each instance according to the
usual expression:

H sol — B tso
Relative Percentage Deviation(RPD) = cu Bl ; sl 100, (1)
€Slsol

where Heug, is the solution obtained with a given proposed method and
Bestg, is the best known solution for a given instance. For small instances,
Besty,, is the optimal solution if it is known (Fanjul-Peyro et al.| (2017))) and
the best known solution when it is not. For medium and large instances,
Best, is the best known solution which can be optimal if the makespan is
equal to the optimum makespan of the problem without resources (UPM).
Note that if makespan values are the same for both problems, it does not
mean that the order or assignment of the jobs on each machine is equal. Ta-
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ble 5| presents the number of optimal solutions found by the proposed methods.

The proposed methods (denoted as ESS and EIG) are compared against
the best heuristic proposed in |Villa et al.| (2018)), denoted as M5. A basic
Scatter Search (denoted as SS) is also tested. Regarding the termination
criterion, for the ESS method after the SS, 100 iterations of the RLS (Section
are applied. According to Algorithm |5 (EIG algorithm), there are three
loops, so three termination criteria are needed (one per loop). For each loop,
10 iterations are run. In this way, the CPU times used by both enriched
methods are quite similar.

Set/Method M5 SS ESS EIG ESS & EIG

Small 257 260 288 293 297
Medium 131 146 175 185 191
Large 51 H3 66 75 80

Table 5: Number of proved optimal solutions obtained according to the size of the set of
instances.

4.1. Small and medium instances

A first evaluation using small and medium instances is carried out. In Table
[6] results for small instances are shown in terms of RPD and number of optimal
solutions (in brackets). It seems there are differences between the average RPD
among the methods. Specifically, the EIG algorithm obtains the lowest RPD.
However, we apply a statistical analysis by means of MultiFactorial Analysis
of the Variance (Montgomery| (2012))) to check if the observed differences are
statistically significant. The factors considered are: number of jobs, number
of machines, p;; set, r;; set and algorithm. In Figure the means plot
with LSD intervals (o = 0.05) is shown. Even when the M5 heuristic should
be outperformed by the rest of the methods, it is necessary to check if the
observed differences are statistically significant. For this reason M5 results
are included in the analysis. Sometimes a method can obtain lower RPD
values but the differences are due to chance and not because a method is
performing better. According to Figure two groups are observed, the
first one includes the heuristic M5 and the SS and the second one includes
the enriched methods (ESS and EIG). The second group performs better
than the first one. Then, for small instances we can see that although SS
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obtains a lower RPD value, the statistical analysis shows that on average,
SS and M5 methods perform equivalently (from a statistical point of view)
and the observed differences are not statistically significant. Regarding the
rest of the methods, there are no statistically significant differences between
ESS and EIG since the intervals are overlapping. According to the previous
explanation, ESS does not obtain better results than EIG for some small and
medium instances. Even when the RPD values for ESS are slightly lower
in one case (12 x 2 size), the statistical analysis shows that on average, the
M5 and SS methods demonstrate equivalent performance (from a statistical
point of view) and the observed differences are not statistically significant.
For small instances, the EIG method is able to optimally solve 293 out of
450 instances and the ESS obtained 288 optimal solutions. In total, both
methods obtain 297 optimal solutions, that is, there are 4 instances where the
ESS method is able to obtain the optimal value and the EIG method is not.
If we compare the SS method to the ESS, statistically significant differences
are observed in terms of the average RPD and also in terms of the number
of optimal solutions obtained (260 vs 288). This behaviour is also observed
in the rest of the analysed factors. Average CPU times for each method are
shown in Table [6| as well. The simplest methods (M5 and SS) need less than
1 second on average. The enriched methods (ESS and EIG) are also very fast,
at around 5 seconds on average.

Instance group M5 SS ESS EIG

8x2 0.24 (45)  0.17 (46)  0.00 (50)  0.00 (50)
8 x4 117 (34)  1.17 (34)  0.66 (41)  0.53 (41)
8 % 6 0.96 (45)  0.96 (45) 0.13 (48)  0.04 (49)
12 % 2 055 (16)  0.49 (16)  0.23 (18)  0.29 (17)
12 x 4 1.80 (26)  1.80 (26) 1.11 (29)  0.79 (31)
12 % 6 1.05 (34) 0.9 (34)  0.62 (39)  0.36 (40)
16 x 2 051 (13)  0.19 (13) 0.1 (13)  0.02 (13)
16 x 4 0.81 (18)  0.63 (19) 0.31(20)  0.12 (22)
16 x 6 1.27 (26)  1.23 (27)  0.88 (30)  0.43 (30)
Av.RPD 0.93 0.85 0.45 0.29

Av.Time (sec.)  0.01 0.05 5.5 5.5

Table 6: Average Relative Percentage Deviation (RPD), Average CPU Time in seconds
and number of optimal solutions obtained by each method (in brackets) for small instances

In Table [7] results for medium instances can be found (number of optimal
solutions found in brackets). Again, differences among the average RPD for all
the methods are observed. In Figure the means plot with LSD intervals
is shown (o = 0.05) where we can see that even though, on average, the RPD
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Figure 6: Means Plot and LSD intervals at the 95% confidence level for the algorithms
(small and medium instances).

value for ESS is around 75% worse than the RPD of EIG, these differences are
not statistically significant. Regarding the M5 heuristic and the SS method,
we can state that on average the SS method performs better than the M5
heuristic. It is important to focus our attention on the average CPU times
(Table[7). We can see that the simplest methods need much less time than the
enriched ones. Specifically, the SS is able to obtain better solutions than the
M5 heuristic using only 0.25 seconds on average. The enriched methods are
also very fast, each one requiring 14 seconds on average. Therefore, we can
state that the ESS and the EIG algorithms perform better than the other two
methods needing just a few seconds on average. In Table [5| we can see that
the ESS method obtains 175 proved optimal solutions out of 450 instances
while the EIG gets 185. For both methods, the number of proved optimal
solutions is 191, that is, there are 6 obtained by the ESS method that are not
by the EIG. Therefore, it seems that both methods are working in different
solution spaces. Differences can be seen between the M5 and the SS methods
in respect to the number of proved optimal solutions, with the SS algorithm
getting 15 more optimal solutions than the M5 heuristic. If we focus our
attention on how many times an enriched method performs better than the
other, the EIG performs better for 76 out of 450 instances, while the ESS
performs better in 32 instances. Again, results are consistent regardless of
the analysed factor.

4.2. Large instances

Experiments related to large instances are also carried out. In Table
we can see the average RPD value, the number of optimal solutions in
brackets and the average CPU time for each method. Again, it seems there
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Instance group M5 SS ESS EIG

20 x 2 0.78 (6)  0.47 (6) 0.09 (6)  0.03 (6)

20 x 4 0.42 (15) 0.31 (16) 0.12 (19) 0.02 (22)
20 x 6 0.67 (22) 0.32 (25) 0.12 (28) 0.18 (32)
25 x 2 047 (3) 0.37(3) 0.3 (3) 0.02 (3)

25 x 4 0.52 (19) 0.38 (20) 0.17 (23) 0.16 (25)
25 % 6 0.78 (20) 0.43 (24) 0.12 (29) 0.18 (28)
30 x 2 0.79 (9) 051 (11) 0.28 (14) 0.07 (14)
30 x 4 0.48 (19) 0.24 (23) 0.12 (29) 0.01 (30)
30 x 6 0.43 (18) 0.31 (18) 0.12 (24) 0.04 (25)
Av.RPD 0.59 0.37 0.14 0.08

Av. Time (sec.) 0.05 0.25 14.5 14.5

Table 7: Average Relative Percentage Deviation (RPD), Average CPU Time in seconds and
number of optimal solutions obtained by each method (in brackets) for medium instances.

are differences among the RPD values. After the statistical analysis by means
of an ANOVA, Figure [7] shows the means plot with LSD intervals. In this
case, we can state that the observed differences are statistically significant
and the EIG demonstrates the best performance. There are also differences
between the M5 heuristic and the SS method. Regarding the CPU times, the
EIG algorithm needs around 1 minute on average and the ESS a little bit
more. The simplest methods (M5 and SS) are much faster and need 20 and 51
seconds on average respectively. The EIG algorithm is the best method when
considering the effectiveness and the amount of CPU time needed. In Table
we can see that the ESS obtains 66 proved optimal solutions out of 600
instances vs the EIG with 75. If we consider both methods together, 81 proved
optimal solutions are obtained. Moreover, the EIG method performs better
than the ESS algorithm in 196 instances. The ESS method performs better
than the EIG in only 81 instances. In conclusion, it seems the performance
of the EIG improves when the size of the instance increases. As for small
and medium instances, results are consistent for all the analysed factors. As
we can see in Figure |8 the EIG method performs the best regardless of the
considered factor.

5. Conclusions and future research

A more realistic variant of the unrelated parallel machine problem consid-
ering one secondary additional resource has been studied. Several methods

are proposed: a basic Scatter Search algorithm together with an enriched
version (ESS) and an Enriched Iterated Greedy (EIG). Both enriched methods
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Figure 8: Means Plot for the interaction between Algorithm and Resource Consumption
Set and Algorithm and Processing Times Set (large instances).

Instance group M5 SS ESS EIG

50 x 10 1.06 (13) 0.65 (13) 0.36 (15) 0.27 (15)
50 x 20 1.36 (11) 1.21 (11) 0.48 (15) 0.39 (15)
50 x 30 151 (19) 1.25 (19) 0.35 (24) 0.34 (24)
150 x 10 072 (2) 044 (2) 0.30(2) 0.28 (4)
150 x 20 142 (1) 078 (3) 055 (3) 0.27 (5)
150 x 30 1.23 (4) 093 (4) 045 (6) 0.25 (7)
250 x 10 0.65(0) 034 (0) 0.25(0) 0.15 (2)
250 x 20 0.81 (0) 055 (0) 0.40 (0) 0.23 (1)
250 x 30 0.77 (0)  0.57 (0) 0.36 (0) 0.18 (0)
350 x 10 048 (0) 0.26 (0) 0.23 (0) 0.11 (0)
350 x 20 047 (0) 033 (0) 0.29(0) 0.15 (1)
350 x 30 065 (1) 052(1) 0.24(1) 0.10 (1)
Av.RPD 0.93 0.65 0.35 0.23
Av.Time (sec.) 20 51.5 73.1 60.5

Table 8: Average Relative Percentage Deviation (RPD), Average CPU Time in seconds
and number of optimal solutions obtained by each method (in brackets) for large instances.
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use a Restricted Local Search (RLS) where the resource constraint is not con-
sidered and a Repairing Mechanism is used to obtain a feasible solution. The
proposed methods are efficient and effective, which are essential requirements
for decision-making in the smart factory concept. An exhaustive benchmark
of instances has been used to compare the proposed algorithms against the
best known method for the same problem (M5). For small and medium
instances the enriched methods perform similarly and obtain better results.
Regarding large instances, the EIG algorithm obtains the best results and
outperforms the remaining methods. In conclusion, we can state that both
enriched methods demonstrate good performance and on average only require
a few seconds of CPU time. As both methods are simple and fast, they could
be run in parallel and the best solution could be chosen. Regarding future
research several extensions can be considered, for example the variant of the
same problem with setup times and different optimisation criteria.
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