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Abstract

Thanks to the rapidly advancing development of (commercial) MILP software and hardware
components, pseudo-polynomial formulations have been established as a powerful tool for solv-
ing cutting and packing problems in recent years. In this paper, we focus on the one-dimensional
skiving stock problem (SSP), where a given inventory of small items has to be recomposed to
obtain a maximal number of larger objects, each satisfying a minimum threshold length. In
the literature, different modeling approaches for the SSP have been proposed, and the stan-
dard flow-based formulation has turned out to lead to the best trade-off between efficiency and
solution time. However, especially for instances of practically meaningful sizes, the resulting
models involve very large numbers of variables and constraints, so that appropriate reduction
techniques are required to decrease the numerical efforts. For that reason, this paper introduces
two improved flow-based formulations for the skiving stock problem that are able to cope with
much larger problem sizes. By means of extensive experiments, these new models are shown
to possess significantly fewer variables as well as an average better computational performance
compared to the standard arcflow formulation.
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1. Introduction

Modeling frameworks based on graph theory have been investigated and successfully applied in
different fields of cutting and packing [8, 12, 23, 26, 29, 35]. Probably, one of the earliest refer-
ences is given by [39] where theoretical foundations on the relationship between certain integer
linear programs (ILPs) and corresponding flow formulations have been proposed. However, at
that time, computers were much slower than they are today, and addressing the exact solution of
discrete optimization problems was not an easy task. More precisely, the computational times
required to enumerate all the variables and constraints and to solve then the complete mod-
els exactly were too large. Hence, for a long time, research on these alternative formulations
was rather theoretically motivated, so that, for instance, the numerical behavior and benefits
of flow-based approaches could not be properly discussed in [39]; nevertheless, some properties
suggesting computational advantages of such formulations are already presented therein.

Mainly after the publication of the famous book by Nemhauser and Wolsey [31] in 1988, also
computational aspects (e.g., the strength of the considered models) became a central concern
in ILP modeling. In recent years, the rapidly advancing development of (commercial) Mixed
ILP (MILP) software and the steady progress in terms of powerful hardware components have
successively contributed to the scientific importance of pseudo-polynomial formulations for the
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solution of cutting and packing problems [12, 30, 37]. In particular, a significant body of today’s
research is dealing with reduction techniques, as well as theoretical and algorithmic improve-
ments [5, 9, 11] for the existing approaches.

In this paper, we want to promote this general idea by presenting two new and improved flow-
based formulations for the one-dimensional skiving stock problem (or SSP for short). In its
classical formulation, a threshold length L ∈ N and m ∈ N (different) item types that are spec-
ified by their length li and frequency (of occurence) bi, i ∈ I := {1, . . . ,m}, are considered. The
SSP requires to recompose the given items in order to obtain a maximal number of objects, each
having a length at least L, see also Fig. 1.

l1 = 53×

l2 = 34×

l3 = 24×

given items some possible item combinations

L = 100

L = 100

L = 100

Figure 1: A simple schema of the skiving stock problem for the instance E0 = (m, l, L, b) =
(3, (5, 3, 2), 10, (3, 4, 4)).

In [4], this problem was introduced as the dual bin packing problem (DBPP) whenever bi = 1
holds for all i ∈ I. The term skiving stock problem (SSP) has been proposed in the literature
[40] for a particular practical application in the field of paper recycling [18]. Nowadays, both
names are usually separated according to the typology presented in [38], meaning that

• the DBPP refers to highly heterogeneous instances with bi, i ∈ I, close to (or equal to)
one, see [22, 32], and

• the SSP describes instances where
∑
i∈I bi is large compared to the parameter m, see

[26, 40].

The skiving stock problem plays an important role whenever an efficient and sustainable use of
limited resources is intended. By way of example, such computations can be found in industrial
production processes [18, 40], manufacturing and inventory plannings [2, 3], wireless communi-
cations [25, 34], or multiprocessor scheduling problems [1]. Further scientific relevance of the
SSP is given by the fact that it may appear in holistic cutting-and-skiving scenarios [7, 18].
Observe that, although its connection to the extensively studied cutting stock problem (CSP)
[12, 15, 19, 37] is obvious, both problems are not dual formulations in the sense of mathematical
optimization.

Originally, the skiving stock problem was modeled by a pattern-based approach introduced in
[40]. Although this model is known to possess a very tight LP relaxation [20, 27, 28], similiar
to the CSP context [6, 21], the number of variables is exponential with respect to the number
of items. Consequently, pseudo-polynomial models for the SSP (most notably the arcflow model
and the one-stick model) have been established in the literature and were shown to always exhibit
an equally good relaxation, as well as a reasonable computational performance for most of the
considered instances [26]. However, especially for instances of practically meaningful sizes, the
resulting models involve (very) large numbers of variables and constraints, so that appropriate
reduction techniques are required to decrease the numerical efforts for solving the corresponding
ILPs. For that reason, we introduce two improved graph-theoretic ILP formulations for the SSP
that are based on the ideas of reversed loss arcs and reflected arcs [11], respectively. Both of
these new approaches are tailored for addressing specific drawbacks of the existing flow-based
modeling framework. More precisely, the first idea mainly eliminates superfluous sinks (and
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possibly also further redundant vertices) of the graph, whereas the main novelty of the second
formulation is to only consider half of the bin capacity so that significantly reduced sets of
vertices and arcs are obtained. As a consequence of these reductions, both approaches will be
shown to lead to a better numerical behavior (on average) compared to the arcflow model from
[26]. Moreover, dominance relations between the LP bounds obtained by the various models
will be discussed. Altogether, it should be emphasized that our computational study also serves
as a first systematic approach to collect and describe benchmarking instances (and their perfor-
mance) for the skiving stock problem, which can form an experimental basis for future research
articles. A preliminary version of this research, containing just one new model and very limited
computational results, was presented at the International Conference on Operations Research
2018 (OR 2018, Brussels) as [24].

The paper is organized as follows: in the next section, we review the standard flow-based formu-
lation for the SSP and discuss its most important reduction techniques. Afterwards, in Sect. 3,
two improved modeling frameworks and related theoretical properties are presented. Then, the
computational performance of the three models is compared in Sect. 4. Finally, we summarize
the main ideas of this paper and give an outlook on future research.

2. The Arcflow Model

Throughout this paper we assume the item lengths to be ordered non-increasingly, i.e.,

L > l1 > l2 > . . . > lm > 0. (1)

If required, we can easily obtain this order by a sorting algorithm, such as merge sort, with
O(m · logm) operations.

Let E = (m, l, L, b) be an instance of the SSP. Any combination of items whose lengths sum
up to at least L is called (packing) pattern of E. More formally, a pattern can be referred to
as an integer vector a ∈ Zm+ where the ith component states how many items of type i ∈ I
are involved. Then, the pattern set is given by P (E) =

{
a ∈ Zm+

∣∣ l>a ≥ L}. As this set (at
least theoretically) contains an infinite number of elements, normally the restriction to minimal
patterns (collected in the set P ?(E)) is sufficient. Any minimal pattern possesses the property
that none of its items can be removed without underrunning the threshold L.

Based on these preliminaries, we can define the quantity

v̄ := max
{
l>a

∣∣ a ∈ P ?(E)
}
,

which represents the largest total length of a minimal pattern.

Remark 1. It is not necessary to know all the (exponentially many) minimal patterns to cal-
culate v̄. Instead, as we will see later in Algorithm 1, this value is “automatically” found while
generating the arcflow graph.

As a starting point, we consider the directed graph G = (V, E) given by the set of vertices
V = {0, 1, . . . , v̄} and the set of arcs

E := {(p, q) ∈ V × V | p < L, q − p ∈ {l1, . . . , lm}} .

In this setting, an arc (p, q) ∈ E represents the positioning1 of an item of length q − p = lj ∈
{l1, . . . , lm} with its left point at vertex p ∈ V, see Fig. 2 for an example. Then, any path
s = (v0, v1, . . . , vk) in G from v0 = 0 to some vertex vk ≥ L corresponds to a pattern a ∈ P (E).
However, this basic approach still has some major drawbacks:

1Hence, the considered approach is sometimes referred to as a position-indexed formulation, see [26].
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0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: The vertex set and some arcs of G for the instance E0 = (3, (5, 3, 2), 10, (3, 4, 4)). The colors of the
item arcs are chosen according to Fig. 1. Altogether, G contains 13 vertices and 28 arcs.

• There are paths not corresponding to minimal patterns, such as the sequence 0 → 5 →
7→ 9→ 12.

• There are redundant vertices that cannot be contained in paths starting at v0 = 0 (e.g.,
v = 1).

• There are paths forming the same minimal pattern. For instance, the sequences 0→ 5→
8→ 10 and 0→ 5→ 7→ 10 are both referring to the minimal pattern a = (1, 1, 1)>.

Consequently, reduction techniques are required to tackle these problems:

i) Obviously, only nonnegative integer linear combinations of the given item lengths have
to be included in the set of vertices, since all other nodes cannot occur in a path s =
(v0, v1, . . . , vk) from v0 = 0 to some vk ≥ L. Thus, the set V can be replaced by a reduced
one (whose elements are mostly called raster points)

V ′ :=
{
v ∈ V

∣∣∃ a ∈ Zm+ : l>a = v
}
.

This technique originates from the consideration of so-called normal patterns in early
publications on two-dimensional cutting problems [10, 17], and refers to the observation [36,
Criterion 3]. Even nowadays the theory of potential allocation points is a quite active field
of research in cutting and packing [9, 14].

ii) In many cases, the previous reduction is not sufficient for vertices v ≥ L, because the
minimality of the corresponding item combinations is not ensured. By way of example,
the instance E = (2, (7, 2), 10, (7, 7)) certainly leads to 12 ∈ V ′, but there is no minimal
pattern a ∈ P ?(E) with l>a = 12. For that reason, let

L :=
{
l>a

∣∣ a ∈ P ?(E)
}

be the set of all possible total lengths of minimal patterns. Then, we can replace V ′ by

V ′′ := V ′ ∩ ({0, 1, . . . , L− 1} ∪ L) .

These observations also lead to a reduced set of arcs

E ′ := {(p, q) ∈ V ′′ × V ′′ | p < L, q − p ∈ {l1, . . . , lm}} .

If we want to assign a path s in G′ = (V ′′, E ′) to a minimal pattern a ∈ P ?(E), this identi-
fication is not necessarily unique, because a ∈ Zm+ does not carry any information about the
particular item order. For that reason, the consideration of monotonically decreasing paths (i.e.,
paths whose corresponding item lengths are sorted in non-increasing order) is proposed in the
literature, see [33, Subsection 4.8.4.] or [35] for an exemplary application to the related CSP.
Formally, this can be done by defining an index µ(p) ∈ I ∪ {0} for all p ∈ V ′′ \ L by

µ(p) :=

{
0, if p = 0,

min {i ∈ I | p− li ∈ V ′′, i ≥ µ(p− li)} , if p ∈ V ′′ \ (L ∪ {0}) .
(2)
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Remark 2. Practically, this additional constraint can be incorporated by processing the item
types in the order specified by assumption (1) within the graph generation, see also Algorithm 1.

This leads to a new set of arcs

E ′′ := {(p, q) ∈ V ′′ × V ′′ | p < L, q − p = li ∈ {l1, . . . , lm}, i ≥ µ(p)}

and a reduced graph G′′ = (V ′′, E ′′), see Fig. 3 for an example.

0 2 3 4 5 6 7 8 9 10 11 12

Figure 3: Arcflow graph G′′ for the instance E0 = (3, (5, 3, 2), 10, (3, 4, 4)). It contains 12 vertices and 17 arcs.

Remark 3. The introduction of µ may not solve the problem of equivalent paths within G′′
entirely. Consider, by way of example, the instance E0 where G′′ (illustrated in Fig. 3) contains
the two paths

0→ 3→ 5→ 10 and 0→ 5→ 8→ 10

which both refer to the pattern a = (1, 1, 1)>. Moreover, the first path does not respect the
monotonicity requirement. However, this problem cannot be avoided if, for instance, a (large)
item length can be obtained by summing up two (or more) smaller item lengths.

Similar to [9, Algorithm 1], where a possible construction of the vertex set for the CSP scenario
is described, the reduced arcflow graph can be generated in O(mL) by the procedure given in
Algorithm 1.

Algorithm 1 Create arcflow skiv

1: Input: L: Pattern threshold, m: Number of item types, l: Item lengths, b: Item availabili-
ties

2: E ′′ ← ∅ ; V ′′ ← ∅
3: M [0, . . . , L− 1]← 0 . an array that keeps track of the possible tails
4: M [0]← 1 . node 0 is a possible tail
5: for i = 1 to m do
6: for k = L− 1 down to 0 do
7: if M [k] = 1 then . if k is a possible tail
8: for j = 1 to bi do
9: if k + (j − 1)× li ≥ L then break . break if tail ≥ L

10: E ′′ ← E ′′ ∪ {(k + (j − 1)× li, k + j × li)}
11: V ′′ ← V ′′ ∪ {(k + j × li)}
12: if k + j × li < L then
13: M [k + j × li]← 1
14: end if
15: end for
16: end if
17: end for
18: end for
19: return V ′′, E ′′

In order to formulate the arcflow model in a preferably convenient way, we introduce the auxiliary
index sets

A−(q) := {p ∈ V ′′ | (p, q) ∈ E ′′} , A+(q) := {r ∈ V ′′ | (q, r) ∈ E ′′} ,
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for every q ∈ V ′′ and the set

E(i) := {(p, q) ∈ E ′′ | q − p = li}

for every i ∈ I.

Remark 4. Note that A−(q) and A+(q) model the predecessors and successors of vertex q ∈ V ′′,
respectively, whereas E(i) collects all arcs referring to an item of length li. Moreover, the cases
A−(q) = ∅ and A+(q) = ∅ can occur for some q ∈ V ′′.

Let xpq ∈ Z+ denote the flow along arc (p, q) ∈ E ′′, then we can state the

Arcflow Model of the Skiving Stock Problem

zA =
∑

q∈A+(0)

x0q → max

s.t.
∑

p∈A−(q)

xpq =
∑

r∈A+(q)

xqr, q ∈ V ′′ \ (L ∪ {0}) , (3)

∑
(p,q)∈E(i)

xpq ≤ bi, i ∈ I, (4)

xpq ∈ Z+, (p, q) ∈ E ′′. (5)

Constraints (3) can be interpreted as a flow conservation: at every interior vertex, which is not
a possible endpoint, the units of incoming flow (i.e., the number of items “terminating” at this
position) have to equal the units of emanating flow (that is the number of items “starting” at
this position). Thus, the objective function maximizes the total flow within G′′, that is, the total
number of objects obtained. Conditions (4) ensure that the given item supply is not exceeded.
In this arcflow model, the numbers of variables and constraints are O(mL) and O(m + L),
respectively.

Although this model has turned out to be competitive in solving randomly generated instances
[26], there are still some drawbacks connected to different aspects of this formulation:

(a) The size of the vertex set V ′′ (and thus the size of the graph G′′) is strongly determined
by the quantity v̄, which is not known until the whole arcflow graph has been generated.
Moreover, G′′ normally consists of multiple sinks (i.e., many different endpoints of patterns)
whenever v̄ > L holds.

(b) As indicated by Remark 3, in some cases, the graph still contains some symmetries or
non-monotonous paths.

(c) The reduction caused by raster points is particularly successful at the beginning of the
graph (i.e., in the first half of V) whereas it tends to be nearly irrelevant in the second
part.

Whereas the second problem may not be addressed in the general context (see Remark 3), we
aim at tackling the remaining unfavorable properties by two new flow-based approaches in the
following section.

3. Two Improved Flow-based Formulations

3.1. An Arcflow Model with Reversed Loss Arcs

As a starting point, we want to deal with problem (a) mentioned above. To this end, we assume
that L ∈ V ′′ holds without loss of generality. If this is not the case, then the given instance
E = (m, l, L, b) can be replaced by an equivalent instance E′ = (m, l, L′, b) with L′ ≥ L+ 1.

Now, instead of allowing multiple endpoints within the graph, we force any path to end at vertex
v = L. This can be obtained by the following three steps:
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(1) Any arc (p, q) ∈ E ′′ with q = L+r for some r ≥ 1 is shifted back to (p−r, L). After having
completely executed this step, we let v denote the lowest-indexed vertex that is the tail of
a shifted arc.

(2) Add reversed loss arcs (e, d) with v ≤ d < e < L and e = succV′′(d), where succM (m)
describes the successor of element m ∈M within the canonically ordered set M ⊆ N.

(3) Now, any vertex that is not part anymore of at least one arc is deleted.

Let us refer to the resulting graph as GL := (VL, EL), then principally the same optimization
model as in Sect. 2 can be applied (now, of course, based on the updated sets VL and EL),
if the artificial loss arcs are also respected in the flow conservation conditions. We will briefly
refer to this model as the loss arcflow model (or simply larcflow), and define by zL its objective
function.

Example 1. The modified graph for the instance E0 = (3, (5, 3, 2), 10, (3, 4, 4)) is depicted in
Fig. 4.

0 2 3 4 5 6 7 8 9 10

Figure 4: Arcflow graph GL for the instance E0 = (3, (5, 3, 2), 10, (3, 4, 4)). It contains 10 vertices and 17 arcs.

Here, the formerly existing arcs (9, 12), (8, 11), (9, 11) ∈ E ′′ have been shifted back to the arcs
(7, 10), (7, 10), (8, 10) ∈ EL, and two additional reversed loss arcs have been introduced, namely
(8, 7) and (9, 8). In this new setting, the vertices 11 and 12 do not appear anymore; and, by way of

example, the path 0→ 3→ 6→ 9→ 12 is now represented by 0→ 3→ 6→ 9
loss→ 8

loss→ 7→ 10.

Besides having eliminated the additional sinks of the graph (so that any path now terminates at
v = L), there are some further advantageous, neutral and disadvantageous properties (marked
by (+), (±) and (−)) that we want to mention here as a concluding summary of this subsection:

(+) In our example, see Fig. 4, the new arcflow graph GL contains the same number of arcs as
before since the number of additional loss arcs is equal to the savings that are obtained by
shifting arcs back (onto some already existing arcs). However, for practically meaningful
problem sizes, this effect is not likely to happen so that, normally, a smaller number of
variables can be expected (see also Sect. 4).

(±) Typically, the loss arcflow model has (roughly) the same number of constraints as the
standard arcflow formulation because the number of interior vertices is not likely to change
considerably. However, in some (rather exceptional) cases, it may happen that interior
vertices of V ′′ can be deleted after having shifted the arcs according to Step (1) from
above. On the other hand, for instances with sparse vertex set, it is also possible that the
shifting of arcs can activate additional interior vertices. As we will see in our computational
part (see Sect. 4), both of these phenomena do not play a very important role for larger
instances, in general.

(−) Possibly, the shifting of some arcs can produce additional symmetries or can destroy some
monotonicity properties of the graph. For instance, the graph GL depicted in Fig. 4 now
contains a further possibility to represent the pattern a = (1, 1, 1)>. Moreover, at least
from a theoretical point of view, arbitrarily long paths (patterns) can be obtained in GL
because the graph does not have to be acyclic anymore, see also Fig. 4.
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3.2. The Reflect Arcflow Model

In this subsection, the problems (a) and (c) from the list presented in Sect. 2 shall be dealt
with collectively. For that reason, we consider an approach basically introduced in [11] (for the
CSP scenario), whose key idea is to reduce the set of vertices by decomposing any path into two
subpaths (providing roughly half of the desired total length) that are linked by a reflected arc.

Example 2. Let us again consider the instance E0 = (3, (5, 3, 2), 10, (3, 4, 4)) and the cor-
responding graph G′′ depicted in Fig. 3. By way of example, the description of the path
0 → 3 → 6 → 9 → 12 actively uses five vertices and four different arcs. In a new setting,
that only takes the vertices of the first half (of this path) into account, we could also describe
this path as illustrated in Fig. 5.

0 3 6

(0, 3, s) (3, 6, s)

(3, 6, s)(0, 3, s) (6, 6, r = 6)

Figure 5: A preliminary schema to represent paths on only one half of the vertex set. The third index (s or r) of
an arc is used to distinguish between standard arcs and reflected arcs, where in the latter case also the coordinate
of the reflection point is mentioned as an auxiliary information.

Here, the two (identical) subpaths (0, 3, s) → (3, 6, s) (each referring to two items of length
l2 = 3) are connected by a reflected arc (6, 6, r = 6) (where the reflection point r = 6 is given by
half of the previous total path length of l>a = 12). Hence, we obtain an equivalent description
of the pattern a = (0, 4, 0)> by only using three vertices and three different arcs.

As skiving stock patterns can exhibit several lengths Lt ∈ L :=
{
l>a

∣∣ a ∈ P ?(E)
}

(which are
identical to the sinks of G′′), we usually would have to cope with multiple reflection points
rt = Lt/2 if the idea presented in [11] and the previous example is simply overtaken. Moreover,
the elements of L are not known in advance and, hence, cannot be used to efficiently implement
a reflect graph. Due to these difficulties, we propose another strategy to represent a pattern in
the SSP context.

In order to avoid multiple reflection points, we again try to force any path (or pattern) to have
exactly the length L by introducing appropriate loss arcs (but now in forward direction). Then,
Algorithm 2 can be applied to build the reflect graph GR := (U ,A) (for the SSP) with only one
reflection point2 r := L/2.

More precisely, we have that any arc (u, v) ∈ E ′′ (appearing in Sec. 2)

• with u < v ≤ r is maintained as a standard arc (u, v, s) ∈ A,

• with u < r < v is transformed into a reflected arc (u, L− v, r) ∈ A,

• with r ≤ u < v is deleted.

After having executed these steps, let v denote the lowest-indexed vertex that is the head of a
reflected arc. Then, we add the loss arcs (d, e, l) with d ∈ U , v ≤ d < L/2 and e = succU (d)
acting as the direct successor of d. Finally, we have to introduce a special reflected arc (not
referring to any item length) (L/2, L/2, r) to enable the combination of two subpaths providing
exactly half of the bin capacity.

Example 3. The reflect arcflow graph GR for the instance E0 = (3, (5, 3, 2), 10, (3, 4, 4)) is
depicted in Fig. 6. For the sake of a better comprehension, the colors of the arcs are now referring
to the different arc types (standard, reflected and loss). Here, the path 0→ 3→ 6→ 9→ 12 from

2In order to avoid fractional coordinates it should be assumed that L is even. If required, this can be obtained
by scaling all lengths of the instance by a factor 2. Note that this operation does not change the number of arcs.
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Algorithm 2 Create reflect skiv

1: Input: L: Pattern threshold, m: Number of item types, l: Item lengths, b: Item availabili-
ties

2: A ← ∅ ; U ← ∅
3: M [0, . . . , L/2]← 0 . an array that keeps track of the possible tails
4: M [0]← 1 . node 0 is a possible tail
5: v = L/2 . lowest-indexed vertex that is the head of a reflected arc
6: for i = 1 to m do
7: H[0 . . . L/2]← 0 . an array that keeps track of the tails already processed
8: for j = 1 to bi do
9: for k = L/2− 1 down to 0 do

10: if H[k] = 0 and M [k] = 1 then . if k is unprocessed and a possible tail
11: H[k] = 1 . k is now processed
12: if k + li ≤ L/2 then . if the arc is standard
13: A ← A∪ {(k, k + li, s)}
14: U ← U ∪ {(k + li)}
15: M [k + li]← 1
16: else . if the arc is reflected
17: A ← A∪ {(k, L− (k + li), r)}
18: U ← U ∪ {(L− (k + li))}
19: v ← min{v, L− (k + li))}
20: end if
21: end if
22: end for
23: end for
24: end for
25: U ← U ∪ {L/2}
26: for i ∈ U : i ≥ v do A ← A∪ {(i, j, l): j = min(k ∈ U : k > i)} . loss arcs
27: A ← A∪ {(L/2, L/2, r)} . allow paths to collide in L/2
28: return U ,A

0 2 3 4 5

(0, 5, s)
(0, 3, s)

(0, 2, s) (2, 4, s)

(3, 5, s)

(4, 5, l)
(3, 4, r) (4, 4, r)(5, 5, r)

Figure 6: The reflect arcflow graph GR for the instance E0 = (3, (5, 3, 2), 10, (3, 4, 4)). It contains 5 vertices and
9 arcs.

the previous example is obtained by linking two (identical) reflected subpaths 0→ 3
reflect→ 4

loss→ 5
by means of the reflected arc (5, 5, r). Note that simply combining the two identical subpaths

0→ 3
reflect→ 4 by means of the reflected arc (4, 4, r) would correspond to the pattern a = (0, 4, 1)>,

so that (at the moment) also non-minimal patterns can be discovered in the graph. However,
this possibility will later be excluded by adapted flow conservation constraints.

Observe that, even for this quite small example, the numbers of vertices and arcs could be
reduced by roughly 50 percent compared to the standard arcflow model (from Fig. 3) or the
model with reversed loss arcs (from Fig. 4). As mentioned in Sect. 2, these significant savings
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are obtained because the effect of normal patterns (or raster points) is noticed almost only at
the beginning of the graph, whereas it tends to be irrelevant for the second half of the vertices
(which is not modeled explicitly anymore).

Let us define U? := U \ {0} and A? := A \ {(L/2, L/2, r)}, and let ξdeκ denote the flow along
the generic arc (d, e, κ) ∈ A (where κ ∈ {s, r, l} is possible); then the reflect arcflow model is
given by

Reflect Arcflow Model of the Skiving Stock Problem

zR =
∑

(d,e,r)∈A

ξder → max

s.t.
∑

(d,e,s)∈A: e−d=li

ξdes +
∑

(d,e,r)∈A: e=2r−d−li

ξder ≤ bi, i ∈ I, (6)

∑
(0,e,s)∈A

ξ0es +
∑

(0,e,r)∈A

ξ0er = 2
∑

(d,e,r)∈A

ξder, (7)

∑
(d,e,s)∈A

ξdes +
∑

(e,f,l)∈A

ξefl = . . .

. . .
∑

(d,e,r)∈A

ξder +
∑

(d,e,l)∈A

ξdel +
∑

κ∈{r,s}

∑
(e,f,κ)∈A

ξefκ, e ∈ U?, (8)

∑
(d,e,l)∈A

ξdel +
∑

(d,e,r)∈A

ξder ≥
∑

(e,f,l)∈A

ξefl, e ∈ U?, (9)

ξdeκ ∈ Z+, (d, e, κ) ∈ A?, (10)

ξL/2,L/2,r ∈ Z. (11)

The objective function maximizes the total flow on the reflected arcs. As (on balance) any
unit of flow on a reflected arc is responsible for linking two subpaths to one single pattern, this
quantity actually displays the number of obtained objects (with length ≥ L). For this reason,
we further have to demand that the total flow in the system is twice the objective value, see
constraint (7). Moreover, conditions (6) require each item to be used at most bi times, whereas
constraints (8) model the (adapted) flow conservation at each interior vertex: note that (in a
pattern sense) each flow entering a node through a standard arc has to be continued by a flow
leaving the node through a standard or a reflected arc (classical flow conservation), or by a
flow entering the node through a reflected arc (connection between two subpaths), including the
additional flow brought and removed by the loss arcs.

Example 4. The conditions explained so far would entail the following properties:

i) Fortunately, the non-minimal pattern a = (0, 4, 1)> from the previous example cannot

be represented by a feasible path (consisting of two copies of 0 → 3
reflect→ 4 linked by

(4, 4, r) ∈ A) in GR anymore. To this end, let us consider the flow propagation for the arcs
and vertices depicted in Fig. 7.

0 2 3 4 5

(0, 3, s)

(0, 3, s)

(3, 4, r)

(3, 4, r)

(4, 4, r)

Figure 7: The former representation of the non-minimal pattern a = (0, 4, 1)>.
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For the first interior node e = 3, we have two units of flow on the incoming standard
arc (0, 3, s) and two units of flow on the leaving reflected arc (3, 4, r), so that condition
(8) is satisfied. However, when looking at e = 4 there is no flow corresponding to the left-
hand side of (8), whereas on the right-hand side we have two units of flow for the incoming
reflected arc (3, 4, r) and an additional nonnegative flow on the reflected arc (4, 4, r). Hence,
the flow conservation does not hold for the vertex e = 4, so that the non-minimal pattern
cannot be part of a feasible flow (in GR) anymore.

ii) Contrary to the first point, at the moment, it would still be possible to link the two identical

subpaths 0→ 2→ 4
loss→ 5 by means of the reflected arc (5, 5, r) without violating constraints

(8) for any of the involved interior vertices. As this would refer to a vector a = (0, 0, 4)>

(which does not represent a pattern) some further conditions are needed to limit the use of
loss arcs.

Based on the second observation given in the previous example, loss arcs may only be used
for special purposes. More precisely, they either have to directly follow another loss arc or a
reflected arc, see (9). Then, by way of example, the vector a = (0, 0, 4)> cannot be obtained
anymore as a feasible connection of two subpaths.

One particularity of this model is that we have to allow negative flows on the (artificial) reflected
arc (L/2, L/2, r), see (11), to also enable two reflected paths to be merged together without
violating the flow conservation and without miscounting the number of obtained patterns in the
objective function.

Example 5. As long as a nonnegative flow on the artificial reflected arc (L/2, L/2, r) ∈ A is
demanded, the flow conservation conditions for e = 5 in the scenario depicted in Fig. 8 would
lead to the same contradiction as in the previous example.

0 2 3 4 5

(0, 3, s)

(0, 3, s)

(4, 5, l)

(4, 5, l)(3, 4, r)

(3, 4, r)

(5, 5, r)

Figure 8: The pattern a = (0, 4, 0)> is built by joining two subpaths with the help of the artificial reflected arc
(L/2, L/2, r) ∈ A.

Moreover, as already two units of flow are required on the reflected arc (3, 4, r) ∈ A, this pattern
would not be counted correctly (as one single pattern) in the objective function. To solve these
two problems, the flow variable corresponding to (L/2, L/2, r) ∈ A is allowed to possess negative
values. Then, with ξ(0,3,s) = ξ(3,4,r) = ξ(4,5,l) = 2 and ξ(5,5,r) = −1 all constraints are satisfied
and the total flow on all the involved reflected arcs is equal to one, so that exactly one pattern is
added to the objective value.

Example 6. Another typical case where linking two reflected paths can sometimes be meaningful
occurs if very large items may appear together in a single pattern, see Fig. 9 for an illustration
of the exemplary instance E1 = (3, (18, 16, 8), 20, (10, 10, 10)). Observe that, also in this setting,

ξ(L/2,L/2,r) will become negative if, for instance, the two identical paths 0
reflect→ 2

loss→ 4
loss→ 8

loss→
10 shall be linked to obtain the pattern a = (2, 0, 0)>. For the sake of completeness, let us mention
that an optimal solution (with z?R = 15) is given by ξ0,2,r = ξ0,4,r = ξ0,8,s = ξ2,4,l = ξ8,10,l = 10,
ξ4,8,l = 20, and ξ10,10,r = −5.
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0 2 4 8 10

(0, 8, s)

(2, 4, l) (4, 8, l) (8, 10, l)
(0, 2, r)

(0, 4, r) (8, 4, r)
(10, 10, r)

Figure 9: The reflect graph GR for the instance E1 = (3, (18, 16, 8), 20, (10, 10, 10)).

We also note that the reduction criteria proposed in [11, Proposition 5] stating that any feasible
pattern can be represented by a pair of colliding paths whose reflected arc (d, e, r) has d < e
cannot be used for the SSP. Indeed, let us consider the pattern a = (0, 0, 3)> from the previous

example: it can only be obtained by the two colliding paths 0 → 8
reflect→ 4

loss→ 8 and 0 → 8, in
which the reflected arc (8, 4, r) has to be used.

In summary, modeling and generating the reflect arcflow formulation for the SSP is more chal-
lenging than in the cutting scenario [11] and requires (partly) independent techniques as well as
considerable modifications of the corresponding ILP.

Altogether, this model possesses much fewer variables than the previous flow-based formulations
(in Sect. 2 and Subsect. 3.1). As regards the number of constraints, no clear prediction can
be made. On the one hand, our new approach allows for using much fewer flow conservation
constraints (in most cases only roughly 50% of the original number) of type (8), whereas, on
the other hand, an additional constraint (see (9)) has to be included for any vertex. Depending
on the particular instance, these two effects may lead to slight differences (in both directions) if
compared to the number of constraints of the standard arcflow model, see also Sect. 4.

3.3. Relations between the LP bounds

Whenever there are different modeling approaches for one and the same optimization problem,
an important question deals with the strength of the bounds obtained by the respective LP
relaxations. It is well known that the tightness of a relaxation is a crucial factor in the size of
branch-and-bound trees, because it significantly influences the efforts to solve the ILP. To this
end, we will investigate the relationships between the optimal objective values of the three LP
relaxations zLPA := zLPA (E), zLPL := zLPL (E), and zLPR := zLPR (E) and discuss possible dominance
relations.

A first important observation is given by:

Theorem 5. For E = (m, l, L, b) = (4, (8, 6, 4, 2), 12, (1, 1, 1, 1)) we have zLPR < zLPA < zLPL .

Proof. For the given instance, we have zLPR = 1.5, zLPA = 1.6, and zLPL = 5/3, obtained by the
patterns (paths):

R : 1× (1, 0, 1, 0)>,
1

2
× (0, 2, 0, 0)>,

A :
3

5
× (1, 0, 1, 0)>,

2

5
× (1, 1, 0, 0)>,

2

5
× (0, 1, 1, 1)>,

1

5
× (0, 1, 0, 3)>,

L :
2

3
× (1, 0, 1, 0)>,

1

3
× (1, 0, 0, 2)>,

1

3
× (0, 2, 0, 0)>,

1

3
× (0, 1, 1, 1)>.

The main reason for the occuring differences is given by the fact that some patterns (paths)
can be feasible in one graph, while they cannot be composed in another graph. In the example
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presented in the previous theorem, the patterns a = (1, 0, 0, 2)> and a = (0, 1, 0, 3)> cannot
appear in the reflect graph because it is impossible to start a subpath with more than one copy
of the item length l4 = 2. On the other hand, the pattern a = (0, 2, 0, 0)> can for instance appear
in the reflect framework, whereas it cannot be found in the standard arcflow formulation.

Given the information of Theorem 5, in the following result we clarify that there is no dominance
relation between the reflect model on the one hand and either the standard arcflow model or
the loss arcflow model on the other hand.

Theorem 6. For E = (m, l, L, b) = (2, (5, 2), 10, (1, 5)) we have zLPA = zLPL < zLPR .

Proof. Indeed, for the given instance we have zLPR = 1.5 and zLPA = zLPL = 1.4, obtained by the
patterns (paths):

R : 1× (0, 5)>,
1

2
× (2, 0)>, A&L : 1× (1, 3)>,

2

5
× (0, 5)>.

Again, the reason for the differing optimal values is based on different sets of feasible patterns
(paths). For instance, the pattern a = (2, 0)> used in the solution of the reflect model does not
appear in the other two graphs due to the construction presented in Algorithm 1, where the
for-loop for i = 1 (with 1 ≤ j ≤ b1 implying j = 1) only generates one single arc (in the whole
graph) corresponding to this item. Of course, also the reflect graph does only contain this arc
once, but here two identical copies of this subpath (0 → 5) can be linked to obtain a feasible
pattern (that can then be used 0.5 times).

Based on the two instances given in the previous theorems, only the relationship between the
optimal values zLPA and zLPL is not fully discussed yet. To answer this open question, we present
the following concluding result.

Theorem 7. For any instance E = (m, l, L, b) we have zLPA ≤ zLPL .

Proof. Consider a given instance E = (m, l, L, b) and a corresponding feasible solution x =
(xpq)(p,q)∈E′′ of the LP relaxation of the standard arcflow model. Since the directed graph G′′
of that instance is acyclic, any flow (i.e., any feasible solution) decomposes into feasible paths
γ1, . . . , γs from v0 = 0 to some v ≥ L with, in general, fractional flow values f1, . . . , fs ≥ 0
(being constant along the arcs of a fixed path). Now note that, by construction, any path γ in
arcflow has a corresponding path γ̃ in loss arcflow, where all the arcs except the last one(s) are
the same:

• If the last arc (p, q) of γ ends after L, then loss arcs have to be added from the penultimate
node p of γ to the node L− (q− p) in loss arcflow. These loss arcs exist since loss arcs are
created (between all active nodes) from L− 1 to L−max{li : i ∈ I}. The path γ̃ is then
completed by an arc (L− (q − p), L) which exists as any arc ending after L in arcflow for
item i ∈ I is transposed to (L− li, L) in loss arcflow.

• If the last arc of γ ends in L, then the paths γ and γ̃ are exactly the same.

It is straightforward to show that these transformed paths γ̃1, . . . , γ̃s (with the same flow values
f1, . . . , fs ≥ 0 as before) also satisfy the constraints of loss arcflow:

• As we did not touch arcs starting from v0 = 0, the objective function (and also the objective
value) remains the same.

• Any of the transformed paths γ̃1, . . . , γ̃s satisfies the flow conservation constraints by con-
struction; so the sum of all these paths will also satisfy it.
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• The flow on the possibly new arcs of type (L − li, L) in loss arcflow equals the flow on
the arcs (d, d+ li) with d+ li ≥ L in arcflow. Consequently, also the item limitations are
obeyed.

• All flow variables are still nonnegative.

Altogether, we obtain a feasible solution x̃ of the LP relaxation of loss arcflow with the same
objective value.

Summarizing the main observations of this subsection, we can finally point out that arcflow
dominates loss arcflow (in terms of the LP bound), whereas there are no further dominance
relations among the three optimal objective values zLPA , zLPL , and zLPR .

4. Computational Experiments

In addition to the theoretical presentation that we provided for the new mathematical models
of the SSP, their computational performance and average efficiency shall be discussed based on
numerical experiments. For that purpose, three general categories of instances are considered:

(A) datasets designed for the SSP (or dual bin packing problem) from the literature,

(B) randomly generated instances,

(C) benchmarking instances originally introduced for the CSP (or for the bin packing prob-
lem)3.

Based on the fact that the SSP is a relatively young and rather unknown optimization problem,
only a few families of instances of the first type can be found in the relevant literature, whereas
much more test sets are available for the CSP. As both problems share the same input data (but
with a partly different meaning), we decided to also include these CSP benchmarks into our
experimental study in order to provide a wider variety of data sets. It is not guaranteed that
these typically challenging instances for the CSP will be difficult to solve in the SSP context as
well; but at least some of them (as, for instance, the AI/ANI sets introduced in [12, Subsection
7.1.3]) will definitly preserve their hardness so that the consideration of CSP benchmarks is
justified also from this point of view. Altogether, besides purely providing information on the
practical behavior of our different models, this section also serves as a first systematic approach
to collect and describe benchmarking instances for the SSP that can form an experimental basis
for future research articles.

4.1. Data Sets

In what follows we aim at describing in more detail the three instance categories mentioned
above.

(A) As regards datasets particularly designed for the SSP, the literature only offers a very few of
them. Moreover, given the year (and the computational limits at that time) when they were
published, some of these instances (e.g., those presented in [40, Table 3] with L = 100 and
m ≤ 10) nowadays have to be considered as too easy to notice any substantial differences
between the various approaches. To the best of our knowledge, the only considerable
systematic description of (larger) SSP benchmarking instances is contained in [32], where
also some test sets previously appearing in [22] are proposed. Contrary to our definitions,
these constructions mostly fix the total number n =

∑
i∈I bi (instead of the number m

3In fact, almost all of these instances have been proposed in the context of bin packing. However, since any
bin packing problem can be equivalently formulated as a CSP, these benchmark sets will always be referred to
as CSP instances in the following paragraphs.
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of different item types) as an input parameter of a test class. Theoretically, given the
fact that the numbers of variables and constraints (and, hence, the size of the ILP model)
rather depend on m and L, this could lead to quite heterogeneous instances within one
and the same test class. However, in our experiments we always have bi, i ∈ I, equal to (or
at least very close to) one so that n ≈ m holds, and this leads to instance sets possessing
comparably complex ILP models for fixed input parameters n and L.

Unfortunately, the original instances from [32] are not available anymore, so we had to build
our own instances based on the constructions described in that paper. More precisely, this
first category consists of two test sets with the following input parameters:

(A1) These rather small instances were proposed in [22] and are described by lmax = 99
and the following integers:

n ∈ {10, 20, 40, 60, 80, 100},
L ∈ {100, 120, 150, 200, 300, 400, 500},

lmin ∈ {1, 20, 50}.

For any of these 126 combinations, we randomly generated 10 instances, each with
uniformly distributed item lengths li ∈ [lmin, lmax], i ∈ I. Note that the values of bi
do not have to be specified because any of the n items is drawn individually.

(A2) A second test set (that contains some larger instances) appearing in [32] is given by
lmax = 999 and the following integers:

n ∈ {60, 80, 100, 250, 500},
L ∈ {1000, 1200, 1500, 2000, 3000, 4000, 5000},

lmin ∈ {1, 200, 500}.

For any of these 105 combinations, we randomly generated 10 instances, each with
uniformly distributed item lengths li ∈ [lmin, lmax], i ∈ I.

(B) Randomly generated instances for the SSP have previously been addressed in [26]. As all
these problems were solved in reasonably short computation times, we intend to consider
similar, but much larger instances in this second category. More precisely, any class is
parametrized by a pair (m,L) in the following way:

m ∈ {200, 300, 400, 500},
L ∈ {10000, 20000, 30000, 50000}.

In accordance with [26], for any of the 16 combinations we randomly generated 10 instances,
each with uniformly distributed item lengths li ∈ [L/10, 3/4 · L] and availabilities bi ∈
[1, 100].

(C) The third category of test sets consists of 1895 challenging instances that were originally
invented for the CSP (or for the bin packing problem) over the past years. All these
instances are well known benchmarks whose specifications are described in the relevant
literature. More precisely, as similarly pinpointed in [11, Section 7.1], this category contains
the three subclasses:

(C1) Classical: A set of 1615 instances presented in various articles in the last decades and
having highly different characteristics. A complete description of these data sets can
be found in [12].

(C2) GI: A total number of 80 instances (divided into four classes of 20 instances each)
proposed in [16] partly involving extremely large threshold lengths L ≤ 1500000.
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(C3) AI/ANI: Two sets containing 100 challenging instances each that have been proposed
in [12]. Here, the word “challenging” either means that already finding reasonable
candidates for an optimal solution may be difficult (as in the AI case), or that (as
regards the ANI instances) proving the optimality of a given solution becomes really
hard since the additive integrality gap (measured with respect to the LP bound) is
at least one.

Instances in set C have been gathered together in the BPPLIB [13] and can be found on the Inter-
net by http://or.dei.unibo.it/library/bpplib. Instances from sets A and B are available
from the authors upon request.

4.2. Methodology

All our experiments were executed on an AMD A10-5800K CPU with 16 GB RAM, using Gurobi
8.0.1 (imposed to run on a single thread) as MILP solver with a time limit of one hour. The
model generation itself was performed in Python 3.6.4 and the Gurobi Python module. For any
instance and for any formulation, we collected the following data:

• opt: an indicator stating whether the instance could be tackled successfully (opt = 1) or
not (opt = 0) within the given time limit,

• z?, z?c : optimal value of the ILP and the LP relaxation, respectively (if solvable),

• t, tLP : total time (in seconds) needed to solve the ILP and the LP relaxation, respectively,

• nvar, ncon: number of variables and constraints appearing in the respective ILP,

• nnz: number of nonzero entries in the constraint matrix of the respective ILP,

• LB,UB: best lower (upper) bound obtained for the optimal objective value.

Note that, given the large number of instances attempted, we will only refer to aggregate (in
terms of opt) or averaged values for each considered class of instances instead of providing
the individual results for any single example. Whenever an instance could not be solved to
optimality, the time limit (one hour) will be used as the computation time t.

In addition to the comparison of the three (pure) ILP formulations, we also measure the effects
of passing an initial feasible solution xheu to the Gurobi solver. This feasible solution was always
obtained by a heuristic proposed in [32] whose iterations can be described as follows: Choose
the largest item type (say k) that is still available (i.e., with residual bk > 0) and allocate
akj = min{b(L− 1)/lkc, bk} items of type k to the current bin j.

(I) If akj < bk holds, then we choose the smallest possible item type i ∈ I with bi > 0 so that
increasing aij by one unit leads to a feasible pattern. (This step can always be performed
by choosing i = k.)

(II) If akj = bk holds, then we continue with item type k + 1 and try to assign as many items
of that type to bin j without reaching the threshold L. Depending on the situation, then
we have to apply step (I) or (II) with respect to the item index k + 1.

This general procedure is repeated (while successively updating the values bi, i ∈ I), until all
items have been assigned or no feasible bin can be found anymore.

Based on the collected data, we will evaluate and compare the computational behavior of six
solution strategies (three ILP formulations with or without the additional application of the
heuristic) in this article. Note that, in [26], the original arcflow model turned out to provide the
best computational performance for practically meaningful problem sizes (among the tested for-
mulations) although it possesses slightly more variables and constraints compared to the onestick
formulation, see [26, Table 6]. Consequently, the conventional arcflow formulation (introduced
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in Sect. 2) can be considered as the state-of-the-art solution strategy for skiving stock problems.
Hence, our comparison also involves the most promising existing ILP formulation, so that a
reasonable investigation of the various solution approaches is conducted.

4.3. Results and Discussion

In this subsection, we aim at presenting some of the results obtained by the computations
described above. Note that, for the sake of simplicity, the arcflow model of Sect. 2, the loss
arcflow model of Subsect. 3.1 and the reflect model of Subsect. 3.2 will mostly be referred to
by their respective abbreviations “arcflow”, “larcflow” and “reflect”. Moreover, for the tables,
we always use the short form “heu” instead of heuristic.

At first, we consider the instances of category (A) and state that the subset (A1) could be
solved to optimality by any of the six variants within really short times, see Tab. 1. Hence,
these instances are rather small to observe significant time differences among the considered
formulations. However, having a look at especially the numbers of variables and nonzeros, we
can notice a considerably less complex structure of the ILP model for reflect (having roughly a
third of the variables and half of the nonzero matrix elements compared to arcflow) and larcflow.
Moreover, slight differences for the various LP relaxation values could be observed underlining
the (theoretical) fact that the considered formulations are not equivalent if continuous variables
are considered.

Table 1: Computational results for the 1260 A1-instances: opt presents an aggregated number whereas all other
data are average values

formulation opt t tLP z?c nvar ncon nnz

arcflow with heu 1260 0.2
0.1 15.714466 4135.3 234.8 11431.8

without heu 1260 0.5
larcflow with heu 1260 0.3

0.1 15.718284 3306.7 238.8 9774.7
without heu 1260 0.5

reflect with heu 1260 0.1
0.0 15.720586 1493.5 193.8 5601.7

without heu 1260 0.2

To obtain a more precise picture of the six solution variants, we move forward to the harder
instances contained in category (A2). At first, we summarize the averaged (or aggregated, in
terms of opt) data in the same way as for the subset (A1), see Tab. 2. Here, we can see that both
alternative formulations can solve more instances (out of a total number of 1050) than arcflow
while also being faster on average (despite having a slightly worse LP bound). Again, this
behavior is mainly due to significant savings related to the ILP model’s complexity. Moreover,
a very interesting observation is given by the usefulness of the heuristic for any of the three
different approaches: both the number of instances solved to optimality and the average time
needed to solve them become better if a starting point is passed to the ILP solver.

Table 2: Computational results for the 1050 A2-instances: opt presents an aggregated number whereas all other
data are average values

formulation opt t tLP z?c nvar ncon nnz

arcflow with heu 976 435.1
20.3 60.756419 197279.5 2206.3 543984.2

without heu 946 626.3
larcflow with heu 982 415.6

19.4 60.758035 150606.8 2229.3 450638.8
without heu 967 561.6

reflect with heu 1011 250.9
6.0 60.757427 61976.4 1820.9 235929.0

without heu 983 391.8
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In Tab. 2 we are averaging over a wide variety of very heterogeneous instances. To highlight
possible computational insights, we decided to perform more detailed analyses. To this end, Tab.
3–5 report on the values opt and t for one input parameter being fixed. Obviously, in almost
all of the experiments and for almost any modeling approach, the application of the heuristic
leads to better results with respect to the considered data. We also observe that the difficulty
of the problem increases as: (i) the size of the smallest item decreases, (ii) the threshold length
increases, and (iii) the number of items increases. At this position, we refer the interested reader
to the appendix (Tab. A.15–A.17) to have a look at an even more detailed presentation of the
results for the A2-instances solved by any of the six formulations.

Table 3: Averaged computation times and total numbers (in parentheses) of solved A2-instances for different
values of lmin

arcflow larcflow reflect
lmin with heu without heu with heu without heu with heu without heu

1 458.3 (322) 920.8 (295) 448.2 (324) 800.4 (310) 259.3 (338) 527.1 (316)
200 499.0 (318) 596.3 (316) 490.5 (324) 593.9 (319) 329.2 (331) 430.9 (328)
500 348.0 (336) 361.7 (335) 308.1 (334) 290.6 (338) 164.2 (342) 217.4 (339)

Table 4: Averaged computation times and total numbers (in parentheses) of solved A2-instances for different
values of L

arcflow larcflow reflect
L with heu without heu with heu without heu with heu without heu

1000 1.4 (150) 1.5 (150) 0.7 (150) 0.7 (150) 0.3 (150) 0.3 (150)
1200 3.8 (150) 3.8 (150) 6.6 (150) 6.5 (150) 8.0 (150) 5.4 (150)
1500 55.4 (150) 54.9 (150) 54.5 (150) 77.0 (150) 30.3 (150) 29.0 (150)
2000 303.7 (145) 303.5 (145) 302.3 (146) 259.6 (148) 107.5 (149) 148.8 (148)
3000 604.8 (138) 735.6 (136) 585.4 (139) 699.8 (135) 296.5 (143) 434.2 (141)
4000 903.6 (127) 1265.6 (121) 840.2 (130) 1140.4 (131) 584.7 (134) 904.1 (126)
5000 1173.1 (116) 2019.0 (94) 1119.6 (117) 1747.4 (103) 729.1 (135) 1220.6 (118)

Table 5: Averaged computation times and total numbers (in parentheses) of solved A2-instances for different
values of n

arcflow larcflow reflect
n with heu without heu with heu without heu with heu without heu

60 31.7 (210) 71.0 (210) 31.5 (210) 78.4 (210) 18.0 (210) 25.6 (210)
80 88.2 (209) 212.3 (209) 62.9 (209) 145.2 (209) 24.9 (210) 67.5 (210)

100 115.1 (209) 407.3 (199) 131.4 (209) 279.7 (207) 38.0 (210) 102.1 (209)
250 706.5 (189) 963.5 (183) 698.6 (189) 909.8 (185) 323.5 (202) 589.5 (192)
500 1234.1 (159) 1477.2 (145) 1153.7 (165) 1395.1 (156) 850.2 (179) 1174.1 (162)

In any of the experiments related to the subset (A2), the heuristic could be performed in much
less than one second. Consequently, in addition to the advantageous effects observed earlier, the
heuristic should always be applied to obtain a feasible starting point for the ILP solver. By way
of example, Fig. 10 compares the solution times for the arcflow model with and without applying
the heuristic. It can clearly be seen that there are many instances possessing roughly the same
solution time in both cases, but there are also many instances whose solution time decreases
drastically (partly from the time limit, indicating that there was no solution found previously)
if the heuristic is applied prior to the optimization. Moreover, note that the opposite effect (i.e.,
a significant increase of the computation time) is also possible, but happens very rarely.

As a summary, we would like to further underline the positive effects of the heuristic by the data
collected in Tab. 6–7. For any combination (F1, F2) of the six solution variants, we are counting
the number of A2-instances:
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• that are solved faster by formulation F1 than by F2, see Tab. 6. (Here, the word “faster”
means that a time difference of at least 0.5 seconds could be observed.)

• that are solved by formulation F1, but not by F2, see Tab. 7.

Figure 10: Comparison of the ILP solution times for the A2-instances and the arcflow model: for each instance, a
? is drawn at position (x, y), where the x- and y-values contain the times with and without heuristic, respectively.
The red line displays the function f(x) = x.
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Table 6: Comparison between the solution times for the A2-instances: an entry x at position (F1, F2) gives the
number of instances where formulation F1 was faster than formulation F2 (i.e., where a time difference of at least
0.5 seconds can be observed)

arcflow larcflow reflect
with heu without heu with heu without heu with heu without heu

arcflow with heu – 300 274 318 62 229
without heu 154 – 159 201 48 74

larcflow with heu 411 559 – 363 69 255
without heu 380 510 208 – 70 109

reflect with heu 738 766 660 660 – 410
without heu 549 713 458 595 157 –

Table 7: Comparison between the A2-instances solved to optimality: an entry x at position (F1, F2) states the
number of instances which were solved by formulation F1 but not by F2

arcflow larcflow reflect
with heu without heu with heu without heu with heu without heu

arcflow with heu – 34 18 38 6 22
without heu 4 – 17 20 7 9

larcflow with heu 24 53 – 45 7 27
without heu 29 41 30 – 13 21

reflect with heu 41 72 36 57 – 41
without heu 29 46 28 37 13 –

In particular, if considering a fixed model type, than the entry at position (F1, F2) is always
better than that at (F2, F1) if F1 applies the heuristic and F2 does not. Moreover, we can again
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state that the reflect formulation is superior to the other two approaches. This observation
can also be verified by the data contained in Tab. 8. There, for any of the six formulations we
counted the number of A2-instances where the respective approach possessed the fastest solution
time. Again, being faster than another formulation is connected with a time difference of at
least 0.5 seconds. Altogether, given the reasons presented (based on extensive computations) so
far, for the remaining two categories of instances, (B) and (C), we will later only consider the
three different models with the application of the heuristic.

One last thing we would like to report for the A2-instances deals with the strength of the
respective LP relaxations. As to be clearly seen in Tab. 9, apart from the theoretically proved
statement that arcflow dominates the loss arcflow model, any relation is possible among the
other pairs of optimal values. This also emphasizes the fact that differences between the LP
relaxation values do not only appear for the very simple instances particularly constructed for
the proofs within the previous section, but also for larger instances of practically meaningful
complexity.

Table 8: Number of A2-instances where the respective model was the fastest of the six solution approaches

formulation #inst

arcflow with heu 16
arcflow without heu 3
larcflow with heu 21
larcflow without heu 28
reflect with heu 378
reflect without heu 117

Table 9: Comparison of the LP relaxation values of the three formulations: an entry x at position (F1, F2) gives
the number of A2-instances with z?c (F1) ≤ z?c (F2) (measured with a tolerance of ε = 10−8)

model arcflow larcflow reflect

arcflow 1050 1050 1026
larcflow 951 1050 1004
reflect 963 1047 1050

Now, let us consider the instances from subset (B), see Tab. 10. Note that, although they are
also randomly generated, they are completely different from the previous set (A) because the
values bi are usually much larger than one, so that typical SSP instances are built. Given the
extensive discussion for the set (A) and the fact that randomly generated instances have already
been partly adressed in the relevant literature [26], we only consider the average solution times
and the numbers of solved instances per feasible combination of input data.
Contrary to the A-instances, the model with loss arcs is usually not better than the standard
arcflow model, meaning that, in many cases, they possess a comparable performance, while in a
few scenarios arcflow is also performing strictly better. A first explanation for this observation
is given by the high degree of randomization within the Gurobi solution procedure. Hence, even
if the same solver is called in both situations, different sub-routines or heuristics can appear
in different orders, and this may influence the total solution efforts. On the other hand, even
though the loss arcflow formulation basically has fewer variables (and roughly the same number
of constraints), from our point of view, it does not counter balance the fact that its feasible
integer solutions have a more complex structure that may be harder to deal with, compared
to the standard flow propagation of arcflow, for a general ILP solver. Moreover, note that the
B-instances are typically more complex and harder (on average) than those from the subset (A),
and this especially leads to larger branching trees with much more nodes to visit. This is also due
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Table 10: Results for the 160 B-instances (average solution times for the ILP and numbers of solved instances)
always with application of heuristic

m L arcflow larcflow reflect

200 10000 78.4 (10) 70.1 (10) 10.5 (10)
20000 328.1 (10) 346.9 (10) 42.2 (10)
30000 784.4 (10) 851.9 (10) 54.8 (10)
50000 2812.5 (8) 2371.0 (9) 112.1 (10)

300 10000 156.8 (10) 148.7 (10) 27.7 (10)
20000 477.7 (10) 630.0 (10) 117.9 (10)
30000 1538.1 (10) 1696.8 (10) 137.0 (10)
50000 3598.4 (1) 3581.0 (1) 319.0 (10)

400 10000 563.6 (9) 608.4 (9) 426.1 (10)
20000 775.6 (10) 1008.3 (10) 540.8 (9)
30000 2289.9 (9) 2464.1 (10) 910.9 (9)
50000 3600.0 (0) 3600.0 (0) 1256.0 (8)

500 10000 1752.3 (8) 2989.0 (2) 1789.0 (6)
20000 2854.9 (4) 2829.5 (5) 2921.9 (3)
30000 3126.5 (4) 3600.0 (0) 3265.5 (1)
50000 3600.0 (0) 3600.0 (0) 3600.0 (0)

avg/total 1771.1 (113) 1899.7 (106) 970.7 (126)

to the fact that the starting point provided by the heuristic leads to a lower bound whose absolute
difference to the true optimal value4 is much larger than in the previous settings. Altogether,
under these conditions, finding better integer solutions becomes more and more important, so
that the arcflow model can show advantages compared to the loss arcflow formulation. Similar
argumentations can be applied to further explain the very few cases where the arcflow model
is beating the reflect formulation: also here, a good integer solution found quickly can lead
to significant improvements in dealing with the branch-and-bound tree. However, it should be
stated that also for this kind of instances the reflect formulation is (on average) the best one,
with significantly lower computation times and a larger total number of instances solved to
optimality.

For the sake of completeness, as a last experiment we are also considering benchmark instances
that have been presented for the related bin packing problem (or for the CSP) over the last
couple of decades. Note that an instance which is hard in the bin packing case is not guaranteed
to preserve its difficulty if interpreted as a dual bin packing instance, and vice versa. However,
at least for some of the hard instances from the C-part, it is clear that they will remain hard
in the SSP scenario. By way of example, let us particularly mention the ANI-instances, whose
integrality gaps will also be at least one if interpreted as an SSP instance. The precise results
can be found in Tab. 11. Note that, for some of the very large instances proposed by [16],
we observed memory issues (i.e., the branching trees became too large), so that no data could
be obtained. These situations are indicated by “–” in the table. Also here, the impression we
got from the previous instance sets is again emphasized. For any subcategory (C1), (C2), and
(C3), the reflect formulation is able to cope with the most instances, and possesses the lowest
solution time. Again, the behavior between arcflow and loss arcflow is changing depending on
the particular problem set: for instances where the main difficulty is the model size (e.g., Scholl
3, GI AA125 and GI BA125), loss arcflow seems better, while for instances instances where the

4Note that the optimal values for the B-instances are much higher than those from the A-part since bi ∈ [1, 100],
i ∈ I, is allowed.
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Table 11: Results for 1855 (out of 1895) C-instances (average solution times for the ILP and numbers of solved
instances)

set # inst arcflow larcflow reflect

Wäscher 17 83.0 (17) 117.6 (17) 257.3 (17)
Hard28 28 6.3 (28) 7.4 (28) 3.0 (28)

Falkenauer U 80 0.2 (80) 0.2 (80) 0.1 (80)
Falkenauer T 80 4.9 (80) 1.1 (80) 0.9 (80)

Schwerin 1 100 0.5 (100) 0.4 (100) 0.1 (100)
Schwerin 2 100 2.6 (100) 1.3 (100) 0.4 (100)

Scholl 1 720 0.1 (720) 0.1 (720) 0.0 (720)
Scholl 2 480 40.2 (480) 47.4 (480) 20.8 (480)
Scholl 3 10 3600.0 (0) 2306.6 (9) 65.1 (10)

avg/total (1) 1615 35.7 (1605) 30.0 (1614) 9.4 (1615)

GI AA125 20 3376.4 (3) 918.4 (20) 4.1 (20)
GI AB125 20 – (–) – (–) – (–)
GI BA125 20 2964.6 (4) 1190.0 (19) 4.3 (20)
GI BB125 20 – (–) – (–) – (–)

avg/total (2) 40 3170.5 (7) 1054.2 (39) 4.2 (40)

AI 201 50 99.2 (50) 117.5 (50) 26.3 (50)
AI 402 50 3219.5 (15) 3298.2 (10) 2016.9 (31)

ANI 201 50 1036.7 (43) 2843.5 (18) 238.5 (50)
ANI 402 50 3600.0 (0) 3600.0 (0) 3600.0 (0)

avg/total (3) 200 1988.9 (108) 2464.8 (78) 1470.4 (131)

avg/total (1-3) 1855 313.9 (1720) 314.6 (1731) 166.9 (1786)

main difficulty is to find a good integer solution (e.g., most of the Wäscher and AI 201 and 402)
or to improve the upper bound (e.g., a few of the Wäscher and ANI 201 and 402), loss arcflow
seems worse.

As a summary of all instance types, we would like to report about the average relations between
the numbers of variables, constraints and nonzeros for the three models in Tab. 12. Both alter-
native formulations always possess much fewer variables and nonzeros compared to the standard
arcflow model5. As regards the number of constraints, they are always roughly similar in any
case, but we also observe that tiny differences (in both directions) compared to the standard
arcflow model are possible. Altogether, note that in any of the three categories we observed
instances that cannot be solved (in one hour and with the given computational environment)
even by the most promising of the considered formulations. Consequently, our experiments do
not only cover a significant set of instances, but also clearly point out the limits of what can
currently be solved within a reasonable amount of time. We better highlight this fact in Tab.
13, where we show the behavior of the reflect formulation for the very hard instances of the
categories (C2) and (C3).

Finally, we would like to refer the interested reader to Tab. A.14 in our appendix, where the
quality of the heuristic has been evaluated also for the sets (B) and (C).

5Especially for the reflect formulation, the savings go up to about 90% (on average) as observed for the number
of variables in the B-part. We would like to stress again that these B-instances were the only pure SSP instances,
whereas the other ones possess very small values of bi, so that they should rather be termed as DBPP instances.
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Table 12: Relative numbers of variables, constraints and nonzeros averaged over all instances of the respective
category (where the value of the arcflow model is normalized to 1.00)

A1 A2 B C
formulation nvar ncon nnz nvar ncon nnz nvar ncon nnz nvar ncon nnz

arcflow 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
larcflow 0.73 1.06 0.78 0.60 1.05 0.66 0.52 1.00 0.62 0.65 1.02 0.71
reflect 0.34 0.96 0.51 0.23 1.00 0.34 0.11 1.02 0.20 0.27 0.95 0.42

Table 13: Some further results for very hard CSP-bechmark instances also showing the limits of the reflect
formulation

set #inst arcflow larcflow reflect

GI AA250 20 – (–) – (–) 103.9 (20)
GI AA500 20 – (–) – (–) 3600.0 (0)
GI BA250 20 – (–) – (–) 112.2 (20)
GI BA500 20 – (–) – (–) 3536.7 (2)
AI 600 50 – (–) 3600 (0) 3588.2 (1)

5. Conclusions

In this paper, we investigated an existing and two new arcflow formulations for the skiving stock
problem. The main idea of the two new approaches is given by avoiding superfluous nodes
that are larger than the capacity L or by only considering the first half of the vertex set and
to model a pattern as the sum of two subpaths that are connected by a reflected arc. For
these three formulations, the quality of the continuous relaxation has been investigated from a
theoretical point of view. Moreover, based on extensive numerical tests with a wide variety of
differently characterized instances, we have shown that especially the new reflect model possesses
significantly fewer variables and much better solution times (thus also resulting to a larger
number of instances solved to optimality) compared to the original formulation. Consequently,
the reflect arcflow model may be seen as a powerful tool for solving (large) instances of the SSP
in reasonably short time. As future research, we envisage the use of these enhanced arcflow
models to other relevant cutting and packing problems.
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[22] Labbé, M., Laporte, G., Martello, S.: An exact algorithm for the dual bin packing problem.
Operations Research Letters 17, 9–18 (1995)
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Appendix. Additional Computational Results

Table A.14: Relative gap ∆r = (z? − zheu)/z? between heuristic value and optimal value for all instance
categories. If optimality was not proved, z? ≈ UB with the upper bound UB (from the reflect model) found by
Gurobi was taken instead.

interval #inst (A1) #inst (A2) #inst (B) #inst (C)

∆r = 0 905 398 0 628
∆r ∈ (0, 0.01] 0 18 0 45
∆r ∈ (0.01, 0.02] 0 41 0 112
∆r ∈ (0.02, 0.05] 99 180 2 453
∆r ∈ (0.05, 0.10] 173 289 48 428
∆r ∈ (0.10, 0.20] 62 124 110 182
∆r > 0.20 21 0 0 7

1260 1050 160 1855
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Table A.15: Arcflow Results for A2-instances (average solution times for the ILP and number of solved instances)

with heuristic without heuristic
L lmin/n 60 80 100 250 500 60 80 100 250 500

1000 1 0.5 (10) 0.6 (10) 1.0 (10) 3.6 (10) 10.5 (10) 0.5 (10) 0.7 (10) 1.1 (10) 4.0 (10) 10.4 (10)
200 0.1 (10) 0.1 (10) 0.2 (10) 0.8 (10) 2.1 (10) 0.1 (10) 0.2 (10) 0.2 (10) 1.1 (10) 2.9 (10)
500 0.0 (10) 0.0 (10) 0.0 (10) 0.2 (10) 0.8 (10) 0.0 (10) 0.0 (10) 0.1 (10) 0.3 (10) 1.1 (10)

1200 1 0.9 (10) 1.1 (10) 1.9 (10) 10.4 (10) 26.7 (10) 0.8 (10) 1.1 (10) 1.9 (10) 10.2 (10) 26.3 (10)
200 0.2 (10) 0.4 (10) 0.5 (10) 3.3 (10) 9.9 (10) 0.2 (10) 0.4 (10) 0.6 (10) 3.3 (10) 10.3 (10)
500 0.0 (10) 0.1 (10) 0.1 (10) 0.3 (10) 1.0 (10) 0.0 (10) 0.1 (10) 0.1 (10) 0.5 (10) 1.4 (10)

1500 1 5.7 (10) 7.7 (10) 15.7 (10) 203.3 (10) 534.1 (10) 5.0 (10) 5.9 (10) 15.6 (10) 199.2 (10) 533.7 (10)
200 0.6 (10) 1.1 (10) 2.1 (10) 7.9 (10) 46.8 (10) 0.6 (10) 1.0 (10) 2.1 (10) 7.8 (10) 46.5 (10)
500 0.1 (10) 0.2 (10) 0.3 (10) 1.4 (10) 3.9 (10) 0.1 (10) 0.2 (10) 0.3 (10) 1.3 (10) 3.8 (10)

2000 1 17.9 (10) 41.3 (10) 72.9 (10) 510.4 (10) 2975.2 (5) 24.2 (10) 47.1 (10) 58.6 (10) 463.1 (10) 2970.0 (5)
200 5.7 (10) 9.9 (10) 23.7 (10) 181.4 (10) 670.9 (10) 5.9 (10) 9.8 (10) 23.6 (10) 181.7 (10) 671.7 (10)
500 0.5 (10) 0.9 (10) 2.3 (10) 17.1 (10) 24.7 (10) 0.7 (10) 2.4 (10) 3.5 (10) 25.2 (10) 64.9 (10)

3000 1 39.2 (10) 55.5 (10) 206.9 (10) 1471.1 (9) 2580.7 (5) 112.2 (10) 177.1 (10) 342.1 (10) 2225.1 (10) 3489.0 (2)
200 11.9 (10) 84.3 (10) 240.2 (10) 821.6 (10) 3056.0 (4) 31.0 (10) 83.7 (10) 205.9 (10) 828.5 (10) 3043.8 (4)
500 7.4 (10) 19.5 (10) 30.8 (10) 106.1 (10) 341.3 (10) 7.3 (10) 19.3 (10) 30.7 (10) 105.8 (10) 332.5 (10)

4000 1 46.1 (10) 22.1 (10) 166.5 (10) 1382.0 (7) 1836.2 (5) 231.2 (10) 478.0 (10) 1453.2 (9) 3185.5 (4) 3572.4 (1)
200 81.1 (10) 175.0 (10) 281.7 (10) 2053.1 (8) 3600.0 (0) 130.7 (10) 233.0 (10) 342.7 (10) 1863.9 (10) 3600.0 (0)
500 66.7 (10) 144.1 (10) 228.1 (10) 1413.6 (9) 2058.2 (8) 72.0 (10) 144.8 (10) 201.2 (10) 1415.7 (9) 2059.7 (8)

5000 1 54.9 (10) 677.6 (9) 60.8 (10) 1841.4 (5) 1158.7 (7) 349.6 (10) 1883.9 (9) 3361.0 (3) 3388.0 (2) 3600.0 (0)
200 163.0 (10) 259.3 (10) 509.9 (9) 1559.2 (7) 3600.0 (0) 306.9 (10) 827.1 (10) 1695.5 (7) 3107.3 (5) 3600.0 (0)
500 162.3 (10) 351.8 (10) 571.7 (10) 3247.5 (4) 3377.6 (5) 211.6 (10) 541.6 (10) 814.2 (10) 3216.6 (3) 3381.6 (5)

28



Table A.16: Loss-Arcflow Results for A2-instances (average solution times for the ILP and number of solved instances)

with heuristic without heuristic
L lmin/n 60 80 100 250 500 60 80 100 250 500

1000 1 0.5 (10) 0.7 (10) 0.9 (10) 2.4 (10) 4.7 (10) 0.6 (10) 0.7 (10) 0.9 (10) 2.2 (10) 4.2 (10)
200 0.1 (10) 0.1 (10) 0.1 (10) 0.5 (10) 1.0 (10) 0.1 (10) 0.1 (10) 0.1 (10) 0.5 (10) 1.0 (10)
500 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

1200 1 1.0 (10) 1.8 (10) 2.2 (10) 8.7 (10) 79.6 (10) 1.0 (10) 1.7 (10) 2.2 (10) 7.7 (10) 80.2 (10)
200 0.1 (10) 0.3 (10) 0.4 (10) 1.3 (10) 2.7 (10) 0.2 (10) 0.3 (10) 0.4 (10) 1.2 (10) 2.6 (10)
500 0.0 (10) 0.0 (10) 0.0 (10) 0.1 (10) 0.1 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.1 (10) 0.2 (10)

1500 1 2.1 (10) 19.0 (10) 9.8 (10) 213.5 (10) 545.1 (10) 2.1 (10) 9.1 (10) 12.4 (10) 189.3 (10) 895.1 (10)
200 0.5 (10) 1.0 (10) 1.3 (10) 5.9 (10) 17.1 (10) 0.4 (10) 1.0 (10) 1.4 (10) 8.2 (10) 34.9 (10)
500 0.1 (10) 0.1 (10) 0.1 (10) 0.4 (10) 1.2 (10) 0.0 (10) 0.1 (10) 0.1 (10) 0.4 (10) 1.0 (10)

2000 1 9.8 (10) 31.0 (10) 89.1 (10) 445.9 (10) 2876.3 (6) 30.3 (10) 80.4 (10) 60.5 (10) 657.2 (10) 2241.3 (8)
200 2.4 (10) 7.9 (10) 20.7 (10) 156.9 (10) 887.8 (10) 2.3 (10) 12.8 (10) 17.7 (10) 143.0 (10) 640.7 (10)
500 0.2 (10) 0.2 (10) 0.4 (10) 1.7 (10) 3.9 (10) 0.2 (10) 0.3 (10) 0.5 (10) 1.9 (10) 4.6 (10)

3000 1 40.1 (10) 43.0 (10) 518.6 (9) 1352.0 (9) 2512.1 (5) 115.5 (10) 184.2 (10) 335.5 (10) 1727.2 (9) 3235.0 (3)
200 16.5 (10) 77.8 (10) 178.0 (10) 1206.2 (10) 2418.5 (6) 67.3 (10) 147.4 (10) 197.5 (10) 1271.8 (9) 2890.3 (4)
500 3.7 (10) 8.1 (10) 12.0 (10) 160.6 (10) 234.2 (10) 3.8 (10) 7.9 (10) 12.0 (10) 69.7 (10) 232.6 (10)

4000 1 56.2 (10) 26.4 (10) 144.1 (10) 1257.7 (8) 1786.0 (6) 224.2 (10) 405.7 (10) 781.8 (10) 2699.0 (8) 3297.1 (6)
200 101.3 (10) 204.9 (10) 369.2 (10) 2199.5 (6) 3195.7 (3) 195.7 (10) 267.8 (10) 601.1 (10) 2231.5 (7) 3373.8 (2)
500 64.1 (10) 106.0 (10) 96.4 (10) 1366.7 (9) 1628.9 (8) 58.4 (10) 99.0 (10) 124.6 (10) 950.6 (10) 1795.5 (8)

5000 1 65.0 (10) 459.0 (9) 77.3 (10) 1845.4 (5) 1161.8 (7) 386.9 (10) 1036.3 (9) 2108.0 (7) 3600.0 (0) 3600.0 (0)
200 129.7 (10) 276.9 (10) 521.9 (10) 1561.8 (9) 3600.0 (0) 378.5 (10) 570.9 (10) 1088.4 (10) 3091.1 (6) 3545.2 (1)
500 167.9 (10) 57.0 (10) 717.6 (10) 2883.3 (3) 3270.0 (4) 179.6 (10) 223.5 (10) 527.9 (10) 2452.3 (6) 3422.7 (4)
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Table A.17: Reflect Results for A2-instances (average solution times for the ILP and number of solved instances)

with heuristic without heuristic
L lmin/n 60 80 100 250 500 60 80 100 250 500

1000 1 0.1 (10) 0.2 (10) 0.3 (10) 1.0 (10) 1.9 (10) 0.2 (10) 0.2 (10) 0.3 (10) 1.1 (10) 1.8 (10)
200 0.0 (10) 0.0 (10) 0.0 (10) 0.1 (10) 0.4 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.2 (10) 0.4 (10)
500 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10)

1200 1 0.4 (10) 0.4 (10) 1.0 (10) 8.1 (10) 108.8 (10) 0.3 (10) 0.4 (10) 1.0 (10) 10.1 (10) 67.1 (10)
200 0.0 (10) 0.1 (10) 0.1 (10) 0.4 (10) 1.1 (10) 0.0 (10) 0.1 (10) 0.1 (10) 0.5 (10) 1.4 (10)
500 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.1 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.0 (10) 0.1 (10)

1500 1 0.6 (10) 1.4 (10) 2.8 (10) 63.6 (10) 338.5 (10) 0.8 (10) 5.8 (10) 4.2 (10) 56.5 (10) 268.2 (10)
200 0.2 (10) 0.3 (10) 0.5 (10) 6.6 (10) 38.3 (10) 0.2 (10) 0.2 (10) 0.6 (10) 5.3 (10) 92.4 (10)
500 0.0 (10) 0.0 (10) 0.1 (10) 0.2 (10) 0.6 (10) 0.0 (10) 0.0 (10) 0.1 (10) 0.2 (10) 0.6 (10)

2000 1 1.7 (10) 4.2 (10) 12.8 (10) 111.6 (10) 1114.0 (9) 8.0 (10) 30.8 (10) 22.6 (10) 113.7 (10) 780.7 (9)
200 1.1 (10) 4.3 (10) 11.2 (10) 95.7 (10) 249.7 (10) 2.2 (10) 10.4 (10) 10.5 (10) 174.8 (10) 1070.9 (9)
500 0.1 (10) 0.1 (10) 0.2 (10) 1.1 (10) 4.2 (10) 0.1 (10) 0.2 (10) 0.2 (10) 1.3 (10) 5.1 (10)

3000 1 3.6 (10) 3.6 (10) 25.5 (10) 72.8 (10) 1792.8 (7) 27.7 (10) 29.1 (10) 210.9 (10) 707.5 (10) 2858.9 (4)
200 2.5 (10) 12.6 (10) 71.2 (10) 719.2 (9) 1651.2 (7) 16.5 (10) 23.8 (10) 72.8 (10) 585.2 (9) 1853.9 (8)
500 0.7 (10) 1.6 (10) 2.5 (10) 27.1 (10) 60.8 (10) 0.7 (10) 1.8 (10) 2.2 (10) 26.5 (10) 96.3 (10)

4000 1 65.4 (10) 13.4 (10) 97.0 (10) 963.8 (8) 1037.9 (8) 64.9 (10) 123.2 (10) 331.3 (10) 2000.2 (7) 3600.0 (0)
200 32.0 (10) 22.5 (10) 21.0 (10) 1093.3 (9) 3079.3 (2) 51.7 (10) 86.5 (10) 185.7 (10) 1658.0 (8) 3103.8 (3)
500 12.7 (10) 21.9 (10) 37.8 (10) 574.4 (10) 1698.1 (7) 33.6 (10) 59.3 (10) 138.3 (10) 408.4 (10) 1716.4 (8)

5000 1 207.5 (10) 248.4 (10) 356.8 (10) 1426.8 (7) 985.8 (9) 78.4 (10) 499.1 (10) 480.0 (10) 2686.0 (4) 3375.9 (2)
200 12.6 (10) 162.7 (10) 77.3 (10) 1006.2 (9) 3149.7 (5) 140.4 (10) 500.4 (10) 563.4 (9) 1962.7 (7) 2905.2 (5)
500 36.1 (10) 24.1 (10) 80.2 (10) 621.3 (10) 2540.7 (5) 112.1 (10) 46.9 (10) 120.4 (10) 1981.3 (7) 2857.0 (4)
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