
 

DIPARTIMENTO DI MECCANICA ◼ POLITECNICO DI MILANO 
via G. La Masa, 1 ◼ 20156 Milano ◼ EMAIL (PEC): pecmecc@cert.polimi.it  
http://www.mecc.polimi.it 
Rev. 0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The time buffer approximated Buffer Allocation 
Problem: A row–column generation approach  
 
Alfieri, A.; Matta, A.; Pastore, E.  
 
This is a post-peer-review, pre-copyedit version of an article published in COMPUTERS & 
OPERATIONS RESEARCH. The final authenticated version is available online at: 
http://dx.doi.org/10.1016/j.cor.2019.104835 
 
This content is provided under CC BY-NC-ND 4.0 license 
 

  
 
 

mailto:pecmecc@cert.polimi.it
http://www.mecc.polimi.it/
http://dx.doi.org/10.1016/j.cor.2019.104835
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

One of the main problems in production systems is the buffer sizing. Choosing the right buffer size, at each

production stage, that allows to achieve some performance measure (usually throughput or waiting time) is known

as Buffer Allocation Problem (BAP), and it has been widely studied in the literature. Due to its complexity, BAP

is usually approached using decomposition methods, under very strict system assumptions, or using simulation-

optimization techniques. In this paper, the approximated mathematical programming formulation of the BAP

simulation-optimization based on the time buffer concept is used. Using this approximation, buffers are modeled

as temporal lags (time buffers) and this allows to use Linear Programming (LP) instead of Mixed Integer Linear

Programming (MILP) models. Although LP models are easier to solve than MILPs, the huge dimension and the

complex solution space topology of the time buffer approximated BAP calls for ad hoc solution algorithms. To

this purpose, a row-column generation algorithm is proposed, which exploits the theoretical properties of the time

buffer approximation to reduce the solution time. The proposed algorithm has been compared with a standard

LP solver (ILOG CPLEX) and with a state-of-the-art MILP solver and it proved to be better than the LP solver

in most of the cases, and more robust than the MILP solver with respect to computation time. Moreover, the LP

model (for flow lines) is able to solve the BAP also for assembly/disassembly lines.

Keywords: Buffer allocation, simulation-optimization, assembly lines, math programming, row and column

generation, exact method

1 Introduction

1.1 Buffer Allocation Problem

In multi-stage production systems, intermediate buffers are key elements to achieve a good system performance,

especially in terms of throughput and waiting time. The presence of buffers before and after each stage allows to

avoid, to some extent, the propagation of blocking and/or starvation between stages. Both these conditions are

typical of queuing systems in general, and can occur when, for example, a server in a stage is failed and cannot

process entities. In this case, assuming the extreme situation of no intermediate buffer, the stages following the

failed stage are not fed (and then become starved), while the ones preceding it cannot unload the entity they have

just processed (and then become blocked). Blocking/starvation situations may also occur when processing times

are highly variable. In this case, a stage might be still processing an entity while the others (i.e., the preceding

and the following stages) have already completed their job. In this case, blocking and starvation propagate in the
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system exactly as the case of failed server.

With blocking/starvation, the throughput rate decreases (i.e., less entities are completed per time unit), the

waiting time in front of the entry stage increases (or the balking rate increases if entities are not willing to wait),

and the production lead time inflates (Hopp & Spearman, 2011; S. Gershwin, 1994; C. Papadopoulos, O’Kelly,

Vidalis, & Spinellis, 2009).

To reduce blocking/starvation occurrences, the sources of variability should be reduced (Hopp & Spearman,

2011; S. Gershwin, 1994) (however, this issue strictly depends on the type of system), adeguate maintenance

policies can be developed (Nahas, 2017; Renna, 2019), or intermediate buffers can be added. With buffers, if a

server is failed or busy with the processing of an entity, then the previous and the next stages can keep processing.

Specifically, the previous stages can unload the processed entities and put them in the buffer after the stage, while

the next stages can process the entities accumulated in the buffer before the stage. Intermediate buffers are not

able to completely avoid blocking/starvation, however the probability of their occurrence can be reduced, and

the larger the buffer, the smaller the probability. Since increasing the buffer dimension increases the costs of the

space and of immobilized capital, a trade-off between buffer dimension and costs must be evaluated. Also, other

indirect costs are related to the increase of lead times and to the poor responsiveness for quick changes. Thus,

selecting the dimension of the intermediate buffers is critical in the design phase of manufacturing systems. This

problem, known as the Buffer Allocation Problem (BAP), is largely studied in the production system research

(e.g., Buzzacott & Shanthikumar, 1993; S. Gershwin, 1994; C. Papadopoulos et al., 2009; Demir, Tunali, &

Eliiyi, 2014).

In this paper, the BAP is considered for assembly/disassembly systems in production plants. Assembly/disassembly

systems are a particular case of multi-stage production systems with serial and parallel stages but without routing

decision to take for the parallel section of the system. In an assembly system, there are multiple first stages. When

an order for a part is received, all its components enter the first stages, pass through the other intermediate stages

(that can be different for each components) exactly in the same order, where they are worked in parallel, and then

are assembled at the assembly stage. Once components are joined to form the part, the part can immediately leave

the system, or it can be worked in other stages (that can be considered a transfer line) and, eventually, leaves the

system from the last stage. Disassembly system, on the contrary, can be seen as transfer line in the first section,

i.e., all the parts enter the system from the unique first stage, and then pass through the other intermediate stages

exactly in the same order till the disassembly stage is reached. At the disassembly stage, the part is disassembled

in its components that can be worked in subsequent stages in parallel until they reach the final stages (one for each

component), where components leave the system. Assembly/disassembly systems, as transfer lines, are common
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in many industrial sectors such as automotive, electronic and mechanical component production.

1.2 Methods for the Buffer Allocation Problem

The allocation of the buffer space between machines in a transfer line is an NP-hard problem, both for reliable

(A. Dolgui, Eremeev, & Sygaev, 2010) and unreliable lines (A. Dolgui, Eremeev, Kovalyov, & Sigaev, 2013;

A. B. Dolgui, Eremeev, Kovalyov, & Sigaev, 2018). According to the classification in Weiss, Schwarz, and

Stolletz (2018), it can be solved through explicit solutions (Basu, 1977; Martin, 1990; L. Li, Qian, Du, & Yang,

2016), integrated optimization methods (Alfieri & Matta, 2012; Stolletz & Weiss, 2013; Weiss & Stolletz, 2015;

Kolb & Göttlich, 2015), and iterative optimization methods (C. Papadopoulos, O’Kelly, & Tsadiras, 2013; Kose

& Kilincci, 2015; S. B. Gershwin & Schor, 2000; Harris & Powell, 1999; H. Papadopoulos & Vidalis, 1998;

Spinellis & Papadopoulos, 1998). As transfer lines can be considered a special case of assembly/disassembly

systems, the allocation of the buffer space between machines in such systems is an NP-hard problem too, hence

it is also usually solved by similar techniques (e.g., Hemachandra & Eedupuganti, 2003; Powell & Pike, 1998;

Yamada & Matsui, 2003; Altiparmak, Dengiz, & Bulgak, 2007).

Under strict assumptions on processing times, i.e., when systems (mainly transfer lines) are characterized

by deterministic or exponentially distributed processing times, decomposition strategies can be used to evaluate

system performance. A few, non exhaustive, examples can be found in S. B. Gershwin (1987); Tolio and Matta

(1998); J. Li and Meerkov (2009). These approaches are more efficient since they can lead to closed form

solutions or fast performance evaluation algorithms. However, real systems unlikely satisfy these assumptions.

In the case of general processing time distribution and more complex system layouts, analytical methods are not

accurate and iterative optimization methods are the most common approach to deal with the BAP. The iterative

methods find the solution by decoupling the problem into a generative and an evaluative procedure. Among them,

the simulation-optimization approach is usually exploited, because of the structural properties of the problem (Seo

& Lee, 2011; Alfieri, Matta, & Pastore, 2016; Weiss & Stolletz, 2015).

Traditional simulation-optimization approaches consist of two separate modules: a simulation module and an

optimization module. These two modules work in an iterative scheme, alternating optimization and simulation

steps. Specifically, in the optimization step, the optimization module is used to select a buffer configuration that

is given in input to the simulation module. In the simulation step, the simulation module evaluates the feasibility

and the performance of the input buffer configuration and gives such information to the optimization module that

re-optimizes including new information. The simulation output, however, is affected by noise because of random

events occurring at the machine level. This procedure is repeated until the optimal solution is found or some
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predefined stopping condition is met (Spall, 2003; Kleijnen, 2008).

In simulation-optimization, the simulation module is usually a discrete event simulator (a computer code im-

plemented in a specific simulation languages), while various approaches can be used in the optimization module.

Among the most known and used approaches to optimization in simulation-optimization schemes (Fu, 2002)

there are: response surface methodology (Kleijnen, 1998; Myers, Montgomery, & Anderson-Cook, 2009; Mot-

lagh, Azimi, Amiri, & Madraki, 2019), stochastic approximation (Fu & Hu, 1997; Ho & Cao, 1991), random

search (Andradóttir, 1996; Zabinsky, 2003), sample path optimization (Rubinstein & Shapiro, 1993), ranking and

selection/ordinal optimization (Banks, J.S. Carlson, & Nicol, 2000; Ho, Cassandras, Chen, & Dai, 2000), and

mathematical programming (Fu, Glover, & April, 2005). All the cited optimization approaches do not consider

the system dynamics and are unable to evaluate the system performance, thus they need a simulation module.

Simulation is affected by noise because of random events occurring at machine level. Also, the simulation mod-

ule is used as a black-box, i.e., a simple performance evaluator.

In the last decade, however, a new simulation approach different from the simulation of Discrete Event Sys-

tems (DESs) has been proposed (Schruben, 2000; Chan & Schruben, 2008). This alternative approach is based

on mathematical programming. A mathematical program is used to represent the system dynamics by means of

constraints and the optimal solution of the mathematical program represents the so-called system trajectory. In

other words, the arrival and completion times of each entity in each stage of the system are the same as those

found with the standard simulation. Hence, system performance and feasibility can be easily evaluated in a unique

model.

As mathematical programming has been used both in the optimization ad in the simulation module, integrated

models that contain both the optimization criteria, the system dynamics and the performance measure have been

developed (Matta, 2008). Solving such integrated simulation-optimization models corresponds to the alternating

between the optimization and simulation modules in the iterative scheme previously described. Hence, using the

integrated simulation-optimization mathematical programming models, a single simulation-optimization iteration

is necessary (Weiss & Stolletz, 2015; G., Alfieri, & Matta, 2015). However, the solution of the integrated mathe-

matical programming model requires a high computational effort since the models are no longer Linear Programs

(LP) (as it happens in pure simulation (Alfieri & Matta, 2013)): the optimization component usually introduces

binary or integer variables and the models become Mixed Integer Linear Programming (MILP) models.
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1.3 Contribution

An approximation to reduce MILP models into LP models for the simulation-optimization of multi-stage produc-

tion systems has been proposed in Alfieri and Matta (2012). The approximation is based on the so-called time

buffers concept, which represents queues (i.e., buffers) in time instead of in space. Time buffers are temporal lags

between pairs of entities. A time buffer represents the delay or the anticipation with which an entity can enter a

stage with respect to the time another entity exits the same stage. It implicitly represents the availability or the

unavailability of free slots (buffer spaces) in the considered stage.

Since time buffers are time variables, they can be represented by continuous variables, differently from the

case of space buffer, which needs integer variables for the selection of the best buffer capacity. From the solution

of the time buffer approximated BAP, a feasible solution for the exact integer BAP can be obtained and it has

been shown to be very close to the optimum (Matta, 2008; Alfieri & Matta, 2012). Unfortunately, also the LP

approximated models are not easy to solve (although they are easier than MILPs) due to the huge number of

variables and constraints, and to the topology of the graph underlying the BAP approximated model. For this

reason, the standard simplex method cannot be used and ad hoc algorithms must be designed.

In Alfieri et al. (2016) a column generation algorithm has been proposed to solve the approximated BAP for

transfer lines. Column generation is an exact solution method, based on the decomposition of the original prob-

lem in a Restricted Master Problem (RMP) and a Pricing Problem (PP), and effectively used in many contexts

(Barnhart, E.L.Johnson, Nemhauser, Savelsberg, & Vance, 1998; Castano, Rossia, Sevaux, & Velasco, 2014;

Lubbecke & Desrosiers, 2005; Wolsey, 1998; Venkateshan & Mathur, 2011). Starting from an initial subset of

variables, the PP is used to check if other variables (i.e., columns) can be added to the RMP. The information

needed by the PP for the column evaluation are collected from the solution of the RMP.

In this paper, the work of Alfieri et al. (2016) is carried on by (i) extending the mathematical model to

the case of assembly/disassembly multi-stage production systems and (ii) developing a row-column generation

algorithm to solve efficiently the BAP. While in the column generation approach proposed in Alfieri et al. (2016)

the RMP includes a subset of variables of the problem but all the constraints, in the row-column generation here

proposed the RMP includes a subset of variables and only the subset of constraints related to them. Hence, at each

step, rows (i.e, constraints) are added while adding columns (i.e., variables). Starting with a reduced number of

constraints and variables, and adding both of them only if needed, the problem dimension is smaller than the one

solved by the column generation in Alfieri et al. (2016) and, hence, the efficiency of the algorithm is enhanced.

This makes the row-column generation usable for systems as the assembly/disassembly ones, which are more
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general (and complex) than the transfer lines.

The proposed algorithm has been tested on randomly generated instances. Results showed that the proposed

algorithm almost always outperforms ILOG CPLEX, a commercial available LP solver. Moreover, it has been

compared to the state-of-the-art MILP solver proposed by Weiss and Stolletz (2015) in terms of computation time

and optimal buffer capacity. Results show that the proposed algorithm finds an over-estimated buffer capacity;

however, in some cases, it solves the BAP problem ten times faster than the exact method of Weiss and Stolletz

(2015).

As the accuracy of the approximate solution has already been investigated in the previous works (Matta,

2008; Alfieri & Matta, 2012), the aim of this research is to improve the solution of the time buffer approximated

BAP from a computation time perspective and to extend it to more complex multi-stage systems (namely, as-

sembly/disassembly systems) and not to compare the approximated solution to the optimal solution of the exact

BAP.

The contribution of the paper is twofold. It extends the work on time buffer approximation for the BAP to

assembly/disassembly systems. Second, it improves the column generation algorithm of Alfieri et al. (2016) by

proposing a more efficient row-column generation algorithm. The proposed algorithm, as the one presented in

Alfieri et al. (2016), exploits the properties of the time buffer variables (Alfieri & Matta, 2012) to enhance the

computational efficiency of the pricing problem.

1.4 Outline

The remainder of the paper is structured as follows: the time buffer concept and the approximated model are

introduced in section 2. Section 3 presents the proposed row-column generation algorithm. The application

of the algorithm on randomly generated instances and the comparison of the ad-hoc algorithm with a standard

LP solved (namely ILOG CPLEX) and with the state-of-the-art MILP solver by Weiss and Stolletz (2015) is

discussed in section 4. Section 5 concludes the paper.

2 Formal models for the Buffer Allocation Problem (BAP)

Before describing the mathematical programming models for the BAP in assembly/disassembly systems, the

key notations and definitions are introduced. Although the proposed approach can be applied to many queueing

systems, in the following production systems will be specifically considered. Hence, the terms machine and job

will be used instead of server and entity.
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2.1 Notation

The system is composed by J single machine stages, denoted by the index j = 1, · · · ,J and characterized by a

finite capacity c j−1. The buffer Bh j represents the buffer between machines Mh and M j. Notice that in the case of

transfer lines or disassembly systems, there is a single first stage, otherwise, in the case of assembly systems, there

could be multiple first stages. The opposite applies for the last stage (one in the case of transfer lines and assembly

systems and multiple for disassembly systems). For this reason, index j just refers to the name of the stage and

not to its position in the system. The entering buffers (i.e., the buffers before the first stages) are indicated by B0 j

and are assumed to be infinite. This assumption avoids part balking, i.e., each part/job arriving at the system will

be processed. Instead, no buffer is considered downstream the last stages so that the last stages are never blocked.

The capacity of a stage includes both the slots in the buffer before the machine and the processing slots on the

machine. Since the machines are assumed to own a single lot, buffer Bh j has a capacity equal to c j−1− 1. The

machine policy is the Blocking Before Service (BBS) (Dallery & Gershwin, 1992). Figure 1 depicts an example

of assembly system.

Figure 1: Assembly system with J stages.

Jobs entering the system are identical and denoted by index i, with i = 1, . . . ,n. Since jobs are identical and no

sequencing decision is considered (i.e., jobs are served exactly in the same order they arrive to the line), the index i

represents the i-th position in the sequence of jobs entering the system. Job i arrives in the system at time ai (arrival

time) and it is processed by all the machines exactly in the same order as the machine configuration. The machine

configuration is given by the set C , called configuration set, of the pairs of successive machines. Together with the

configuration set C , two more sets are needed to describe the system layout, namely, set I and set F . The first

contains all the initial machines, i.e., the entering stages of the jobs in the system; the second contains all the final

machines, i.e., the machines after which the jobs leave the system. In the example of Figure 1, the configuration

set is given by C = {(M1,M2), . . . ,(M j,M j+1),(M j+2,M j+3), . . . ,(MJ−2,MJ−1),(M j+1,MJ),(MJ−1,MJ)}, the set
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of initial machines is I = {M1,M j+2}, and the set of final machines is composed by F = {MJ}.

The starting times, xi j, and the finishing times, yi j, together with the stage capacities, c j, are the variables of

the problem. In particular, variable xi j denotes the time job i starts to be processed by machine j, while yi j is the

departure time of job i from stage j. According to the BBS rule, for each job, the starting and the departure times

are linked by the following equation: yi j = xi j + ti j, where ti j is the parameter representing the processing time of

job i at stage j. This relationship allows to use only one of the two variables. In particular, in this paper, variables

yi j will be used.

Arrival time ai and processing time ti j are known parameters for the mathematical programming models. They

can be collected from a real system data or sampled from a probability distribution. No failure time is considered,

i.e., machines are assumed to be perfectly reliable, or, identically, negligible repair times are assumed.

2.2 The exact simulation–optimization model

In the BAP, the objective is to find the best buffer capacity for each stage, i.e., the buffer configuration that allows

to reach a predefined target value of some performance measure. In this paper, the throughput rate is considered

as performance measure. This performance measure is related to the service level concept. In fact, the system

service level can be related to the average completion time µ (the shorter this time, the higher the service level),

i.e., in the case of a unique last stage J,

µ =
1
n

n

∑
i=1

yiJ

i
, (1)

and the average system throughput, θ , is the inverse of the average completion time, that is,

θ =
1
µ
. (2)

Notice that the measure defined in equation (1) is slightly different from the one commonly used in the literaturek,

i.e., µ = ynJ
n (Alfieri & Matta, 2012). With the new formulation of equation (1), the average completion time is

not strictly related to the last job (as in Alfieri and Matta (2012)), rather it is weighted through all the jobs. This

gives a more realistic estimate of the inter-departure time in the case of highly variable stochastic processing time.

Also, no warm-up period is considered in the paper, i.e., no jobs are excluded from the average completion time

computation.

Using the notation introduced above, the simulation-optimization mathematical programming model for the

BAP is as follows and can be simply derived from the one proposed in (Alfieri & Matta, 2012) for the transfer
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lines by introducing sets I , F and C :

min ∑( j,h)∈C

(
e jh ·∑

U jh
k=L jh

z jhk · k
)

(3)

s.t. : yi j ≥ ai + ti j ∀i,∀ j ∈I (4)

yi+1, j− yi j ≥ ti+1, j ∀ j, i = 1, . . . ,n−1 (5)

yih− yi j ≥ tih ∀i,( j,h) ∈ C (6)

yi+k, j− yih ≥ ti+k, j− (1− z jhk) ·M i = 1, . . . ,( j,h) ∈ C ,

L jh ≤ k ≤U jh (7)

∑
U jh
k=L jh

z jhk = 1 ∀( j,h) ∈ C (8)

µ̂ ≥ 1
n ∑

n
i=1

yi j
i ∀ j ∈F (9)

µ̂ ≤ µ∗ (10)

yi j ≥ 0 ∀i,∀ j

z jhk = {0,1} ∀( j,h) ∈ C ,∀k.

The z jhk binary variables are used to select the capacity of the buffer between machines j and h. Specifically, z jhk

is equal to 1 if the capacity of buffer B jh is equal to k (with k = L jh, · · · ,U jh), i.e., if buffer B jh is able to contains

k jobs. Parameters L jh and U jh are the lower and the upper bound, respectively, for the capacity of buffer B jh.

The solution of the BAP is the buffer configuration that minimizes the total buffer cost (3) meanwhile assur-

ing a maximum average completion time equal to µ∗, that is, a minimum throughput θ ∗ = 1
µ∗ (equation (10)).

Constraints (9) are used in case of disassembly systems to get as maximum average completion time the largest

among the various branches in which each part separates. In the case of single last stage (transfer lines and as-

sembly systems), constraints (9) simply reduce to constraint (1). The performance constraint (10) has been stated

in terms of service level rather than directly in terms of throughput to avoid non-linearity. The unit cost of the

capacity associated to buffer B jh is represented by parameter e jh.

Constraints (4), (5) and (6) define the dynamics of the production system. In particular, each job (or compo-

nents, in case of assembly systems) cannot complete its process and leave the initial stage (i.e., the ones in set I )

before being arrived to the system and spent there a time equal to its processing time on that machine (4). Each

machine can process only one job at a time (5) and each job can be processed only by a machine at a time (6).

The capacity constraints are represented by equations (7), which prevent a job from leaving a stage if the

downstream buffer is full. In fact, if z jhk = 1, then all the constraints related to buffer B jh with assigned capacity

equal to k are activated; otherwise, the constraint is redundant thanks to the big–M in the right hand side. As
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stated in constraints (8), only one capacity k can be chosen for each buffer.

This model is a simulation-optimization model since it contains the performance constraints (10), the opti-

mization object function (3) and the system dynamics and capacity constraints (constraints (4)-(7)).

2.3 The Time Buffer approximated simulation-optimization model

The exact model presented in section 2.2 uses the concept of space buffer, that is, the available space between

two consecutive stages in which jobs can wait before being processed. To model the capacity, the z jhk binary

variables have been used, leading to a MILP model.

In Alfieri and Matta (2012), an approximation of the exact model, based on the Time Buffer (TB) concept, has

been proposed.

2.3.1 The Time Buffer concept

A time buffer can be considered as the time a job can start to be processed in advance on a machine before the

next one becomes available. It considers the time aspect of buffers. In fact, if a space buffer is available between

stage j and stage h, jobs can be completed in stage j and then wait in buffer B jh that machine Mh becomes

available. The waiting activity is exactly the time aspect of the buffer.

Let assume that two jobs, a and b, must be processed in the sequence a→ b (Figure 2). A time buffer s jh

Figure 2: Time buffer between stage j and h

before server h and after server j constrains the starting time of job b at stage j, xb j, and the departure time of job

a from stage h, i.e., yah, in the following way:

xb j ≥ yah− s jh. (11)
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According to equation (11), job a can start being processed at machine j only s jh time units before job b leaves

the stage h. In Figure 2, the gray area represents the possibility for a job to start its processing in a stage even if

the machine in the next stage has not freed a space in its buffer because no item has finished there. In other words,

it represents the fact that the next stage has not saturated its buffer capacity yet. The two extreme conditions of

s jh = 0 and s jh→ ∞ model a perfect synchronization and a perfect decoupling of the two stages, respectively.

The TB concept can be considered a synchronization mechanism and can be adopted in every context where

there is some queue in which objects have to wait.

Using the TB concept, an approximate simulation-optimization model for the BAP in transfer lines has been

proposed in Alfieri and Matta (2012). Using the notation previously introduced, it can be extended to model

assembly/disassembly systems:

min ∑( j,h)∈C

(
g jh ·∑

K jh
k=1 s jhk

)
(12)

s.t. (4)-(6), (9), (10)

yi+k, j− yih ≥ ti+k, j− s jhk i = 1, . . . ,n− k,

( j,h) ∈ C , k = 1, . . . ,K j (13)

yi j ≥ 0 ∀i,∀ j

s jhk ≥ 0 ∀( j,h) ∈ C , k = 1, . . . ,K jh (14)

Differently from the exact optimization model, no more z jhk binary variables are needed. The capacity of buffer

B jh is, in fact, implicitly represented by the s jhk time buffers. In this case, k is the so-called lag, that is, the

distance between two considered jobs, job i and job i+ k. Each pair of jobs having the same lag k, could have

its specific time buffer (e.g., the time buffer between job i and job i+ k could be different from the time buffer

between job i+1 and job i+1+ k). However, from a practical point of view, it is more useful to choose a time

buffer for each pair of jobs having the same lag, that is, the time buffer is assumed to be the same for the pair i

and i+ k and for the pair i+1 and i+1+ k.

Parameters g jh are the unit costs of the time buffers and the objective function (12) represents the minimization

of the total time buffer cost. The system dynamics and the performance constraints, being based on the yi j

variables only, do not change with respect to the exact model. Instead, constraints (13) model the queue behavior

(capacity constraints), substituting constraints (7) of the exact model: job i+ k has to wait starting its process at

stage j until part i finishes its activity at stage h minus the time s jhk.

The s jhk variables represent times, hence they must be non negative as defined by equations (14). The K jh
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parameter is the maximum considered lag between stage j and h, i.e., jobs i and i+K jh + 1 are so distant one

from the other that they have no relationship regardless of the capacity allocated to the buffer between stages j

and h. Parameters K jh are input parameters and their value depends on the considered system.

If, in the optimal solution, s∗jhk is positive for some k, it means that a buffer B jh of some capacity is needed.

This consideration can be used to find a feasible solution for the exact BAP from the optimal solution of the

approximated BAP.

Moreover, the time buffer variables have two interesting properties that will be exploited in the solution

algorithm: 1) the throughput is a monotonic function of the time buffers; 2) the optimal time buffers are such that

s∗jhk ≥ s∗jh,k+1 , for each ( j,h) and k. The two properties have been proved in Alfieri and Matta (2012) and, for

sake of conciseness, are not reported here.

The approximated simulation-optimization model just presented is an LP model. However, its dimensions are

such that the standard simplex algorithm cannot be efficiently used for its solution.

To have an idea about the dimensions, consider a transfer line composed by J stages (i.e., I and F contains

a single stage and C is composed by all the pairs of machines (M j,M j+1)), and n jobs flowing through, and

consider maximum lag K j, j+1 for the pair of stages j and j+1 (i.e., the pair ( j,h) is always equal to ( j, j+1)).

The dimension of the y and s variable arrays are:

• dim(y) = n× J ;

• dim(s) = ∑
J−1
j=1 K j, j+1,

while the number of constraints is

n+ J(n−1)+n(J−1)+
J−1

∑
j=1

(
K j, j+1

K j, j+1

∑
k=1

(n− k)

)
+1.

As an example, assume the line has 10 stages, 5000 jobs are flowing through it and, at each stage, the maximum

lag is equal to 40. In this case, the total number of variables is 25360 and the number of constraints is 71804791.

The number of variables and constraints further increases when dealing with assembly/disassembly systems.

3 A row-column generation solution approach

To solve the approximated BAP, a row-column generation algorithm has been designed. Row-column generation

is based on the principle that only a small fraction of the variables (the columns, namely S ) of a model will be in
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the optimal solution and that there is a subset of constraints (the rows, namely T (S )) depending on S that are

needed to achieve the optimal solution, whereas the subset of constraints not depending on S can be somehow

excluded. Starting from a subset of variables S0 and the related subset of constraints T (S0), the algorithm

iteratively checks if other variables and constraints should be added to reach the optimal solution (Muter, Birbil,

& Bülbül, 2013; Frangioni & Gendron, 2013; Sadykov & Vanderbeck, 2013; Maher, 2015). The general scheme

of a row-column generation algorithm can be summarized as follows:

1. Start with a small set of variables S0 (corresponding to a feasible solution);

2. Find the set of constraints T (S0) (i.e., the set of constraints that are related to the variables in set S0);

3. Solve the LP with the restricted set of variables and constraints (Restricted Master Program (RMP));

4. Check if the solution is feasible for the complete LP, which includes all the constraints and all the variables,

assigning value equal to zero to those not in the RMP (optimality check):

• Yes→ Optimal solution found (the algorithm stops);

• No→ Add new variables and the related constraints (pricing problem) and go to step 2.

3.1 The dual model for the approximated BAP

The primal model for the approximated BAP, presented in section 2, can be rewritten in a matrix form as follows:

min gT s (15)

s.t. Av≥ b (16)

µ̂ ≤ µ∗ (17)

v≥ 0 (18)

Vector v is the set of variables (y, s), while g is the vector of the time buffer costs. The constraint matrix A is

an l×m matrix, where l is the number of constraints, not including the throughput ones, and m is the number of

decision variables. It can be represented as  A1 0

A2 A3

 . (19)

The two rows of matrix A refer to the system dynamics and maximum completion time definition constraints

(4)-(6) and (9) and to the time buffer constraints (13), respectively. Instead, the two columns are related to the yyy

13



and sss variables, respectively. In particular, since the time buffers sss are not involved in the system dynamics and

completion time constraints, the second block of the first line is the null matrix. The m-dimensional vector b

= {b1,b2, . . . ,bm} contains all the parameters of the model, i.e., the arrival times ai and the processing times ti j.

The dual model in the matrix form is then the following:

max bT u−µ∗ ·ρ (20)

s.t. : AT u≤ g (21)

u≥ 0, ρ ≥ 0 (22)

The dual variables u are related to the primal constraints represented by the matrix A, while ρ is the dual variable

related to the throughput constraint (17). Specifying matrix AT in its component blocks, constraints (21) takes

the following form:

 AT
1 AT

2

0 AT
3

u≤

 0

g

 . (23)

AT
3 has dimension r×t, where r =∑( j,h)∈C

(
K jh ∑

K jh
k=1(n− k)

)
and t =∑( j,h)∈C K jh and every row in AT

3 is related

to a particular s jhk variable. This matrix will be the key element of the pricing procedure.

3.2 Row-column generation algorithm for the approximate BAP

As discussed in section 2.3, the approximated time buffer model contains two sets of variables: the yyy variables

and the sss variables. The yi j variable represents the finishing time of job i at stage j. This implies that all the

yi j variables always take positive values and then all of them will enter the optimal solution. As for the sss, the

properties proved in Alfieri and Matta (2012) and mentioned in section 2.3 assure that, at optimality, the s jhk

variables have values that are decreasing as k increases. This means that there will be a particular index k̂ such

that s jhk = 0 ∀k ≥ k̂, ∀( j,h) ∈ C . From the above consideration, it can be stated that all the yyy variables will be

included in the initial solution and the generation of columns will deal only with the generation of the sss variables.

As in the LP, the sss variables are included only in constraints (13), there will be a subset of them that will be

excluded from the model, i.e., the ones containing the sss variables not included in the RMP. In other words, the

constraints in the RMP will be all the equations (4)-(6), (9), (10) and a subset of equations (13) .

The solution algorithm is described in the following. First, the mathematical model characterizing the Re-

stricted Master Problem is presented. Then, the pricing problem, the optimality check procedure and the algo-

rithm to find the initial solution are devised.
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3.2.1 Restricted Master Program (RMP)

Let S0 be the set of the time buffer variables generated so far and let T (S0) be the set of the time buffer

constraints related to S0. The RMP can be written as:

min ∑( j,h)∈C

(
∑s jhk∈S0

g jhs jhk

)
s.t. (4)− (6)

yi+k, j− yi,h ≥ ti+k, j− s jhk i = 1, . . . ,n− k, ( j,h) ∈ C

k = 1, . . . ,K jh, ∀s jhk ∈S0 (24)

µ̂ ≥ 1
n ∑

n
i=1

yi j
i ∀ j ∈F

µ̂ ≤ µ∗

yi j ≥ 0 ∀i,∀ j (25)

s jhk ≥ 0 ∀s jhk ∈S0 (26)

The RMP is exactly as the complete approximated model with the only difference that the sss variables are restricted

to the subset S0 and the constraints in equation (24) are limited to the subset T (S0). At the beginning, S0

contains the s jhk corresponding to the initial solution and T (S0) the time buffer constraints that include only

the s jhk included in S0. The RMP is solved and, if the optimality check fails, the pricing problem is used to add

to S0 the variables (and the related time buffer constraints) that are needed to improve the solution. Then, the

RMP is solved again, the optimality checked again until the check is passed (i.e., the original complete problem

is solved at optimality).

3.2.2 Pricing problem

The pricing problem is used to find the variables (and the related constraints) to add and it is usually based on the

dual information. In particular, in the case of BAP, the feasibility of the dual variables should be checked, i.e., it

should be checked if the optimal dual variables of the RMP satisfy constraints (23). As the search is limited to

the time buffer variables, only the dual constraints related to the AT
3 matrix must be checked.

Specifically, for each time buffer s jhk, the dual constraint to be checked is:

n−k

∑
i=1

ui jhk ≤ g jh,

where ui jhk is the dual variable related to the primal constraint yi+k, j−yih ≥ ti+k, j−s jhk. When, for a given triplet

( j,h,k), the sum is bigger than g jh, then the s jhk variable must be added to S0.
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Exploiting the property that assures, for the time buffers, non-increasing values in k for each ( j,h) ∈ C , the

time buffers are added proceeding from the lowest values of index k to the highest ones. For instance, assume

that, in the current iteration, the RMP has S0 = {s jhk, k = 1, . . . , k̂, ( j,h) ∈ C } (where k̂ < K jh). Among all

the dual constraints, almost surely only the ones with k = {k̂+1, k̂+2} will be violated, thus implying that only

variables s jhk with k = {k̂+1, k̂+2} will be able to enter S0 in the next iteration, i.e.,

S0←S0 +{s jhk | k = k̂+1, k̂+2; ∀( j,h) ∈ C }.

This property empirically holds but it has not been theoretically proved. However, it can be exploited to speed

up the pricing procedure without the risk of loosing optimality. In fact, if the optimality check failed in the last

iteration, in the next iteration only time buffer variables s jhk with k = {k̂+1, k̂+2} will be added to S0.

3.2.3 Searching for an initial feasible solution

An initial solution can be found by exploiting the fact that the considered model is a simulation-optimization

model. Due to the simulation component, the optimal buffer configuration should be a steady-state solution,

which is independent from the number n of jobs. This means that the solution corresponding to a subset of jobs

n0 << n can be considered as an approximation of the optimal solution.

Starting from this observation, the initial solution can be found by solving the complete primal model in-

stanced with only n0 << n jobs. The solution can be infeasible because of the violation of the completion time

constraints, which can be due, in turn, to a real infeasible problem (the requested throughput is too high for the

system capacity in terms of processing times and hence no BAP can be solved on that system) or to a small buffer

capacity, i.e., a too small value for some K jh (the maximum lag). In this case, the complete model can be solved

again after having increases the K jh.

Once the model with n0 flowing jobs is solved, the index

k0 = max
k
{k | ∃s jhk > 0, ( j,h) ∈ C } (27)

is stored and the RMP is instanced with S0 containing the following elements:

S0 = {s jhk | k ≤ k0, ∀( j,h) ∈ C } (28)

and T (S0) containing the following constraints:

yi+k, j− yi,h ≥ ti+k, j− s jhk i = 1, . . . ,n− k, ( j,h) ∈ C ,k = 1, . . . ,K jh, ∀s jhk ∈S0. (29)
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Notice that the initial solution can be infeasible for the complete problem with all the n jobs as the buffer

capacity (and hence the time buffers) depends on the variability of the arrival and processing times, which cannot

be correctly estimated if the considered sample of jobs is too small. However, also in this case, feasibility can be

reached by increasing the value of K jh.

3.2.4 Optimality check - stopping condition

In each iteration, after the RMP is solved, the optimality check procedure controls if the solution found so far is

optimal for the complete primal problem.

The optimality check consists in a feasibility control related to the time buffer constraints not included in the

RMP. It works as follows. The solution found in the last iteration has been only considering the subset S0 of sss

variables and the related constraints T (S0). This means that there exists a set of constraints that have been left

out from the problem (namely, T L(S0)). This set corresponds to the following equations:

yi+k, j− yi,h ≥ ti+k, j− s jhk i = 1, . . . ,n− k, ( j,h) ∈ C ,k = 1, . . . ,K jh ∀s jhk /∈S0. (30)

In reality, for the s jhk /∈S0, the model should contain the following equations,

yi+k, j− yi,h ≥ ti+k, j i = 1, . . . ,n− k, ( j,h) ∈ C ,∀k such that. s jhk /∈S0. (31)

Equations (31) rises from equation (30) forcing all s jhk /∈S0 to be set to zero.

As the solution found so far is optimal for the problem that does not include these equations, the optimality

check must control for the feasibility of this solution in the complete problem, i.e., if equations (31) are verified.

If all the equations in (31) are verified, then the actual solution is feasible and optimal also for the complete

problem, hence the optimality is reached and the algorithm stops.

Algorithm 1 summarizes the complete column generation procedure.

4 Computational testing

Numerical tests have been performed to evaluate the efficiency of the proposed algorithm. A first experiment

tests the computation time of the row-column generation algorithm discussed in section 3 and compares it with

ILOG CPLEX, a commercially available LP software. The focus of the experiment is on computation times,

since the proposed row-column generation is an exact algorithm, and, hence, it reaches, exactly as CPLEX, the

optimum. A second experiment compares the proposed algorithm with the one proposed in Weiss and Stolletz
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Algorithm 1 Column Generation algorithm

Initialisation.

Set n, J, n0;

Use standard LP solver to solve the approximate optimization model with n0 jobs and J stages;

Compute k0 as in (27).

Column Generation.

Define S0 as stated in equation (28) and related T (S0);

Check= 0;

while Check= 0 do

Solve the RMP with S0 and T (S0);

if Optimality check is positive then

optimal solution found;

Check= 1;

else

Generate columns;

Update S0 with the new variables and T (S0) with the new constraints;

end if

end while

(2015) on real flow lines described in Tempelmeier (2003). The focus of this second experiment is comparing

the LP approximation with the MILP exact model in terms of total buffer capacity and computation time. In

the comparison, the LP is solved by the proposed row-column generation, whereas the MILP is solved with the

state-of-the-art algorithm proposed in Weiss and Stolletz (2015), which exploits the Benders decomposition for

MILP models with combinatorial cuts.

4.1 Approximated BAP experiment

The first experiment deals with the investigation of the computation time of the proposed algorithm. Various

production systems, with different characteristics, have been tested. The computation times of the row-column

generation and of CPLEX have been collected and compared, to assess the efficiency of the proposed algorithm.

Before presenting the numerical results, the experimental settings are described in details.
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4.1.1 Experiment settings

In the experiments, production systems with various characteristics have been considered. As assumed in section

2, the buffer(s) in front of the initial stage(s) has infinite capacity and, after been processed by the last machine(s),

jobs immediately leave the system without restrictions or delays. The maximum lag K jh for each pair of stages

( j,h)∈C is assumed equal to 40. Moreover, for simplicity, no warm-up period has been considered, as previously

defined (equation (1)).

Without loss of generality, it has been assumed that the unit cost of the time buffers is equal to 1 for each

stages, i.e., g jh = 1 ∀( j,h) ∈ C , and that all the jobs are available at time 0, i.e., ai = 0 ∀i. The first assumption

corresponds to minimizing the total time buffer allocated to the system, instead of its cost, which is the same if the

buffer capacity has the same cost in each stage, as it usually happens in real systems. The second assumption is

related to the control of the variability in the system, which, in the case of ai = 0, only depends on the variability

of the processing times. In each experiment, the number of jobs considered to find the initial solution has been

set to n0 = 1000. The above discussed parameter values are summarized in Table 1.

Parameters

Maximum lag (∀ j,h) K jh 40

Number of jobs for initial solution n0 1000

Unit cost of time-buffers g jh 1

Table 1: Parameter setting

The elements that influence the performance of the algorithm, beside the variability, are the dimensions of

the problem, the saturation of the line, the configuration of the system and the existence of a bottleneck. Hence,

these elements have been considered as the experimental factors and different levels have been tested. Table 2

reports the values considered for each experimental factor.

The first two factors, i.e., the number of stages J and of jobs n, are related to the dimension of the problem. The

larger these values, the larger the number of variables and constraints, and then the more complex the problem.

The dimension of the problem is also related to the maximum lag K jh at each stage (which has been fixed for

each experiment, as reported in Table 1).

The system configuration C deals with the configuration of the production system. Three configurations have

been taken into account (assembly, disassembly and transfer line). The line configuration is a sequence of either
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Factors

Number of stages J {5,10}

Number of jobs n {5000,10000,20000}

System configuration C {Assembly, Disassembly, Line}

Type of system L {bal, unb}

Saturation R {70%,90%}

cv for ti j distribution cv {0.5,1}

Table 2: Design of experiment

5 or 10 stations, with a linear flow. Figure 3 shows the assembly and disassembly configurations. In each graph

of the figure, the circles represent the stages of the production system and the arrows indicate the flow of the

jobs. When J = 5, in the assembly system (the graph on the top left of the figure) jobs enter the system through

stages 1 and 3, move to stages 2 and 4 and finally got assembled in stage 5, then leave the system. Following

the assumptions listed before, the buffers before stages 1 and 3 have infinite capacity and jobs leave the system

as soon as they finish to be processed in stage j = 5. For the systems with J = 10, station j = 9 is the assembly

stage, buffers before stages 1 and 5 have infinity capacity, and jobs leave the system after stage 10. The same

holds for the disassembly systems, and their configurations are shown in the figure.

The type of system L represents, instead, the difference of processing times among the machines of the line.

The value bal refers to the case of a balanced system (all the J stages have the same average processing time),

while unb refers to the case of a bottleneck positioned at the beginning ( j = 1) of the system. In the balanced

case, an average processing time equal to 2 units of time has been considered for each machine, while, in the

unbalanced case, the bottleneck has an average processing time equal to 4 units of time and the other machines

equal to 2 units of time (in assembly systems, j = 1 is the bottleneck). In all the experiments and for all the

machines, a LogNormal distribution has been assumed for the processing times.

The saturation R is the utilization rate of the bottleneck and controls the target throughput: the higher the

saturation, the higher the achievable throughput, and the lower the maximum service level.

Finally, the coefficient of variation of processing times, cv, is used to control the variability in the system. It

is a statistical measure of the dispersion computed as the ratio between the standard deviation σ and the mean µ ,

i.e., cv =
σ

µ
. Given the average processing time µ and the coefficient of variation cv, the standard deviation can

be computed for both the bottleneck and the non-bottleneck machines.
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Figure 3: Assembly and disassembly configurations with J = 5 and J = 10.

The six factors lead to 144 combinations. For each combination, 30 instances have been generated, leading

to 4320 experiments in total.

4.1.2 Numerical results

Each of the 4320 experiments has been solved using the designed algorithm and the ILOG CPLEX software.

More precisely, for ILOG CPLEX, the Barrier Algorithm (an interior point algorithm) has been used, as (in

preliminary tests) it has shown to be the fastest among the solution algorithms available in the ILOG CPLEX

environment for the specific problem to be solved.

The row-column generation algorithm has been implemented with an object oriented paradigm in Java lan-

guage on Eclipse platform. ILOG CPLEX 12.6 has been used both as solver for the complete problem (to

compare with the proposed algorithm) and as solver for the RMP during the row-column generation iterations.

The experiments have been carried out on a Core i7-7700K with 4.2 GHz and 32 GB RAM.

As previously stated, since both the algorithms (i.e, row-column generation and CPLEX barrier) are exact

algorithms, the achieved solution is the optimal solution for both of them. Thus, in the following, the solution

values are not reported and the algorithms are compared only in terms of computational efficiency.

Table 3 shows the average computation times (in seconds) and their variability (standard deviation), for
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CPLEX and for the row-column generation, for different values of n. Each row of the table shows the aver-

age computation times for a specific value of J and n. The first three columns report the results for the three

system configurations C, thus each computation time value is the average over all types of system L, all cv, and

all levels of saturation R with fixed n, J and C. The last column α shows the percentage of instances in which the

row-column generation algorithm is more efficient than CPLEX. This percentage is always larger than 95% with

J = 5 and larger than 87% with J = 10, which means that the proposed algorithm almost always outperforms the

commercial solver.

JJJ nnn
Assembly Disassembly Line

ααα
CPLEX Row-Column CPLEX Row-Column CPLEX Row-Column

5 5000 32.82 (6.14) 9.85 (6.13) 31.54 (9.39) 9.35 (5.77) 31.43 (5.66) 9.93 (6.31) 95.69 %

5 10000 81.12 (17.12) 20.73 (13.52) 87.69 (45.24) 19.49 (12.54) 80.89 (46.11) 19.43 (12.35) 99.17 %

5 20000 208.11 (88.72) 53.65 (32.65) 238.37 (175.69) 55.28 (30.04) 220.01 (243.12) 51.66 (28.23) 99.72 %

10 5000 85.34 (13.13) 36.60 (41.06) 84.76 (10.15) 36.43 (5.96) 89.18 (17.97) 47.11 (69.59) 87.50 %

10 10000 284.16 (532.79) 70.22 (70.78) 213.56 (916.73) 69.33 (70.92) 236.86 (108.97) 72.73 (80.77) 87.64 %

10 20000 792.20 (1024.10) 176.10 (154.68) 574.90 (328.12) 170.65 (146.80) 848.05 (1154.31) 163.19 (150.07) 87.92 %

Table 3: Computation times: average values [s] (standard deviation) and percentage of efficient instances.

As expected, for both the algorithms, the larger the system and the number of jobs in it, the larger the com-

putation time needed for finding the optimal time buffer configuration. However, the computation time of the

row-column generation algorithm grows with a less steep slope with respect to CPLEX (Figure 4). This is an

Figure 4: Average computation times: slopes.

important result since it implies that the difference in efficiency increases as n and J increase, i.e, the larger
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the instance (e.g., the bigger the system, or the larger the number of jobs or the maximum lag), the larger the

benefit in using the row-column generation algorithm. Moreover, the difference between the average CPLEX

and row-column generation computation times is significant for each combination of factors. Also, for the line

system configuration, the row-column generation algorithm improves the column-generation algorithm presented

in Alfieri et al. (2016) by decreasing the computations time by 30-40 %.

Figure 5: Analysis of the distribution of computational times.

From Table 3, the variabilities of the CPLEX and the row-column are quite different. Figure 5 shows the

distribution of the computation times grouped by different J, saturation levels and numbers of jobs. Each graph

is related to a value of J; for each graph, the two panels are related to the 70% and the 90% saturation, whereas
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each boxplot refers to a specific n value and a specific algorithm. The high variability related to the CPLEX times

is explained by the various outliers (indicated by * in the graphs). In various cases, CPLEX takes a large amount

of time to solve the mathematical problem, especially for large number of stages and of jobs and a high saturation

percentage. This is coherent with the mathematical model, as the number of jobs and stages influence the number

of variables of the LP, whereas a large saturation let the throughput constraint (equation (9)) be tighter.

Further analyses have been made on the percentage of instances in which the row-column generation algo-

rithm has been more efficient than CPLEX. Specifically, Table 3 shows that for a few instances, the proposed

algorithm is outperformed by CPLEX. These instances are all characterized by a balanced system and high coef-

ficient of variation of processing times; moreover, high saturation makes the row-column generation worse than

CPLEX sometimes. Figure 6 shows the comparison between CPLEX and the row-column algorithm computation

times: the assembly system characterized by balanced stages and high coefficient of variation is considered as

an example; the results are shown separately for the two saturation levels. Each point of the graphs displays

the result of a single instance in terms of CPLEX and row-column algorithm computation times: if the point is

below the straight line, the row-column algorithm time is smaller than that of CPLEX, and vice-versa. The graphs

show that all the instances with low saturation have row-column times largely smaller that CPLEX, while for the

cases of high saturation a large portion of points are above the line, meaning that the row-column algorithm time

resulted to be larger than CPLEX.

Figure 6: CPLEX and row-column algorithm computation times: disassembly balanced system, cv = 1.

An ANOVA test has been run both for CPLEX and the proposed algorithm computation times, to understand

which factors influence the computation effort to solve the problem.
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The results show that, for a significance level of 99.9 %, both CPLEX and the row-column algorithm com-

putation time are influenced by the system type, the number of jobs and stages, and the saturation, whereas only

the row-column algorithm computation time is influenced by the variability of processing time. The common

influence of the number of jobs flowing in the system, the number of stages and the saturation was expected.

The larger the number of jobs or the number of stages, the larger the number of variables and constraints charac-

terizing the mathematical model, indeed. Also, about saturation, higher saturation leads to a tighter throughput

constraint, thus the solution is harder to be found. Instead, the coefficient of variation of the processing times

seems to influence the row-column generation computation time, but not the CPLEX time. The system type (i.e.,

balanced or unbalanced system) influences both the algorithms, whereas the system configuration seems to have

no influence.

4.2 Exact and approximated BAP in real lines

In the second experiment, the proposed row-column generation for the approximated BAP is compared with the

state-of-the-art Benders decomposition proposed in Weiss and Stolletz (2015) to solve the exact BAP (namely,

SOA). Only flow lines are considered in this experiment, as the SOA is not able to solve the BAP for assem-

bly/disassembly systems. Moreover, real cases reported in Tempelmeier (2003) are taken into account to evaluate

the efficiency of the two solution methods.

In the following, the experimental settings are discussed and the results of the experiment are then presented.

4.2.1 Experimental settings

In the experiments, the realistic flow lines presented in Tempelmeier (2003) are considered. Specifically, lines

from A to D are tested. In Tempelmeier (2003), each line is associated to deterministic processing times and

failures. In this paper, stochastic processing times were included, by considering LogNormal distributions (as in

the previous experiment). As failures are not included in the formulation of the BAP model used in the paper,

the deterministic processing times of Tempelmeier (2003) have been divided by the availability of the machines.

Thus, the LogNormal distributions of machine processing times have mean equal to the deterministic values

divided by the availability, and coefficient of variation varying according to the design of experiment discussed

in the following. The machine mean processing times and the configuration of the four lines are shown in Figure

7. For each graph, the bars represent machines (for instance, line A has 19 bars and hence 19 machines), and the

height of the bar is the average processing time (expressed in minutes). From the figure, line B is the longest,
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with 23 machines, whereas line C is the shortest, with 8 machines. With 8 to 23 machines, exact methods hardly

find the optimal solution in a short time (Weiss et al., 2018).

Figure 7: Characteristics of the simulated lines from Tempelmeier (2003): the horizontal axes represent the

machines of the lines, and the vertical axes correspond to the average processing time of the machines.

In the experiment, the number of jobs has been fixed to n = 250000, to obtain a reliable buffer configuration.

The target cycle time of each line has been chosen by simulating the line with the resulting stochastic processing

times and with the buffer capacity given in Tempelmeier (2003). For the four lines, the total buffer capacity of

each line of Tempelmeier (2003) is: 285 for line A, 459 for B, 131 for C, and 166 for D. As in the previous

experiment, the unit cost of the time buffers for the row-column generation and that of the buffer capacity for the

SOA are set to 1, and that all the jobs are available at time 0. Also, both the maximum lag K jh of the row-column

generation and the upper-bound of the buffer capacity at each stage for the SOA have been set to 200.

The factors of the experiment are: the line (i.e., line A, B, C, D of Figure 7), and the coefficient of variation

of the processing times (cv = {0.5,1}, as in the first experiment). In total, 8 combination of factors are evaluated.

The combinations and the associated target cycle times are shown in the left-part of Table 4. For each combina-

tion, 10 independent replicates have been run, for a total of 80 instances. For each instance, a budget of 18000

seconds (i.e., 5 hours) has been allowed to solve the problem (as long flow lines are hard to solve). The results

are presented in the following section.
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4.2.2 Numerical results

All the experiments have been solved by using the same computer used for the first experiment, and the SOA has

been implemented in Java language in the same Eclipse platform of the row-column generation algorithm.

Line
cvcvcv

Row-Column SOA

Line µ∗µ∗µ∗ comp. time βββ comp. time βββ

A 0.52 0.5 > 18000 0% > 18000 0%

A 0.58 1 > 18000 0% > 18000 0%

B 7.37 0.5 > 18000 0% > 18000 0%

B 7.35 1 > 18000 0% > 18000 0%

C 277.78 0.5 15599 90% > 18000 0%

C 303.03 1 14014 70% > 18000 0%

D 39.68 0.5 15477 40 % > 18000 0%

D 46.08 1 > 18000 0% > 18000 0%

Table 4: Mean computation times for real lines.

The average computation times (over the replicates) for all the experimented systems are shown in Table 4.

For each algorithm, the computation time and the percentage of replicates solved under the threshold of 18000

seconds (namely, β ) are shown. While the SOA is never able to solve the MILP problems within the five hours,

the row-column generation for the time buffer BAP is able to solve a small portion of the instances. This result

reflects the complexity for exact algorithms to solve the BAP with realistic dimensions. Specifically, both the

solvers are not able to solve any of the replicates of lines A and B; however the row-column generation can solve

a portion of the instances of lines C and D. As line C and D are the shortest line, this result confirms that the

computation time of the row-column generation largely depends on the dimension of the problem (i.e., from the

number of stages and jobs, in this case). Instead, from the results in Weiss and Stolletz (2015), the computation

time of the SOA seems to depend on the magnitude of the optimal total buffer capacity, which for all the systems

was extremely large (as previously mentioned).

To confirm and deepen the comparison between the two algorithms, another experiment has been carried out.

As the row-column generation seems to depend on the number of stages and the SOA on the total buffer capacity,

line C is optimized with different target cycle times. In this way, the two algorithms are tested with various values
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of optimal total buffer capacity.

Figure 8: Computation times with varying µ∗.

The target cycle time µ∗ has been varied between 273.97 and 340.45, and results about the computation time

and the optimal buffer capacity have been collected for both the row-column generation and the SOA. Figure 8

shows the comparison of the performance of the two algorithms. In the figure, the horizontal axis indicates the

target cycle time µ∗, and the vertical axis shows the computation time (expressed in seconds). The two rows

below the horizontal axis show the buffer capacity found with each of the two algorithms. For the SOA, the

buffer capacity is the optimal total buffer capacity of the MILP model (Weiss & Stolletz, 2015); instead, for

the row-column generation, the buffer capacity is an approximation of the total buffer capacity found from the

optimal time-buffers as indicated in Alfieri and Matta (2012).

According to Figure 8, the algorithm of SOA is faster than the row-column generation in most of the cases.

Specifically, for target cycle time greater than 282, the SOA takes a few seconds to solve the problem, whereas

the row-column generation takes from 2 to 3 hours. However, with low µ∗, the row-column generation still takes

from 2 to 4 hours to solve the problem, whereas the SOA takes from 20 to 35 hours. The reason of such an increase

of computation time is given by the optimal buffer capacity found by the algorithm, which is lower than 50 with

larger target cycle time, and from 55 to 77 with lower target cycle time. To find the optimal solution, the SOA

decomposes the line in several sub-systems to find bounds, which are used together with the combinatorial cuts to
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solve the problem. This procedure is longer as the buffer capacity increases (Weiss & Stolletz, 2015), and Figure

8 confirms it. Instead, the row column generation seems to be buffer capacity invariant, as the computation time is

quite stable with different values of µ∗. The row-column generation depends on the size of the problem in terms

of number of jobs and stages (as shown in Section 4.1), which are constant in this experiment; thus, the algorithm

takes almost the same amount of time to solve all the instances. About the goodness of the approximation of the

buffer capacity found by the row-column generation, it seems to over-estimate the optimal buffer capacity (given

by the algorithm of Weiss and Stolletz (2015)). However, the trade-off between the computation time and the

goodness of the solution should be considered: 29 more hours are needed to find that the total optimal capacity is

77 instead of 91. This means that, in a line of 8 stages, the over-estimation per stage is less than 2 over an optimal

average value of about 10.

5 Conclusions

In this paper, a row-column generation algorithm to solve the approximated Buffer Allocation Problem in transfer

lines and assembly/disassembly has been proposed. The algorithm extends the results and the modeling frame-

work presented in the previous papers (Alfieri & Matta, 2012; Alfieri et al., 2016). It has been tested against

ILOG CLEX on randomly generated instances. The numerical results showed that the row-column generation

outperforms CPLEX in more than 87% of the instances and that the difference in the computation times increases

as the number of jobs and the number of stages increase. This result shows that the row-column generation is an

interesting approach for simulation-optimization problems represented by a single mathematical model. Thus,

the same solution approach could be exploited in the recently developed DEO (Descrete Event Optimisation)

framework (Pedrielli, Matta, Alfieri, & Zhang, 2018).

ANOVA tests on the solution also showed that the performance of the proposed algorithm is not influenced by

the system configuration, i.e., it is immaterial if the system is a transfer line, an assembly system or a disassembly

one. This also applies for CPLEX and this is related to the fact that the mathematical model representing the

system does not structurally change for the different configurations. Instead, the number of jobs and of stages in

the system have the main influence on the computation of the solution.

The proposed algorithm has been also compared to the state-of-the-art exact method to solve the BAP integer

problem (Weiss & Stolletz, 2015), in terms of computation times and optimal buffer capacity. The results showed

that, although the proposed algorithm is not able to find the optimal buffer capacity, it can be ten times faster than

the state-of-the-art method, when a large buffer capacity is needed to achieve the requested throughput. However,
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a trade-off must be considered between the quality of the solution and the computation time needed to solve the

problem.

Several directions of improvement are still open. First, heuristic procedures can be developed for the search

of the initial solution, to reach a feasible one, i.e., to find values of k0 greater than (but very close to) the optimal

index k∗, thus avoiding the possible iterative process due to too small K jh . A second direction of improvement is

related to the solution of the Restricted Master Problem (RMP) that, so far, is solved by using the same algorithm

the row-column generation is comparing to, i.e., the CPLEX barrier algorithm. Other solution methods, such as

sub-gradient procedures or decomposition methods, could be used to speed up its solution when the number of

added columns (and hence row) becomes too large. Also, the RMP solution algorithm could be stopped before

proving optimality (i.e., once a feasible solution is found for the current set of variables and constraints). A

sub-optimal RMP solution, in fact, does not prevent the achievement of global optimality due to the presence of

successive iterations, but could reduce the total solution time. Specifically, a sub-optimal solution of the RMP

could lead to a situation where more iterations are required, each of which characterized by a smaller computation

time. Finally, different methods to find the exact space buffer capacity from the exact time buffer capacity could

be explored to have a less approximated solution, thus reducing the importance of the trade-off evaluation between

solution quality and computation time.
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