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 It is effective on large instances and found best known solutions on benchmark tests. 

 A low-accuracy but fast, first-order linear programming method is used. 

 It is compared against the state-of-the-art, previously published methods. 
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Abstract

A heuristic method based on column generation is presented for the nurse roster-

ing problem. The method differs significantly from an exact column generation

approach or a branch and price algorithm because it performs an incomplete

search which quickly produces good solutions but does not provide valid lower

bounds. It is effective on large instances for which it has produced best known

solutions on benchmark data instances. Several innovations were required to

produce solutions for the largest instances within acceptable computation times.

These include using a fast first-order linear programming solver based on the

work of Chambolle and Pock to approximately solve the restricted master prob-

lem. A low-accuracy but fast, first-order linear programming method is shown

to be an effective option for this master problem. The pricing problem is mod-

elled as a resource constrained shortest path problem with a two-phase dynamic

programming method. The model requires only two resources. This enables it

to be solved efficiently. A commercial integer programming solver is also tested

on the instances. The commercial solver was unable to produce solutions on the

largest instances whereas the heuristic method was able to. It is also compared

against the state-of-the-art, previously published methods on these instances.
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Analysis of the branching strategy developed is presented to provide further in-

sights. All the source code for the algorithms presented has been made available

on-line for reproducibility of results and to assist other researchers.

Keywords: First-order linear programming, Heuristic, Column Generation,

Nurse Rostering.

1. Introduction

The nurse rostering problem has received a significant amount of research.

One of the earliest papers was in 1972 when Warner and Prawda proposed

a mixed integer quadratic programming method for the nurse rostering prob-

lem [1]. Even though at this time computers were still in their infancy, the

benefits and demand for the automation and optimisation of nurse scheduling

were already clear. Optimisation allowed more efficient use of the staff avail-

able, providing better levels of healthcare, while automation removed the chore

of manually compiling rosters. Additionally, computer-generated rosters are

perceived to be fairer rather than the possibly biased approach of a manager.

Over the following three decades following the first publication, as comput-

ing power increased, so did the scale and richness of problems that could be

solved. Methods based on integer programming, such as [2, 3, 4] and [5], and

metaheuristics, such as [6, 7, 8, 9, 10, 11] and to a lesser extent constraint pro-

gramming [12, 13, 14] have all appeared. More unusual approaches such as case

based reasoning, for instance, [15, 16, 17] and expert systems have also been

tried [18, 19, 20]. Comparing and identifying the best suited methods for the

nurse rostering problem have been difficult. This is possibly due to the wide va-

rieties of nurse rostering problems. This in turn may be due to such differences

as organisational and national working laws and regulations. There was also a

lack of standard benchmark data instances although efforts have been made to

improve this [21, 22, 23]. Two competitions have also been used to stimulate

research and have generated further insight and advances [24, 25]. For a survey

of nurse rosterning papers pre-2004 we refer the readers to the thorough sur-
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vey by [26]. After this survey was published, research on the nurse rostering

problem has continued. In Section 2, we discuss some of the more recent pub-

lications. As will be shown, there has been very little research on solving large

instances. Here we consider instances large if the planning horizon is longer than

two months, the number of staff is more than one hundred and/or the instance

has more than ten shift types. Large instances often occur in practice though.

One of the reasons is because nurses can often be assigned to one or more poten-

tial facilities. The optimal way to solve this is to combine all the facilities into

one instance. However the problem is usually decomposed into smaller, easier

to solve instances, which results in sub-optimal solutions. Cyclical schedules

are also still very popular despite their obvious disadvantages in dealing with

seasonal fluctuations in demand. The reason that they are popular is that they

allow staff to know and plan their holidays a long time in advance and they

also fairly assign undesirable shifts over longer planning periods. This cannot

be done with shorter planning periods such as four weeks. More employers are

also offering more flexibility in terms of the number and types of shifts on offer

in order to retain staff and accommodate more flexible ways of working. For

example, they offer longer or shorter shifts and at different times of the day

to try and provide more flexibility to the staff. More shift types, more staff

and longer planning periods result in more variables and much larger instances

that are much harder to solve. In this paper we present an algorithm that not

only is very efficient for smaller and medium length instances but is also able to

handle the largest instances. To handle these instances we have had to develop

several innovations which will also have applications in other problem domains

which require solutions to similarly structured but very large problems (such

as airline crew rostering and retail staff scheduling). On the publicly available

benchmark instances tested it has produced the best known solutions for some

of the largest instances. These instances have planning horizons of 26 weeks and

52 weeks and/or a large number of nurses. This was achieved through several

innovative features which are presented in Section 4. The computational results

of testing the algorithm on the public benchmark data set are provided in Sec-
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tion 5. Finally the paper concludes in Section 6 with some possible ideas for

future research directions. Next, in Section 2 we discuss the most recent nurse

rostering publications and place our research in context.

2. Literature Review

In this section we examine and discuss the nurse rostering literature. We fo-

cus on algorithms and solution approaches although there have also been several

papers discussing other issues such as modelling [27, 28, 29]. To place our re-

search in context, the emphasis in this literature review is on mathematical pro-

gramming, column generation and branch and price methods. However, there

has been several metaheuristic approaches recently proposed as well. These

include: Variable Neighbourhood Search [30, 31], Scatter Search [32], Ejection

Chains [33], Particle Swarm Optimization [34], Harmony Search [35], Simulated

Annealing [36], Adaptive Neighbourhood Search [37], Hyperheuristics [38] and

more. Metaheuristic methods do have several advantages. They can provide

more flexibility in modelling non-linear constraints. They are arguably slightly

easier to implement and maintain. They are often robust to problem changes

and over varied instance sizes. Often, provable optimal solutions are not strictly

required and local optima are sufficient. The phrase “good enough, fast enough”

is aptly used. The disadvantages are that they can appear very inefficient when

compared against an exact solver that can solve certain instances in acceptable

time limits. They also provide no lower bounds and would continue looking for

improvements to solutions even when they have found the optimum. To counter

some of these disadvantages, hybrid exact/metaheuristic methods have also been

successfully applied. For example, a two phase approach by [39] and integer vari-

able fixing methods (also known as Relaxation Induced Neighbourhood Search)

have also been proposed such as [40] and [41]. Another hybrid method was re-

cently presented [42] and applied to the same benchmark instances as used here.

The results of which are compared to the method presented here in Section 5.

These methods have the advantage of utilising the very efficient branch-and-cut
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based solvers such as CPLEX [43], [44] and others. An alternative approach is

to hybridise constraint programming with integer programming such as [45].

The earliest examples of column generation used to solve nurse rostering are

from 1998 [46, 47]. In these papers and all subsequent ones a common approach

is used. It involves formulating a restricted master problem (RMP) involving

the cover/demand constraints. These are the linking constraints. Negative re-

duced cost columns for the RMP are generated by solving the pricing problem

formulated from the dual costs obtained after adding columns and re-solving the

RMP and the constraints for each individual employee’s schedule. The columns

can be considered as a possible work pattern or schedule for an individual em-

ployee. The RMP is solved when no more negative reduced columns can be

found. Branching and re-solving is then performed to find an integer feasible

solution. Although this is the general framework, there is great scope for vari-

ety in the implementation of the algorithms and many heuristics and variations

have been proposed to improve the performance. Often designs are included

to try and find good solutions in acceptable time limits rather than perform-

ing a complete enumeration of the branch and bound tree. In [46] the pricing

problem is formulated as a resource constrained shortest path problem. The

master problem is solved using the simplex method. The branch and bound

tree is searched using depth first and branching is performed on shift assign-

ments (constraint branching [48]). The planning horizon is solved in two week

intervals with 41 nurses and seven shift types. [47] use a similar approach and

also use Ryan-Foster branching but is able to solve planning horizons of 28 days

with 86 nurses and five shift types in reasonable time limits. A later example

of a similar approach is given in 2004 by [3] but again the planning horizon

was limited to three weeks. In 2010, [49] experimented with different branching

strategies to improve the performance of their branch and price algorithm for

nurse rostering. These included branching on the original variables in the mas-

ter problem. They also used a two phase approach to solve the pricing problem.

In the first phase fast heuristics based on neighbourhood search are used to try

and find any negative reduced cost columns. If this is not possible, it switches
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to a dynamic programming method in a second phase. The largest instances

they solved have 28 days, 30 nurses and three shift types. Although a dynamic

programming method is usually used to solve the pricing problem in branch

and price methods for nurse rostering, alternative methods could also be used.

For example, an integer programming solver can be used such as CPLEX or

Gurobi. [50] demonstrated the use of a constraint programming solver on the

pricing problem in their approach but again the maximum sized problems they

solved was four weeks. Other ways of speeding up branch and price methods

include stabilisation in the column generation such as demonstrated in [23], or

using a regression model to try and predict upper bounds in the pricing prob-

lem [51]. Another possible improvement is to combine branch and price with a

metaheuristic. For example, [52] hybridise branch and price with a metaheuris-

tic by taking the solution generated by branch and price and trying to improve

it further using a population-based evolutionary approach. For further reading

on column generation in general we refer the reader to [53] and [54].

All of these previous branch and price methods were designed for smaller

and medium-sized instances. Solving large instances is very challenging because

long planning horizons create many more variables. If there are also large num-

bers of shift types then the number of constraints and variables increases even

more. As we will show, the latest commercial solvers are unable to find even

feasible solutions to the largest instances we have tested. In order to tackle these

largest instances we have had to use several novel solutions. The main contri-

bution of this paper is solving the RMP using a first-order linear programming

solver based on the work of [55] and [56], which will be discussed in Section 4.

This is an algorithm that has seen much use in computer vision: for example in

sensor fusion for self-driving cars [57], image denoising [58] and motion segmen-

tation [59]. We show in this paper that first-order linear programming is very

suitable for the RMP in column generation.

In the next section, we introduce the problem and the benchmark data sets.
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3. The Model and Test Data

Our algorithm is tested on a collection of nurse rostering benchmarks data

sets publicly available from http://www.schedulingbenchmarks.org. The in-

stances range in size from small (two weeks planning horizon, eight staff, one

shift type) to very large (52 weeks planning horizon, 150 staff, 32 shift types).

Table 1 lists the instances and their sizes.

An integer programming formulation of the problem is given below. The

instances start on a Monday and the planning horizon h is a whole number of

weeks (h mod 7 = 0).

Parameters

I set of employees.

h number of days in the planning horizon.

D set of days in the planning horizon = {1...h}.
W set of weekends in the planning horizon = {1...h/7}.
T set of shift types.

Rt set of shift types that cannot be assigned immediately after shift type t.

Ni set of days that employee i cannot be assigned a shift on.

lt length of shift type t in minutes.

mit maximum number of shifts of type t that can be assigned to employee i.

bi minimum number of minutes that employee i must be assigned.

ci maximum number of minutes that employee i can be assigned.

fi minimum number of consecutive shifts that employee i must work.

gi maximum number of consecutive shifts that employee i can work.

oi minimum number of consecutive days off that employee i can be assigned.

ai maximum number of weekends that employee i can work.

qidt penalty if shift type t is not assigned to employee i on day d.

pidt penalty if shift type t is assigned to employee i on day d.

sdt preferred total number of employees assigned shift type t on day d.

udt weight if below the preferred cover for shift type t on day d.
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vdt weight if exceeding the preferred cover for shift type t on day d.

Decision Variables

xidt 1 if employee i is assigned shift type t on day d, 0 otherwise.

kiw 1 if employee i works on weekend w, 0 otherwise.

ydt total below the preferred cover for shift type t on day d.

zdt total above the preferred cover for shift type t on day d.

Constraints

Maximum shifts per day. An employee is assigned at most one shift each

day.
∑

t∈T
xidt ≤ 1, ∀i ∈ I, d ∈ D (1)

Shift rotation. A minimum rest is required after a shift. This means that

certain shifts cannot follow others. Such as, an early shift cannot follow a late

shift.

xidt + xi(d+1)u ≤ 1, ∀i ∈ I, d ∈ 1...h− 1, t ∈ T, u ∈ Rt (2)

Maximum numbers of shifts of each type that can be assigned

to employees. For example, some employees may have contracts which do

not allow them to work night shifts. Another employee may work a maximum

number of late shifts

∑

d∈D
xidt ≤ mit, ∀i ∈ I, t ∈ T (3)

Minimum and maximum work time. The total time worked by each

employee must be within a minimum and a maximum number of minutes. These

limits can vary depending on whether the employee is full-time or part-time for

example.

bi ≤
∑

d∈D

∑

t∈T
ltxidt ≤ ci, ∀i ∈ I (4)
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Maximum consecutive shifts. The maximum number of shifts an em-

ployee can work without a day off. For example, part-time employees sometimes

do not work as many consecutive shifts as full-time staff.

d+gi∑

j=d

∑

t∈T
xijt ≤ gi, ∀i ∈ I, d ∈ 1...h− gi (5)

Minimum consecutive shifts. This is modelled by preventing every se-

quence of consecutive shifts below the minimum. For example, if the minimum

number of consecutive shifts is four then it must not allow any of the sequences:

{off-on-off, off-on-on-off, off-on-on-on-off } where off is a day without a shift

and on is a day with a shift assigned.

∑

t∈T
xidt+


s−

d+s∑

j=d+1

∑

t∈T
xijt


+

∑

t∈T
xi(d+s+1)t > 0,

∀i ∈ I, s ∈ 1...fi − 1, d ∈ 1...h− s+ 1 (6)

Minimum consecutive days off. This is modelled similarly to the min-

imum consecutive shifts constraint. For example, if the minimum number of

consecutive days off is three then it must not allow any of the sequences: {on-

off-on, on-off-off-on}.
(

1−
∑

t∈T
xidt

)
+

d+s∑

j=d+1

∑

t∈T
xijt +

(
1−

∑

t∈T
xi(d+s+1)t

)
> 0,

∀i ∈ I, s ∈ 1...oi − 1, d ∈ 1...h− s+ 1 (7)

Maximum number of working weekends. If the employee has a shift

on the Saturday or the Sunday it is a working weekend.

kiw ≤
∑

t∈T
xi(7w−1)t +

∑

t∈T
xi(7w)t ≤ 2kiw, ∀i ∈ I, w ∈W (8)

∑

w∈W
kiw ≤ ai, ∀i ∈ I (9)

Days off. These are days that employees cannot work because, for example,

they have booked the day off for holiday.

xidt = 0, ∀i ∈ I, d ∈ Ni, t ∈ T (10)
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Cover requirements. These ensure that there are the required number of

staff available during each shift.

∑

i∈I
xidt − zdt + ydt = sdt, ∀d ∈ D, t ∈ T (11)

Objective Function

minimise
∑

i∈I

∑

d∈D

∑

t∈T
qidt (1− xidt) +

∑

i∈I

∑

d∈D

∑

t∈T
pidtxidt+

+
∑

d∈D

∑

t∈T
ydtudt +

∑

d∈D

∑

t∈T
zdtvdt (12)

The objective function minimises the number of unsatisfied employee shift

requests and also minimises under and over staffing. qidt and pidt are the re-

spective weights for requested shifts on and shifts off. For example, a nurse may

ask to be assigned a specific shift type on a day. The higher the weight is, the

more important it is to satisfy the request. If there is no request, the parameter

has the value zero. Variables ydt and zdt are the total nurses below and above

the preferred cover for shift type t on day d. The parameters udt and vdt are

weights for the importance of minimising over and under cover.

In all the benchmark instances the weight for minimising under cover is

much larger than the other weights. This reflects the real-world requirement of

a minimum number of nurses in order to provide patient safety and healthcare.

The weights for the requested shifts are relatively low because they represent

preferences only. Ideally they will be satisfied but it is not guaranteed because

the constraints and minimum level of cover are of greater priority.

4. Algorithm

Our method is inspired by Branch and Price but differs in two major ways.

Firstly, we do not solve the column generation exactly. Instead we quickly pro-
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duce approximate solutions. Secondly, we employ a diving heuristic instead of

exploring the tree in full. Branch and Price is a branch and bound method with

each node in the branch and bound tree being solved using column generation.

Whenever new columns are added to the RMP, it is re-solved and the updated

dual costs are then used to determine if there are any more possible columns

to add. If a new column is found, it is added and the RMP is re-solved. After

completely solving the RMP, an integer solution must be obtained. It is possi-

ble to branch on variables in the RMP but typically constraint branching [48]

is used instead. This is also the method used here and is discussed further in

Section 4.2. Instead of doing a complete enumeration of the branch and bound

tree, we use a depth-first strategy to find near optimal solutions as quickly as

possible. After the first feasible solution, the solver is restarted from the begin-

ning without any branches. Because the solver now have access to a very large

pool of potential columns, the subsequent solutions will be better, see Figure 7.

In this figure we can see that the RMP solution has almost converged before

the first branch even (black disc) and progress is very slow. When the solver

is restarted after the first integer solution (red disc), it has access to columns

generated both before and after branching, and is able to significantly improve

the RMP solution during the second attempt. It is possible that after a restart,

branching decisions could be repeated. In practice however we did not see this

occur. This is because the pool of columns keeps growing which gives a better

(different) fractional solution, which results in different decisions.

The overall algorithm can be viewed as an iterative process where each iter-

ation proceeds as follows:

1. If LP objective change was less than δ, branch. (section 4.2)

2. Generate new columns for the RMP (pricing). These are put in a pool of

possible columns. (section 4.3)

3. Pick columns from the pool that have negative reduced costs. Columns in

the RMP that have been zero for five iterations are removed to keep the

problem smaller.
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4. Solve the LP. (section 4.1)

5. If the solution is integer, stop.

4.1. Solving the Master Problem

The master problem (RMP) is a linear program of the following form:

minimise
x,z

∑
i,j ci,jxi,j +

∑
i uizi (13)

subject to
∑

j xi,j = 1, ∀i ∈ I. (14)

Bx + Cz = s, (15)

z ≥ 0, 0 ≤ x ≤ 1. (16)

The variable xi,j determines whether candidate roster j should be assigned to

employee i. The candidates are employee-specific since the feasibility of rosters

depends on many employee-specific rules. For the same reason, most employees

typically have different numbers of candidate rosters. The cost ci,j contains all

costs that are roster-specific (sum of requested shifts). The slack variables z

adds penalties for not covering all shifts completely.

Constraint (14) requires one roster to be picked per employee (in the integer

case, that is; the linear program is a relaxation). The other set of constraints,

(15), connects the rosters to the slack variables z encoding the cover require-

ments from Section 3.

The master problem is typically solved using a simplex solver. The solvers

we tested however were not suitable for the largest instances (21–24). Instead

a first-order method is used for these instances, which gives a low-accuracy

solution very quickly. As we will see below, each iteration of a first-order solver

only requires (sparse) matrix-vector multiplications and dot products, which

makes their memory usage very attractive.
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The RMP can be written as1

minimise
x

cTx

subject to Ax� b

l ≤ x ≤ u,

(17)

where � means element-wise ≤, ≥, or =. The main loop of the algorithm then

consists of the following steps [56]:

1. xprev ← x

2. x← T(ATy + c)

3. x← max(l,min(u,x)) (element-wise projection onto [l,u])

4. y ← Σ(A(2x− xprev)− b)

5. (a) yi ← max(0, yi) if constraint i is ≤
(b) yi ← min(0, yi) if constraint i is ≥.

The vector y represents dual variables for each constraint. The matrices Σ

and T are diagonal, making their application very cheap. They are computed

as preconditioners, which is described in [56] and our source code. Here it is

important to observe that the only additional storage required is the additional

vector xprev, so the memory requirements are practically the same as storing

the problem. We choose, however, to also store the transposed matrix AT, for

additional optimisation of the inner loop.

The runtime of the algorithm is completely dominated by the two sparse

matrix-vector multiplications. We run these in parallel (with Eigen [60]).

4.1.1. Rescaling of c.

While [56] described how to precondition A with Σ and T, there is an ad-

ditional degree of freedom that we take into account. We can observe in the

algorithm that x is computed from y, and vice versa. It then makes numerical

sense if these two vectors were of roughly the same magnitude.

1We have now, for the remainder of this section, combined the roster variables xi,j with

all slack variables into a single vector x for brevity.
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Multiplying c by a (positive) constant will obviously not affect the optimal

point of (17). We then pick that constant so that ||c||2 = ||b||2, in order to

make x and y roughly the same magnitude.

4.1.2. Stopping criteria

Finding good stopping criteria for first-order solvers can be difficult. But for

our purposes, we have found simple criteria to be sufficient. We stop iterating

when either:

• We reach 5000 iterations. (See Section 4.4 for how to choose this)

• We observe a relative change of both the primal and dual variables of less

than 10−6.

We observed that in practice the first criterion is usually satisfied before the

second one.

4.1.3. Warm-start

This first-order solver is easy to warm-start for our purposes. Between solv-

ing the RMP, the only things changing are columns being added and removed.

When a column is added, we simply assign it an initial value of xi,j = 0.

When a column is removed (due to branching), we renormalise the remaining

columns for that employee so they still sum to 1 (
∑

j xi,j = 1). This ensures

that we always start solving with a feasible solution each time we start the RMP.

4.2. Branching

We do not branch in the sense of exploring multiple paths in the decision

tree. Instead, we simply search the tree depth-first [61] in order to find a so-

lution quickly. This still requires a substantial amount of work and so much

information is generated along the way (in the form of new candidate rosters)

that we found it more effective to re-start from the beginning after an integer

solution is found rather than exploring other paths in the same tree. This means

that when an integer solution is found, we remove all branching constraints and
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restore all rosters to the RMP and solve again starting from the root node

but with the aim of finding a better solution. At each re-start there are more

columns available in the RMP which often leads to a different solution. The

reason for this design choice is that exploring other parts of the tree requires

too much time for the large instances where most of the computation is spent

on simply finding a feasible solution.

Branching is done by branching on shift assignments in the columns for each

employee [48]. For each cover constraint k, every column with that shift is

summed:

ri,k =
∑

xi,j has shift k

xi,j . (18)

Because of constraints (16), we have 0 ≤ ri,j ≤ 1 as well. These are the variables

we are branching on. The full procedure is as follows:

1. Set t = 0.75. (The default; see Section 4.4 for how to set it.)

2. Fix all shifts with ri,k ≥ t.
3. If at least one shift was fixed, stop.

4. Otherwise, if t > 0.51, set t← 0.9t and try step 2 again. This lowers the

threshold successively until something is fixed.

5. If t ≤ 0.51, pick a column with xi,j ≥ 1
2 , fix it to one, and stop.

6. (If no such column was found, fix any value xi,j 6∈ {0, 1} to 1.)

Step 5 seldom happens and step 6, included for completeness, is rarely, if ever,

observed in practice. Fixing a whole column xi,j to 1 for an employee effectively

removes that employee from further optimisation.

Figures 1 and 2 show the fractional solution number during column genera-

tion. These visualisations can prove helpful when tuning the fixation threshold

(Section 4.4).

Branching is not performed in every iteration, but only when the RMP seems

to have converged (this is a key algorithm parameter in Section 4.4). Figure 5

shows several interesting things about branching, which is represented in the

graph as small black discs. Immediately after branching, the objective values
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Figure 1: Shift fixing for three employees (“A,” “J,” and “AE”) in Instance 9. Each line in

the image is a possible shift. The grayscale shows the fractional assignment of the shift to

the employee. Red means that the shift has been fixed to 1. The blue column is the integer

solution. Employee “AE” seems to have been problematic for the solver as most shifts were

assigned immediately before the integer solution. It is likely that the solver will be more

successful on the next re-start when it has a larger pool of rosters to choose from.

Figure 2: Shift fixing for three employees (“A,” “AB,” and “AL”) in Instance 19. The colours

have the same meaning as in Figure 1. Employee “AB” was almost completely assigned in

the first round of fixing. This could mean that the solver’s strategy was too aggressive.
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become much worse. New rosters that fit well around the fixed shifts are however

found very quickly. The objective converges much faster after fixing because the

pricer finds it easier to generate good new rosters. So branching early is often,

unless a unrecoverable mistake is made, beneficial for the speed of the solver.

4.3. Generating New Columns (Pricing)

The pricing problem is modelled as a resource-constrained shortest path

problem in a directed acyclic graph and solved using dynamic programming.

Figure 3 shows the graph for the smallest instance in the benchmark database.

The constraints from Section 3 are handled in different ways. The first

category of constraints are implemented for free by the graph itself:

• Maximum shifts per day—by not having edges between shifts on the same

day. See Figure 3, right.

• Shift rotation—by not including edges between certain types of shifts. See

Figure 4, left.

• Minimum consecutive days off—by only having edges from shifts to a day-

off node some days in the future. See Figure 3, left.

• Days off—by removing work nodes for specific days. See Figure 3, right.

• Branching descisions—we do branching by assigning a specific shift to a

specific employee. This is represented in the graph by simply disconnecting

all other nodes on that day (Figure 4).

These constraints are implemented in the graph preprocessing phase. The sec-

ond category are constraints that are implemented as resources in the shortest

path problem:

• Minimum and maximum work time.

• Minimum and maximum consecutive shifts.
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Figure 3: Pricing graph for the smallest instances among the benchmarks. Left: Instance 1.

There are only two possibilities for each day: off and working (shift “D”). Note that there are

no arrows from “D” to “Off” to the same or the next day. This encodes the constraint that

for this instance, the minimum consecutive days off are 2, an example of a constraint that we

can implement “for free” – by removing edges from the graph. Right: Instance 2. There are

two possible shifts for each day: “E” and “L.”
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Optimisations such as dividing all working times by their greatest common

divisor are important to reduce memory usage for our dynamic programming

solution. The solver finds the optimal solution for the constraints mentioned

above.

Finally, we have two constraints not modelled in the graph or added as

resources:

• Maximum numbers of shifts of each type that can be assigned to employ-

ees.

• Maximum number of working weekends.

These two constraints are handled heuristically by assigning penalties to the

solutions produced. If a shortest path is obtained with too many working week-

ends, we assign large penalties to the weekends exceeding this limit (sorted by

their costs so we try to keep the best ones). The graph is then re-solved. The

procedure does not guarantee to produce a feasible solution but in practice we

observed that it nearly always does. If a feasible solution is not produced then

the pricing problem for this nurse is skipped until the next iteration when the

duals have been updated and the problem has changed and may be solvable.

Because we do not solve to optimality, the overall method does not produce

lower bounds. However, we do not solve the RMP until convergence either so

we do not require the pricing problem to be solved exactly. These are both

design features aimed at finding good upper bounds more quickly, particularly

for the largest instances, rather than finding a lower bound.

4.3.1. Preprocessing the graph

Constraints are often implemented by removing edges from the graph. This

often means that nodes or other edges become unreachable. Before solving,

we preprocess the graph to only include edges and nodes that can be part of a

complete path. Figure 4 shows this process, where nodes that cannot be reached

from the start or cannot reach the end are removed.
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Figure 4: Pricing graph for Instance 5 from the benchmark (chosen because its single shift

type reduces clutter). Many shifts have been fixed during branching. Left: The graph after

the branching has fixed many shifts to 1 for the employee. This means removing edges from

the graph that leads to shifts that are now impossible. Right: The graph after fixing and

preprocessing. Many nodes are now redundant and have been removed. Nodes in the long

straight segments can be further merged.
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4.4. Algorithm parameters

The key parameters that affect the performance of the algorithm are:

• Number of solutions. After we have obtained a final integer solution we

re-start from the beginning, only keeping the columns we have generated

so far in a pool of possible columns to add to the RMP. As we show in e.g.

Figure 7, doing this repeatedly usually gives better solutions. The first

solution requires the longest time to compute, because all columns have

to be generated by the pricing routine.

• RMP objective change before branching determines whether to

branch as described in Section 4.2. If the objective change between a

complete round of branching is less than δ, we run the branching routine.

In our tests, we used a value of δ = 1, except for the largest instances 23

and 24, where we used 30 and 100, respectively. Setting this parameter

lower will require more time and give better solutions. On the largest two

instances though it was necessary to increase it in order to find solutions

in a reasonable computation time.

• The fixation threshold t is the criteria for determining whether to fix

a shift to an employee during branching. If the sum of all columns for

an employee exceeds this threshold for a specific shift, this shift is fixed

for that employee. We used t = 0.75 for this parameter except for the

largest instance, where we used 0.52. Setting this parameter higher will

give fewer fixations each round and the algorithm will take longer to con-

verge. Because fewer fixes are made each round, the solver also has more

opportunity to avoid really bad fixations and the end result may become

better.

Figures 7 and 8 show the difference where all other parameter were held

constant and the fixation threshold changed from 0.75 to 0.99.

• Maximum iterations of the first-order solver. The runtime is dom-

inated by two factors: pricing and solving the RMP (other things that
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do not require much time include branching decisions and determining

columns to remove). If the time required to solve the RMP is very small

compared to pricing, allowing more iterations for increased accuracy may

be beneficial, and vice versa. We have used a limit of 5000 iterations of

the main loop in Section 4.1.

See Table 7 for an illustration of the trade-off of these parameters.

All code is available at https://github.com/PetterS/monolith

5. Experimental Results

The algorithm was tested on the benchmark nurse rostering data sets avail-

able at http://www.schedulingbenchmarks.org.

In an initial implementation of the algorithm the open-source CLP linear

programming solver [62] was used to solve the RMP. However on the largest

instances it was too slow to be a practical option. This motivated the imple-

mentation of the Chambolle-Pock method.

To compare the performance of the Chambolle-Pock method with alternative

linear programming solvers, Table 2 lists the time required by different methods

of IBM’s CPLEX Optimiser 12.9.0 [43] to solve the RMP produced after 100

iterations of column generation on Instance 24 (the largest instance). As can

be seen, CPLEX’s primal and dual simplex methods are also too slow on these

largest instances. The barrier method is a lot faster though and could possibly

be a viable alternative. However it is still slower than the Chambolle-Pock

method. This test shows the importance of solving the RMP efficiently. It has

to be solved after adding new columns and could be potentially called thousands

of times during the overall algorithm. If it is not solved efficiently this would

become a severe bottle-neck in the algorithm.

The results of applying CPLEX 12.9.0 to all the instances are given in Table

3. The formulation used is the integer programming formulation given in Sec-

tion 3 known as the “time-indexed formulation”. CPLEX was given a maximum

computation time of one hour and the best lower bound and integer solution
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found after one hour are reported. The MIPEmphasis parameter for CPLEX

was set to finding feasible solutions as quickly as possible to more closely reflect

the emphasis of our algorithm. Ten of the smaller and medium sized instances

are solved by CPLEX to optimality. Integer feasible solutions are found for six

other instances. Lower bounds are produced for all instances except the third

largest. On eight of the instances (including the six largest) no solution is pro-

duced at all. The tests were then repeated on the largest instances but this

time allowing much longer computation times. The results are shown in Table

4. The lower bounds were improved but still no feasible solution was found.

These preliminary experiments and the results in [63] show that the first

twelve instances can all be solved within one hour using a commercial solver.

The larger instances appear to be much more challenging though. Therefore our

analysis and focus is on the twelve larger instances which appear to be harder

to solve.

Table 5 contains the results of testing the algorithm on the twelve largest

benchmark instances. The same parameter values as described in Section 4 were

used on all instances apart from the two largest instances (23 and 24). For these

two largest instances it was necessary to change two parameters which adjust

the speed/solution quality trade-off in order to produce solutions in a reasonable

computation time. These parameter values are also listed in Section 4. For

comparison purposes the results of a CPLEX 12.9.0 are included as well as

the best results from the literature. The best results in the literature include a

network flow based integer programming formulation solved using Gurobi ([63]),

a hybrid integer programming and variable neighbourhood search ([45]) and an

ejection chain method ([23]).

Comparing against the time-indexed formulation solved using CPLEX, we

find a better solution on nine out of twelve instances. Comparing against the

network flow based formulation, we find a better solution on six out of the twelve

instances. On the instances where it is out-performed it uses significantly less

time. Compared to the Hybrid VNS method, we find a better solution on four

of the instances. On ten of the twelve instances we use less computation time,
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which makes a direct comparison difficult. Unfortunately we discovered that

the solution for instance 23 (3794) reported for the Hybrid VNS method is not

possible and a mistake must have been made in that paper. By removing con-

straints 5., 6. and 7. (max consecutive shifts, min consecutive shifts and min

consecutive days off) from the IP model and solving the resulting relaxation

using CPLEX, a relaxed solution and lower bound of 16887 is produced. There-

fore the solution of 3794 cannot be possible. We outperform the ejection chain

method on all but one instance.

On Instance 13, which has a short planning horizon but a large number of

staff (120 nurses) we find the best solution compared to all methods and in

under ten minutes. On Instances 21 and 24 we also find the best known but on

Instance 24 we require a long computation time.

Table 6 contains further analysis of applying our column generation algo-

rithm to the five largest instances. On Instance 20 a solution was produced

within five minutes. Better solutions could also be found when given longer

solving times and further improved when combined with the local search. On

Instances 21 and 22, a feasible solution was found in less than thirty minutes.

On Instances 23 and 24, more than one hour was required to find a feasible

solution, and significantly more time to improve it.

Further discussion and insight into the progress of the algorithm is given

in Figures 6 to 10. Figures 9 and 10 also provide a comparison of using a

traditional simplex LP solver instead of the first-order method on the largest

possible instance that could still be feasibly solved using a traditional method.

The lower accuracy of the first order method is visible in comparison but it can

also be seen that the integer solutions are similar in value and the time required

is approximately the same.

Note we do not report any lower bounds because they are not produced.

The branching starts before convergence is allowed to complete and so before

an accurate lower bound can be calculated. An example of this can also be

seen by comparing Figures 9 and 10. Because the algorithm is not focussed on

providing a lower bound but instead in finding good upper bounds in reasonable
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time limits, it means that a heuristic approach to solve the pricing problem was

also suitable.

5.1. Local Search

We have also experimented with using local search in order to evaluate how

close our solutions are to a “local optimum.” When optimising an already fea-

sible solution with local search, we solve subproblems of the IP described in

detail in Section 3. The subproblems consist of one week at a time and a small,

random, group of employees at a time. It is similar to the variable fixing ap-

proaches in [40] and [41] where all the variables outside the selected week and

nurses are considered fixed to their values in the current solution and a much

smaller sub-problem is formed from the remaining variables.

These small IPs are solved quickly. Their solutions then replace the respec-

tive configurations in the large solution. Because all constraints are taken into

account, the new solution will have a lower or equal objective value.

We run the local search until no improvements are found. The results are

shown in Table 6. For some problems there is still room for improvement. We

also found that obtaining a good (or even feasible) solution with this local search

on its own was very unsuccessful.

6. Conclusions

The paper presents an efficient, heuristic, column generation based method

for the nurse rostering problem which is particularly effective on very large in-

stances. It is an heuristic method which focusses on producing good solutions

instead of producing valid lower bounds. Unlike traditional column generation

and branch and price, it performs an incomplete search, with the aim of find-

ing good solutions more quickly. It approximately solves the restricted master

problem and uses a diving heuristic instead of a complete search. It there-

fore does not produce lower bounds. It has been tested on a set of standard

benchmark data sets and has found best known solutions for some of the largest
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Figure 5: The convergence until the second integer solution in Instance 17. The blue line is

the RMP solution. Black discs (•) show times of branching. Red (•) and gray (•) discs are

feasible integer solutions, where the gray ones have been rounded from the current fractional

solution. The gray bars in the background show the number of columns in the RMP. This

number goes up when pricing and goes down when branching (colums that disagree with the

fixation choices are removed).

In the short-term, branching results in a worse fractional solution, but it quickly recovers and

converges much faster to a better objective function value.

Figure 6: The convergence until the second integer solution in Instance 18. The symbols

have the same meaning as in Figure 5. We can clearly see that branching (fixing shifts to

employees) results in a significantly worse RMP solution, but that additional pricing rounds

recover from this by generating rosters that fix nicely in the partially fixed structure.
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Figure 7: Same as Figure 6, but showing 10 integer solutions. There is a clear progression

showing increasingly better integer solutions.

Figure 8: Same as Figures 6 and 7, but using a very high (0.99) threshold for fixing shifts

(see Section 4.4). The solutions become better, but significantly more time is required (note

the scale on the x-axis compared to figure 7). Many more separate fixation events are now

required until an integer solution.
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Figure 9: The convergence until the second integer solution in Instance 19. The symbols

have the same meaning as in Figure 5. The objective function value takes a large hit when

branching, but the pricing quickly finds new columns that fit well into the remaining ones.

The integer solutions rounded from the fractional solution (•) are essentially worthless until

immediately before the solver has branched all the way to an integer solution.

Figure 10: Convergence when Instance 19 is configured to use the first-order solver. This

instance is still small enough that using a simplex solver works very well. The runtime is

almost the same as in Figure 9. Some inaccuracies from the first-order solver can be seen as

wiggles in the blue line. With a perfect LP solver, the RMP objective can never go up, except

when fixing. After the first integer solution (•), the solver is reset with 2500 new columns.

The first-order solver then has problems for a while (seen as the huge dip right after), but

recovers 4 seconds later.
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instances. A commercial solver was also tested on the benchmark set but it was

unable to find a feasible solution on the largest instances. The algorithm was

also compared against the best known solutions in the literature and was able

to further improve on the best knowns for some instances. The algorithm uses

several innovations but one of the most important was to use a very fast linear

programming solver for the restricted master problem. The solver is based on

the algorithm of [55] and [56]. Using Chambolle-Pock for column generation is

novel. Approximate methods that trade accuracy for speed are very suitable for

column generation because the main problem does not need high accuracy. It

only needs a good enough solution in order to generate columns better than the

current ones. For this problem and others which may have very large restricted

master problems, if good upper bounds are required in reasonable computation

times, first-order methods for solving the restricted master problem are shown

to be an effective option. When compared against CPLEX’s simplex optimizer

it was able to solve the largest restricted master problem significantly faster.

The pricing problem was solved using a dynamic programming method on a

resource constrained shortest path problem. It is a two phase approach which

handles some constraints in the graph structure, some as resources and some

heuristically in the second phase. This innovation made the pricer very fast,

which was key to being able to produce solutions for the largest instances. It is

very likely that this idea could also be used in column generation approaches for

other problem domains. A novel branching strategy is used to drive the search

towards integer solutions quickly and effectively. Again, this branching strategy

and insight is a general contribution in column generation and can be applied in

other problem domains. We also provide analysis of the progress of the branch-

ing algorithm, measuring the change in objective function and integer solutions

as branching decisions are made and columns are added. This assisted in the

designing of the branching rules and should provide interesting insight to other

researchers also. The source code for all the algorithms presented in the paper

is made available for other researchers to use and recreate the results presented
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here (https://github.com/PetterS/monolith).2

While we have focused on a public benchmark nurse rostering problems with

long planning horizons and/or large numbers of staff, there is no shortage of chal-

lenging problems in industry with shorter (one month) horizons. For example,

in the airline industry and the planning of crew rosters, it is often necessary to

schedule hundreds of staff over many flights. This results in very large restricted

master problems in branch and price methods, for which the proposed methods

here would be very suitable. Another domain with naturally large problems

is retail staff scheduling. Whereas nurse rostering requires the assignment of

shifts over planning horizons split by days, retailers usually schedule staff over

planning horizons split into fifteen minute time intervals. Demand for different

work activities is given for every fifteen minute interval and shifts rosters must

be produced that satisfy the activity demand at every fifteen minute interval, as

well as satisfying other constraints such as total work hours, rest time, maximum

shift lengths, shifts start times and more. If even only one week is scheduled at

a time, this results in a planning horizon of seven days multiplied by 96 fifteen

minute intervals per day which equals a planning horizon of length of 672 in-

tervals. Attempting to solve this using column generation or branch and price

would create very large restricted master problems and a fast first-order method

would be suitable option.

There are also some other options for future research directions. It is possible

the algorithm described for branching in Section 4.2 could be improved. It

does not look at where in the roster the candidate shifts occur, nor to whom

they belong—only at their numerical value. Taking the problem structure into

account here could prove beneficial. There is also a large body of research about

heuristics and local-search algorithms for scheduling problems. Given that after

many iterations, we have a very large number of feasible rosters, combining

and improving them with heuristics could be successful. This research has

2Also available for execution in the browser at https://www.strandmark.net/wasm/shift_

scheduling_colgen_page.html.
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been released as an open-source platform for experimentation to allow other

researchers to pursue this in the future.
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Table 1: Test Instances

Instance Planning horizon(weeks) Staff Shift types

1 2 8 1

2 2 14 2

3 2 20 3

4 4 10 2

5 4 16 2

6 4 18 3

7 4 20 3

8 4 30 4

9 4 36 4

10 4 40 5

11 4 50 6

12 4 60 10

13 4 120 18

14 6 32 4

15 6 45 6

16 8 20 3

17 8 32 4

18 12 22 3

19 12 40 5

20 26 50 6

21 26 100 8

22 52 50 10

23 52 100 16

24 52 150 32
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Table 2: Linear programming solvers tested on the RMP for Instance 24 after 100 iterations

of the column generation.

Solver Time(s)

Chambolle-Pock 10

CPLEX Barrier Method 51

CPLEX Primal simplex Optimiser 1414

CPLEX Dual Simplex Optimiser > 28800
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Table 3: CPLEX 12.9.0 tested on the benchmark instances.

Instance Lower Bound Solution Time(s)

1 607 607 0.59

2 828 828 0.97

3 1001 1001 10.08

4 1716 1716 46.98

5 1143 1143 101.91

6 1950 1950 60.71

7 1056 1056 1019.73

8 1285 1320 3600.04

9 247 440 3600.06

10 4631 4631 916.92

11 3443 3443 83.96

12 4040 4040 2831.41

13 1347 - 3600.11

14 1276 1284 3600.02

15 3810 7789 3600.06

16 3215 3230 3600.03

17 5730 - 3600.06

18 4363 4659 3600.05

19 2944 - 3600.04

20 3709 - 3600.13

21 9637 - 3600.20

22 - - 3600.45

23 146 - 3601.30

24 1133 - 3631.30
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Table 4: CPLEX 12.9.0 tested on the largest benchmark instances with longer computation

times.

Instance Lower Bound Solution Time(h)

20 4764 - 24

21 20943 - 24

22 23895 - 24

23 2772 - 48

24 1133 - 72

42

                  



T
a
b

le
5
:

C
o
m

p
a
ri

so
n

a
g
a
in

st
p

re
v
io

u
sl

y
p

u
b

li
sh

ed
b

es
t

k
n

o
w

n
s.

C
P

L
E

X
12

.9
.0

F
lo

w
B

as
ed

IP
[6

3]
H

y
b
ri

d
IP

+
V

N
S

[4
5
]

E
je

ct
io

n
ch

ai
n

[2
3]

T
h
is

p
ap

er

In
st

an
ce

U
B

T
im

e
(s

)
U

B
T

im
e

(s
)

U
B

T
im

e
(s

)
U

B
T

im
e

(s
)

U
B

T
im

e
(s

)

13
-

36
00

.1
16

52
18

00
0
.3

19
05

36
00

3
0
37

36
00

13
5
6

45
2

14
12

84
36

00
.0

12
78

74
4
.7

12
79

3
60

0
18

47
36

00
18

70
17

15
77

89
36

00
.1

38
53

18
0
0
0
.1

39
28

3
60

0
59

35
36

00
42

71
61

16
32

30
36

00
.0

32
25

16
89

.1
32

25
3
60

0
40

4
8

36
00

33
09

1
3

17
-

36
00

.1
57

46
14

67
.1

57
50

36
00

7
8
35

36
00

64
2
6

14

18
45

69
36

00
.0

44
60

18
0
0
0
.2

46
62

3
60

0
64

04
36

00
49

62
82

19
-

36
00

.0
32

04
18

00
5
.3

32
24

36
00

5
5
31

36
00

32
9
3

32
5

20
-

36
00

.1
50

78
18

00
2
.7

49
13

36
00

9
7
50

36
00

49
5
2

19
2
0

21
-

36
00

.2
-

-
2
3,

1
91

3
60

0
36

,6
88

3
60

0
21

,4
0
2

14
40

22
-

36
00

.4
-

-
3
2,

1
26

3
60

0
5
16

,6
86

36
0
0

50
,5

06
15

60

23
-

36
01

.3
-

-
37

94
*

36
00

5
4,

38
4

36
0
0

19
,7

04
15

,8
40

24
-

36
31

.3
-

-
2
,2

8
1,

44
0

3
60

0
1
56

,8
58

36
00

5
8,

48
0

31
,3

2
0

43

                  



Table 6: Column generation results. (The parameters in the notes are command-line argu-

ments for our solver to facilitate easy reproduction.) For Instance 20, running the simplex

solver (Clp) is feasible and results in better solutions with longer run times. Local search

means solving subproblems of the IP described in section 3 (one week at a time, small group

of employees at a time) (see section 5.1). This can marginally improve the column generation

solution, suggesting that perhaps other heuristics for pricing would be useful in addition to

the shortest path computations. The parameter objective change before fixing was set to dif-

ferent values for different instances. This parameter is a speed vs. quality tradeoff and gives

us reasonable runtimes even for the very largest instance. See also table 7.

Instance Solution Total runtime Notes

20 5563 5min Solution #1. --use first order solver --fix threshold=0.85

20 5408 9min Solution #2. ”

20 5286 17min Solution #1. --fix threshold=0.85

20 5083 29min Solution #4. ”

20 4952 29+3min With local search.

20 4918 29+15min ”

21 21402 24min Solution #1. --use first order solver

21 21274 51min Solution #4. ”

21 21159 23h With local search.

22 50506 26min #1. --objective change before fixing=10 --use first order solver

22 41169 110min #7. --objective change before fixing=10 --use first order solver

22 33155 24h --objective change before fixing=10 --use first order solver

23 24151 1.6h #1. --objective change before fixing=30 --use first order solver

23 19704 4.4h #4. ”

23 17428 43h With local search.

24 58480 8.7h --objective change before fixing=100 --use first order solver

24 48777 72h
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Table 7: Parameter sentitivity analysis on instance 18. Both the relative change in objective

function value to determine convergence and the threshold used to fix variables determine a

speed-quality tradeoff. See section 4.4 for a description of the parameters.

RMP objective change Fixation threshold First four solutions Total time (s)

100 0.75 6830, 6108, 5684, 5577 7

50 0.75 6179, 5971, 5675, 5375 9

10 0.75 5353, 5425, 5524, 5733 13

5 0.75 5260, 5464, 5366, 5655 19

1 0.75 5960, 5633, 5337, 5229 23

0.5 0.75 5426, 5045, 5131, 5020 26

1 0.6 8086, 9187, 9072, 8570 17

1 0.75 5960, 5633, 5337, 5229 23

1 0.9 4784, 5071, 4752, 4750 45
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