
ar
X

iv
:2

00
5.

10
09

7v
2 

 [
m

at
h.

O
C

] 
 2

7 
Ju

n 
20

20

Scheduling jobs with release dates on identical parallel machines

by minimizing the total weighted completion time

Arthur Kramer∗1,2, Mauro Dell’Amico2, Dominique Feillet3, and Manuel Iori2

1
Departamento de Engenharia de Produção, Universidade Federal do Rio Grande do Norte, Brazil

2
Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Italy
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Abstract

This paper addresses the problem of scheduling a set of jobs that are released over the time on a set

of identical parallel machines, aiming at the minimization of the total weighted completion time. This

problem, referred to as P |rj |
∑

wjCj , is of great importance in practice, because it models a variety

of real-life applications. Despite its importance, the P |rj |
∑

wjCj has not received much attention

in the recent literature. In this work, we fill this gap by proposing mixed integer linear programs

and a tailored branch-and-price algorithm. Our branch-and-price relies on the decomposition of an

arc-flow formulation and on the use of efficient exact and heuristic methods for solving the pricing

subproblem. Computational experiments carried out on a set of randomly generated instances prove

that the proposed methods can solve to the proven optimality instances with up to 200 jobs and 10

machines, and provide very low gaps for larger instances.

1 Introduction

Scheduling problems are among the most important problems in the combinatorial opti-

mization field, being intensively studied since the early 1950s. These problems are relevant

because of their practical and theoretical importance. Many practical situations are mod-

eled by means of scheduling problems, including personnel (see, e.g., van den Bergh et al.

2013), production (see, e.g., Allahverdi 2015), health care (see, e.g., Hall 2012) and project

(see, e.g., Demeulemeester and Herroelen 2002) problems. In addition to their practical

importance, solving scheduling problems is usually a challenging task because many of

them are NP-hard. Thus, the use of advanced optimization techniques such as column

generation, branch-and-bound and/or Benders decomposition, just to cite some, is fun-

damental for their efficient solution.

In this work, we address a particular scheduling problem in which we are given a set

J = {1, . . . , n} of jobs to be processed, without preemption, on a set M = {1, . . . , m} of

identical parallel machines. Each job j ∈ J has a processing time pj, a release date rj

and a weight wj. The objective is to find a schedule for which the sum of the weighted

completion times of the jobs,
∑

j∈J wjCj, is a minimum, where the completion time of a

job, Cj, is defined as the time in which its processing is finished. Using the scheduling
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classification of Graham et al. (1979), this problem can be referred to as P |rj|
∑

wjCj.

The P |rj|
∑

wjCj is NP-hard because generalizes the 1|rj|
∑

Cj, which was proven to

be NP-hard by Lenstra et al. (1977).

In the scheduling literature, only a limited number of works address the P |rj|
∑

wjCj.

Among them, Baptiste et al. (2008) propose lower bounds and Nessah et al. (2008) a

branch-and-bound algorithm. We are not aware of any recent work proposing a more

efficient exact method, thus representing a lack in the literature that we try to fill with

this paper.

A variety of combinatorial optimization problems have been successfully solved by

means of decomposition techniques, i.e., methods that rely on decomposing the problem in

master and subproblems (see, e.g., Valério de Carvalho 1999; Feillet 2010; Delorme et al.

2017 and Kowalczyk and Leus 2018). In this article, we focus on the application of

these techniques to the P |rj|
∑

wjCj. In particular, we present a time-indexed (TI)

formulation (see, e.g., Sousa and Wolsey 1992), an arc-flow (AF) formulation (see, e.g.,

Valério de Carvalho 1999; Delorme et al. 2016 and Kramer et al. 2019a), and a tailored

branch-and-price (B&P) algorithm, and use them to exactly solve large sized instances of

the P |rj|
∑

wjCj . Our B&P is based on the Dantzig-Wolfe (DW) decomposition of the

AF formulation. On one hand, AF formulations are characterized by having a pseudo-

polynomial number of variables and constraints, and hence their application to large size

instances may be prohibitive. On the other hand, the DW decomposition makes it possi-

ble to obtain a reformulation with very few constraints but with an exponential number

of variables. The B&P algorithm consists in solving at each node of a branch-and-bound

(B&B) tree a linear relaxation of the DW reformulation by means of a column generation

(CG) algorithm. To this aim, we propose CG algorithms that combine the use of domi-

nance rules and the use of exact and heuristic methods to tackle the pricing subproblem.

We performed computational experiments on randomly generated instances to evaluate

the performance of the proposed methods. The results that we obtained show that our

best proposed method is able to solve to the proven optimality instances with up to 200

jobs and 10 machines.

The remainder of this work is organized as follows. A literature review on the

P |rj|
∑

wjCj and closely related problems is provided in Section 2. Mixed integer linear

programming (MILP) TI and AF formulations are presented in Section 3. The proposed

B&P algorithm is detailed in Section 4. The performance evaluation of the proposed

methods is presented in Section 5, and then the concluding remarks and further research

directions are reported in Section 6.

2 Literature review

The P |rj|
∑

wjCj considers some important characteristics of production scheduling envi-

ronments that are commonly faced in practice, such as the presence of multiple machines,
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release dates and priorities on the jobs. The problem has not received much attention in

the recent literature, but the literature on closely related problems is rich and gives some

interesting insights also on how to tackle the P |rj|
∑

wjCj. In the following, we briefly

revise scheduling problems with release dates and involving objective functions related to

the total weighted completion time minimization.

The 1|rj|
∑

wjCj is a single machine NP-hard problem for which heuristic methods,

lower bounding schemes, B&B approaches and MILP formulations have been proposed in

the literature. Hariri and Potts (1983) proposed a simple heuristic method that consists in

iteratively sequencing the jobs according to the non-increasing order of the wj/pj ratio, in

such a way that the release dates are satisfied and unnecessary idle times are avoided. The

authors also proposed a lower bounding scheme based on the combination of their heuris-

tic algorithm with a Lagrangean relaxation of the release date constraints. In addition, a

B&B integrating these methods with dominance rules was developed. With the resulting

method, the authors solved instances with up to 50 jobs. Dyer and Wolsey (1990) pro-

vided a theoretical analysis and developed MILP formulations to compute lower bounds

for the 1|rj|
∑

wjCj. Lower bounding techniques were also proposed by Belouadah et al.

(1992). Their main technique is based on the idea of dividing the jobs in pieces so that

an efficiently solvable problem is derived.

Still with regard to the 1|rj|
∑

wjCj, a TI formulation was proposed by

van den Akker et al. (2000). The main advantage of this formulation concerns the

strength of its linear relaxation, while its main drawback is due to its pseudo-polynomial

size. To work around this fact, the authors applied a DW decomposition and solved the

linear relaxation of the problem by means of column and cut generation techniques, thus

obtaining a valid lower bound. Avella et al. (2005) focused on obtaining small duality

gaps. They combined a TI formulation with Lagrangean relaxation techniques to ob-

tain near-optimal solutions for large sized instances with up to 400 jobs. A framework

featuring B&B, dynamic programming (DP) and constraint programming techniques was

proposed by Pan and Shi (2008). With this framework the authors were able to solve in-

stances with up to 200 jobs to the proven optimality. Later, Tanaka and Fujikuma (2012)

developed a DP based algorithm that considers state elimination, dominance rules and

Lagrangean relaxation concepts. To the best of our knowledge, this method represents the

state-of-the-art approach for solving the 1|rj|
∑

wjCj, being able to solve to the proven

optimality instances with up to 200 jobs much faster than Pan and Shi’s method.

Concerning identical parallel machine variants, many authors studied problems where

preemption is allowed. Among them, Du et al. (1990) and Baptiste et al. (2007) investi-

gated the complexity of the problem of minimizing the total flow time when preemption

is allowed, where the flow time Fj of a job is defined as the difference between the time in

which its processing is finished and its release date, i.e., Fj = Cj − rj. The former work

proved that the P |rj, pmtn|
∑

Fj is NP-hard, while the latter demonstrated that if all

the processing times of the jobs are identical (i.e., pj = p for all j ∈ J) the problem is solv-
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able in polynomial time. A similar result has been achieved by Brucker and Kravchenko

(2005), who proposed a polynomial algorithm for solving the closely related P |rj, pj =

p, pmtn|
∑

Cj. Regarding again the P |rj, pmtn|
∑

Fj, Leonardi and Raz (2007) analyzed

the shortest remaining processing time (SRPT) rule, which at each time assigns to the

machines the jobs already released according to their shortest remaining processing time.

They showed that the SRPT rule is an O(log(min(n/m, pmax)))-approximation algorithm

for the P |rj, pmtn|
∑

Fj, where pmax = maxj∈J{pj}.

Regarding parallel machine problems without preemption, Leonardi and Raz (2007)

developed an approximation algorithm for the P |rj|
∑

Fj that is based on their previous

results for the problem with preemption. Their method relies on transforming a preemp-

tive schedule into a non-preemptive one. Yalaoui and Chu (2006), in turn, tackled the

problem of minimizing the related total completion time of the jobs. In their work, B&B

methods that consider theoretical properties of the problem as well as lower and upper

bounding schemes based on job splitting and release dates relaxation are presented. The

authors state that their work was the first to derive an exact approach to the P |rj|
∑

Cj.

The results that they obtained show that instances with up to 120 jobs and 5 machines

could be solved to the proven optimality.

With regard to the weighted version, i.e., the P |rj|
∑

wjCj studied in this work, we

highlight the contributions by Hall et al. (1997), Baptiste et al. (2008) and Nessah et al.

(2008). Hall et al. (1997) proposed approximation algorithms with performance guarantee

for a variety of scheduling problems to minimize the total weighted completion time,

including the P |rj|
∑

wjCj. For this problem, in particular, their method is based on an

approximation algorithm for the variant without release dates. The work of Baptiste et al.

(2008) focused on the study of existing and new lower bounding schemes for a variety of

parallel machine scheduling problems, including the P |rj|
∑

wjCj. Nessah et al. (2008),

in turn, proposed dominance rules, lower bounding schemes and a heuristic method. They

showed that the developed lower bounds and the heuristic method provide an average gap

of around 3% for instances with up to 500 jobs and 9 machines. When these components

are integrated into a B&B framework, instances with up to 100 jobs and 5 machines

are solved to the proven optimality. To the best of our knowledge, this method is the

state-of-the-art exact algorithm for the P |rj|
∑

wjCj.

3 Mathematical formulations

In this section, we present three different MILP formulations for P |rj|
∑

wjCj, namely, a

time-indexed, an arc-flow and a set covering formulation.

3.1 Time-indexed formulation

Time-indexed (TI) formulations (see, e.g., Sousa and Wolsey 1992) seek for scheduling

jobs over a sufficiently large time horizon by making use of time-indexed binary variables.
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Such variables, referred to as xjt, assume value 1 if job j ∈ J starts its processing at time

t ∈ {0, . . . , T −pj}, and 0 otherwise, where T represents the end of the time horizon. This

time horizon should be sufficiently large to ensure that there exists at least an optimal

solution for the problem, but needs to be as short as possible in order to reduce the

formulation size. In our implementation we adopted

T =

⌊

1

m

∑

j∈J

pj +
(m− 1)

m
pmax

⌋

+ rmax (1)

where pmax and rmax represent the maximum processing time and the maximum release

date among all jobs j ∈ J , respectively. Note that Equation (1) adds rmax to the

time horizon estimation of Kramer et al. (2019a) for the P ||
∑

wjCj . Because this es-

timation guarantees to find an optimal solution for the P ||
∑

wjCj (as also proved by

van den Akker et al. 1999) and because all jobs are available at time rmax, we are guar-

anteed to find an optimal solution within T .

A TI formulation for the P |rj|
∑

wjCj is as follows.

(TI) min
∑

j∈J



wjpj +

T−pj
∑

t=rj

wjtxjt



 (2)

s.t.

T−pj
∑

t=rj

xjt ≥ 1 j ∈ J (3)

∑

j∈J

ujt
∑

s=ljt

xjs ≤ m t ∈ {0, . . . , T} (4)

xjt ∈ {0, 1} j ∈ J, t ∈ {rj, . . . , T − pj} (5)

where ljt = max{rj, t+ 1− pj} and ujt = min{t, T + 1− pj}. The objective function (2)

seeks for the minimization of the total weighted completion time, constraints (3) ensure

that all jobs are processed, constraints (4) guarantee that at most m jobs are processed

in parallel, i.e., that at most one job at a time is processed on a machine, and constraints

(5) define the variable domain. The TI formulation (2)-(5) is characterized by O(nT )

variables and O(n+ T ) constraints.

3.2 Arc-flow formulation

Arc-flow (AF) formulations model problems using flows on a pseudo-polynomial size ca-

pacitated network. This technique has been successfully employed to model classical NP-

hard optimization problems, such as cutting stock problems (Valério de Carvalho 1999;

Delorme et al. 2016) and scheduling problems (Kramer et al. 2019a; Mrad and Souayah

2018).

To formulate the P |rj|
∑

wjCj using an AF formulation, let us define an acyclic di-
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rected multigraph G = (N,A), and a set R containing all distinct job release dates plus

{T}. The set of vertices N ⊆ {0, 1, . . . , T} represents the possible starting times and

completion times of a job in the planning horizon, for non dominated feasible solutions.

These times can be obtained by using Algorithm 1, and are usually called normal patterns

in the literature (see, e.g., Côté and Iori 2018). The set of arcs A is partitioned in such a

way that A = ∪j∈JAj∪A0, where Aj = {(q, r, j) : q ∈ N, rj ≤ q ≤ T −pj andr = q+pj} is

the set of job arcs associated to job j and A0 = {(q, r, 0) : q ∈ N, r = min (t ∈ R : t > q)}

is the set of loss arcs. Each job arc in Aj represents a possible processing of a job j on

a machine, whereas loss arcs in A0 model machine idle times. The procedure adopted to

obtain set A is detailed in Algorithm 1.

Algorithm 1 Construction of G = (N,A)

1: procedure Create Graph(T )
2: initialize R← distinct values in {r1, . . . , rn} ∪ {T } sorted in increasing order;
3: initialize i← 0;
4: initialize N ← ∅;A[0 . . . n]← ∅; ⊲ N : set of vertices; A[j]: set Aj

5: initialize P [0 . . . T ]← 0; ⊲ P : array of size T + 1, used to store arc tails

6: for q ∈ R do P [q]← 1;

7: for q ← 0 to T do

8: if P [q] = 1 then

9: for j ← 1 to n do

10: if q ≥ rj and q + pj ≤ T then P [q + pj]← 1;A[j]← A[j] ∪ {(q, q + pj , j)};

11: for q ← 0 to T do

12: if P [q] = 1 then

13: N ← N ∪ {q};
14: while q ≥ R[i] do i← i+ 1;

15: A[0]← A[0] ∪ {(q, R[i], 0)}; ⊲ A[0]: set of dummy/loss arcs

16: A← ∪j∈JA[j] ∪ A[0];
17: return N,A

In the AF formulation, a valid schedule of jobs on a machine corresponds to a path in

G. Thus, we associate with each job arc a binary variable xqrj, (q, r, j) ∈ Aj , assuming the

value 1 if job j starts its processing at time q and finishes at time r, 0 otherwise, and with

each loss arc a continuous variable xqr0, (q, r, 0) ∈ A0. In this way, the AF formulation

models the P |rj|
∑

wjCj as the problem of finding m paths in G containing all jobs j ∈ J

and having a minimum total weighted completion time, namely:

(AF) min
∑

j∈J



wjpj +
∑

(q,r,j)∈Aj

wjqxqrj



 (6)

s.t.
∑

(q,r,j)∈Aj

xqrj ≥ 1 j ∈ J (7)

∑

(q,r,j)∈A

xqrj −
∑

(p,q,j)∈A

xpqj =











m, if q = rmin

−m, if q = T

0, otherwise

q ∈ N (8)

xqrj ∈ {0, 1} (q, r, j) ∈ A \ A0 (9)
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0 ≤ xqr0 ≤ m (q, r, 0) ∈ A0 (10)

with rmin = minj∈J{rj}. The objective function (6) minimizes the sum of the weighted

completion times; constraints (7) state that each job should be processed at least once;

constraints (8) impose the flow conservation at each time instant of the time horizon;

and constraints (9) and (10) define variable domains. The formulation has a pseudo-

polynomial size, with O(n|N |) variables and O(n + |N |) constraints.

3.3 Set covering formulation

Set covering (SC) formulations have been widely used to model many combinatorial op-

timization problems, in particular after the application of the DW decomposition of a

given formulation. Let S be the set of all possible elementary schedules for a machine,

i.e., those schedules where all selected jobs respect their release dates, are scheduled at

most once and are not overlapping among them. Formally, S is defined as the set of all

solutions of polytope (11)-(14):

∑

(q,r,j)∈Aj

xqrj ≤ 1 j ∈ J (11)

∑

(q,r,j)∈A

xqrj −
∑

(p,q,j)∈A

xpqj =











1, if q = rmin

−1, if q = T

0, otherwise

q ∈ N (12)

xqrj ∈ {0, 1} (q, r, j) ∈ A \ A0 (13)

0 ≤ xq,r,0 ≤ 1 (q, r, 0) ∈ A0 (14)

For a given s ∈ S, let asjq ∈ {0, 1} indicate whether job j starts at time q in schedule s

or not. Then, asj =
∑

(q,r,j)∈Aj
asjq determines if job j is included in the schedule (asj = 1)

or not (asj = 0), and cs =
∑

j∈J

∑

(q,r,j)∈Aj
wj a

s
jq (q + pj) is the cost of the schedule.

By defining πs, ∀s ∈ S, as a binary variable assuming value 1 if schedule s is in the

solution and 0 otherwise, the P |rj|
∑

wjCj can be modeled as:

(SC) min
∑

s∈S

csπs (15)

s.t.
∑

s∈S

asjπs ≥ 1 j ∈ J (16)

∑

s∈S

πs ≤ m (17)

πs ∈ {0, 1} s ∈ S (18)

The objective function (15) aims at minimizing the total weighted completion time;

constraints (16) impose that each job j ∈ J has to be processed at least once; constraint

(17) imposes that no more than m schedules are used; and constraints (18) define the

7
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variable domain.

As usual with SC formulations, the above model involves an exponential number of

variables. In such cases, full enumeration of all variables is unpractical, and a CG approach

must be used (see, e.g., Lübbecke and Desrosiers 2005; Feillet 2010). In the following

sections, we detail the B&P method that we developed to solve this model.

4 Branch-and-price

4.1 Column generation principle

Column generation algorithms are often employed to solve linear programs (LPs) con-

taining an exponential number of variables. These methods benefit from primal/dual

information to avoid the full enumeration of columns. Basically, a CG algorithm consists

of (a) solving a restricted LP containing a subset of variables; (b) retrieving dual infor-

mation about the solution, identifying and adding new attractive variables (i.e., variables

with a negative reduced cost, for a minimization problem) to the restricted LP. Steps (a)

and (b) are repeated until no new attractive variable exists. In step (b), identifying new

variables is not always a simple task. In general, this step requires solving a subprob-

lem, known as pricing problem. This section details the components of our proposed CG

method employed to solve the LP relaxation of formulation (15)-(18).

First, let us define MP as the LP relaxation of model SC (i.e., (15)-(18)), referred to

as master problem, and MP(S ′), where S ′ ⊆ S, as the restricted master problem obtained

using only the variables in S ′. Let us also define the dual of MP(S ′), named DMP(S ′),

as:

(DMP(S ′)) max
∑

j∈J

λj +mλ0 (19)

s.t.
∑

j∈J

asjλj + λ0 ≤ cs s ∈ S ′ (20)

λj ≥ 0 j ∈ J (21)

λ0 ≤ 0 (22)

where λj, j ∈ J , and λ0 are the dual variables associated with constraints (16) and (17),

respectively.

The idea of the CG algorithm is to compute the optimal solution π∗ to MP(S ′) to

find the corresponding dual optimal solution λ∗ and look for a column s ∈ S \ {S ′} with

negative reduced cost, if any. Once there is no column with negative reduced cost, π∗

is optimal for MP(S) and the process ends. The resulting CG procedure is shown in

Algorithm 2.

In Algorithm 2, the set S ′ of initial columns is obtained by a simple heuristic procedure

based on the combination of the earliest release date and the weighted shortest processing

8
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Algorithm 2 Column generation

1: procedure CG
2: initialize S′ ⊆ S with an initial subset of schedules;
3: repeat

4: solve MP(S′) and obtain the optimal dual solution λ∗;
5: if ∃ s ∈ S \ {S′} with negative reduced cost then S′ ← S′ ∪ s;

6: until s = ∅
7: return λ∗

time (WSPT) rules. The method consists in iteratively sequencing the jobs on machines.

At each step, the job with lowest WSPT value among those already released is sequenced

on the least loaded machine. Step 5, in turn, represents the process of finding and adding

new columns, which is done by solving the pricing problem that we detail in the next

sections.

4.2 Pricing problem

In our case, the pricing problem consists in finding single machine schedules with negative

reduced cost c̄s satisfying (11)-(14), where c̄s is given by:

c̄s = cs − λ0 −
∑

j∈J

asjλj =





∑

j∈j

∑

(q,r,j)∈A

asjq (wj (q + pj)− λj)



− λ0. (23)

Let us consider the acyclic directed multigraph G = (N,A) introduced in Section 3.2

and define a cost c̄(q,r,j) = wj(q + pj) − λj on every arc (q, r, j) ∈ A \ A0 and a cost

c̄(q,r,0) = 0 on arcs in A0. A machine schedule in S can then be represented by a path in

G, starting from node rmin and ending at node T . Furthermore, the cost of this path is

exactly the reduced cost of the machine schedule plus λ0.

Unfortunately, the opposite is not true: a path between rmin and T in G does not

necessarily represent a schedule of S, because some jobs might be repeated in the path

(several arcs belonging to the same set Aj) while set S is limited to elementary schedules.

For that reason, the pricing problem must include a further constraint, given by a non

renewable resource preventing to select more than one arc from the same set Aj , for all

j ∈ J . Following Feillet et al. (2004), n binary resources could be introduced to manage

these constraints, at the expense of possibly prohibitive computing times.

4.3 Pricing problem with non-elementary schedules

An alternative emerges if we disregard constraints (11) and allow jobs to be taken more

than once in a schedule. Let us denote by S+ the set of machine schedules extended to

these non-elementary schedules (S ⊆ S+). Introducing in the master problem new vari-

ables for schedules in S+ \ S enlarges the solution space and might consequently weaken

the lower bound provided by the model. On the other hand, it simplifies a lot the pric-

ing problem, which becomes a standard shortest path problem with resource constraints

9
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(SPPRC) in an acyclic (topologically-ordered) graph and can be solved by dynamic pro-

gramming with a complexity O(nT ). Algorithm 3 reports the labeling correcting (LC)

algorithm that we implemented to solve this problem. In this algorithm, F (p), p ∈ N ,

represents the best known cost among the paths that reach node p. An algorithm equiv-

alent to Algorithm 3 was given in van den Akker et al. (1999).

Algorithm 3 LCA

1: procedure LCA(G = (N,A))
2: initialize F [rmin]← 0; F [p]← +∞, p ∈ N \ {rmin};
3: for all p ∈ N in topological order do
4: if F [p] < F [p+ 1] then F [p+ 1]← F [p]; ⊲ idle time

5: for all (p, p+ pj , j) ∈ Aj , j ∈ J do

6: q ← p+ pj ; c← wjq − λj ;
7: if F [p] + c ≤ F [q] then F [q]← F [p] + c;

8: return F [T ]− λ0

It can be observed that the contribution of a job j scheduled to start at time q in the

cost of a schedule is given by wj(q + pj) − λj . Note also that when constraints (11) are

relaxed there are no constraints on the number of times a job can appear in a schedule.

Considering these two facts, two reduction mechanisms can be derived.

First, arcs (p, q, j) ∈ Aj can be removed from graph G as soon as c̄(pqj) ≥ 0. Indeed, one

can always replace these arcs with zero cost paths composed of arcs in A0. Equivalently,

defining yj = λj/wj − pj , arcs (p, q, j) with p ≥ yj can be removed; yj can be interpreted

as the starting time limit until which the job is worth being processed. In particular, if

λj ≤ 0, the job is never worth being processed: no arc from Aj is kept in the graph and

job j is not considered in the pricing problem.

The following dominance criteria can be applied to further reduce the size of the graph.

Property 1. Let us consider a pair of jobs (i, j) ∈ J , with i 6= j and λi, λj > 0. If

conditions:

1) ri ≤ rj;

2) pi ≤ pj;

3) wi(rj + pi)− λi ≤ wj(rj + pj)− λj; and

4) wi(min(T − pj, yj) + pi)− λi ≤ wj(min(T − pj, yj) + pj)− λj

are satisfied, then job i dominates job j and set Aj can be removed from the graph.

Intuitively, it means that instead of using an arc in Aj , it is possible and preferable

to use an arc in Ai (followed by one or several arcs from A0 if pi < pj). This dominance

relation is proved as follows.

Proof. Let us consider a schedule including an arc (p, p + pj, j) ∈ Aj . We show that we

can schedule job i instead of j, by improving the cost. Because of conditions 1) and 2),

(p, p+pj, j) can be replaced with a path starting with arc (p, p+pi, i) and possibly followed

by one or several zero-cost arcs from A0. By construction and from the first reduction,

10
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p ∈ {rj ,min(T − pj, yj)}. Then, from conditions 3) and 4), and from the linearity of the

cost function, we have c̄p,p+pj,j ≥ c̄p,p+pi,i, which concludes the proof.

Values yj and the set of dominated jobs can easily be precomputed before starting the

solution of the pricing problem. Algorithm 3 with the graph modified according to the

two reduction mechanisms forms our first pricing method, hereafter referred to as LCA.

4.4 Pricing with non-elementary schedules without 1-cycles

A relevant alternative to LCA is obtained by limiting the search in the pricing problem

to schedules without k-cycles. A k-cycle is a sub-sequence (j[i], . . . , j[i+k]) of a schedule

such that j[i]=j[i+k]. We denote by Sk-cycle the subset of S+ limited to non-elementary

schedules without k-cycles. Note that S ⊆ Sk-cycle ⊆ S+.

When k = 1, this problem can be solved in O(n2T ) time by an label correcting pro-

cedure based on the DP algorithm shown in Pessoa et al. (2010). In the next sections,

we refer to this method as LCP . In the following, we show how to solve this problem in

O(nT ). The proposed approach extends LCA and relies on the storage of two labels (i.e.,

two states) at each node q of the graph, representing the two best partial schedules that

finish at time q with different final jobs. We introduce Fl(q), l ∈ {1, 2}, where F1(q) stores

the best partial schedule finishing at q, and F2(q) represents the best schedule finishing

at q in which the last job is different from the last job of the first schedule. A state L

is represented with two values: L.val is the cost of the label, L.last the last job. Then,

for each state Fl(q) of the algorithm, two main classes of expansions can be performed:

(i) to q + pj , j ∈ J , representing that j starts in q and finishes in q + pj; and (ii) to the

subsequent release date r ∈ R, for each j ∈ J : q + pj < r, representing the schedule of

job j starting in q and finishing in q+ pj plus an idle time from q + pj to r. Let us define

nr(p) as the subsequent release date of p, where nr(p) = min{t : t > p, t ∈ R ∪ {T}}

(initialized as shown in Algorithm 5). This approach, referred to as LC2l from now on, is

detailed in Algorithm 6.

Algorithm 4 Update

1: procedure Update(L, F, q)
2: if L.val < F1[q].val then ⊲ L will become the best label at node q

3: if L.last 6= F1[q].last then ⊲ F1[q] will become the second label

4: F2[q]← F1[q];

5: F1[q]← L;
6: else if L.val < F2[q].val then
7: if L.last 6= F1[q].last then ⊲ L will become the second label

8: F2[q]← L;

By defining Z∗
MP (X) as the optimal objective value of MP (X), where X refers to the

set of columns, the following relation can be stated:

Z∗
MP (S+) ≤ Z∗

MP (S1-cycle)
≤ Z∗

MP (S)

11
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Algorithm 5 Initialize vector nr

1: procedure Init NR( )
2: initialize R[ ]; r ← 0; ⊲ R[ ] : list of distinct release dates in increasing order

3: R← R ∪ T ; ⊲ include T at the end of the list

4: for all p ∈ N in topological order do
5: if p = R[r] then r← r + 1;

6: nr[p]← R[r];

Algorithm 6 LC2l

1: procedure LC2l(G = (N,A))
2: initialize Fl[rmin].val ← 0, l ∈ {1, 2}; Fl[p].val←∞, p ∈ N \ {rmin}, l ∈ {1, 2};
3: initialize Fl[p].last← 0, p ∈ N , l ∈ {1, 2};
4: Init NR( ); ⊲ initialize list nr[ ]

5: for all p ∈ N in topological order do
6: for all (p, p+ pj , j) ∈ Aj , j ∈ J do

7: l ← 1;
8: if F1[p].last = j then l← 2 ⊲ expansion from best label with last 6= j

9: L.val ← Fl[p].val + (p+ pj)wj − λj ;L.last← j;
10: Update(L, F, p+ pj); ⊲ expansion with job j

11: Update(L, F, nr[p + pj ]); ⊲ expansion with job j and idle time until next release date

12: return F1[T ]− λ0

so that the lower bound obtained by taking into consideration only elementary sched-

ules is stronger than the lower bound obtained by the 1-cycle relaxation, that in turn

provides a stronger lower bound than the one obtained when all non-elementary sched-

ules are allowed. Following this reasoning, and considering that for both of the afore-

mentioned relaxations of the master problem, pricing problems are efficiently solved in

pseudo-polynomial time, the two relaxations and the three algorithms LCA, LCP and

LC2l can be all considered good options for solving the problem.

4.5 Heuristic pricing

As the CG algorithm finishes when there is no column with negative reduced cost to

be added to the master problem, one could heuristically solve the pricing and invoke

the exact methods only when the heuristic methods fails in finding such columns. This

combined approach is employed to speed up the CG algorithm. In this sense, we propose

two greedy algorithms to solve the pricing subproblems.

Our first greedy method, denoted as Helem, aims at finding columns in S, i.e., elemen-

tary schedules. The method is based on LCA, with the difference that, for each node q

of the graph, a list containing the jobs previously scheduled is stored in memory. Then,

for a given node q, only expansions to jobs not in the list are allowed. This heuristic,

detailed in Algorithm 7, runs in O(n2T ) time and returns elementary schedules. It differs

from Algorithm 3 by the use of list L[p] to guarantee that only elementary schedules are

obtained. This list is initialized at step 2 and updated in O(n) at steps 5 and 8.

The second proposed heuristic, shown in Algorithm 8 and referred to as H1-cycle, seeks

for schedules without 1-cycles, that is, schedules in S1-cycle. This method is similar to

12
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Algorithm 7 Helem

1: procedure H elem(G = (N,A))
2: initialize L[p]← ∅, p ∈ N ; ⊲ L[p]: set of all jobs in the schedule associated with p

3: initialize F [rmin]← 0; F [p]← +∞, p ∈ N \ {rmin};
4: for all p ∈ N in topological order do
5: if F [p] < F [p+ 1] then F [p+ 1]← F [p]; L[p+ 1]← L[p]; ⊲ idle time

6: for all (p, p+ pj , j) ∈ Aj , j ∈ J \ L[p] do
7: q ← p+ pj ; c← wjq − λj ;
8: if F [p] + c ≤ F ([q] then F [q]← F [p] + c; L[q]← L[p] ∪ {j}

9: return F [T ]− λ0

Helem, but instead of storing in memory a list of previously scheduled jobs per node, it

maintains only the last scheduled job. Then, for each node q, expansions are limited to

jobs different from the last scheduled job.

Algorithm 8 H1-cycle

1: procedure H 1-cycle(G = (N,A))
2: initialize L[p]← ∅, p ∈ N ; ⊲ L[p]: last job in the schedule associated with p

3: initialize F [rmin]← 0; F [p]← +∞, p ∈ N \ {rmin};
4: for all p ∈ N in topological order do
5: if F [p] < F [p+ 1] then F [p+ 1]← F [p]; L[p+ 1]← L[p]; ⊲ idle time

6: for all (p, p+ pj , j) ∈ Aj , j ∈ J \ L[p] do
7: q ← p+ pj ; c← wjq − λj ;
8: if F [p] + c ≤ F ([q] then F [q]← F [p] + c; L[q]← j

9: return F [T ]− λ0

4.6 Column generation solution method

The methods that we detailed in the previous sections are integrated together in the CG

Algorithm 9. Firstly, we iteratively invoke a heuristic approach (step 7) until it fails in

finding columns with negative reduced cost, then we invoke an exact method (step 9).

This configuration was chosen based on preliminary experiments.

Algorithm 9 Column generation - solution method

1: procedure CG
2: initialize S′ ⊆ S with an initial subset of schedules;
3: initialize heur← true;
4: repeat

5: solve MP (S′) and obtain λ∗;
6: if heur = true then

7: s′ ← pricing heuristic(); ⊲ returns the most negative column found by the heuristic

8: if s′ = ∅ then heur← false;

9: if heur = false then s′ ←pricing exact(); ⊲ returns the most negative column

10: S′ ← S′ ∪ s′;
11: until s′ = ∅
12: return λ∗

13
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4.7 Branching strategy

Once the CG termination condition is attained, the optimal solution of MP may be either

integer of fractional. If it is integer, it is also optimal for SC (15)-(18) and the process

terminates. If instead it is fractional, branching has to be performed. The branching rule

is an important decision to be taken in a B&P framework. In a classical branching rule,

a fractional variable πs is chosen and two new branches are obtained by fixing πs = 1 and

πs = 0, respectively. Each πs variable is associated with a schedule, and forbidding it

to be generated during pricing is not easy to be managed without increasing the pricing

complexity. To tackle this issue, a branching rule based on the variables of AF formulation

(6)–(10) has been proposed in van den Akker et al. (1999). We adopt the same rule.

Let π∗ be an optimal MP solution, with π∗
s giving the value taken by each variable

πs. If π∗ is fractional we check if it satisfies Theorem 2 in van den Akker et al. (1999),

which presents a set of conditions that make it possible to transform a fractional solution

into an integer feasible solution having the same cost. If the theorem is not satisfied

the process is not finished and branching is needed. Let Cj(s) represent the completion

time of job j in schedule s. We denote by aj = min{Cj(s)|π∗
s > 0, asj ≥ 1} the minimal

completion time of j in the schedules of π∗, and bj = max{Cj(s)|π
∗
s > 0, asj ≥ 1} the

maximal completion time. Let also J̄ = {j ∈ J |aj 6= bj}. Set J̄ contains jobs that can be

selected for branching. We select the job j ∈ J̄ that maximizes (bj −aj). Then, we create

two branches:

(i) in the first branch, we forbid arcs (p, q, j) ∈ Aj with q ≤ ⌊aj+bj
2
⌋;

(ii) in the second branch we forbid arcs (p, q, j) ∈ Aj with q ≥ ⌊aj+bj
2
⌋ + 1.

In practice, the procedure consists in creating new release dates and deadlines on the

jobs. Notably, it does not change the complexity of the algorithms given in Section 4.2.

Another important decision in a B&P algorithm concerns the choice of the branching

node. In our framework, the best bound strategy is adopted: the node with the smallest

lower bound among the open nodes is chosen for branching. The main advantage of this

strategy is that the lower bound of the B&B tree increases quickly. However, finding

feasible solutions and closing the gap can be difficult.

5 Computational experiments

In this section, we present the computational experiments carried out to evaluate the

performance of the different proposed methods for the P |rj|
∑

wjCj . These methods are

the MILP formulations TI (2)-(5) and AF (6)-(10) and the B&P methods implemented

to solve the SC formulation (15)-(18). The B&P methods differ one another by the

algorithms (described in Section 4.2) employed to solve the CG pricing subproblem.

The methods have been coded in C++ and Gurobi Optimizer 8.1 has been adopted

as MILP solver imposing it to run on a single thread. Our experiments were run on a
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computer equipped with an Intel Xeon E3-1245 processor with 3.50GHz and 32 GB of

RAM, under Ubuntu 16.04.5 LTS operation system. We first detail the instance generation

procedure, then present the method used to generate initial feasible solutions, and finally

present and discuss the obtained results.

5.1 Benchmark instances

To the best of our knowledge, there are no publicly available benchmark instances from the

literature regarding the P |rj|
∑

wjCj, so we decided to generate a new set of instances.

This set was created by generalizing the scheme previously proposed by Nessah et al.

(2008). The processing times pj and weights wj of each job j were generated from the uni-

form distributions U [1, pmax] and U [1, wmax], respectively. Regarding the release dates of

the jobs, these were created from the uniform distribution U [0, 1
m
(αn50.5)], were n repre-

sents the number of jobs, m the number of machines and α is a parameter that controls the

release date tightness. Note that as the α parameter increases, the release dates become

more dispersed, i.e., the problem becomes more constrained. In our generation scheme,

we adopted the following values: α ∈ {0.2, 0.6, 1.0, 1.5, 2.0, 3.0}, pmax ∈ {100, 1000},

wmax ∈ {10}, n ∈ {20, 50, 100, 125, 150, 200} and m ∈ {2, 3, 5, 10}. For each combination

of such parameters, 5 instances were created, resulting in a total of 1440 instances.

5.2 Upper bound

In all our tests, all exact methods have been provided with an initial valid up-

per bound given by the iterated local search (ILS) metaheuristic proposed by

Kramer and Subramanian (2019). With the aim on quickly obtaining a valid upper

bound, in our experiments we ran the ILS algorithm with a time limit of n/5 seconds

or for at least one complete iteration of the inner local search phase, which is performed

by a randomized variable neighborhood descent procedure.

5.3 Computational results

In this section, we present and discuss the results obtained by the proposed solution meth-

ods. For the CG based methods, if the root node is not solved to the optimality within the

time limit, then the algorithm is stopped and a valid lower bound is obtained by follow-

ing the method of Vanderbeck and Wolsey (1996), also employed by van den Akker et al.

(2000). In the next subsections, we separately present the results on the instances with

pmax = 100 and pmax = 1000, because this parameter has a relevant impact on the algo-

rithmic performance.

5.3.1 Instances with pmax = 100

First, we evaluate the exact pricing methods by running the CG algorithm with the three

exact methods for solving the subproblems. In Table 1, these methods are confronted
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by means of average execution times, t(s), number of generated columns, cols, and root

relaxation lower bound, lblp, per each group of 30 instances with up to 100 jobs and 10

machines. The last line provide overall average values.

Table 1: Comparison of exact methods for solving the pricing subproblem (best results in boldface) –
instances with pmax = 100

n m
LCA LCP LC2l

lblp cols t(s) lblp cols t(s) lblp cols t(s)

20 2 49126.8 294.9 0.1 49137.9 355.3 0.4 49137.9 354.8 0.2
3 32017.7 207.0 0.0 32023.1 218.1 0.2 32023.1 218.9 0.1
5 22258.1 144.1 0.0 22260.9 144.6 0.1 22260.9 144.9 0.0

10 13092.9 78.1 0.0 13094.0 70.5 0.0 13094.0 70.2 0.0

50 2 269913.4 2027.8 5.3 269987.3 3094.4 58.6 269987.3 3148.8 16.0
3 182051.8 1336.9 2.6 182085.0 2067.0 27.7 182085.0 2041.2 7.6
5 115666.4 1003.0 1.3 115675.4 1396.0 11.8 115675.4 1399.6 3.5

10 63809.8 618.0 0.5 63813.9 729.0 3.0 63813.9 729.5 0.9

100 2 1072592.8 7759.6 135.8 1072764.3 14351.7 2385.7 1072764.3 14370.8 581.5
3 711303.4 5319.6 64.0 711370.5 11676.3 1982.4 711370.5 12054.5 893.6
5 426377.6 3224.3 23.7 426398.8 5562.0 342.9 426398.8 5771.0 81.9

10 238179.3 2131.6 10.1 238182.7 3179.4 111.3 238182.7 3185.9 26.6

Avg. 266365.8 2012.1 20.3 266399.5 3570.4 410.3 266399.5 3624.2 134.3

From Table 1, it can be noticed that the CG methods with LCP and LC2l always provide

bounds equal to or better than the ones obtained with LCA. This result is expected and

explained by the fact that LCP and LC2l solve the SPPRC without one-cycles as pricing

subproblem, whereas LCA solves the SPPRC itself. Thus, the solution space for the first

problem is included in the solution space of the second, hence resulting in a possible

stronger bound. Considering the number of columns generated, the CG with LCA is

the method that requires less columns to prove the relaxation optimality. This results

is also reflected in the execution times, that are, on average, the smallest ones among

the three approaches. Regarding LCP and LC2l, the number of columns they generate

are very similar, the execution times, on the contrary, are quite different, indicating the

effectiveness of LC2l. The CG algorithm with LC2l required, on average, 134.3 seconds to

solve the selected instances, whereas the CG with LCP needed 410.3 seconds. Therefore,

one could select LCA as a method to solve the pricing if the objective is to quickly obtain

a valid bound, and choose LC2l if the goal is to obtain stronger bounds.

In Table 2, we evaluate the impact of using heuristic approaches for solving the pric-

ing subproblems so as to speed up the CG convergence. We report the results for the

combinations of LCA and LC2l with H1-cycle and Helem, resulting in four methods. For

each method and group of instances, we report the average execution times, t(s), the

total number of generated columns, cols, and the average percentage number of columns

generated by the exact methods, %colse = 100∗(colsexact/cols), where colsexact represents

the number of columns generated by the considered exact algorithm.

The results shown in Table 2 indicate that the performance of Helem is, on average,

better than the one by H1-cycle, because of the reduced number of columns generated as

well as the smaller average execution times. For example, the CG algorithm required,

on average, 3101.8 columns and 48 seconds to solve the problem when using LC2l and
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Table 2: Impact evaluation of combining heuristic and exact methods for solving the pricing subproblem
(best results in boldface) – instances with pmax = 100

n m

LCA LC2l

H1-cycle Helem H1-cycle Helem

cols %colse t(s) cols %colse t(s) cols %colse t(s) cols %colse t(s)

20 2 323.2 11.0 0.1 161.7 20.1 0.1 292.9 1.6 0.1 138.2 8.2 0.1

3 203.7 6.2 0.0 102.9 10.2 0.0 193.5 1.4 0.0 94.2 3.4 0.0

5 132.3 2.9 0.0 73.4 3.8 0.0 129.5 0.8 0.0 71.7 1.9 0.0

10 67.7 1.8 0.0 41.1 3.4 0.0 67.4 1.5 0.0 40.6 2.6 0.0

50 2 3163.0 13.7 11.0 1318.7 31.6 3.1 2885.0 4.3 10.2 1061.8 15.9 2.7

3 1974.5 6.9 5.1 651.0 14.6 1.2 1892.3 2.1 5.0 583.4 5.6 1.1

5 1230.8 3.5 2.1 445.3 6.2 0.6 1202.8 0.4 2.0 415.3 0.8 0.6

10 641.3 1.7 0.5 338.7 1.8 0.3 633.8 0.2 0.5 333.0 0.3 0.3

100 2 13947.7 17.5 354.1 6244.0 36.8 92.1 12787.2 10.2 321.1 5334.9 27.0 78.9

3 9510.9 9.5 167.3 3064.0 22.6 24.3 8975.6 3.5 160.0 2624.4 10.6 21.6

5 5388.9 3.9 59.4 1564.7 8.2 7.9 5296.1 1.8 58.8 1476.9 3.7 7.6

10 2884.7 1.0 18.3 1201.6 1.5 4.3 2865.9 0.2 18.2 1185.8 0.4 4.2

Avg. 3289.1 6.6 51.5 1267.3 13.4 11.1 3101.8 2.3 48.0 1113.4 6.7 9.8

H1-cycle. By keeping LC2l but replacing H1-cycle by Helem, the average number of generated

columns is reduced by more than 60% and the average execution time drops to only 9.8

seconds. In other words, Helem seems to be able to found “better” columns than H1-cycle,

thus speeding up the convergence at the beginning of the CG algorithm. From Table 2,

it can also be observed that most of the columns are generated by the heuristic methods.

By comparing the results in Table 2 with the ones in Table 1, it can be noticed the

effectiveness of the combination of exact and heuristic methods in the CG pricing problem.

Taking as example the results obtained by the CG with LC2l in Table 1, and the results

by the CG with LC2l and Helem in Table 2, it can be seen that the average number of

generated columns drops from 3624.2 to only 1113.4. The same occurs with the average

execution times that passes from 134.3 to 9.8 seconds.

Considering the above results, we thus adopted the combined use of LC2l and Helem

as the method for solving the pricing subproblem in our CG algorithm, and embedded

them into our B&P framework, as described in Section 4.7. In the following, the resulting

method is named B&Ph. In Tables 3 and 4, B&Ph is compared with the TI (2)-(5) and AF

(6)-(10) formulations in terms of number of instances optimally solved, opt, percentage

gap for the continuous and for the best lower bound, gaplp(%) and gap(%), respectively,

number of open nodes, nd, and execution times, t(s). The results are aggregated by

n and m, where for each combination of (n,m), six instances (one for each value of

α ∈ {0.2, 0.6, 1.0, 1.5, 2.0, 3.0}) have been considered. For each run of TI, AF and B&Ph,

a time limit of 1800 seconds has been imposed. The last line gives the sum of the opt

values, as well as average values for the other columns.

With regard to the results obtained for the instances with up to 100 jobs, in Table

3, it can be noticed that TI and AF perform better than B&Ph in terms of number of

instances solved to the proven optimality and execution times. The B&Ph algorithm,

however, provides stronger continuous relaxation bounds and requires the exploration of

a smaller amount of nodes. The results for the large-sized instances with n > 100 are

given in Table 4. For the instances with 200 jobs and 2 machines, TI and AF suffer from

17



Kramer, Dell’Amico, Feillet and Iori Technical report, DISMI, UNIMORE

Table 3: Comparison of B&Ph performance with MILP models TI and AF - instances with pmax = 100
and n ∈ {20, 50, 100} (best results in boldface)

n m

TI AF B&Ph

opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s)
(%) (%) (%) (%) (%) (%)

20 2 6 0.083 0.000 0.2 1.7 6 0.083 0.000 0.2 0.3 6 0.055 0.000 0.7 <0.1

3 6 0.033 0.000 0.3 1.2 6 0.033 0.000 0.2 0.2 6 0.023 0.000 1.0 <0.1

5 6 0.068 0.000 0.3 0.6 6 0.068 0.000 0.3 0.1 6 0.054 0.000 1.3 <0.1

10 6 0.000 0.000 0.0 0.2 6 0.000 0.000 0.0 <0.1 6 0.000 0.000 0.0 <0.1

50 2 6 0.092 0.000 938.0 48.3 6 0.092 0.000 573.2 19.6 4 0.059 0.007 80.8 610.3
3 6 0.083 0.000 662.2 24.8 6 0.083 0.000 859.2 19.4 6 0.054 0.000 46.5 44.4
5 6 0.037 0.000 221.5 9.3 6 0.037 0.000 267.0 3.6 6 0.026 0.000 58.3 11.3

10 6 0.007 0.000 2.2 2.6 6 0.007 0.000 1.7 0.4 6 0.003 0.000 9.5 0.4

100 2 4 0.314 0.256 3396.3 863.6 3 0.314 0.256 7385.8 910.8 2 0.264 0.215 22.3 1226.8
3 4 0.081 0.055 1167.0 734.6 4 0.081 0.055 2675.5 710.5 3 0.065 0.035 50.7 931.3
5 5 0.042 0.005 7010.0 383.9 5 0.042 0.002 21661.3 450.1 3 0.037 0.005 199.3 907.4

10 6 0.013 0.000 239.8 22.7 6 0.013 0.000 252.2 9.0 4 0.009 0.002 611.0 607.1

Sum/Avg. 67 0.071 0.026 1136.5 174.5 66 0.071 0.026 2806.4 177.0 58 0.054 0.022 90.1 361.6

memory limit, indicated by the entry “m.lim”, due to their large (pseudo-polynomial)

number of variables and constraints. We thus provide two overall Sum/Avg. lines, one

referring to all instances and the other only to those for which no memory limit was

encountered by a method. Summarizing, on one side B&Ph is an interesting solution

method because it does not suffer from memory limits and provides very low gaps. On

the other side, TI and AF are very efficient and find a higher number of proven optimal

solutions overall.

Table 4: Comparison of B&Ph performance with MILP models TI and AF- instances with pmax = 100
and n ∈ {125, 150, 200} (best results in boldface)

n m
TI AF B&Ph

opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s)
(%) (%) (%) (%) (%) (%)

125 2 4 0.361 0.338 2852.0 774.0 4 0.361 0.341 2831.0 787.7 2 0.343 0.339 10.3 1303.1
3 4 0.192 0.175 83.8 642.2 4 0.192 0.178 597.5 612.8 3 0.176 0.169 35.3 943.8
5 4 0.084 0.054 1846.2 878.1 3 0.084 0.056 2397.0 902.7 3 0.070 0.043 141.2 913.2

10 6 0.015 0.000 2638.8 138.4 6 0.015 0.000 3265.2 91.9 3 0.012 0.002 700.0 905.4

150 2 3 0.287 0.278 2.0 965.0 3 0.287 0.281 277.5 910.0 1 0.278 0.277 3.7 1568.9
3 3 0.436 0.428 21.3 942.1 3 0.436 0.426 577.5 906.0 3 0.425 0.385 20.0 1329.1
5 3 0.280 0.274 854.5 919.9 3 0.280 0.273 2561.3 902.6 3 0.276 0.268 73.8 924.4

10 6 0.011 0.000 586.5 260.5 6 0.011 0.000 1244.2 285.8 4 0.009 0.003 307.8 807.1

200 2 0 m.lim 0 m.lim 0 0.290 0.290 0.5 t.lim
3 3 0.242 0.236 229.7 988.4 3 0.242 0.238 1505.8 932.4 2 0.234 0.230 3.0 1377.5
5 3 0.243 0.238 0.7 941.1 3 0.243 0.240 752.0 905.2 3 0.238 0.234 25.5 1073.2

10 4 0.047 0.043 470.5 639.0 4 0.047 0.042 1424.8 608.0 3 0.045 0.040 116.3 947.6

Sum/Avg.∗ 43 0.200 0.188 871.5 735.3 42 0.200 0.189 1584.9 713.2 30 0.191 0.181 130.6 1099.4
Sum/Avg. 30 0.200 0.190 119.8 1157.8

∗Sum and average values for all instances, but the ones with (n,m) ∈ {(200, 2)}

5.3.2 Instances with pmax = 1000

In this section, we replicate the experiments described in Section 5.3.1, but now consider-

ing the instances with pmax = 1000. In Table 5, we evaluate the performance of the three

exact algorithms employed to solve the pricing subproblem. The results we obtained are

aligned with the ones reported in Table 1 for pmax = 100, thus confirming the performance

gain achieved when replacing LCP by LC2l.

In Table 6, we evaluate the combined use of heuristic and exact methods in the CG.
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Table 5: Comparison of exact methods for solving the pricing subproblem (best results in boldface) –
instances with pmax = 1000

n m
LCA LCP LC2l

lblp cols t(s) lblp cols t(s) lblp cols t(s)

20 2 195006.7 229.1 0.1 195141.0 232.0 1.5 195141.0 232.5 0.5
3 148947.7 171.1 0.1 149007.6 177.1 0.8 149007.6 176.4 0.2
5 102597.2 123.9 0.0 102599.0 121.4 0.3 102599.0 120.9 0.1

10 71462.7 76.0 0.0 71463.8 74.3 0.1 71463.8 73.4 0.0

50 2 1049597.4 1425.1 4.8 1050223.8 1648.2 207.8 1050223.8 1637.4 18.3
3 799434.9 952.1 2.3 799746.8 1075.5 91.2 799746.8 1084.7 8.5
5 523452.1 647.4 1.0 523544.7 693.8 34.7 523544.7 700.9 3.4

10 285946.9 399.6 0.4 285969.7 422.8 11.0 285969.7 420.5 1.2

100 2 4173231.9 6914.0 136.0 4174522.1 8231.0 8930.3 4174522.1 8401.6 432.7
3 2842626.6 3797.9 41.0 2843104.3 4421.7 3127.0 2843104.3 4369.0 135.8
5 1765972.9 2170.3 15.1 1766155.7 2552.4 1166.9 1766155.7 2531.9 52.8

10 994029.4 1297.6 4.9 994066.5 1435.1 353.8 994066.5 1430.9 16.3

Avg. 1079358.9 1517.0 17.1 1079628.7 1757.1 1160.4 1079628.7 1765.0 55.8

It can be seen that, differently from the results for the instances with pmax = 100, the use

Table 6: Impact evaluation of combining heuristic and exact methods for solving the pricing subproblem
(best results in boldface) – instances with pmax = 1000

n m
LCA LC2l

H1-cycle Helem H1-cycle Helem

cols %colse t(s) cols %colse t(s) cols %colse t(s) cols %colse t(s)

20 2 265.2 14.7 0.2 218.9 21.2 0.3 229.5 2.0 0.1 188.1 8.3 0.3
3 180.2 8.0 0.1 145.2 11.7 0.2 165.7 0.7 0.1 132.1 3.4 0.2
5 122.8 3.7 0.0 97.6 6.2 0.1 118.9 0.9 0.0 93.1 1.9 0.1

10 71.0 2.8 0.0 58.9 2.9 0.0 70.1 1.5 0.0 58.2 1.7 0.0

50 2 2093.8 25.6 7.1 1743.0 33.6 16.2 1691.9 8.2 6.5 1451.8 20.0 17.1
3 1241.2 14.7 3.1 1011.4 18.6 7.6 1095.0 3.4 2.9 900.0 8.7 7.8
5 734.4 6.5 1.1 580.5 8.0 2.9 691.3 0.8 1.1 549.5 3.0 2.9

10 423.5 2.7 0.4 346.2 3.2 1.0 413.2 0.3 0.4 338.0 0.9 1.0

100 2 10732.0 40.8 243.2 10461.6 49.4 488.8 8684.4 26.8 242.8 9624.9 44.2 563.0
3 5523.0 24.0 66.0 4462.1 30.9 135.6 4522.2 7.3 57.4 3698.6 17.0 134.7
5 2832.7 11.3 20.3 2226.4 14.7 45.5 2583.0 2.8 19.0 2017.1 5.8 45.4

10 1470.0 3.6 5.3 1244.8 4.5 14.3 1422.0 0.4 5.1 1204.3 1.3 14.3

Avg. 2140.8 13.2 28.9 1883.1 17.1 59.4 1807.3 4.6 27.9 1688.0 9.7 65.6

of LC2l combined with H1-cycle as heuristic method turns out to be the best alternative

with regard to execution time. This result can be explained by the fact that H1-cycle runs

in O(nT ) time while Helem needs O(n2T ) time. However, it can also be observed that by

using Helem as heuristic approach the number of required columns to prove the optimality

is smaller than when H1-cycle is used. Hence, there exists a trade-off between execution

times and number of generated columns.

In the next experiments, reported in Tables 7 and 8, we thus decided to test both B&P

methods that use LC2l with Helem and LC2l with H1-cycle. The two B&P methods are

labeled as B&Ph for Helem and B&P1 for H1-cycle. For the instances with up to 100 jobs,

it can be observed that TI is not able to manage instances with more than 50 jobs due

to memory limitations, while AF performs better, being able to tackle instances with up

to 100 jobs, especially when m is large. The B&P methods in turn, solve instances with

up to 100 jobs, but with average execution times slightly better than those of AF.

Concerning the experiments on the larger instances, TI reached memory limit on all

of them and was consequently disregarded from Table 8. From this table, it can be
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Table 7: Comparison of B&Ph and B&P1 performance with MILP models TI and AF - instances with
pmax = 1000 and n ∈ {20, 50, 100} (best results in boldface)

n m
TI AF B&Ph B&P1

opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s)
(%) (%) (%) (%) (%) (%) (%) (%)

20 2 6 0.328 0.000 0.7 617.6 6 0.328 0.000 0.5 13.9 6 0.091 0.000 3.7 0.7 6 0.091 0.000 3.3 0.3

3 6 0.000 0.000 0.0 280.5 6 0.000 0.000 0.0 5.4 6 0.000 0.000 0.0 0.2 6 0.000 0.000 0.0 <0.1

5 6 0.000 0.000 0.0 148.6 6 0.000 0.000 0.0 2.7 6 0.000 0.000 0.0 <0.1 6 0.000 0.000 0.0 <0.1

10 6 0.000 0.000 0.0 67.2 6 0.000 0.000 0.0 1.1 6 0.000 0.000 0.0 <0.1 6 0.000 0.000 0.0 <0.1

50 2 0 m.lim 3 0.122 0.057 56.5 946.9 6 0.079 0.000 8.5 81.5 6 0.079 0.000 8.3 37.5

3 0 m.lim 6 0.074 0.000 40.3 179.2 5 0.021 0.006 50.2 317.8 6 0.021 0.000 24.3 60.2

5 4 0.044 0.030 0.8 1515.1 6 0.044 0.000 441.2 238.6 6 0.026 0.000 33.5 18.3 6 0.026 0.000 29.0 8.3

10 6 0.002 0.000 0.3 531.5 6 0.002 0.000 0.3 7.7 6 0.001 0.000 2.7 1.3 6 0.001 0.000 4.0 0.5

100 2 m.lim 1 0.167 0.161 9.2 1635.2 0 0.142 0.132 9.0 t.lim 0 0.142 0.131 12.2 t.lim
3 m.lim 1 0.102 0.100 13.7 1556.8 0 0.093 0.064 33.3 t.lim 0 0.093 0.062 45.0 t.lim
5 m.lim 1 0.095 0.073 72.0 1523.5 1 0.079 0.056 194.2 1558.8 2 0.079 0.056 227.2 1314.5

10 m.lim 5 0.012 <0.001 163.2 637.0 4 0.007 0.001 748.2 719.0 4 0.007 0.001 820.7 643.5

Sum/Avg.∗ 34 0.062 0.005 0.3 526.8 36 0.062 0.000 73.7 44.9 36 0.020 0.000 6.6 3.4 36 0.020 0.000 6.1 1.5

Sum/Avg. 53 0.079 0.033 66.4 562.3 52 0.045 0.022 78.8 524.8 54 0.045 0.021 97.8 472.1

∗Sum and average results for all instances, but the ones with (n,m) ∈ {(50, 2), (50, 3), (100, 2), (100, 3), (100, 5), (100, 10)}

Table 8: Comparison of B&Ph and B&P1 performance with AF model - instances with pmax = 1000 and
n ∈ {125, 150} (best results in boldface)

n m

AF B&Ph B&P1

opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s) opt
gaplp gap

nd t(s)
(%) (%) (%) (%) (%) (%)

125 2 0 16.885 16.884 4.0 t.lim 0 0.209 0.209 1.2 t.lim 0 0.209 0.207 2.2 t.lim
3 0 0.176 0.173 7.3 t.lim 0 0.157 0.141 14.3 t.lim 0 0.157 0.139 21.8 t.lim
5 1 0.141 0.140 11.3 1594.1 1 0.138 0.128 78.3 1634.6 0 0.138 0.128 114.3 t.lim

10 2 0.080 0.078 68.2 1304.6 2 0.072 0.045 583.5 1388.8 2 0.072 0.045 793.5 1365.9

150 2 0 m.lim 0 0.282 0.282 0.2 t.lim 0 0.281 0.253 0.7 t.lim
3 0 m.lim 0 0.185 0.184 4.7 t.lim 0 0.185 0.180 8.3 t.lim
5 0 m.lim 1 0.224 0.212 43.3 1777.5 0 0.224 0.211 74.5 t.lim

10 0 m.lim 0 0.097 0.094 547.0 t.lim 0 0.097 0.094 681.7 t.lim

200 2 0 m.lim 0 0.405 0.405 0.0 t.lim 0 0.341 0.341 0.0 t.lim
3 0 m.lim 0 0.205 0.205 0.0 t.lim 0 0.199 0.199 0.2 t.lim
5 0 m.lim 0 0.272 0.267 9.5 t.lim 0 0.272 0.266 19.2 t.lim

10 0 m.lim 0 0.211 0.207 152.2 t.lim 0 0.211 0.207 215.2 t.lim

Sum/Avg.∗ 3 4.321 4.318 23.5 1624.7 3 0.144 0.131 169.3 1655.8 2 0.144 0.130 233.0 1691.5
Sum/Avg. 4 0.205 0.198 119.5 1750.1 2 0.199 0.189 161.0 1763.8
∗Sum and average results for the instances with n = 125

noticed that for instances with 125 jobs, AF, B&Ph and B&P1 have a similar performance.

However, AF was not able to tackle the instances with 150 jobs due to memory limit.

In these cases, the B&P methods are a more robust alternative, being able to prove the

optimality of one instance and to provide very low gaps for the other ones, always below

0.4% on each group of instances. In particular, B&Ph performs better than B&P1 on the

larger instances, solving 4 instances to the proven optimality instead of 2.

6 Concluding remarks

In this work, we investigated the problem of scheduling a set of jobs that are released over

the time on a number of identical parallel machines, with the aim of minimizing the total

weighted completion time. This problem, denoted as P |rj|
∑

wjCj, is of high interest

because can model several applications in practice. We proposed two MILP formulations,

a time-indexed and an arc-flow, and a tailored B&P algorithm. Our experiments showed

that for small and medium-sized instances all attempted methods performed quite well,

with the arc-flow model achieving the best performance in terms of number of proven

optimal solutions. Regarding the large-sized instances involving more than 200 jobs, or
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instances with large processing times, we notice that the MILP formulations suffers from

memory limit due to their pseudo-polynomial sizes, whereas the B&P remains a robust

and interesting alternative being able to provide very low gaps in a reasonable amount of

time. Using the proposed methods we were able to solve for the first time instances with

up to 200 jobs to the proven optimality.

Concerning future research direction we observe that a large number of instances,

especially involving large processing times, remain unsolved, thus leaving space for further

investigation. Moreover, we envisage the need of a deeper study of the proposed models

aiming to reduce their sizes by considering combinatorial properties of the problem, as

well as the use of advanced concepts for the design of the B&P algorithm, such as, the

introduction of cutting planes, the use of stabilization techniques, the implementation of

an early termination approach for the CG algorithm and the use of a strong branching

scheme. The developed techniques could be also adapted to tackle other problem variants,

especially those involving due dates and the minimization of (weighted) tardiness, lateness

or just-in-time objective functions.
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