
Computers and Operations Research 125 (2021) 105103
Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier .com/locate /caor
Synchronizing transportation of people with reduced mobility through
airport terminals
https://doi.org/10.1016/j.cor.2020.105103
0305-0548/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: Rene@vanTwist.net (R. van Twist), J.M.vandenAkker@uu.nl

(M. van den Akker), J.A.Hoogeveen@uu.nl (H. Hoogeveen).
1 Wherever we use ‘he’ to indicate a passenger or employee, it should be read as

‘he/she’.
René van Twist, Marjan van den Akker, Han Hoogeveen ⇑
Department of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

a r t i c l e i n f o
Article history:
Received 28 September 2018
Revised 2 September 2020
Accepted 2 September 2020
Available online 12 September 2020

Keywords:
Passengers with reduced mobility
Dial-a-ride
Airport planning
Synchronization
Decomposition
Local search
Simulated annealing
Simulation
a b s t r a c t

Navigating through an airport is easy enough for most passengers, but when you are reduced in mobility
it is a different story. In this paper we look at an airport at which between 300 and 500 Passengers with
Reduced Mobility (PRMs) arrive daily, who need assistance from airport employees in their journey. We
want to find a schedule for these employees to support as many PRMs as possible while ensuring a
smooth journey with little waiting time. PRMs may not be left unsupervised, except in a lounge. Since
the employees are only allowed to work within their own terminal, the tasks of the employees must
be synchronized to enable a smooth hand-over of a PRM. Moreover, we want to find a robust schedule
to be resistant against minor disturbances. Since we must be able to reschedule in case of a major distur-
bance, the maximum computation time of our algorithm is restricted to two minutes. This problem was
first studied by Reinhardt et al., who present an insertion heuristic, where the order in which the PRMs
are considered is modified through local search. We present a decomposition model in which we first
determine feasible start times for the tasks describing the journeys of the passengers using Simulated
Annealing, after which in each iteration we assign the tasks to the employees using a (heuristic) matching
algorithm. Experimental results show that our algorithm is able to ensure smooth, robust connections,
while supporting every passenger in the given deterministic instances, which originate from Reinhardt
et al. Finally, we present a simulation study to test our approach in a dynamic environment. It turns
out that it can easily deal with these disturbances in real time and come up with very good solutions.
The code used in the simulation study is freely available at https://github.com/RvanTwist/uu-thesis-
prm.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Imagine a major airport where a lot of passengers go through
daily; some passengers arrive by aircraft, some depart by aircraft
and some need to catch a connecting flight after arriving by air-
craft. In the latter case, after arriving at one terminal the passenger
travels to the terminal where the connecting flight departs from;
there he1 waits for the boarding process to start and leaves the air-
port by plane. This process is simple for most passengers, but when
you are e.g. restricted in movement or visually impaired, this is not
so simple. That is why airports offer a service to assist such passen-
gers, which are called Passengers with Reduced Mobility (PRMs),
with their journey through the airport. General rules dictate that a
PRM must be supervised at all times, and consequently, there must
always be an employee guiding the PRM unless the PRM sojourns in
a special, supervised lounge. In the airport that we consider, each
employee is only allowed to work in his own terminal; as a conse-
quence, the PRM must be handed over as soon as he moves to
another terminal. Since these terminals are not connected to each
other, PRMs are required to take a special bus to go to another ter-
minal, a so-called inter-terminal bus. The transfer process works as
follows. A PRM is brought to the bus station, where he is handed over
to the bus driver, who assists him to get into the bus. The bus driver
brings the PRM to the departure terminal, where he is picked up by
yet another employee, who assists the PRM further. During his stay
at a terminal a PRM may be accommodated in a supervised lounge,
but he can also be brought directly to the boarding area by an
employee, who assists him with boarding. If the PRM’s departure
flight is not directly located at the gate, then a special platform
bus for PRMs is used to bring the PRMs to the aircraft. In the data
that we got, 54% of the PRMs needs to transfer at the airport.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2020.105103&domain=pdf
https://github.com/RvanTwist/uu-thesis-prm
https://github.com/RvanTwist/uu-thesis-prm
https://doi.org/10.1016/j.cor.2020.105103
mailto:Rene@vanTwist.net
mailto:J.M.vandenAkker@uu.nl
mailto:J.A.Hoogeveen@uu.nl
https://doi.org/10.1016/j.cor.2020.105103
http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor


R. van Twist et al. Computers and Operations Research 125 (2021) 105103
In this paper we consider the problem of scheduling the PRMs
and the employees supervising them. Due to the increase of mobil-
ity of elder people, this problem will become more important dur-
ing the next decades, and severastudies have been conducted to
find out how the process of transporting PRMs can be improved
(see for example Chang and Chen (2012) and Arcidiacono et al.
(2015)). The problem situation that we sketched above was first
considered by Reinhardt et al. (2013), who very kindly presented
us with the anonymized data of the airport layout and the problem
instances.

The main objective of the company (or department of the air-
port) responsible for the support of PRMs is to serve as many PRMs
as possible. Unfortunately there can be situations in which the
company has to decline one or more PRMs, who must then take
a later flight. In this situation the company prefers to decline
immediate PRMs above pre-booked PRMs, where a PRM is consid-
ered as a pre-booked PRM if he has required assistance by notifying
the company of his journey at least a day in advance.

As a secondary criterion the company wants to improve the
quality of service further by providing smooth connections to the
PRMs. This is achieved by minimizing unnecessary travel time,
which is the extra time that the PRM spends on his journey
through the airport. A PRM gets unnecessary travel time if an
employee assisting a PRM takes a detour or has to wait for some
other employee to pick up the PRM for the next part of his journey.
The time that a PRM is seated in a lounge does not contribute to the
unnecessary travel time.

Since an airport is a very volatile environment, there are lots of
sources of disturbances. To avoid the need of re-planning, we look
for robust solutions, which are able to absorb small deviations that
occur while running the schedule. Hence, our third criterion is
robustness; this criterion was not considered in the original contri-
bution by Reinhardt et al. (2013). Next to the deterministic
instances that we obtained, we will test the quality of our algo-
rithms in a stochastic environment by performing a simulation
study.

This paper is organized as follows. In Section 2 we give an over-
view of the literature and sketch our contribution and solution
approach. In Section 3 we describe the problem and define our
robustness function. In Section 4 we study the main feature of
our approach: synchronization. In Section 5 we present the algo-
rithms that we considered to solve the problem, and in Section 6
we present our computational experiments. In Section 7 we
describe our simulation experiment to test our approach in real-
life. Finally, we draw conclusions in Section 8.
2. Literature review

The problem under consideration is a special case of a pickup-
and-delivery problem, which since we have to transport people,
is called a dial-a-ride problem (see Savelsbergh and Sol, 1995). In
a dial-a-ride problem a set of vehicles (employees and buses in
our case) have to serve a set of clients (our PRMs), who need to
be transported from a given origin to a given destination. Since
we transport people instead of parcels, the objective is not only
to minimize the cost, but also the quality of service, which may
be measured using criteria like route duration, route length, cus-
tomer waiting time, customer ride time (i.e., total time spent in
vehicles), and difference between actual and desired delivery times
(Cordeau and Laporte, 2007). Moreover, in general each request
comes with a time-window, which may consist of just a desired
pickup or delivery time; in our application, this depends on
whether we have an arrival, departure, or transit passenger. A fur-
ther distinction depends on whether the problem is static (also
called offline) or dynamic (also called online); in the former case
2

all requests are known in advance, whereas in the latter case
requests come in during the execution of the solution, which
may lead to an adjustment of the solution.

There are many applications of dial-a-ride problems. We refer
to Cordeau and Laporte (2007), Berbeglia et al. (2010),
Molenbruch et al. (2017a) and Ho et al. (2018) for surveys on the
dial-a-ride problem. Below we discuss mainly problems that
resemble the problem that we consider.

One such an application is the dial-a-ride problem in which it is
possible to have transfers. An important characteristic in such
problems depends on the places where such a transfer can take
place. Deleplanque and Quilliot (2013) assume that it is possible
to transfer a passenger at each suitable point, whereas Masson
et al. (2014) only allow transfers at pre-defined transfer places
and Schönberger (2017) limits the possibility of transfers to a cen-
tral hub. An important difference between this area of research and
our problem is that in our case transfers are mandatory.

A second closely related area is the transport of patients. Hanne
et al. (2009) consider the transportation of patients in a hospital
environment; patients are either transported to and from the hos-
pital in ambulances or within the hospital using gurneys, beds, or
wheelchairs. They have developed a DSS, called OptiTRANS, to
assist in planning the transport. The objective consists here of four
components that measure total lateness and total earliness (to
enforce the just-in-time concept), cost, and patient comfort. In
their planning algorithm they apply, either a quick dispatching
rule, or three types of an insertion heuristic. In a follow-up paper,
Beaudry et al. (2010) present a tabu-search algorithm to solve the
planning problem. Similarly, Parragh (2011) studied the problem
of transporting patients, where among other things the time spent
by the patients in the vehicles was taken into account; to solve this
problem, the author presents an exact branch-and-cut algorithm
and compares this to a Variable Neighborhood Search heuristic
described in Parragh (2009). Coppi et al. (2013) present a heuristic
algorithm based on column generation for a similar problem in
Italy; Zhang et al. (2015) present a memetic algorithm to solve
such a problem in Hong Kong. Molenbruch et al. (2017b) also study
the transport of patients, which work was motivated by a real-life
application in Belgium. An additional goal here is to minimize the
total time spent aboard the vehicles, and they further study the
effect of adding real-life constraints with respect to combining
patients in vehicles. The authors present a multi-objective local
search algorithm and a heuristic to schedule the events. Lim
et al. (2017) consider the problem of transporting patients to and
from a hospital in combination with the problem of finding a
schedule for the staff at the ambulances; they present an iterated
local search algorithm that finds good solutions for real-life
instances.

None of the papers cited above discuss the transfer of a patient,
which is a distinguishing characteristic of our problem. Patients
have to be transferred from one employee to another one, since
an employee can only work in his own section. These transfers need
to be synchronized to improve both the efficiency and the quality of
service. We refer to the survey by Drexl (2012) for an overview of
all types of synchronization in the context of vehicle routing.

Furian et al. (2018) also consider the problem of moving
patients in a hospital, but here synchronization is required as well,
since some patients require the presence of both an orderly and a
nurse. They present several algorithms ranging from dispatching
rules to integer linear programming to minimize the total tardiness
of the transits and test the effectivity of the faster algorithms in a
stochastic environment by performing a discrete event simulation.
This problem is a simpler version of the home health care service
problem, where clients have to be visited at home and where some
clients need the assistance of two staff members simultaneously.
Next to maximizing the service to the clients (measured by total



R. van Twist et al. Computers and Operations Research 125 (2021) 105103
and maximum tardiness) the goal is to maximize the efficiency
(measured by the distance traveled). We refer to the surveys by
Fikar and Hirsch (2017), Di Mascolo et al. (2017), Cissé et al.
(2017) for an overview of the work done on the home health care
routing and scheduling problem. In the following, we concentrate
on synchronization. Eveborn et al. (2006) look at the problem of
planning a given set of visits, where for each visit the length, the
time window, the required skills of the employee, and a list of pre-
ferred employees are given; some visits require multiple employ-
ees, which implies a need for synchronization. The authors solve
the problem of minimizing the total travel distance by formulating
and solving it as an integer linear program (ILP), where employee
schedules are selected that cover all visits; candidate schedules
are generated by applying a so-called repeated matching heuristic,
which in each run tries to redistribute the visits covered in a pair of
schedules. This algorithmic solution has led to the development of
a decision support system called Laps Care. Bredström and
Rönnqvist (2008) consider a similar problem for which they pre-
sent a mixed integer linear programming (MIP) formulation that
is either solved to optimality or heuristically. Kergosien et al.
(2009) also present a MIP formulation and discuss several tech-
niques to speed up the computation. Rasmussen et al. (2012) for-
mulate the problem as a MIP as well, which they solve using
branch-and-price, where the synchronization constraints are
enforced within the branching. Next to these mathematical pro-
gramming based approaches, several local search procedures have
been presented. Frifita et al. (2017) present a General Variable
Neighborhood Search approach, whereas Afifi et al. (2016) and
Parragh and Doerner (2018) present a Simulated Annealing
approach with a destroy-and-repair neighborhood, where the solu-
tions are repaired using an insertion heuristic. They all test their
algorithms on the benchmark instances published in Bredström
and Rönnqvist (2008).

Our paper can be considered as a follow-up of the paper by
Reinhardt et al. (2013), who were so kind to share their instances
with us. In these instances all data are deterministic and known
beforehand, which makes it a static problem. Their algorithm is
based on a greedy insertion heuristic. The PRMs are put in two
ordered lists: one containing the pre-booked and one containing
the immediate PRMs. As a first step the journey of each PRM is split
into segments; a segment is a part of a journey during which it is
not possible (or sensible) to change the employee who carries it
out. The greedy insertion heuristic adds PRMs one by one into
the schedule in the order of the lists, where first all pre-booked
PRMs are inserted. When the greedy insertion heuristic plans a
PRM, it inserts all the PRM’s segments beginning with the earliest
one. The insertion of a segment is done by investigating the
employees and buses that could serve that segment, where the
algorithm is only allowed to push already inserted segments for-
ward in the schedule as result of the insertion. The feasible inser-
tion that causes the smallest increase of the objective function is
used for the insertion. If the heuristic fails to find a feasible spot
for the segment the PRM is not included in the schedule and all
his segments are removed from the schedule.

Next, Simulated Annealing is used to mutate the order of the
PRMs in the two lists. Initially, both lists are sorted in ascending
order by the time the PRM shows up at the airport. There are
two possible mutations. The first one is to take a not yet assigned
PRM and move him a random number of places forward in the list.
The second one is to swap two random PRMs from the same list.
Both mutations only change the order of the PRMs in the list; the
lists are not mixed.

Computational experiments show that their algorithm can find
good solutions in two minutes and high quality ones in 10 min.
Very few PRMs are rejected by the greedy insertion heuristic, but
there is still some unnecessary waiting time. Due to the low run-
3

ning time of two minutes the algorithm can be run multiple times
a day in a dynamic real world situation. In their conclusions the
authors suggest to investigate different solution methods; we will
present one such method in the remainder of the paper.

Just like Reinhardt et al. (2013) our main objective is to mini-
mize the number of declined passengers, which is by far the most
important objective to the airport. We have analyzed the problem
to find out what makes the planning problem difficult and what
can be done to overcome this. The key feature of our algorithm is
synchronization. We synchronize subsequent segments of a PRM
to remove all unnecessary waiting time. Moreover, we synchronize
segments of different PRMs to allow them to share a bus trip or
an employee. This reduces the number of tasks and in this way
increases the number of PRMs that can be assisted.

In addition to Reinhardt et al. (2013) we also look for a robust
schedule to achieve that real-world disruptions can be dealt with
more easily and connections run smoother. A delay in one segment
of the journey of the PRM could delay the remainder of the journey
as well. If an employee serves a delayed segment, the following
segments he must serve might also be delayed, causing a cascade
of delays. Therefore we want to make those connections robust
such that delays will affect the schedule as little as possible.

We apply a decomposition approach. Since synchronization is
crucial to get rid of the unnecessary waiting time, we decide in
the first phase on which passengers to accept, and for the accepted
passengers we specify the starting times of segments and on shar-
ing employees and/or buses, i.e., on synchronization. In the second
phase, we try to assign an employee to each segment such that the
solution becomes as robust as possible.

Observe that originally our problem is a three-criteria problem.
In our solution approach for the deterministic problem we only
consider solutions without unnecessary travel time; in our compu-
tational experiments, we show that this does not reduce the qual-
ity of the solution in terms of the number of declined passengers.
Since the main goal of the company is having as few declined PRMs
as possible, the resulting bi-criteria problem is in fact only a lexico-
graphical minimization problem: we look for a solution with an
optimum score on the number of declined passengers, and within
this set of solutions, we look for a solution that is as robust as
possible.
3. Problem description

3.1. The airport

At the airport in question there are about 120 employees, who
guide between 300 and 500 PRMs per day. The airport consists of
11 disjoint terminals. Each terminal has its own staff, and an
employee can only serve the PRMs inside the terminal he is
assigned to. Traveling between the terminals takes place by bus.
The inter-terminal buses are the only way we can transport a
PRM from one terminal to another. Each terminal has one bus stop.
The buses used to transport PRMs are specially reserved for them
and are not to be used by passengers who do not need assistance.
All inter-terminal buses used to transport PRMs have the same
capacity and travel times; hence, these are considered to be iden-
tical. The capacity depends on the disability of the PRM: transport-
ing a person in a wheelchair requires more capacity than a person
who just needs a standard bus seat.

Some aircraft are not located at a gate with a passenger board-
ing bridge, but are at a remote stand. Passengers are then trans-
ported from the remote stand at the platform to the
corresponding terminal and vice versa by platform buses; each ter-
minal has one bus site for platform buses. Although every passen-
ger on that aircraft needs to travel from the boarding gate to the



R. van Twist et al. Computers and Operations Research 125 (2021) 105103
aircraft by platform bus, PRMs are brought using special buses.
Again, these buses have a given capacity, which is the same for
all platform buses, where the capacity depends on the disability
of the PRM. Platform buses are not used for inter-terminal travel,
and inter-terminal buses are not used for traveling between gates
and aircraft.

Within a terminal each staff member is able to serve one or two
PRMs at the same time depending on the disability of the PRM; for
instance an employee can only transport one wheelchair but can
hold two PRMs who can walk. A PRM must be supervised at all
times, unless he is in a lounge. A lounge is a special, supervised
location in a terminal, where the PRM can wait comfortably for
the continuation of the journey; every terminal has one lounge.
Since an employee is not allowed to work outside his terminal,
the PRM must be transferred to a bus and then to another
employee whenever a PRM moves to another terminal.
3.2. The journeys of the PRMs

For each PRM we know the places where he enters and leaves
the airport, respectively. Since we remove all unnecessary waiting
time, the schedule will not contain any detours and hence the loca-
tions at which the PRM has to be transferred follow immediately.
The only flexibility left is whether or not the journey will be inter-
rupted in a lounge; when there is not enough time between the
arrival of the PRM at the airport and deadline for boarding to visit
a lounge, we skip the lounge visit. In Figs. 1–3 we have depicted a
schematic overview of an arrival, departure, and transfer journey,
respectively. Locations ending with (S) act as a possible start loca-
tion and locations ending with (E) act as a possible end location.

If we see the journey of the PRM as a path in a graph, then each
edge in the journey of a PRM must be covered by one employee for
a PRM to be fully assisted with his journey through the airport.
Observe that an edge of the PRM’s journey that can be served by
an employee corresponds to a segment. For example a route visiting
locations ðl1; l2; l3; l4Þ then consists of segments ðl1; l2Þ; ðl2; l3Þ and
ðl3; l4Þ. The time needed to serve a segment is equal to the travel
time between the start and end location, which is known. A special
segment is the one that represents the boarding process. To catch a
departing flight, the PRM needs to be at the gate when the board-
ing begins. We assume that the employee assisting the PRM
through the boarding process stays with the PRM until the gate
closes, which is 20 min after the boarding has begun. We assume
that the employee who brings the PRM from the lounge to the gate
will also assist the PRM with boarding. The boarding is represented
as a special segment in the journey both starting and ending at the
gate, which takes 20 min to complete and cannot start earlier than
the gate opens. If the aircraft is at a remote stand, the boarding
consists of transferring the PRM to the platform bus. Upon arrival
at the aircraft, the bus driver will assist the PRM in boarding the
aircraft.
3.3. Robustness

In a dynamic environment many unexpected events can take
place, which will disrupt the original schedule. For example a flight
can be delayed, gates can be switched, or a new PRM appears and
requests to be scheduled. Moreover, since we are working with
PRMs, something simple like a delay due to walking slower than
expected or having difficulty getting into a bus will occur fre-
quently. A delay can have a big effect on the schedule. If a segment
of a PRM is delayed it can delay the subsequent segments of both
the PRM and the employee, who in turn can delay other employees
and PRMs, thereby causing a cascade of delays if no slack has been
built into the schedule. We hope that by including slack we can
4

make the schedule more robust, such that small delays in the real
execution of the planning will cause fewer passengers to be
delayed. To encourage robust solutions we add a robustness score
as a secondary objective, which is used solely to distinguish
between solutions with an equal score on the number of rejected
PRMs.

We define the robustness score by specifying a function based
on the slack time. Since we minimize the number of declined PRMs
and unnecessary waiting time, we redefine the problem of maxi-
mizing the robustness as a minimization problem. Thereto we
introduce a robustness penalty, where a robustness penalty of 0
is the best achievable score of a connection, and the higher the
robustness penalty the worse the connection.

There are several possible choices for the penalty function.
Bolat (2000) uses a square function to minimize the variance,
whereas Diepen et al. (2012) use a penalty function based on
the arc tangent, since this heavily penalizes small slack time val-
ues and then flattens. In any case, the function should not be lin-
ear, since we do not want a long slack time and a very short
slack time to yield the same penalty as two average slack times.
We assume that 20 min is enough to be robust; a slack of
20 min or more will yield a penalty of size 0. Furthermore, as
mentioned before we favor that if possible two consecutive seg-
ments of one PRM are served by the same employee, and there-
fore, we use a penalty of 0 as well in this case. We have decided
to use the simple square function rpðsÞ below for calculating the
robustness penalty between two subsequent segments where s is
the slack time between those:

rpðsÞ ¼ 0 if efficient next
ð20�minfs;20gÞ2 otherwise

�
ð1Þ

A small advantage of using this function is that the objective
value will be integer, since the data in the problem instances are
rounded to minutes.

3.4. Shifts

Since the airport is a 24/7 environment, the employees are
expected to work in shifts. As we will see later, introducing differ-
ent shifts makes a lot of difference for our approach, since the sub-
problem that we solve numerous times becomes NP-hard. In
subsection 5.2.3 we will indicate how our heuristic can be adjusted
to obey the shifts.

Unfortunately, in the original data there were no shifts
involved. To test our algorithms in case of shifts, we therefore gen-
erated the shifts ourselves. To make the instances interesting, we
introduce overlapping shifts, since the employees that are available
at a given time would be identical, otherwise. We slice the shifts
from all employees in the input data into three equal parts. Then
new employees are generated, who each serve one or two neigh-
boring parts, such that the shifts overlap each other. The first kind
of employees only serve part 1, the second kind serves parts 1 and
2, the third kind serves parts 2 and 3, and the last kind serves part
3. To make sure that at every moment of the day the same number
E of employees is active as in the original problem, we generate E=2
employees of each type.
4. Synchronization

4.1. Synchronizing segments to avoid unnecessary waiting time

The company that transports the PRMs through the airport
wants to make it as comfortable as possible for the PRMs. To avoid
unnecessary waiting time we do not allow any detours. Important
part of this is that the transfers go as swiftly as possible; hence, we



Fig. 1. This figure shows an example for the arrival journeys a PRM could take.

Fig. 2. This figure shows an example for the departure journeys a PRM could take. We show two terminals, the inter-terminal bus site and the platform bus site. The other
nodes represents locations and the edges represent segments. Dashed edges are either optional segments or choices between two routes.

Fig. 3. This figure shows examples of all possible transfer journeys a PRM could take; the arrival and departure terminal may be the same or can be different. Dashed edges
are either optional segments or choices between two routes.

R. van Twist et al. Computers and Operations Research 125 (2021) 105103
want to minimize the total waiting time and the total unnecessary
travel time of the PRMs. Since waiting in a lounge is considered to
be comfortable for the PRM, and since the employee who brings
the PRM from the lounge to the gate will also assist the PRM with
boarding, the only handovers that may result in unnecessary wait-
ing concern the transferal of a PRM from a (interterminal or plat-
form) bus to an employee and vice versa. If we synchronize the
corresponding segments, then we can eliminate all unnecessary
waiting time for the deterministic case, in which all arrivals, depar-
tures, driving times, and walking times are known. The only thing
we have to do is to ensure that the employee serving the next seg-
ment is already on the spot when the PRM arrives; if the PRM
would arrive before the next employee, then we can avoid that
by making this segment of the passenger’s journey start later.
Unfortunately we cannot shift the time of platform buses because
5

aircraft depart and arrive at given times, and therefore PRMs need
to be transported by those buses at fixed times. But we can shift
the inter-terminal bus rides a bit if we allow a lounge visit before
and after the bus ride. For example the PRM arrives by aircraft in
terminal 1 and is seated in the lounge; when the bus is about to
arrive the PRM is picked up from the lounge and brought to the
bus stop where the bus awaits the PRM. The bus then brings the
PRM to the terminal of his departing flight, where an employee
awaits him to bring the PRM to the lounge. If there isn’t an
employee or bus available this journey can be shifted a bit in time
to provide the PRM with a smooth connection. Obviously, this is
not possible for the first segment, which must start when the
PRM arrives at the airport, and for the last segment of a PRM
departing by plane, which must start such that he arrives at the
right time for boarding.



R. van Twist et al. Computers and Operations Research 125 (2021) 105103
From now on, we will split the route of a PRM into segment
groups by grouping the segments that must be executed contigu-
ously. For a typical transit passenger, for example, the route is split
in three segment groups. The first segment group concerns travel-
ing from the arriving aircraft to the lounge in the arrival terminal.
The second segment group corresponds to the travel from the
lounge of the arrival terminal to the lounge in the departure termi-
nal, and the third segment group concerns the travel from the
lounge in the departure terminal to boarding the aircraft. Since
the start time of the first and last segment group follow from the
arrival and departure times of the flights, we can only shift the
start time of the second segment group, but within the bounds dic-
tated by the first and last segment group; we will denote this as the
window of the segment group. Furthermore, we have to assign an
employee to each segment.

We can make segment groups for the departure journey and
other variants of the transfer journey in a similar way. An arrival
journey does not have a lounge visit and therefore consists of only
one segment group.

We use these segment groups in our algorithm to avoid unnec-
essary waiting time; we see to it that these segments are planned
contiguously. Moreover, working with these segment groups also
helps with synchronizing journeys when two or more PRMs share
the same employee or bus, such that they both arrive at the start of
their common segment at the same time. We do not have to syn-
chronize the whole journey but only have to look at the segment
group containing the segment we want them to join.
4.2. Synchronization by sharing bus trips or employees

The buses can transport multiple PRMs at the same time, as
long as their capacity allows it. According to the problem instances
that we got, the service provider uses between 7 and 13 buses in
the inter-terminal bus area, and each bus has a capacity of 12.
When computing the capacity necessary for transporting the PRMs,
a PRM in a wheelchair counts for 1.5; the other PRMs count for 1.
Hence, we can transport at least 8 PRMs at the same time. Despite
this big capacity, personal communication with Reinhardt et al.
revealed that there might be a bottleneck in the inter-terminal
bus area. Therefore, it seems essential to plan the buses efficiently,
such that in each bus trip multiple PRMs are transported. Since we
want to avoid that PRMs have to wait at the bus station, we must
synchronize the arrival times of the PRMs. Moreover, even though
it is possible to have PRMs in the bus who need to go to different
destinations, this implies that some of the PRMs have to wait
because of the detour, which is not allowed since we want the
unnecessary waiting time to be 0. Hence, we aim at a solution in
which all PRMs in the bus always have the same destination.

In a similar way, we can synchronize segments of different
PRMs such that these are served by one employee. If two PRMs
need to catch the same flight and they have a light disability such
that an employee can help both of them at the same time, then
they can be picked up together at the lounge before departure
and be brought through the boarding process with only one
employee instead of two. In this way, we can save employees for
helping other PRMs.

We allow segments r1 and r2 of two different PRMs to be syn-
chronized when:

� Both segments r1 and r2 have the same start and end location.
� An employee situated in the terminal or a bus in the bus area of
r1 is able to service both PRMs of segments r1 and r2 at the same
time without violating the capacity constraint.

� There exists a start time that can be set for both segments r1 and
r2 such that neither journey ends up being infeasible.
6

We hope that synchronizing the segments as much as possible
will relieve the stress on the employees and will enable us to be
able to plan PRMs more efficiently. It will at least free up some
employee while boarding PRMs on the same flight and will make
better use of the bus capacity. We assume that if multiple PRMs
get picked up by the same bus then the destination terminal has
enough staff available to bring them towards their next stop in
their journey. If there are not enough employees in a terminal to
support all PRMs at the same time, the synchronization will lead
to an infeasible solution, and we reverse it.
5. Decomposition approach: local search and matching

Since we must produce a solution in two minutes, we apply a
decomposition approach. In the first stage, we determine for each
one of the accepted PRMs a start time for each segment group and
decide on sharing buses and employees. In the second stage, we try
to assign an employee to each segment, such that the robustness
penalty is minimized. Then we apply local search to change the
solution of the first stage, etc.

After having conducted some initial experiments, it turned out
that it was essential to actually solve the matching problem of the
second stage each time that we made an adjustment in the first
stage solution. In this way, we can use the knowledge gained when
solving the second stage to find adjustments to the solution of the
first stage, especially when we cannot find a feasible solution for
the start times set in the first stage.

We first describe the local search approach for the first stage,
and after that we discuss the matching algorithm that we use to
find a solution for the subproblem of the second stage.

5.1. Local search

In the first stage, we try to set the start times for each PRM by
mutation. We work with the segment groups as described above.
Furthermore, we try to free employee or bus capacity by synchro-
nizing segment groups ðg1; g2Þ of different PRMs who can share an
employee or bus on at least one of the segments in g1 and g2. This
implies that we have to synchronize their journeys such that both
PRMs arrive at the location at the same time to continue their jour-
ney together with the same employee or bus.

Before starting the local search, we construct a set M of possible
pairs of segments that could share an employee together. If r1 and
r2 satisfy the properties of Section 4.2, then we put the segment
pair ðr1; r2Þ in the set M. We further check if other segments within
these merged segment groups can share an employee or bus, too. If
in our algorithmwe choose to use the segment pair ðr1; r2Þ, then we
synchronize all segments in the corresponding segment groups rel-
ative to the merged segment of the pair ðr1; r2Þ, and we update the
windows of these merged segment groups accordingly.

As local search we apply Simulated Annealing and use the fol-
lowing mutations. More details on the implementation will be pre-
sented in Section 6.1 (see Table 1).

5.2. Generating the schedule

After each mutation a schedule is generated for all currently
accepted PRMs. In this subproblem the start times of all planned
segments are already set such that we only have to assign which
segment is served by which employee. Since we work with seg-
ment groups, unnecessary waiting time does not play a role in
the objective. The goal of the algorithm is to find a robust schedule
with all planned segments assigned to an employee. If the algo-
rithm fails to find such a schedule, then the mutation is considered
infeasible and the changes are reversed.



Table 1
Mutations applied in the local search.

Name Description

Plan PRM Attempt to plan a random, declined PRM into the
planning at random start times inside its time
window for each segment group.

Decline PRM Decline a random, served PRM and remove it
from the planning.

Move SegmentGroup Attempt to move a random, planned segment
group with a random start time inside its time
window. In case the segment group is merged
move the merged group.

Move Segment Group +
Split Merged Group

Attempt to move a random planned segment
group with a random start time inside its time
window.In case the target segment group is
merged with another segment group, remove the
target segment group from the merged group
before moving.

Merge Segment Group Take a random possible match from M and
attempt to merge them. If one of the involved
PRMs is unplanned it tries to add the PRM into
the schedule; otherwise it tries to schedule the
merged segment group on a feasible time.

R. van Twist et al. Computers and Operations Research 125 (2021) 105103
In the data we received from Reinhardt et al. all employees and
vehicles are homogeneous in terms of capacity, start time of their
shift and end time of their shift; hence, we initially designed our
algorithms around that. In the problem description, however, it is
not mentioned that all employees should have the same start
and end of the shift. At an airport flights arrive and leave early in
the morning and late at night, and so it is likely that employees
work in shifts. Therefore, we also will consider extensions where
it is possible to let employees have different shifts; we call this
extension the shift variant.

The subproblem with identical employees and buses is equiva-
lent to the single depot vehicle scheduling problem (Freling et al.,
2001), which can be solved in polynomial time as an assignment
problem. The problem where employees work in different shifts,
however, represents a multi-depot vehicle scheduling problem
(Desaulniers et al., 1998), which is NP-hard. We first focus on
the matching methods for the variant without shifts, and then con-
sider the shift variant.
5.2.1. Solving the problem without shifts as an assignment problem
Since we know for each segment whether it is served by a bus or

an employee, we split the subproblem into two parts: one for plan-
ning the buses and one for planning the employees. Since these
problems can be solved in the same way, we only discuss the
employee scheduling problem below. Remark that in case of
merged segments, we only include one of these segments in our
approach.

Our approach is to transform the subproblem into a weighted
maximummatching problem in a bipartite graph, just like happens
in Freling et al. (2001).

We construct a directed graph G ¼ ðV ;AÞ as follows. For each
segment ri, we introduce a vertex ni. We further add two dummy
vertices s and t. We include an arc ðni;njÞ if an employee can serve
segment rj directly after segment ri. Finally, we add arcs ðs;niÞ and
ðni; tÞ for each segment ri. A path from s to t in the graph then cor-
responds to the set of segments that must be served by one
employee or bus. If we look at a feasible schedule, then we see that
each vertex other than s and t must have exactly one predecessor
and one successor; hence, if we assign a predecessor and successor
to each vertex ni, then we can construct the solution. We can con-
struct the bipartite graph from the current graph by replacing the
vertex ni with two vertices ns

i and nt
i together with an arc ðns

i ;n
t
i Þ.

Each arc ðni;njÞ is then replaced by an arc ðnt
i ;n

s
j Þ, and the arcs
7

ðs;niÞ and ðni; tÞ are replaced by the arcs ðs;ns
i Þ and ðnt

i ; tÞ for each
segment ri. We thus find a bipartite graph, where s and all vertices
nt
i form one color class and t and all vertices ns

i the other one. We
remove the arcs ðns

i ;n
t
i Þ for all segments ri; we give all arcs

ðnt
i ;n

s
j Þ a weight equal to the value of the robustness penalty for

the slack between segments ri and rj.
Each perfect matching in the bipartite graph corresponds to a

feasible solution for the subproblem in which each segment is cov-
ered by an employee; the perfect matching with minimum weight
corresponds to the most robust feasible solution. This problem can
hence be solved as an assignment problem in a bipartite graph
(Freling et al., 2001), where we bound the number of times that s
can be used as predecessor by the number of employees. It can

be solved using the Hungarian Algorithm in OðjV j3Þ time
(Burkard et al., 2012), where jV j is the number of vertices. If we
were only interested in feasibility instead of maximizing robust-
ness, we could have transformed it into the maximum matching
problem which is solved in OðjV jjAjÞ time Cormen et al., 2009,
where jAj is the number of arcs.

Remark here that this method is not fit for the problem where
employees could have different shift starts and ends. We can split
s into a source vertex for each separate employee, and we can split
t in a similar way, but we cannot guarantee that the path starting
in the source node for employee i will end in the sink node for
employee i. After all, the problem is NP-hard in the strong sense.
We discuss the problem with shifts in Section 5.2.3.

The disadvantage of solving the subproblem to optimality in
each iteration is its relatively large running time. Since we only
have two minutes, we cannot execute enough iterations to find a
very good solution. Therefore, we will now discuss two heuristics
to update the solution of the matching algorithm.
5.2.2. Two heuristics for updating the matching
Our start point is that we have found some solution. We then

apply a mutation to the start times of the segments in the local
search part; in the mutation also some new segments may arise
by merging or splitting groups or adding PRMs. From now on, we
will refer to these modified and new segments as new segments.

In our first heuristic, we simply try to insert the new segments
one by one in the current schedule of the employees such that the
increase in robustness penalty is minimum; we call this heuristic
the Free Spot Heuristic. This did not lead to good solutions for the
deterministic problem instances, and therefore we do not report
this in the computational experiments. Since it leaves the current
schedules intact, this heuristic is useful for computing small
updates of the schedule, and therefore we use it in the simulation
when we want a simple reschedule; more on this in Section 7.2. As
the Free Spot Heuristic is not able to plan all segments, we now
consider re-planning a part of the schedule; we call this the
Reschedule Overlapping Segments Heuristic. It inserts the new seg-
ments one by one, but allows making changes in the current
assignment.

Suppose that we have to insert a new segment r. In our re-
planning we only consider rescheduling the overlapping segments,
which are the segments that cannot be planned either before or
after segment r without violating the constraints. The problem is
then transformed to a weighted maximum matching problem like
in Section 5.2.1. This method will make three sets of segments:
Rsource; Rsink, and Roverlap. See Fig. 4 for an illustration.

Roverlap is the set of overlapping segments. Given the current
schedule, we determine the last segments served by the employees
in the set Rsource; these segments will take the role of the vertex s in
the bipartite graph. Similarly, we find the first segments in the set
Rsink, which will be used instead of the dummy vertex t in the bipar-
tite graph. We then solve the assignment problem where we want



Fig. 4. The creation of the sets for the Reschedule Overlapping Segments Heuristic. Each segment is drawn such that the endpoints correspond to the start and end time of the
segment. We show the schedule of 3 employees; the edges represent the current paths of the employees: Employee 1 serves segments r1, r2, and r3, etc. Segment r has to be
inserted; it overlaps in time with segments r2; r5, and r8.

R. van Twist et al. Computers and Operations Research 125 (2021) 105103
to assign predecessors and successors for all segments in the set
Roverlap; see Fig. 5 for an illustration. The conversion to a bipartite
graph G ¼ ðV ; EÞ is the same as explained before.

We can solve the corresponding matching problem just like in
Section 5.2.1. The only difference with the previous subsection is
that we now solve only a small part of the problem: we basically
cut down the graph to make the problem smaller and thereby win-
ning valuable computation time. Remark that the head of the route
of an employee does not necessarily have to be matched to its tail
again. Hence, this method cannot be applied directly in case the
employees have different shifts. We discuss this part in the next
subsection.
5.2.3. Adjusting the solution in case of different shifts
The subproblem for the variant where shifts are not identical is

NP-hard, since it corresponds to a multi-depot vehicle scheduling
problem. We can solve this problem by using Integer Linear Pro-
gramming (ILP), but as might be expected this takes too much time
to be applicable in our decomposition approach. Therefore, we pro-
pose a greedy heuristic. At first, we make a planning in which we
include the times at which the shifts start and end, but we do
not enforce the connection between the two. We then adjust the
solution to correctly match the start and end times of the shifts
by applying a greedy fix. We want this greedy fix to be performed
fast, since we have to do it in each iteration, and since we want to
focus on finding a feasible solution with connections that are not
too bad.

We start by adjusting the bipartite graph that we use to solve
the matching problem. Just like in the Reschedule Overlapping Seg-
ments Heuristic, we split the source node s and the sink node t: for
each employee j we include his own source node sj and sink node
tj, and we add the arcs ðsj;niÞ and ðni; tjÞ according to the start and
end time of the shift of employee j, for each j. When we then solve
Fig. 5. The restricted matching of the Reschedule Overlapping Segments Heuristic. We
dazed arcs. The solid arcs correspond to the incumbent solution.

8

the matching problem, we assume that each employee j carries out
the day plan corresponding to the path starting with sj. If this path
ends with the node tj, then we have a feasible day task for
employee j. If this path is connected to a shift end tk with a differ-
ent shift end time than tj, then we must fix it. Thereto, we find a
second route with an acceptable shift end. We cut these two routes
somewhere and reconnect them such that the route for employee j
satisfies the shift constraints. Because we are searching a robust
solution the algorithm checks all day plans that are eligible to fix
the route of employee j and all spots in the route for the cut with
the best change in robustness score.

To avoid the possibility of cutting good routes again we don’t
allow to change routes that were already fixed. For that reason
we sort the employees by shift end time, starting with the smallest
ones first. We try to fix the routes in increasing order and only use
routes that are higher on the ordered list as a second route to cut.
In this way we avoid possibly cutting a route that has just been
declared feasible or fixed. We work from small to large, because
the employees with a smaller shift end are more constrained than
the ones with a higher shift end.

With this method we can quickly fix the schedules to satisfy the
shift constraints, which is important to limit the running time of
the algorithm. It is possible that this algorithm cannot find a fix
and then the mutation should be called infeasible although when
done with an exact algorithm there might be a feasible answer. If
necessary, we can always apply an exact algorithm like ILP at the
end to optimize the schedule given the current start times.
6. Computational experiments for the deterministic instances

We have run our experiments on a Windows 7 Ultimate Com-
puter with an Intel(R) Core(TM) i7 CPU 2.80 GHz quad core and
4 GB of RAM. Reinhardt et al. use 12 instances, which in their paper
have added to the instance of Fig. 4 the possible arcs for the matching problem as



R. van Twist et al. Computers and Operations Research 125 (2021) 105103
are named 20090920 through 20090930 and 20091001. We were
provided with the first 11 instances 20090920–20090930. In the
instances that we got there is no distinction between pre-booked
and immediate PRMs, and hence we consider all PRMs as pre-
booked. Moreover, no shifts have been specified. We first present
our experiments on the problem with identical shifts, and finally
we present our results on the shift variant, where we have defined
the shifts ourselves according to the arrival and departure times of
the flights. In their paper, Reinhardt et al. do distinguish between
pre-booked and immediate PRMs. For 7 out of 12 instances they
manage to support all PRMs; for the remaining instances a few
PRMs are rejected. In all solutions there is some unnecessary wait-
ing time left. For the exact data we refer to Table 3 in Reinhardt
et al. (2013).

6.1. Identical shifts

In the master thesis on which this paper is based (see van Twist,
2015) we compare four methods to solve the matching problem,
but here we only report on our experiments with solving the sub-
problem to optimality using the Hungarian method (full matching)
and solving it heuristically using the Reschedule Overlapping Seg-
ments Heuristic. In the first stage we use the following settings:
Max Iterations I:
 500,000 for heuristics.

3,000 for full matching.
Max time:
 2 min

Temperature start T:
 400.0 (Temperature of the

simulated annealing at start.)

Number of Q steps:
 100 (T is multiplied by

a every I=Q iterations.)

Alpha a:
 0.95

Decline penalty booked:
 1200

Mutations:
 Plan_PRM, Decline_PRM,

Merge_SegmentGroup,

Move_SegmentGroup,
Move_Split_SegmentGroup
We start with an empty solution. In each iteration we choose
one of the given mutations according to the following
probabilities:

� with probability 4=14 we try to include a declined PRM;
� with probability 1=14 we try to remove an accepted PRM;
� with probability 5=14 we try to merge a segment group;
� with probability 2=14 we try to move a segment group;
� with probability 2=14 we try to move and split a segment group.

We stop the algorithm as soon as the maximum number of iter-
ations has been reached or the algorithm has run for two minutes,
which ever happens first.

Since it takes much more time to apply the Hungarian method
than to apply the heuristic in each iteration, we use different num-
bers of the maximum number of iterations I. As a result, the tem-
perature T will reduce faster then, since T is multiplied with a after
each set of I=100 iterations; otherwise, the temperature would still
have been high after the two minutes of running time.

We use the same temperature value for minimizing the cost of
the declined PRMs and for minimizing the robustness penalty, but
when evaluating the probability to accept a worse solution, we
multiply the robustness score by 3 for the input of the formula
for the probability to accept a worse solution. We decrease the
temperature Twith every I=Q iterations by a, such that multiplying
T with a is done Q times no matter how many iterations we do.
9

The experiments are run 30 times using the above settings for
each instance and method to solve the matching problem. The
result table contains averages of the running times and the number
of iterations, the best and worst solution with the number of
declined PRMs and robustness score. The Average column lists
the averages of the number of declined PRMs and robustness with
a double precision of 1.

In Table 2 we show the results that were obtained by the
decomposition approach when the subproblem was solved from
scratch in each iteration by the Hungarian method.

The results are reasonable: almost all PRMs are served, except
for Instance 20090930. The number of iterations is rather disap-
pointing, since usually not all of the at most 3000 iterations could
be run in two minutes. It is possible to speed up the Hungarian
algorithm by working incrementally instead of starting from
scratch in each iteration; this is known as the dynamic Hungarian
algorithm (Mills-Tettey et al., 2007). With the dynamic Hungarian
algorithmwe can dynamically add segments in the matching prob-
lem or change the costs of the matchings when segments are given
different start times. We did not implement this, since the
Reschedule Overlapping Segments Heuristic yields very good
results, as Table 3 shows.

These results clearly are optimal for our objective function.
After careful inspection of Instance 20092021, it turned out the sin-
gle, declined PRM corresponded to a mistake in the instance, since
he had to be transferred to a non-existing terminal and hence
could never be accepted.

When we take a closer look at the generated solutions, then we
see that in general the employees at the terminals have lots of
time; usually the slacks between two consecutive tasks for the
same employee are much larger than 20 min, which implies that
we do not have to worry about lunch-breaks, etc. There are some
peaks, however, for which we need the employees to serve the
PRMs. The inter-terminal buses are busier, but nevertheless the
drivers have some time for a break. The workload of the buses is
better spread over the day, which may be due to our policy of park-
ing PRMs at a lounge before and after a bus transfer. There are
many bus trips in which two or more PRMs are served at the same
time, but still the bus drivers have enough work to do. In a similar
fashion, we find that many PRMs travel together towards the
lounge, even though they come from two different terminals,
which implies that the bus segments get synchronized by our
algorithm.
6.2. Shift variant

Unfortunately, in the original data there were no shifts
involved. To test our algorithms in case of shifts, we therefore gen-
erated the shifts ourselves as described in SubSection 3.4.

We use the decomposition approach, and we have tested all our
algorithms to solve the matching problem. Here we use the same
settings as for the problem with identical shifts. After each itera-
tion, we apply our greedy heuristic such that the solution obeys
the shifts. The computational results show the same pattern as in
case of the variant with identical shifts. We only report the results
for the Reschedule Overlapping Segments Heuristic; see the table
below. Again, the heuristics perform very well (see Table 4).
7. Experiments with dynamic scenarios and disturbances

Our algorithm may be capable of finding optimal solutions for
the deterministic case, but howwill it behave in a volatile, dynamic
environment like an airport? Another question concerns robust-
ness. In our solution approach we have added the concept of
robustness: will the inclusion of this robustness pay off in prac-



Table 2
Results when solving the subproblem from scratch using the Hungarian method.

Instance Time (ms) Iterations Best Average Worst

Declined Robust Declined Robust Declined Robust

20090920 62852 2938 0 0 0.0 333.7 0 968
20090921 114121 2993 1 2844 4.3 3672.6 7 3334
20090922 120186 1936 0 6018 1.2 7817.9 5 8070
20090923 86868 3000 0 606 0.0 1375.5 0 2316
20090924 120184 1769 0 1559 0.0 4066.7 0 7369
20090925 120230 1816 0 1346 0.0 2928.7 0 6218
20090926 80059 3000 0 219 0.0 1087.8 0 3004
20090927 115554 2794 0 265 0.6 1080.1 2 1382
20090928 87762 3000 0 263 0.0 1088.5 0 1852
20090929 120161 1951 0 3446 0.0 5772.3 1 8123
20090930 120231 859 76 3735 96.8 3756.9 116 3576

Table 3
Results when solving the subproblem incrementally using the Reschedule Overlapping Segments Heuristic.

Instance Time (ms) Iterations Best Average Worst

Declined Robust Declined Robust Declined Robust

20090920 1831 11143 0 0 0.0 0.0 0 0
20090921 70752 500000 1 0 1.4 183.2 3 0
20090922 43403 289371 0 0 0.0 0.0 0 0
20090923 17698 115761 0 0 0.0 0.0 0 0
20090924 51850 243457 0 0 0.0 0.0 0 1
20090925 47073 160797 0 0 0.0 0.0 0 0
20090926 10415 69227 0 0 0.0 0.0 0 0
20090927 14503 82530 0 0 0.0 0.0 0 0
20090928 9546 58167 0 0 0.0 0.0 0 0
20090929 52418 257654 0 0 0.0 0.0 0 0
20090930 51225 174627 0 0 0.0 0.0 0 0

Table 4
Results for the shift variant with overlapping shifts: Reschedule Overlapping Segments Heuristic in combination with the greedy shift fix.

Instance Time (ms) Iterations Best Average Worst

Declined Robust Declined Robust Declined Robust

20090920 2762 7996 0 0 0.0 0.0 0 0
20090921 120026 418887 1 0 1.5 348.0 3 307
20090922 80280 270502 0 0 0.0 0.0 0 0
20090923 29871 95774 0 0 0.0 0.0 0 0
20090924 106371 235641 0 0 0.0 0.6 0 10
20090925 80400 151739 0 0 0.0 0.5 0 14
20090926 18528 63811 0 0 0.0 0.1 0 4
20090927 34726 92349 0 0 0.0 0.0 0 1
20090928 32381 109791 0 0 0.0 0.0 0 0
20090929 94603 223557 0 0 0.0 0.0 0 1
20090930 95809 157717 0 0 0.0 2.3 0 16

R. van Twist et al. Computers and Operations Research 125 (2021) 105103
tice? To answer these questions, we will apply discrete-event sim-
ulation. As our basis we use the instances from Reinhardt et al.
without shifts. Next, we generate disturbances based on practical
sources of uncertainty, which we describe below.
7.1. Disturbances

In our simulation we want to include the possible disturbances
that occur in practice and that may deteriorate the quality of our
schedule. We will consider the following sources of uncertainty:

� Arrival of immediate PRMs;
� Deviations from the scheduled arrival and departure times of
flights;

� Deviations from the planned travel times (lengths of segments).

Below we discuss these uncertainties and indicate how we
included these in our simulation.
10
7.1.1. Immediate PRMs
Since we do not know which PRMs in the instance data are pre-

booked PRMs, we consider all of them to be pre-booked. We fur-
ther generate 100 additional immediate PRMs, who check in dur-
ing the day. This makes it harder for the algorithm and
employees to handle all PRMs than in the original problem
instances. We used the instance data to make a template for gen-
erating new PRMs, where we extracted the possible pickup points,
gates, drop off points and flight schedules from the journeys of the
PRMs in these instances. Flights are not directly listed in the
instance data, but from the journey of the PRMs we can see which
flight is used for arrival and/or departure. Furthermore, we gener-
ate some additional flights, which together with the flights from
the instance data are used as our complete flight schedule in the
simulation. The flights for the immediate PRMs can then be
selected from this complete set of flights.

Immediate PRMs are generated by first deciding whether it con-
cerns an arriving, departing, or transfer passenger. For each gener-



R. van Twist et al. Computers and Operations Research 125 (2021) 105103
ated PRMwe just choose a random start and end location matching
with its type of journey; the route of the PRM through the airport
follows then immediately. If the PRM is assumed to arrive by air-
craft, then we choose a random arriving flight (including the ones
we added) as start location; for the remaining PRMs we choose a
random pickup point in the terminal for the PRM to show up in
our simulation. Similarly, if the PRM departs by aircraft, then we
choose a random departing flight as end location; for the remain-
ing PRMs we choose a random drop off point in the terminal at
which they arrived.

We generate the additional PRMs before executing the simula-
tion, but to avoid using knowledge that we are not supposed to
have, we only notify the simulation of their existence at the time
that the PRMs make themselves known. For PRMs arriving by
plane, we assume that we are notified some time beforehand; for
PRMs arriving by train, bus, or car, we assume that we do not know
of their existence until they require assistance somewhere at the
airport.
7.1.2. Flight delays
We generated the flight delays by the method used by Diepen

et al. (2013), who conducted research at Amsterdam Airport Schi-
phol on robust scheduling of platform buses. They performed a
simulation study to test the effect of including robustness in the
objective function. To find realistic values for the disturbance they
analyzed the delay statistics of both arrival and departure times of
Schiphol airport.

For the deviations of the arrival times they found a normal dis-
tribution with a mean of 4 min and a variance of 30 min. For the
deviation of the departure times they found that in 2% of the cases
a flight left early, where the amount of time that the flight leaves
early follows an exponential distribution with a mean of 2 min.
In the remaining 98% of the cases the flight departs later and this
time follows an exponential distribution with a mean of 15 min. In
our simulation we leave out the possibility that flights depart
early; opening the gate a few minutes earlier will have a minor
impact on the schedule, since there is enough time remaining to
help the PRMs through the boarding process.

Flights give status updates to the airport from time to time,
which might adjust the expected arrival or departure time.
Diepen et al. (2013) report that the time at which the last updates
are given follows an exponential distribution with a mean of
15 min before the actual arrival or departure time of the flight.
We use a similar distribution in our simulation. We assume that
at least 10 min before the actual arrival time it is known whether
or not the flight has a delay or is early, but to add some random-
ness, we also use the same distribution for the last update to make
the warning a bit earlier and more random.

For departing flights we assume that the aircraft is already at
the airport in advance to enable the maintenance between the
flights, like cleaning, refueling and unloading the luggage. When
the aircraft arrives from its previous flight we will know
approximately when boarding for departure can start. We assume
that we have this information at least 45 min in advance. Just like
for the incoming flights, we add some randomness, and therefore,
we expect to get the last update at time:
actual depart � 45� expð1=15Þ.
7.1.3. Travel times
In the given deterministic instances the time that it takes to tra-

vel a certain segment is considered to be fixed. We assume that
these are based on averages, and therefore we include the random-
ness in these travel times in our simulation. Since we do not have
any data on this, we have made the assumption that these travel
times are uniformly distributed. Here we distinguish between
11
PRMs in a wheelchair and walking PRMs whom we expect to be
a little slower in general. For wheelchair PRMs we take a uniform
distribution of ½0:9;1:1� times the expected travel time; for the
walking PRMs we use a uniform distribution of ½0:9;1:3� times
the expected travel time. If the employee assists multiple PRMs,
then we generate the travel time of all PRMs that the employee
assists and take the largest as the group’s travel time. We generate
the times needed by the buses in the same way, although the most
delay will probably be caused by either traffic or the time it takes
to load and unload the PRM in the bus. For the boarding segment
we stick to the deterministic boarding time of 20 min, since we feel
that 20 min is more than sufficient for this.
7.2. Rescheduling

In this section we will discuss how our scheduling algorithms
will be applied to deal with the described disturbances. In general
we want to avoid full rescheduling as much as possible just like
Diepen et al. (2013) in their simulation for the platform buses;
we expect that the solution is robust enough to be resistant against
a minor disturbance like an increased travel time of a PRM. We fur-
ther want to change as little as possible to the solution in case of a
full reschedule to avoid that the employees’s schedules change
dramatically every time something happens. We see to it that a
PRM who was accepted in a previous solution will not be declined
due to an update, unless it is technically impossible for him to
catch the connecting flight.

We only want to reschedule at the important timepoints. There-
fore, we distinguish between minor and major disturbances. There
are two possible causes of a major disturbance: adding a new PRM
to the schedule, or having a major difference (more than 10 min)
between the published and the actual arrival or departure time
of a flight. Flights give several status updates to the airport from
time to time, and we do not want to update our solution at each
update. Diepen et al. (2013) apply the strategy of rescheduling (if
necessary) only when the aircraft has reported its last update, such
that the time at which it arrives or departs is knownwith certainty.
In our case, however, this is not a viable approach. For example, in
case of a large delay of a departing flight, adjusting the solution
only at the last status update would imply that the PRM has to wait
at the gate, instead of in the lounge, which is much more comfort-
able. Furthermore, the employee accompanying the PRM would be
late for his next task. Therefore, we will adjust the schedule, if nec-
essary, both at the first and at the last status update. At the first
update, we remove the segments of the PRM from the schedule,
and at the last update we have to reintroduce themwith their post-
poned time-stamps.

Causes of minor disturbances are changes of less than 10 min in
flight arrival or departure times or deviations in travelling times of
PRMs (by bus or moving through a terminal). We only reschedule
in case of major disturbances. In case of a minor disturbance, we
just make a small shift in the schedule and assume that there is
enough slack in the schedule of the employee to compensate this.
Still, any disturbance in flight arrival or departure times may push
the start of a segment group forward in time, which in turn may
make the current planning of a consecutive planned segment
group invalid. Similarly, a deviation in the travelling time of a
PRM may delay the completion of a segment group and also make
the current planning of a consecutive planned segment group inva-
lid. We call segments that are invalid because of a disturbance in
another segment invalid segments.

Consequently, for the simulation we have three kinds of adjust-
ments that we must consider when rescheduling: introducing a
PRM, moving invalid segments, and reintroducing postponed seg-
ments. When rescheduling we always first try to solve the problem



R. van Twist et al. Computers and Operations Research 125 (2021) 105103
by applying minor changes in an update before doing a full
reschedule.

In our update algorithm we first try to add new PRMs to the
schedule if any. Thereto, we apply the ‘add PRM’ and ‘Merge seg-
ment group’ mutations (see Subsection 5.1) for a number of times
in combination with the Free Spot insertion heuristic to generate
the solution. The Free Spot heuristic simply tries to insert a seg-
ment in the schedule of an employee without changing the assign-
ment of any other segment; we use this insertion heuristic,
because it leaves most of the employees’s schedules intact.

Next, we try to re-plan the invalid segments. Again, we first try
to fix this by executing a mutation that shifts the segment groups
containing the invalid segments. In case the segment was merged
to a segment of another PRM to share a single employee or bus,
then we separate those two journeys to allow the segment to be
planned individually. We also execute a mutation that tries to
merge the segment group with another segment group. Again we
use the Free Spot heuristic to solve the subproblem.

Finally, we plan the segments that due to flight delay were post-
poned and removed from the schedule until their start time
became clear. Again, we use the ‘Merge segment group’ mutation
in combination with the Free Spot heuristic to solve the
subproblem.

If after the application of our update algorithm, there is still at
least one unplanned new PRM, an invalid segment or an unplanned
postponed segment, then we will do a full reschedule. We keep
track of how many times we need to do an update and how many
times we need a full reschedule.

When in the simulation we have to do a reschedule, the simu-
lation is already at a certain point in time, and we cannot change
anything that has already happened and we cannot change tasks
that have already started. Moreover, when the employee receives
a new task he needs time to adjust, finish what he is currently
doing and walk towards the location of the next task. To that
end, we set a threshold in time before which major changes in
the schedules may not occur; in our simulation experiments, we
put the threshold equal to the current time plus 20 min. We apply
the Reschedule Overlapping Segments heuristic for assigning seg-
ments that start after the threshold to employees. Finally, we also
change the stopping criterion a bit in case of a full reschedule.
Since the schedule is fixed until the current time of the simulation,
we use the robustness score of this part as a lower bound.

7.3. Simulation experiment

The goal of our simulation is twofold. The major goal is to find
out whether the algorithm can be used in a dynamic setting in
practice, and the second goal is to study the effect of including
robustness. To answer the second question, we have run our sim-
ulation with two variants of our algorithm: once with the robust-
ness penalty set as described in Subsection 3.3, and once with
the penalty equal to zero in all cases. We then compare the perfor-
Statistic Mean Variance
(robust) (robust)

Declined booked 1:15 1:49
Declined immediate 2:4 3:89
Wait time 87:35 2024:87

Reschedule updates 145:05 49:48
Full reschedules 11:4 20:50

12
mance of both versions using Student’s t-test, to see which one
performs better.

We use the instances obtained from Reinhardt et al. with the
disturbances defined before. To compare the performance of our
algorithm with robustness to that without robustness, we use
common random numbers. For each instance we generate 10 real-
izations of the immediate PRMs and flight delays, which we use as
input for both versions. Consequently, the major disturbances of
both runs will be the same, while the execution and rescheduling
of the schedule will be different. We compare the results of the
instances in a paired t-test. As start schedule for the simulation,
we use the results from our earlier computational experiments.
Since we found optimal schedules (see Table 3) for each instance
we randomly select one optimal solution as starting solution. For
the variant where robustness is disabled we generated new solu-
tions, using the best variant of our algorithm but with robustness
disabled.

For rescheduling we use the methods described above. To make
the simulation run faster, such that the staff gets the results of a
reschedule quickly, we allow 50.000 iterations to be done by the
algorithm instead of the 500.000 in our computational experi-
ments of our best algorithm.

In the simulation we keep track of the following statistics:

� The number of rejected PRMs, where we distinguish between
pre-booked and immediate PRMs. Every PRM who is scheduled
in the start solution at the beginning of the day is considered
pre-booked; the ones who arrive during the simulation are con-
sidered immediate.

� Total unnecessary waiting time in minutes of the PRMs in the
actual execution of the schedule; the total time a PRM has to
wait for a connection is considered unnecessary waiting time.
Since we do not allow detours, we can ignore these.

� The number of times that the simulation executes a full
reschedule and the number of times that it executes just an
update while calling the rescheduling protocol described in
the previous subsection.

After having executed the simulation experiments we did a
two-tailed paired t-test on each of the statistics mentioned
above to compare the two algorithms, with a null hypothesis
that the corresponding values are equal for both algorithms.
We reject the null hypothesis for a statistic if the corresponding
p-value is less than the commonly used acceptance threshold of
0.05.

Below we show the results of the experiments. For each statistic
we show the mean and variance of both instances and the p value
denoting the probability that the two distributions are considered
identical by the two tailed paired t-test. The annotation ‘(robust)’
indicates the results for the variant where we consider robustness,
whereas the annotation ‘(no robust)’ indicates the results for the
variant where robustness is ignored.
Mean Variance p-value
(no robust) (no robust)

1:08 1:49 0:52
2:37 3:88 0:56
170:6 8212:02 1:10� 10�15

144:31 53:67 0:03
11:15 21:12 0:37



R. van Twist et al. Computers and Operations Research 125 (2021) 105103
Although at first sight it looks like the variant where robustness
is ignored is able to plan slightly more pre-booked PRMs than the
robust variant, the corresponding p-value of 0,52 indicates that the
null hypothesis that both algorithms perform equally well on this
aspect must be accepted. The same conclusion is obtained for the
number of rejected immediate PRMs.

With respect to the total unnecessary waiting time the conclu-
sion is simple: including robustness is beneficial. This is not a big
surprise of course, since we introduced robustness to be resistant
against minor delays.

The number of updates done differs between the robust variant
and the variant where robustness is neglected in the sense that the
variant without robustness needs slightly fewer updates. This may
seem surprising. However, in a robust schedule the slack is spread
out quite evenly, whereas in a non-robust schedule there are parts
with very little slack and parts with a lot of slack. If there are dis-
turbances in the latter part, it is highly likely that an update is not
required. Moreover, flight delays for flights of PRMs who become
unassigned at some point during the day, may introduce a slight
difference in the number of updates or reschedules. Observe that
the number of full reschedules does not differ enough to reject
the null hypothesis of equality. Although, contrary to what we
expected, we found that including robustness increases the num-
ber of reschedule updates, this is not as important as the number
of full reschedules.
8. Conclusion

In this paper we have studied the problem of assisting PRMs in
their journey through the airport. This problem was first presented
by Reinhardt et al. (2013) for a major, international airport. They
present a local search approach based on an insertion heuristic,
and raised the question if other approaches would be able to per-
form better. We present a novel decomposition approach for this
problem. In Phase 1, we set the start times of the segments of
the journeys of the accepted PRMs, and in Phase 2 we assign the
work to the employees. By synchronizing the segments of each
individual PRM, we can eliminate all unnecessary waiting time
for the deterministic case. Because of the limit of two minutes on
the computation time, there is no time to solve the subproblem
of Phase 2 to optimality at each iteration, but using the Reschedule
Overlapping Segments Heuristic, which resolves the assignment
problem locally, we can obtain excellent results for the determin-
istic case. We initially developed the algorithm for the case where
all employees are available all day, and further show that with a
small adjustment this approach can also be used for the problem
in which the employees have different shifts. Our heuristic can
solve all the instances that we got from Reinhardt et al. to
optimality.

Furthermore, we have tested our approach in a simulation
experiment in which we let an additional 100 immediate PRMs
enter the airport, and in which we introduce deviations from the
published arrival and departure times of the flights together with
stochastic travel times of PRMs. From the results we may conclude
that our approach is very well suited to solve the PRM problem in
real-life. Even though we added 100 immediate PRMs, only a few
had to be declined. We further studied the use of including robust-
ness as an additional objective by comparing our original algo-
rithm to the variant in which the robustness penalty was set to
zero. From this experiment, we draw the conclusion that both algo-
rithms provide quite similar results, but that including robustness
reduces the total unnecessary waiting time very significantly.
Much to our surprise, including robustness does not reduce the
number of reschedule operations.
13
Our approach can be used for similar problems in which syn-
chronization of transfers is required. Next to guiding PRMs at an
airport, an obvious example is bringing patients to a hospital, after
which they have to be moved to the right department. But also for
solving home health care routing and scheduling problems our
decomposition approach can be used: in the first step the visits
are planned in time, and in a second step the visits are assigned
to employees. The subproblem arising in the second step is then
again a Single Depot Vehicle Routing problem (see for example
Freling et al., 2001); we can model several objective functions, like
minimizing total distance traveled, by assigning the right cost to
the arc ði; jÞ that indicates that tasks i and j are executed consecu-
tively by the same employee. Note that the problem in the second
step becomes a lot more difficult if the employees cannot be con-
sidered to be identical, for example because of required
qualifications.
CRediT authorship contribution statement

René van Twist: Software.

Acknowledgment

This research was conducted when the first author was a stu-
dent at Utrecht University. Again, the authors want to thank Line
Blander Reinhardt, Tommy Clausen, and David Pisinger for pre-
senting the anonymized data and their willingness to answer ques-
tions concerning these.

References

Afifi, S., Dang, D.-C., Moukrim, A., 2016. Heuristic solutions for the vehicle routing
problem with time windows and synchronized visits. Optimization Letters 10,
511–525.

Arcidiacono, G., Giorgetti, A., Pugliese, M., 2015. Axiomatic design to improve PRM
airport assistance. In: Thompson, M.K., Giorgetti, A., Citti, P., Matt, D., Suh, N.P.
(Eds.), Procedia CIRP Volume 34, 9th International Conference on Axiomatic
Design (ICAD 2015), pp. 106–111..

Beaudry, A., Laporte, G., Melo, T., Nickel, S., 2010. Dynamic transportation of
patients in hospitals. OR Spectrum 32, 77–107.

Berbeglia, G., Cordeau, J.-F., Laporte, G., 2010. Dynamic pickup and delivery
problems. European Journal of Operational Research 202, 8–15.

Bolat, A., 2000. Procedures for providing robust gate assignments for arriving
aircrafts. European Journal of Operational Research 120, 63–80.

Bredström, D., Rönnqvist, M., 2008. Combined vehicle routing and scheduling with
temporal precedence and synchronization constraints. European Journal of
Operational Research 191, 19–31..

Burkard, R.E., Dell’Amico, M., Martello, S., 2012. Assignment Problems (Revised
reprint). SIAM, Philadelphia (PA.)..

Chang, Y.-C., Chen, C.-F., 2012. Meeting the needs of disabled air passengers: factors
that facilitate help from airlines and airports. Tourism Management 33, 529–
536.

Cissé, M., Yalçındag�, S., Kergosien, Y., S�ahin, E., Lenté, C., Matta, A., 2017. OR
problems related to home health care: a review of relevant routing and
scheduling problems. Operations Research for Health Care 13–14, 1–22.

Coppi, A., Detti, P., Raffaelli, J., 2013. A planning and routing model for patient
transportation in health care. Electronic Notes in Discrete Mathematics 41,
125–132.

Cordeau, J.-F., Laporte, G., 2007. The dial-a-ride problem: models and algorithms.
Annals of Operations Research 153, 29–46..

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2009. Introduction to Algorithms.
The MIT Press, Cambridge, Massachusetts London, England.

Deleplanque, S., Quilliot, A., 2013. Transfers in the on-demand transportation: the
DARPT Dial-a-Ride Problem with transfers allowed. In: Multidisciplinary
international conference on scheduling: theory and applications (MISTA
2013), pp. 185–205..

Desaulniers, G., Lavigne, J., Soumis, F., 1998. Multi-depot vehicle scheduling
problems with time windows and waiting costs. European Journal of
Operational Research 111, 479–494..

Diepen, G., van den Akker, J.M., Hoogeveen, J.A., Smeltink, J.W., 2012. Finding robust
assignment of flights to gates at Amsterdam Airport Schiphol. Journal of
Scheduling 15, 703–715.

Diepen, G., Pieters, B.F.I., van den Akker, J.M., Hoogeveen, J.A., 2013. Robust planning
of airport platform buses. Computers & Operations Research 40, 747–757.

Di Mascolo, M., Espinouse, M.-L., El Hajri, Z., 2017. Planning in home health care
structures: a literature review. IFAC PapersOnLine 50, 4654–4659.

http://refhub.elsevier.com/S0305-0548(20)30220-3/h0005
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0005
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0005
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0015
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0015
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0020
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0020
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0025
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0025
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0040
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0040
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0040
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0045
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0045
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0045
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0045
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0045
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0045
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0050
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0050
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0050
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0060
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0060
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0075
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0075
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0075
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0080
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0080
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0085
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0085


R. van Twist et al. Computers and Operations Research 125 (2021) 105103
Drexl, M., 2012. Synchronization in vehicle routing – a survey of VRPs with multiple
synchronization constraints. Transportation Science 46, 297–316.

Eveborn, P., Flisberg, P., Rönnqvist, M., 2006. LAPS CARE – an operational system for
staff planning of home care. European Journal of Operational Research 171,
962–976.

Fikar, C., Hirsch, P., 2017. Home health care routing and scheduling: a review.
Computers & Operations Research 77, 86–95.

Freling, R., Wagelmans, A.P.M., Pinto Paixão, J.M., 2001. Models and Algorithms for
Single-Depot Vehicle Scheduling. Transportation Science 35, 165–180..

Frifita, S., Masmoudi, M., Euchi, J., 2017. General variable neighborhood search for
home healthcare routing and scheduling problem with time windows and
synchronized visits. Electronic Notes in Discrete Mathematics 58, 63–70.

Furian, N., O’Sullivan, M., Walker, C., Vösnner, S., 2018. Evaluating the impact of
optimization algorithms for patient transits dispatching using discrete event
simulation. To appear in Operations Research for Health Care..

Hanne, T., Melo, T., Nickel, S., 2009. Bringing robustness to patient flow
management through optimized patient transport in hospitals. Interfaces 39,
241–255.

Ho, S.C., Szeto, W.Y., Kuo, Y.-H., Leung, J.M.Y., Petering, M., Tou, T.W.H., 2018. A
survey of dial-a-ride problems: Literature review and recent developments.
Transportation Research Part B 111, 395–421.

Kergosien, Y., Lenté, C., Billaut, J.C., 2009. Home health care problems: an extended
multiple traveling salesman problem. In: Multidisciplinary International
Conference on Scheduling: Theory and Applications (MISTA 2009), pp. 85–92..

Lim, A., Zhang, Z., Qin, H., 2017. Pickup and delivery service with manpower
planning in Hong Kong public hospitals. Transportation Science 51, 688–705.

Masson, R., Lehuééde, F., Péton, F., 2014. The dial-a-ride problem with transfers.
Computers & Operations Research 41, 12–23.

Mills-Tettey, G.A., Stentz, A., Dias, M.B., 2007. The Dynamic Hungarian Algorithm for
the Assignment Problem with Changing Costs. Robotics Institute Carnegie
Mellon University Pittsburgh, Pennsylvania.
14
Molenbruch, Y., Braekers, K., Caris, A., 2017a. Typology and literature review for
dial-a-ride problems. Annals of Operations Research 259, 259–325.

Molenbruch, Y., Braekers, K., Caris, A., Vanden Berghe, G., 2017b. Multi-directional
local search for a bi-objective dial-a-ride problem in patient transportation.
Computers & Operations Research 77, 58–71.

Parragh, S.N., 2009. Ambulance routing problems with rich constraints and multiple
objectives. Ph.D. thesis, University of Vienna, Austria..

Parragh, S.N., 2011. Introducing heterogenous users and vehicles into models and
algorithms for the dial-a-ride problem. Transportation Research Part C 19, 912–
930.

Parragh, S.N., Doerner, K.F., 2018. Solving routing problems with pairwise
synchronization constraints. Central European Journal of Operations Research
26, 443–464.

Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J., 2012. The home care crew
scheduling problem: preference-based visit clustering and temporal
dependencies. European Journal of Operational Research 219, 598–610.

Reinhardt, L.B., Clausen, T., Pisinger, D., 2013. Synchronized dial-a-ride
transportation of disabled passengers at airports. European Journal of
Operational Research 225, 106–117.

Savelsbergh, M.W.P., Sol, M., 1995. The general pickup and delivery problem.
Transportation Science 29, 17–29..

Schönberger, J., 2017. Scheduling constraints in dial-a-ride problems with transfers:
a metaheuristic approach incorporating a cross-route scheduling procedure
with postponement opportunities. Public Transport 9, 243–272.

van Twist, R.P., 2015. Synchronizing transportation of people with reduced mobility
through airport terminals. Master thesis Utrecht University. The Netherlands.
https://dspace.library.uu.nl/handle/1874/312454..

Zhang, Z., Liu, M., Lim, A., 2015. A memetic algorithm for the patient transportation
problem. Omega 54, 60–71.

http://refhub.elsevier.com/S0305-0548(20)30220-3/h0090
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0090
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0095
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0095
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0095
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0100
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0100
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0110
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0110
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0110
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0120
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0120
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0120
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0125
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0125
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0125
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0135
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0135
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0140
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0140
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0145
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0145
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0145
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0150
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0150
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0155
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0155
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0155
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0165
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0165
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0165
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0170
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0170
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0170
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0175
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0175
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0175
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0180
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0180
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0180
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0190
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0190
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0190
https://dspace.library.uu.nl/handle/1874/312454
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0200
http://refhub.elsevier.com/S0305-0548(20)30220-3/h0200

	Synchronizing transportation of people with reduced mobility through airport terminals
	1 Introduction
	2 Literature review
	3 Problem description
	3.1 The airport
	3.2 The journeys of the PRMs
	3.3 Robustness
	3.4 Shifts

	4 Synchronization
	4.1 Synchronizing segments to avoid unnecessary waiting time
	4.2 Synchronization by sharing bus trips or employees

	5 Decomposition approach: local search and matching
	5.1 Local search
	5.2 Generating the schedule
	5.2.1 Solving the problem without shifts as an assignment problem
	5.2.2 Two heuristics for updating the matching
	5.2.3 Adjusting the solution in case of different shifts


	6 Computational experiments for the deterministic instances
	6.1 Identical shifts
	6.2 Shift variant

	7 Experiments with dynamic scenarios and disturbances
	7.1 Disturbances
	7.1.1 Immediate PRMs
	7.1.2 Flight delays
	7.1.3 Travel times

	7.2 Rescheduling
	7.3 Simulation experiment

	8 Conclusion
	CRediT authorship contribution statement
	Acknowledgment
	References


