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Abstract

Inland transportation of containers contributes significantly to the total cost of con-
tainer intermodal transportation. For this reason, it has received a lot of attention in the
last few decades. While there are many reports of attempts to solve the problem out there,
the variants considered are all simpler than the form addressed in this paper. Here, we
consider the container transportation problem where pick-up and delivery orders, empty
and loaded containers, Discharge and Strip of heterogeneous container types with time win-
dows, are handled with heterogeneous truck fleets that carry one or two 20ft or one 40ft
chassis. Moreover, to manage the movement and reuse of empty containers, two strategies
for empties, i.e. Depot-turn and Street-turn, are simultaneously allowed in the problem
setting. A novel MILP model for this rich transportation problem is developed, which
applies to various scenarios, even when some functions/delivery modes/types of container,
are disabled. Given the complexity of this problem, exact solution of large instances is not
realistic. We, therefore, suggest a novel implementation of the Genetic Algorithm (GA)
tailored to this particular problem in its rich form. It differs from existing ones for VRP
problems due to the nature of the problem we are considering. Numerical experiments on
examples with real geographical data show that combining Discharge and Strip containers
in transportation saves on cost and increases fleet utilisation.
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1 Introduction

The inland transportation refers to the delivery of loaded and empty containers amongst
port terminals, container depots, rail hubs and customers. Since it contributes between 40%
and 80% [29] to the total cost of the intermodal container business and involves large-scale,
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combinatorial decision makings, the inland transportation has received a lot of attention
in the last decades [28]. The standard sizes of containers used for intermodal shipping
around the world are the 20ft and 40ft. Consequently, most truck chassis are designed
to carry these two types of containers; the 20ft chassis carries a single 20ft container; the
40ft combination chassis carries a single 40ft container, a single 20ft container or two 20ft
containers [25]. Customers are categorized into two classes: importers who receive loaded
containers from the port and exporters who send loaded containers to the port. Empty
containers are moved between importers, exporters, the port and inland container depots
based on the requests of customers. In the container industry, some of the shipping lines
own fleets of trucks to perform the transportation, while others outsource it to local haulage
companies. This study considers the former case, where the shipping line serves customer
demands with its own fleet and decides where to collect/drop empty containers involved
in the servicing process.

In practice, two standard container loading/unloading modes are used, i.e., “Strip” and
“Discharge”. In the Strip case, a container can be separated from its carrying truck/chassis
and be left at its customer location to deal with (loading or unloading). The empty con-
tainer that is demanded before loading or after unloading can be dropped-off/collected by
the same truck or by a different one, depending on which option leads to a lower cost.
This process will generate many requests for empties, and normally the customer does not
care about where the empty box comes from/goes to. While under the Discharge mode,
only the cargo will be loaded onto/unloaded from the delivery truck; containers and trucks
are not separated after services. Traditional studies separate these two delivery modes
when planning the route. However, there is a great potential in merging all possible types
together to capture the practical situation, as both types exist in the demand based on
customer choices and do not conflict to deal with on the same truck. Here, we suggest a
methodology to plan the joint delivery of both types so as to reduce overall transportation
cost. Note that the “Strip” mode may also be referred to as the “drop-and-pull” mode
where a container with a chassis is left at a customer; mathematically they are not dif-
ferent when only one container is allowed per truck. However in this study we allow the
simultaneous transportation of two 20ft containers on 40ft truck/chassis, which is obviously
more complicated than the standard “drop-and-pull” works.

For this purpose, a novel MILP model for combining the inland transportation of het-
erogeneous (20ft and 40ft), loaded and empty containers under Strip and Discharge modes
is developed in this paper. It is then solved using an original implementation of the Ge-
netic Algorithm (GA) for large scale instances. We investigate the delivery process of 12
different order types, which covers all means of container transportation practices, using
a heterogeneous fleet consisting of both 20ft and 40ft trucks. The two loading/unloading
modes (Strip and Discharge) are examined both separately and jointly to evaluate the
benefit of combining them. The two common strategies for managing the empty con-
tainers, say the Street-turn where empty containers are collected from import customers
and directly delivered to exporter customers to fill with cargos, and the Depot-turn where
empty containers can be stored at/collected from inland depots for later usages, are also
simultaneously allowed by the model. Time window constraints at customer locations and



port/depots are incorporated in the model.

This article extends the modelling of the complicated real-world operations in container
transportation industry by combining all container transportation modes (i.e., Strip and
Discharge, loaded and empty, Street-turn and Depot-turn) in routing optimization with
both 20ft and 40ft truck/chassis. Methodologically, the suggested MILP model extends
all previous works on the modelling of loaded and empty container flows at customer
nodes and inland depots, following the Strip and Discharge modes. It is also distinct from
existing work on homogeneous chassis (e.g. [45]) because simple decisions on whether
one has to visit a depot for empty drop-off/pickup between each pair of nodes become
unachievable beforehand; instead, these decisions have to be made through the model
according to the load of the truck/chassis and the demand/supply type on customer nodes.
The implemented GA approach also, differs from existing approaches to solve VRPTW in
its chromosome design and feasibility control after crossover and mutation. With this
implementation, problems with 500 orders can be solved in about 1 hour of elapsed time.

Note further that in this study, despite having separate categories for Strip and Dis-
charge containers in the model and solution approaches, we do allow a Strip order to be
satisfied in the same way as a Discharge one, i.e. a truck that carries an empty /loaded con-
tainer to a customer location, waits there for the container to be loaded /unloaded and then
departs with the processed one. In this case both parts of the Strip order are performed by
the same truck, one right after another, and the waiting time is the same as the processing
time of a Discharge order. This means the model selects the suitable transportation modes
(i.e. Strip or Discharge) for the so-called Strip orders. On top of this, we also include
Discharge orders which are not split from the truck/chassis for practical considerations.

The structure of this paper is as follows. The relevant literature is surveyed in Section
2. The problem is described in Section 3, followed by the optimization model. The GA is
explained in Section 4 and computational results are presented in Section 5. Section 6 is
the conclusion and future research.

2 Literature Review

Historically, most works on container inland transportation consider one type of load-
ing/unloading rules out of Strip and Discharge. We therefore organise the review accord-
ingly. For the Strip mode (noted in Table 1 as the Strip column), [42] and [19] study the
pickup and delivery problem of homogenous containers based on the M-TSPTW (Multi-
ple Traveling Salesman Problem with Time Windows). The former concentrates on the
replacement of time-window constraints in its heuristic, while the latter hybridises DP
(Dynamic Programming) and GA to solve large scale problems. [7] extends the previous
work by considering heterogeneous types of containers and proposes an insertion heuristic,
while [27] addresses the problem as full truckload pickup and delivery problem with time
windows (FTPDPTW), which allows the reuse of empty containers based on a 2-stage
heuristic. [18] focuses explicitly on the reuse of empty containers in deterministic and dy-
namic settings. No loaded container movements are considered in this problem. [37] adapts



the initial M-TSPTW with a Tabu Search (TS) heuristic to improve the total operating
time of trucks. On the other hand, [2, 3] investigate the same type of problems at multiple
planning levels (strategic, tactical and operational). Recently, [36] extends [2, 3] by solv-
ing the problem as a asymmetric vehicle routing problem with time window (a-VRPTW)
based on an arc-flow formulation.

For slightly different problem set-ups, [41] addresses the transportation of homogenous
containers by trucks and trains. A hybrid Tabu Search (TS) method is implemented to
solve the problem. [10] as well as [45, 44] examine the delivery and pickup of homogeneous
containers under the separation of trucks and trailers (“drop-and-pull”). Both exact and
heuristic methods are developed to solve this problem. [43] investigate the transportation
of loaded and empty containers. An integer programming model is formulated and solved
by GA. Two scenarios are considered by [20] when dealing with the delivery of homogenous
containers, i.e. when empty containers are reused by the same owner and when sharing
of empty containers is allowed. In [48, 49, 51, 50], the Strip of single- and multi-size
containers are investigated. Based on the M-TSPTW model, they develop heuristics to
obtain solutions for large size instances. Following the assignment models as proposed
in [40, 39] and [31], [46] investigates the inland transportation of loaded heterogeneous
containers.

Other papers can be found considering the Discharge mode (noted in Table 1 as the
Discharge column). [13] and [17] study the transportation of full truckloads of homogenous
containers. [13] solves it as a pickup and delivery problem with time windows (PDPTW)
using four different heuristics. [17] solves the problem as a multi-travelling salesman prob-
lem with time windows (M-TSPTW) using a Lagrangian relaxation heuristic. Later, [4]
and [33] adapt the model in [17] to study the pre- and end-haulage problem for rail con-
tainer transportation. [26] and [34] study truck appointment systems at the port terminal
to reduce waiting costs and emissions. In the work of [22, 21], the delivery and reposition-
ing of loaded and empty containers with homogenous and heterogeneous fleet of trucks are
investigated. [38], [35] consider the transportation of containers where trucks and trailers
are separated and stored in different depots. [38] solves the problem as a truck and trailer
vehicle routing problem (TTVRP), [35] investigates it as an updated multiple travelling
salesman problem with time windows (M-TSPTW). [14] considers the delivery of homoge-
nous containers and proposes an assignment model to solve it, which can be adapted to
different practical scenarios. Similarly, [12] addresses a heterogeneous drayage problem
with a set-covering model. No more than four orders can be satisfied per route since no
depot-turn is allowed.

As shown in Table 1, only six articles have considered both cases of Strip and Discharge.
[16] and [6] consider the situation where trucks (tractors) and chassis (trailers) are located
in different depots. [16] ([1]) consider the delivery of homogenous containers, formulate
it as a set partitioning model and solve it using column generation (branch-and-price).
[6] solves a heterogeneous container case using a GA approach. Our work is different
from [16] and [1] as we consider heterogeneous containers, and is different from [6] ([1])
as they only consider Depot-turn (Street-turn) for empty management while we allow both
Street-turn and Depot-turn. Street-turn is a more efficient approach allowing the reuse of
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Literature Strip Discharge | Type of Containers Methodology

[42] v x homogenous Exact & Heuristic
[13] x v homogenous Exact & Heuristic
[19, 18] v X homogenous Exact & Heuristic
[38] x v heterogeneous Heuristic

[16] v v homogenous Exact

[7] v x heterogeneous Exact

[17] x ' homogenous Exact & Heuristic
[10] ' x homogenous Exact & Heuristic
[43] v X heterogeneous Exact & Heuristic
[26] x v homogenous Heuristic

[48, 49] v x homogenous & heterogeneous Exact & Heuristic
[51, 50] v X homogenous & heterogeneous Exact & Heuristic
[4] x v homogenous Heuristic

[6] v v heterogeneous Heuristic

[20] v x homogenous Exact

[40, 39] v x heterogeneous Exact & Heuristic
[2, 3] v x homogenous Exact & Heuristic
[37] v x homogenous Exact & Heuristic
[22, 21] X v heterogeneous Exact & Heuristic
[41] v x homogenous Exact & Heuristic
[27] v x homogenous Exact & Heuristic
[31] v x heterogeneous Exact & Heuristic
[47] ' ' homogenous Exact & Heuristic
[45, 44] v x homogenous Exact & Heuristic
[33] x v homogenous Exact

[11] v v homogenous Exact

[36] v x homogenous Exact

[14] x v homogenous Exact

[35] x v homogenous Exact & Heuristic
[34] x v homogenous Exact

[46] ' x heterogeneous Exact & Heuristic
[12] x v heterogeneous Exact

[1] v v homogenous Exact & Heuristic
[24] v v heterogeneous Exact

This paper v v heterogeneous Exact & Heuristic

Table 1: Classification of papers by order mode, container type and solution methodology

empty containers without going through the depot, which has obvious practical significance.
While Depot-turn is also allowed in this study so as to balance the gaps in demand and
supply of empty containers. Another closely related article is [24], whose model allows
both Street-turn and Depot-turn but to a limited extend; Street-turn is only considered
when a perfectly matched pair of empty requests are raised by the same demander, which
actually passed the job of matching Street-turn duties to the demander so as to reduce
modelling /solution difficulty. Our model, on the other hand, allows an emptied container
to be reused by any customer if needed and provides the best match in its solution. In
[47], a unified definition of a drayage order is introduced and the drayage problem of
homogenous containers is studied. A mixed integer nonlinear programming model based
on a determined-activities-on-vertex (DAOV) graph is presented. Later, [11] adapts [47]
by formulating an MIP model for the delivery of heterogeneous containers by homogenous
fleets (40ft trucks). Only small instances (11 requests) can be solved by this model. In
contrast, we consider both 20ft and 40ft chassis for delivery and the GA approach proposed
in our work solves instances with up to 500 requests in one hour.

From the methodological point of view, existing methods are not directly applicable to
the highly hybrid problem considered in this article. For example, many of the aforemen-
tioned works (e.g. [42], [19], [7], [31], [46]) do not distinguish between loaded and empty



containers but consider them in the same fashion as a movement request from one loca-
tion to another. The approach proposed under this assumption cannot recognise the empty
container and therefore ignores the possibility of reusing them. Others who consider empty
containers explicitly either forbid the joint movement of empties with loaded ones such as
[18], or restrict it only to the Depot-turn such as [37], or assume that each truck delivers a
single container at a time such as [27], [45], [2, 3], [36], [16], [20], [6], [47], or only consider
Discharge which is much less flexible such as [22, 21]. All these cases reduce the problem
complexity significantly due to the obviously less options allowed in forming a valid route.
For example, when only one container is allowed per truck, the connection time (including
travel and handling) between each pair of locations can be pre-determined according to
the type of requests, because to connect certain types of request (e.g. an Import Empty
and an Export Full) a depot has to be inserted to allow the pick-up/drop-off of empty
containers. This type of pre-processing cannot be performed in our problem setting due
to the larger capacity of 40ft truck/chassis, and therefore need to be captured and decided
by the model itself. This, obviously, increases the modelling and solution complexity.

In addition to the above, some articles as listed in Table 1 consider the Strip mode where
the container/trailer can be removed and separated from the chassis/tractor, while also
allowing the truck to wait at the customer location to pickup the same container subject
to a longer processing time, if this were beneficial. Such articles include [7] and [45, 44].
Although described differently, our article also covers this type of situation due to the fact
that for all Strip orders, we allow them to be delivered separately by different trucks but
we do not insist on this structure. In other words, they can also be transported in a similar
fashion as the Discharge orders, subject to a longer waiting time (equivalent to that of the
Discharge orders). While different from the aforementioned works, our model also includes
the orders that cannot be split by definition (Discharge). This type of orders includes
specialised containers which are not suitable/safe for removing from chassis, requests from
customer locations without desired spaces/equipment to keep/remove containers, or share
containers which have to be discharged right away and then continue with the second
part of the journey. Also, when considering the delivery of 20ft containers on 40ft trailers
(chassis), in many countries we cannot pull two separate trailers but only one 40ft trailer
which can carry two 20ft containers. In this case, removing the trailer with the container
is not doable, but not all clients’ sites have the equipment for taking the full container off
the trailer. Note that although we didn’t state it explicitly, the shared container can also
be handled using our model. It can be treated as a standard Discharge order, while in the
distance matrix we have the “distance-to” element calculated with its first destination (the
sequence of destinations is decided by the First-In-Last-Out (FILO) rule on the cargo) and
“distance-from” element calculated with the last destination. The service time in this case
should include the discharging time at all served nodes, and the travel time in between.



3 Mathematical Formulation

3.1 Problem Statement

We consider a shipping line managing the transportation of containers (loaded/empty)
between the port, inland depots and customers (importer/exporter). Two common types
of trucks, i.e. 20ft truck which carries a single 20ft container at a time and 40ft truck
which carries a single 40ft container, a single or two 20ft containers at a time are selected
to perform the delivery, at cost p; = 0.35 and ps = 0.5 pounds per mile, respectively ([9]).
Note that in this cost structure we only meant to capture the vehicle-based cost such as
fuel, maintenance and insurance etc., rather than the driver-based costs such as wages. All
routes are supposed to start from and end at the port; the travelling cost from the home
depot of the trucks to the port is ignored. Both Strip and Discharge containers exist in the
transportation request, which can be delivered jointly on the same route if it is profitable.

An order in this study is defined as the request of transporting a 20ft or 40ft container,
loaded or empty, from its origin to its destination. Following this definition, let’s stan-
dardise the orders generated from each type of Strip and Discharge delivery requests. For
a Strip request, each delivery (pickup) of loaded container is accompanied by a request of
removing (drop-off) the empty container that is left-over (demanded) to fulfil the whole
process. Precedence constraints are necessary to ensure that these requests are carried
out in correct sequence. For a Discharge request, the container is not separable from the
truck/chassis, which means the empty container that is demanded before (left-over after)
service has to be carried by the same truck and the truck has to wait a the customer
location for the container to be processed (loaded or unloaded). For all loaded containers
both the origin and the destination are known, one of which has to be the port depending
on whether it’s an import or export order. Whereas for empty orders, only one end of the
origin and destination is known depending on it being an empty pickup or empty delivery
(detailed instances are given in Table 2). To meet our aim of dealing with all possible
situations, orders are put into 12 groups:

e 20IF _Strip, 20IE_Strip, 20EF _Strip, 20EE_Strip;
e 20IF _Discharge, 20EF _Discharge;
o 40IF Strip, 40IE_Strip, 40EF _Strip, 40EE_Strip;
e 40IF _Discharge, 40EF _Discharge.

where 20 and 40 indicate the container size, IF is for Import-Full, IE for Import-Empty,
EF for Export-Full and EE for Export-Empty. Note that there are no xxIE_Discharge,
xxEE_Discharge, because the discharge process has to deal with the empty containers
right before/after the contents are loaded/removed from the container. So implicit empty
movements for discharge orders can be covered by this categorisation. The developed
model and methodology will allow the combination of all these types to construct the cost
efficient route.
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Figure 1: Empty movement with Depot-turn

Empty Supplier to Empty Demander: ‘? = —E!—>L2 ]——= ‘?
Figure 2: Empty movement with Street-turn

Given the existence of empty containers, there are two major strategies for storing and
relocating them: Depot-turn and Street-turn. In the Depot-turn case (Figure 1), empty con-
tainers are stored in the port and/or inland depots. All empty container movements have
to originate from or terminate at a depot/port, rather than moved directly from an empty
supplier (normally an importer) to an empty demander (normally an exporter). However,
in the Street-turn case (Figure 2), the direct movement of empty containers between two
customer locations is allowed. It is obvious that the Depot-turn is easier to manage, since
the closest container depot for every customer location can be identified beforehand, so all
of the empty movement requests come with a fixed origin and destination. On the other
hand, the Street-turn case is more efficient, due to the obviously lower number of move-
ments one has to perform. Here, we allow both types of empty movements (Street-turn
or Depot-turn), as long as the delivery route is feasible and cost-saving. Note that in the
Depot-turn case, balancing the number of empty containers at depots to meet future needs
is out of the scope of this research. We simply select the least cost depot to drop/collect
the empty container (which might be different from the closest depot from/to the customer
who is requesting the empty, depending on the actual route the vehicle is travelling), and
assume all empty container depots to have infinite storage capacity.

To illustrate how some orders are dealt with here, we present in Table 2 examples
supported by figures. For instance, Order 1 and Order 2 are generated from a single 20ft
Import-Full request of the Strip type. Order 1 is an 20IF _Strip order, which is to be picked
up from the port and delivered to location L1, whereas Order 2 is the subsequent 20IE_Strip
order set for the removal of the empty left at L1. As shown in Figure 3 (Order 1), a truck
carries the loaded container, travels from the port to location L1 where the container is
removed together with its cargo, and leaves to somewhere else to service another order.
The cargo is then removed from the container by the customer leaves an empty container
at L1 for later collection. To complete the service, Order 2, an 20IE_Strip, is generated to
remove the empty container from L1, which has zero payload and no designated destination.
It can be relocated to a depot for later usage, or directly to an empty demander to meet



Order index Type Origin Destination Payload Size(ft) Precedence Demonstration
Weight (kg)
1 IF _Strip Port L1 13000 20 n/a Figure 3
2 IE_Strip L1 NULL 0 20 Order 1 Figure 3
3 IF Discharge Port L2 15000 20 n/a Figure 4
4 IF _Strip Port L1 13500 20 n/a Figure 5
5 IF _Discharge Port L2 15500 20 n/a Figure 5
6 EE_Strip NULL L3 0 20 n/a Figure 5
7 EF _Discharge L4 Port 20000 40 n/a Figure 5

Table 2: Sample list of orders

another request. Note that despite drawing two different routes in Figure 3 to demonstrate
the process, Orders 1 and 2 can actually be processed by the same truck, either with
other orders in between or directly connected. We don’t force Strip orders to be satisfied
separately if it is not beneficial. Note also that in practice some Strip orders may not be
accompanied by their second part (e.g. Orders 4 and 6 in Table 2). This might be due to
the fact that consecutive jobs are performed on other days, and/or the container is owned
by the customer. We will cover examples for both cases in numerical study (Section 5).

In contrast to the Strip case, Order 3 is a 20IF Discharge. A truck carries it from the
port to location L2 where its cargo is unloaded, then the same truck moves away carrying
the empty container (Figure 4).
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Figure 3: Orders out of a Strip request
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Figure 4: An example of Discharge order
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Figure 5: An example of the combined delivery route

As said earlier, here we consider the joint delivery of all types of orders following
both the Depot-turn and the Street-turn empty strategies. An example route is shown in
Figure 5, where the truck performs 20IF_Strip (Order 4) and 20IF _Discharge (Order 5)
orders to L1 and L2, followed by a Street-turn empty (Order 6) movement between L2 and
L3, then collects another empty container from an inland depot (Depot-turn) to meet an
40EF Discharge demand (Order 7) at L4. We see that all delivery possibilities are allowed
and combined in the same route and by the same truck.

3.2 Notations and Parameters

Based on the problem description, a decision should be made on how to construct the de-
livery routes to satisfy all demands with minimum cost. The costs considered are travelling
costs of the truck which reflect the mileage/fuel cost and the potential penalty for driving
hours exceeding the maximum working time regulation. Note that when empty containers
exist and can be reused, the number of possible route configurations becomes very large
which prevents the usage or extension of the assignment formula, as is done in [40] and
[46]. Therefore, we present a new formulation based on network flow, which extends [11]
to include heterogeneous fleets and network flow constraints at inland depots.
Let NV be a set of containers which consists of:

o S, for 20IF Strip, £y for 20IE_Strip, Sy for 20EF _Strip, £y for 20EE_Strip;
e D, for 20IF Discharge, Dy, for 20EF _Discharge;
o S, for 40IF Strip, £ for 40IE_Strip, Sy for 40EF _Strip, £, for 40EE_Strip;
e D, for 40IF Discharge, Dy, for 40EF Discharge.

Note that the + (—) on the top-right corner of the above definitions means that a
container is loaded to (removed from) the carrying truck at the customer location in Strip
case, or to be filled (emptied) at the customer location in Discharge case.

Every order is associated with a customer location denoted by L;,7 € N. This location
indicates the destination for IF and EE orders, and the origin for EF and IE orders. Note
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that in practice, some customer locations may have more than one container demand. But
for the sake of simplicity, in the mathematical model we allocate every order an unique
location indicator L; despite the fact that some L;s may refer to the same location. We
use ¢(i) to denote the precedence order of an order i, which is non-null for xxIE_Strip
and xxEF _Strip orders only. Let Ny denote the set of inland depots including the port
(Lo), then the full set of locations is indicated by N' = N UANj. A directed map A =
{(Li, L;)|Vi # j € N} is formed with all locations. Let f(L;, L;) and t(L;, L;) denote
the travelling cost and time from location L; to location L;, respectively. Let H; and H,
denote the set of 20ft and 40ft trucks, with per-mile cost p; and py respectively.
The handling time at location L; is denoted by O;, with

0.-10 if i € Son U EHUSH UEpQUSUERUSHUERUN;
’ h, if i € Dy U Dy, U Dy U Dy,

Note also that we do allow a Strip order to be processed as a Discharge one (the
same truck performs both the loaded and empty trips and waits at customer location
while the container is processed); in this case the processing time is h rather than 0. Let
[TWs;, TWe;] denote the time window within which order ¢ has to start processing at
its customer location. Like many studies in container shipment (e.g. [7]), we assume the
problem is planned on a daily basis. The total daily working time of drivers, which includes
travelling time, waiting time and handling time, is restricted by the UK domestic working
hour regulation (on-duty hours) for drivers with the longest working time per day denoted
by T If it is violated, a penalty C' is incurred per extra working hour per driver.

3.3 Decision Variables

Discrete Variables

{ 1, iflink (L;, L;) is travelled by truck &,
® Tijk =

0, otherwise Vi#jeN,VkeH, UHs.

) y}jk,W + j € N,Vk € H; UH,y: the number of 20ft containers on truck k& when
travelling on link (L;, L;).

) yfjk,Vi + j € N,Vk € Ho: the number of 40ft containers on truck k& when travelling
on link (L;, L;).

) ziljk,Vi £ j € N,Vk € H, U Hs: the number of loaded 20ft containers on truck k
when travelling on link (L;, L;).

) Z?jk,w # j € N,Vk € Hy: the number of loaded 40ft containers on truck k& when
travelling on link (L;, L;).

® Vi ViF# jE N, Vk € H, UHsy: the number of 20ft EF (export full) containers on
truck k& when travelling on link (L;, L;).
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o Vi Vi€ N, Vk € Hy: the number of 40ft EF (export full) containers on truck &
when travelling on link (L;, L;).

Continuous Variables

e wy,Vk € Hq U Hs: extra working hours beyond T,,, for driver on truck k.

7;, Vi € N visiting time (service start time) at location L;.

Tik, Vi € Ny \ {Lo},Vk € Hy U Hy: visiting time at depot i by truck k.

Sk, Vk € H1 U Hsy: departure time of truck £ from the port terminal.

e, Vk € Hi U Hs: finishing time of truck £ at the port terminal.

3.4 Formulation

The following Mixed Integer Linear Programming (MILP) model is formulated then solved
to find the best route to travel by all trucks.

ieN jeN ,j#i k€H iEN JEN j#i kEH2 keH1UH2
st > mgr= Y. Tjw Vi€ N\ {Lo},Vk € Hi UM, (3.2)
JEN j#i JEN j#i
Z Sliojk = 1, Vk € Hl U HQ (33)
JENU{Lo}
Z Tjor = 1, Vk € HiUHs (34)
jENU{Lo}

oY mp=1  YVieN (3.5)

jE./\_/-J?é’L keEH1UH2
S Y wmp =0, VieSyUELHUSHUELUD,UDY
JEN j#i keH

—
'C}D
(@)

N2

yiljk < Zijk, Vi jeN,VkeH (3.7)
yin < 2w, Vi#jEN,VEEH, (3:8)
Uik < Tije, Vi#j €N, Vk € Hy (3.9)
e <ybn  Vi#jeN,VkeH, UH, (3.10)
2y <yt Vi#jeN,VkeHs (3.11)
%ljk < Zz-ljk, Vi#jeN,VkeH UH, (3.12)
Vi < 22p Vi jeENVEEMN, (3.13)
yhe 292, <2, Vi£jeN.VkeH, (3.14)
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Z Z yiljk_ Z Z yjl‘ikzrla Vie N

JEN j#i kEH1UH2 JEN j#i kEH1UH2
Z Z ziljk— Z Z z}ik:m, Vie N
JEN j#i kEH1UH2 JEN ,j#i kEH1UH2
o> Yk 2 X2 Yw=Ts  VieN
JEN j#i kEH1UH2 JEN j#i kEH1UH,
Z Z injk - Z Z y?lk = T4, Vie N
JEN j#i k€Mt JEN j#i k€M
DD A DX D ZGw =T Vie N
JEN j#i k€H2 JEN ,j#i kEH2
Yoo ek 2 > Vw=Te ViEN
JEN j#i k€Ho JEN ,j#i kEH2
o> = > >z =0, Vi e N\ {Lo}
JEN j#i kEH1UH2 JEN j#i k€H1UH2
Z Z %'ljk - Z Z V;ik =0, Vi€ Na\ {Lo}
JEN j#i keH1UH2 FEN j#i ke H1UH2
Yoo X A= > >z =0, Vi e Ng\ {Lo}
JEN j#i k€EH JEN ,j#i k€EH,
Z Z%‘ij— Z Z%zik:()a Vi€ Na\ {Lo}
JEN j#i k€EH JEN ,j#i keHs
>t L)+ 0= M(1— Y ay), Vi#jEN
keH1UH2

(3.15)
(3.16)
(3.17)
(3.18)
(3.19)
(3.20)
(3.21)
(3.22)
(3.23)
(3.24)

(3.25)

Tik 2 T; —|—t(Li,Lj) —I—Oz - M(l _xijk)y Vi GN,Vj GNd\{Lo},Vk € Hl UHQ

(3.26)

Tj Z Tik —f—t(LZ,LJ) —I—Oz - M(]_ _'rijk:)7 Vi GNd\{Lo},Vj GN,\V/]{? c Hl UHQ

TWs; <1, <TWe;, Vie N

sp <7 — t(Lo, L;) + M(1 — zo), Vi e N,Vk € HiUH,
ex > T +t(Li, Lo) + Oy — M(1 — x0), Vie N,Vk € HiUH,
Wy > ex — Sk — Tmaz, Vk € HiUH,

T 2 To) + Ogi), VZ'ELC:QJBUSQJBUSI]USZB

v €{0,1},  Vi#jeN,Vk € HiUH,

ik Zins Yo € {0,1,2},  Vi#j €N, VEk € Hi UMy

Yiiks Ziis YVage € 0,1, Vi #j e N,Vk € Hy

wy > 0, Vk € Hi UHs

7, >0,Vie N

T > 0,Vi € Ny \ {Lo},Vk € Hi UH,

Sk, ex > 0,Vk € Hi U H,
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Constraints (3.2-3.4) are the standard network flow constraints, which enforce that all
trucks start/finish at the port (Lg) and travel through all customer nodes. Note that the
port and the depot are all considered as empty container storages so the direct travel from
the port to depot or vice versa is not allowed. While we assume the number of trucks
to be more than what is needed, the option xgg: is available to allow the surplus trucks
to stay at the port. Constraint (3.5) guarantees that all orders are serviced by exactly
one truck. Constraint (3.6) enforces that no 40ft orders are serviced by 20ft trucks. Con-
straints (3.7-3.9) assigns the maximum number of containers on the routes travelled by
20ft trucks (3.7) and 40ft trucks (3.8 for 20ft containers and 3.9 for 40ft containers). Note
that having 40ft containers on 20ft trucks is prohibited by the variable y, z and ~ vari-
ables and these constraints. Constraint (3.7) also implicitly imposes the capacity limit
of 20ft trucks, whereas for 40ft trucks the capacity limit is enforced by constraint (3.14).
Constraints (3.10-3.13) ensure the number of EF (Export Full) containers transported on
every route is bounded by the number of loaded containers, which is further bounded by
the number of containers on the route. Constraints (3.15-3.20) share the same structures
for all containers but the right hand sides depend on the container category. In detail,
the vector (rqy,rq,rs, r4,75,76) indicates the difference between the outflow and the inflow
of the containers of the corresponding variable type, which is (—1,—1,0,0,0,0) for Sy,
(1,0,0,0,0,0) for &5, (1,1,1,0,0,0) for Sy, (—1,0,0,0,0,0) for 5, (0,0,0,—1,—1,0) for
Si, (0,0,0,1,0,0) for £, (0,0,0,1,1,1) for Sfy, (0,0,0,—1,0,0) for £, (0,—1,0,0,0,0)
for Dy, (0,1,1,0,0,0) for D3y, (0,0,0,0,—1,0) for Dy, and (0,0,0,0,1,1) for Df,. Con-
straints (3.21-3.24) are for inland depots, which reflect the fact that the latter can be used
for the collection and drop-off of empty containers but the number of loaded containers
remains the same after visiting these inland depots. Constraints (3.25-3.27) are enforced to
calculate the start service time (arrival time) at customer nodes. Note that the definition
of arrival time for different node types are different. For customer nodes, we only need to
visit each by one truck so the visiting time is not indexed by trucks, while for inland depots
they might be visited by different trucks at different times, therefore we define a visiting
time for each truck in order to capture the full information. The customer time windows
are imposed by constraint (3.28). The start and finish times of truck k at the port are
calculated by constraints (3.29) and (3.30). The violation of the maximum working hours
is then calculated in (3.31) and penalised in the objective. Parameter M in constraints
(3.25) - (3.30) reflects the latest finishing time of a truck route, which can be defined as
the end of the day since we make the delivery plan on a daily basis. (3.32) are precedence
constraints.

Despite this MILP model being designed to consider all potential container types, trans-
portation modes and empty movement strategies, it can also be applied to various problem
settings. For example, one specific category of containers can be easily removed by setting
the corresponding set to empty; the usage of inland depots can be prohibited by removing
the set of depots together with constraints (3.21-3.24). This means the formulation can
also be used to solve problems with Strip-only or Discharge-only orders, problems contain-
ing only 20ft or 40ft containers, problems with or without empty containers, problems with
or without inland depots, etc. Note, however, that in each case the proposed model is still
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very complicated. Indeed, the container transportation problem with only one category of
containers is NP-hard [31]. As it is not likely to find exact solutions to the model in rea-
sonable times, in the next section we design a solution methodology based on the Genetic
Algorithm (GA) to solve large scale problem instances.

4 Genetic Algorithm Approach

The idea of GA is due to [15]. It emulates approximately the process of biological evo-
lution. GA has been used widely to solve difficult combinatorial optimization problems
([8], [32], [23]). To implement GA, an initial population of solutions is randomly created
reflecting the nature of the problem. These solutions are then evaluated for fitness usually
using the objective function and the results of certain feasibility checks. Then the genetic
operators (crossover, mutation and reproduction) are applied to create offspring of the
selected solutions in the current generation to populate the next generation, based on their
fitness values. The process continues until some stopping criteria are satisfied, of these is
often the maximum number of generations.

Input of the
problem
Crossover operation

Create initial random
population

Mutation operation

Feasibility Check i

Stopping
Criteria
reached?

Evaluate fitness values

for solutions

[ Select best solution ]

Figure 6: Generic flowchart of GA

A generic representation of the deployed GA approach is shown in Figure 6. The explicit
components of our implementation of GA for solving the above model are described in more
details below.
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4.1 Chromosome representation of the problem

Traditionally, in transportation (vehicle routing) problems, a chromosome represents the
final routes that each vehicle travels. However, this approach is not suitable here because
of the very limited capacity (up to 2 containers per truck at a time) which can be eas-
ily violated when applying crossover and mutation operators. Also, since Street-turn and
Depot-turn are both allowed for empty containers, it is hard to predict the length of a
route. Therefore, in this study, we propose a different approach for chromosome definition.
We use the chromosome to represent the sequence following which orders are to be con-
sidered in the “sequential insertion” method as described in Algorithm 1, below. In other
words, the chromosome here can be represented by a permutation of all orders, without
identifying which order is to be serviced by which truck. Therefore the chromosome has
the same length as the number of orders. However, this chromosome representation omits
many vital information such as the specific route travelled by each truck, the arrival time
of each order, etc. We deal with these aspects in the “sequential insertion” method as
proposed in Algorithm 1. This algorithm converts chromosomes into executable routes,
which are feasible in terms of vehicle capacity, but may violate some others such as the
fleet size, precedence and time window constraints (which will be penalized later in the
fitness function).

In detail, the “sequential insertion” method constructs full delivery routes by inserting
depots (D) and port (P) into the chromosome. Based on the current capacity usage of the
considered truck, it checks if the next order can be satisfied with the remaining capacity
(or availability of empty containers) on this truck. If yes then it moves one digit forward,
updates the capacity usage and checks the next order. If not then it checks whether the
infeasibility is caused by empty containers (on the truck or yet to be collected to meet an
empty delivery request). If yes then it finds the nearest inland depot to drop/collect empty
container(s), otherwise (which means there are too many loaded containers to be delivered
to the port) it inserts the port to finish the route of this truck and activates the next truck
to do the subsequent tasks. Note that when we use this insertion algorithm the truck size
is always assumed to be 40ft. Every time a port is inserted, this means a full truck route
is obtained, the actual truck size is then known based on the maximum capacity that is
needed to execute the route.

We illustrate this insertion process on a 12 order scenario. The scenario involves two
depots (D1, D2), a port (P) and 4 trucks (2 x 20ft, 2 x 40ft). As shown in Figure 7(A),
a chromosome is a random permutation of all orders. To make it an executable delivery
plan, we insert the port (P) and depots (D1, D2) into the sequence so as to separate the
chromosome into sub sequences, each representing a feasible route for a truck to travel
(Figure 7(B)). More explicitly, the first truck (Truckl) starts from the port (P), taking a
20ft loaded Strip container to deliver to location L1, then travels to location L3 to collect
a 20ft empty container. Since the next task is to deliver a 40ft empty container to location
L7 and there is no 40ft empty containers on the truck but only a 20ft empty, the truck
visits Depot (D1) to drop the 20ft empty on it and collect a 40ft empty for the following
order. This “check and insert” process continues until accommodating order 6, when a
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Algorithm 1 - Sequential insertion method

Step 0: Let n denote the total number of orders. Let s denote a random permutation of
order indices (chromosome). Set digit counter i = 1.

Step 1: Indicate truck usage by two variables and initiate them to zero:

e Initial_load records the number of loaded and empty containers when truck depart
from the depot;

e Current_load records the number of loaded and empty containers after servicing the
order under consideration.

Step 2: whilei <n
Step 2.1: Find the type of order 7.
Step 2.2: According to the type update the Initial load and Current_load of truck
usage parameters.
if the updated Initial load and Current_load is not violating the capacity of the
truck (40ft by default) then set i =7 + 1 and go to Step 2;
elseif the updated Current_load is negative — the order s; is an empty delivery,
there is empty space on the truck without empty containers (or the empty container size
doesn’t match):

e Find the nearest inland depot (D) to order s;, insert it before order s;;

e Collect the empty container that is needed by order s; from the depot (and/or drop
the empty container that is not needed by order s;) — update Current_load;

e Service order s; — update Current_load;

e Set i =1+ 1 and go to Step 2.

elseif the updated Current_load violates the capacity of the truck but there are
empty containers on the truck:

e Find the nearest inland depot (D) to order s;, insert it before order s;;
e Drop all empty containers at the depot — update Current_load;
e Service order s; — update Current_load;

e Set i =14+ 1 and go to Step 2.

else the updated Current_load violates the capacity of the truck but there is no
empty containers on the truck: go to Step 3.
Step 3: Insert port (P) before s; — terminate route for the current truck and go to Step
1.

40ft loaded container that occupies the full capacity of the truck is collected and to be
delivered to the port (where a route finishes). Since the next order is a 40ft import full,

17



inserting of which will definitely violate the capacity of the truck, the port (P) is inserted
to terminate the route of this truck. A new truck (route) is then considered to service the
rest of orders in the chromosome. The process is repeated until all orders are examined,
following the sequence stated by the chromosome. In the end, when we have inserted all
the port and depots we can then examine each route to see which type of truck (20ft or
40ft) is needed to perform it so as to know the composition of the fleet required. In this
specific example, we need three 40ft and one 20ft trucks to perform all tasks.

5

20 EFs

3
20IEs

7
40EEs

4
20EEs

1 6
20IFs 40EFs

11 8
40TFd | 40EEs
&)

10 5
20EFd | 40TFs

12 9
40EFd | 20IFd

Truckl Truck2 Truck3 Truck4

A | A
T 1T 107 1T

1 3 7 4 6 11 g 2 10 5 12 9
P| 20IFs | 20IEs | D1 | 40EEs | D1 | 20EEs | 40EFs P| 40IFd | 40EEs 20EFs D2 | 20EFd P| 40IFs | D2 | 40EFd P| 20IFd P

®)

Figure 7: Sample chromosome representation and the executable delivery route after per-
forming Algorithm 1

Note that the proposed “sequential insertion” method is just a heuristic which cannot
guarantee optimality even when the chromosome sequence is derived from the optimal
solution. Nevertheless, it is significant for two reasons:

1. It always tries to use the maximum capacity of the truck which is an important
feature of the optimal solution.

2. It provides a route to turn chromosomes into feasible solutions which enables the GA
approach to explore larger feasible areas within a limited number of iterations.

Traditional chromosome representations for VRP (VRPTW) concentrate largely on
distance minimisation, while in container shipping capacity constraints become more vital
since the maximum number that can be carried by a truck is just 2. This requires an
approach which strives to maintain feasibility, and the “sequential insertion” heuristic is
meant to do this.

It is obvious that we cannot foresee the number of trucks we are going to use to execute
all routes following the sequence as given in each chromosome. Sometimes we may need less
trucks than what are available but sometimes more. However, the infeasibility that can be
introduced by a chromosome also boils down to the number of trucks used and the specified
time window, rather than creating completely un-executable deliver plans as if we include
a certain number of routes/trucks and depot visiting options in the chromosome itself. A
large number of infeasible solutions will slow down the convergence process of the GA, that
is why we try to avoid infeasibility by running this insertion process to convert a sequence
into executable solutions. Figure 7 demonstrates one example of infeasible solution due
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to the number/type of trucks needed; three 40ft and one 20ft trucks are needed by this
schedule while two of each type are available according to the initial example setting. This
infeasibility will be penalised in the fitness function together with the violation of time
windows and precedence constraints.

4.2 Constructing the initial population

To construct the initial population for GA, a number of chromosomes are generated by
random permutation of orders. As mentioned before, Algorithm 1 converts the random
permutation into executable routes. Note that we still denote the order permutation
(Figure 7(A)) as a chromosome, rather than the extended executable delivery plan (Fig-
ure 7(B)). So, although the number of trucks used and the number of nodes each truck
visits are unpredictable, all chromosomes still have the same length.

4.3 Fitness function and evaluation

The fitness function evaluates the quality of chromosomes so as to rank them for future
GA operations. The objective of this problem is to minimize the total travelling cost and
working time violation penalty to satisfy all orders. Nevertheless, the quality of a chromo-
some also depends on its feasibility. As said before, infeasible ones can be expected after
inserting port and depots, on the number of trucks used, the violation of time windows and
precedence constraints. For this reason, in the fitness function we add terms representing
the penalty on these terms. We define the fitness function for chromosome i as:

Fit(i) = OBJ(i) + PENALTY (i) (4.1)
= [TTC(i) + WTP(d)] + [PT20(i) + PT40(i) + PTW (i) + PTP(i)]  (4.2)

where OB.J (1) is the original objective function which comprises TTC(7), the total trav-
elling cost of solution ¢ and WTP(i), the total penalty cost for violating the maximum
allowed daily working time. PENALTY (i) includes the penalty for violating the fleet size
constraints with P720(i) for 20ft trucks and P7T'40(i) for 40ft trucks, that for violating the
time window constraints represented by PTW (i), and that for violating the precedence
constraints represented by PTP(i). Note that the per unit penalty for extra trucks are
set to very large values in the numerical experiment so as to avoid the violation of these
constraints. In practice, one can tune this parameter according to needs, such as setting
the penalty to the actual cost of renting additional trucks and extra drivers to perform the
additional route generated by the GA. Note further that in our numerical experiment there
isn’t any case in which a planned route takes longer than the maximum allowed working
time. This rarely happens in practice if we suppose the cost and penalty parameters to
be set to reflect the real situation. However to avoid extreme cases we can also penalize a
chromosome whose working time exceeds an upper bound, e.g. 15 hours where T},,,, = 11
hours. By doing this the fitness value will drive the solution away from planning very long
routes.
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4.4 Selection process

The new population of chromosomes/solutions is created by performing certain recombi-
nation processes such as the crossover and mutation. An appropriate selection process
should be applied to choose parents. In this study, we apply the Roulette Wheel Selection
(RWS) approach [30], which select parents according to their proportional performance;
individuals with a smaller fitness values have a higher probability to be selected to generate
new offspring.

4.5 Genetic operators

After selecting solutions as parents from the initial population, a new population of off-
spring (children) can be constructed. Genetic operators, i.e. crossover, mutation and
reproduction, are used to create the new population as described later.

4.5.1 Crossover

The “subschedule preservation crossover”, which was designed by [5] as a permutation
based operator, is applied to construct new offspring. In this crossover operator a random
number of digits are chosen from the beginning of the first parent to start a new child.
To complete the first child, the remaining digits are added following the sequence they are
seen in the second parent, without repetition. To create the second child the same process
is carried out, but starting from the second parent.

Figure 8 and 9 illustrates the crossover process with two sample chromosomes (parents).
Firstly, we do a random permutation of the truck routes generated by the “sequential
insertion” method before applying the crossover operator, so that any truck route has a
chance to be in the front part of the chromosome. These steps are illustrated by Figure
(1A-1D) for parent 1 and (2A-2D) for parent 2. Since our “sequential insertion” method
checks orders from left to right, the crossover operator keeps the route structure for trucks
that are servicing the orders before the crossover point. However, good genes may exist
either to the left or to the right of the crossover point. This pre-processing will allow
the information carried by the right piece of parent chromosomes to pass down to their
children.

Once the permutation is done, we apply the crossover operator to the resulting chro-
mosome (1D) and (2D). Like what is shown in Figure 9, we select a random digit where
the chromosome is split into parts, e.g. 4. To generate Child 1, the first four digits (Orders
5, 12, 11 and 8) are copied from Parent 1. Removing these orders from Parent 2 we obtain
the remaining part of Child 1, then we connect them together to form Child 1 as shown
in Figure 9(3A). In the same way, Child 2 can be created with the same parents (Figure
9(3B)). The full truck routes generated after applying the “sequential insertion” method
again are displayed in Figure 9(4A) and Figure 9(4B).
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Figure 8: Random permutation of truck routes before applying the crossover operator

4.5.2 Mutation

In the mutation process, two orders are selected randomly from the same chromosome
which is also chosen randomly from the current population. The two orders are then
swapped to obtain a new chromosome. As illustrated in Figure 10(A), Order 7 and Order
1 are selected randomly from a chromosome of 9 orders. Then the two selected orders are
exchanged to generate a new solution as given in Figure 10(B). When the two selected
orders belong to the same category, this mutation operator will not change any other truck
routes except the one/two servicing the swapped orders, since the “sequential insertion”
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Figure 9: Crossover of orders

method only considers container types when splitting the chromosome array into executable
routes. When the two selected orders to swap belong to different categories, however, the
mutation may trigger partial updates of the executable route for all the remaining trucks
because some orders might be moved from one truck to another by running the “sequential
insertion” method. This provides a higher chance of getting rid of a local optimum.

[8 [5 12 [7 [+ J6 [9 [1 ]3|
(A)
[8 [5 ]2 [1 [4 J6 [9 [7 3 |

(B)

Figure 10: Mutation of orders

4.5.3 Reproduction

This is the operator that allows good solutions to be passed into the new population
unchanged. In this study we rank all parents and children after crossover and mutation
and select the best performing ones to remain.

4.6 Stopping criterion

The above procedures of our GA are repeated until the stopping criterion is satisfied.
For this problem, the stopping criterion used is the maximum number of generations.
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In numerical experiments we inspect the decrease in fitness values with the number of
generations, to decide how many generations is needed by the algorithm to converge for
every specific instance.

Likewise to the MILP, the proposed GA can also be applied to different scenarios,
e.g. problems with Strip-only or Discharge-only orders, problems containing only 20ft or
40ft containers, problems with or without empty containers, problems with or without
inland depots, etc. The population and genetic operators are both independent of the
type of containers/empty strategies under consideration; the only difference is seen in the
“sequential insertion” method (Algorithm 1) which converts chromosomes into executable
routes. For example, when Depot-turn is disabled in a specific problem setting, the two
“elseif” options in Step 2.2 of Algorithm 1 should be removed.

5 Computational experiments

All numerical experiments are carried out on real data obtained from the Port of Felixs-
towe (PoF'), which is one of the largest container ports in the UK. A one-day request list
consisting of 1067 orders from/to 346 customer locations are used as the source dataset
from which our samples (in various sizes) are generated. The service area considered in the
dataset spread over a pre-defined area that can be covered within 10 hours of driving from
the port. The original dataset consists of full information about the order destinations,
payload weights, assigned time windows and order types. The explicit location of every
customer node is not available due to disclosure concerns, while road distances between
each pair of locations are known. From this dataset, we randomly pick orders according to
the sample size and split Strip orders into two parts as described in Section 3.1. A shipping
line, who own a number of 20ft and 40ft trucks is assumed to fulfil the transportation of
orders between the port terminal, customers (importers and exporters) and a number of
inland depots.

A penalty cost (200 pounds/h) applies for any extra working hours (more than 11 hours
per day), according to the UK/EU driving regulation. We assume that the service time
at Strip locations is negligible [45] while at Discharge locations it is 2 hours. The average
speed of trucks is estimated at 40 miles/h. Both solution approaches (MILP, GA) are coded
in MATLAB R2016b and executed on a CPU with an Intel(R)Core(TM)i7-4790 processor.
The MILP is solved by CPLEX 12.9. For the GA, each example is solved multiple times
(depending on the size of the problem) to eliminate the influence of the randomness.
Other parameters of GA, such as the population sizes, number of generations, crossover
and mutation rates, etc. are selected specifically for every example.

5.1 MILP and GA on small and medium scale examples

In this section we test the performance of the developed GA approach by comparing its so-
lution with the optimal /best possible solution obtained by solving the MILP using CPLEX.
Due to the size limits that MATLAB/CPLEX can deal with, we firstly run experiments
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with five orders and then increase the number of orders by five, until MATLAB/CPLEX
run out of memory and/or the solution time becomes unbearably long. As said earlier,
despite MILP and GA being both developed for the highly hybrid scenario where all kinds
of transportation types and modes exist, the resulting model and methodology can also be
used to cover simpler cases. To complement the tests, we run experiments in categories ac-
cording to their problem settings. In Table 3, BLC stands for “balanced number of loaded
and empty orders from Strip requests” whereas UBLC stands for “unbalanced number of
loaded and empty orders from Strip requests”. In practice, containers could be owned by
customers which means a loaded request may not be accompanied by an empty one for
every single Strip order. Therefore we proposed the UBLC category to cover the scenario
where there are fewer empty requests than loaded ones. Both BLC and UBLC allow the
usage of inland depots for empty turn around and/or temporary storage, while another cat-
egory, STT, is proposed for “Street-turn only” where using inland depot is banned. Finally,
category STP stands for “Strip-only” and DSC stands for “Discharge-only”, where only
the relevant type of containers are considered. The largest size instance for each category
displayed in Table 3 are the largest problem, that can be solved by CPLEX to optimality.
The sizes are different due to the different size and difficulty of the test scenarios.

Results are summarised in Table 3. For each instance, the problem index indicates the
number of initial transportation requests while the second column shows the total number
of orders after splitting Strip requests into loaded and empty ones. The number of orders
for each container type are summarised in column number 3-6, in the sequence of (IF, EF,
IE, EE) for Strip and (IF, EF) for Discharge. In all testing examples except the STT x
cases (Street Turn), there are four inland depots whose location reflect the real location
of the inland depots used by the PoF. The GA results displayed are the average over 20
runs; the averaged cost, standard deviation, the number of runs when GA hit the optimal
solution (last column) are reported.

Note that in this study, the number of trucks (routes) to perform the delivery is also
selected by the optimization model/approach so the initial fleet number is not a decisive
parameter. In all experiments, we set the fleet size by simply assuming that each 40ft con-
tainer needs a 40ft truck and every two 20ft container require a 20ft truck, since otherwise
the surplus constraints such as the time window can hardly be satisfied in general.

The solution time of the MILP using CPLEX depends largely on the specific example
while on average it increases with problem size. It is obvious to see that the STT (Street-
turn only) and DSC (Discharge-only) cases are relatively easier to solve by CPLEX than
other scenarios, mainly due to the smaller number of variables. While for the GA approach,
there is no significant differences; a sub-optimal solution can be achieved in a couple
of seconds for all instances. The designed GA approach is capable of finding optimal
solutions for all small instances across the test scenarios, and its sub-optimality gap is not
monotonically increasing with the problem size. Note that there isn’t any case throughout
the tests that GA fails to find a feasible solution. There are certain instances where
CPLEX finds optimal solution relatively fast but GA get stuck in a local optimum (e.g.
STT_20), while instances also exist on which CPLEX takes longer to search through the
Branch-and-Bound tree whereas GA approaches the optimal solution in 12/20 runs within
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Number & Type of orders MILP solution GA solution (average)

STT30 | 39 | (4,3,1,2) (5,4,3,3) (4,4) (2,4) 2560.6  1427.73| 4.2 12.7 2745.9 74.96 2.37 7.59 0

Index # # 20ft # 40ft # # # trucks cost time # trucks cost s.d. time  opt. #
Or- 20ft 40ft (s) (s) gap opt.
ders (%)

Strip Strip Disch. Disch.] 20ft 40ft 20ft 40ft

BLC5 9 (1,0,1,0) (1,2,1,2) (0,0) (0,1 502.7 2.13 0.0 3.0 503.1 1.95 0.17 0.08 18

BLC_10 | 17 | (1,3,1,3) (1,2,1,2) (1,0) (1,1) 988.0 15.65 1.6 4.2 10225 36.21 0.83 3.49 5

BLC_15 | 23 | (0,4,0,4) (1,3,1,3) (1,1) (2,3) 1605.2 215.90 | 3.2 7.9  1624.9 2513 1.53 1.23 7

BLC20 | 33 | (2,1,2,1) (8,2,8,2) (2,0) (3,2) 1 2336.3 305.13 | 1.3 12.9 2460.2 48.94 3.19 5.30 0

UBLC_5 6 (2,0,1,0) (0,0,0,0) (0,0) (1,2) 616.6 0.76 1.0 2.0 616.6 0.00 0.16 0.00 20

UBLC.10| 12 | (0,0,0,0) (0,4,0,2) (3,1) (2,0 1041.0  6.27 1.0 4.0 1041.0 0.00 0.21 0.00 20

STT 5 8 (1,1,1,1) (0,1,0,1) (1,00 (1,0) 146.9 1.48 20 1.0 4469 0.00 0.11 _0.00 20

sTT.10 | 13 | (0,1,0,1) (1,1,1,1) (2,3) (1,1) 849.4 1.95 40 2.0 850.4 4.38 0.17 0.12 19

STT.15 | 25 | (3,1,3,1) (1,51,5) (0,1) (4,0 1185.4 51.84 | 0.9 6.5 1257.3 32.80 3.03 6.07 0

STT20 | 31 | (3,0,3,0) (2,6,2,6) (1,2) (3,3) 1877.4  156.66 | 1.5 11.9 2091.0 76.27 4.74 11.38 0

STT25 | 28 | (2,1,2,0) (3,6,0,1) (2,3) (5,3) 0  2407.4 3094.85| 3.5 11.6 2416.7 15.64 0.98 0.39 12

(
(

© 00 = ~JUTWNGN-©FO©UNFRNEDW W

DSC_40 40
DSC_45 45

3245.7 396.72 5.6 17.4 3377.8 31.40 2.92  4.07 0
3801.5 1284.86| 9.9 14.9 3855.7 52.38 5.33 1.43 4
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STT35 | 42 | (4,2,1,2) (6,3,3,1) (8,3) (5,4) 0 13 3546.8  1220.63| 5.2 16.5 3669.8 72.80 2.52 3.47 1
STP 5 9 0,3,0,2) (2,0,2,0) - - 368.5 1.83 10 20 3732 803 0.18 1.28 13
STP_10 | 16 | (1,1,1,1) (3,5,1,3) - - 965.4 1761.78| 1.0 5.0 977.9 1045 0.65 1.29 0
DSC5 5 - - 1,2)  (0,2) 571.6 1.52 2.0 2.0 571.6 0.00 0.12 0.00 20
DSC_10 | 10 | - - (1,2)  (5,2) 799.6 1.17 3.0 3.0 799.6  0.00 0.15 0.00 20
DSC.15 | 15 | - - (4,5)  (5,1) 1330.8  5.78 3.2 6.0 1332.3 4.45 0.27 0.11 15
DSC20 | 20 | - - (5,4)  (7,4) 1868.6  27.27 42 9.0 1869.4 1.97 0.21 0.04 17
DSC25 | 25 | - - (2,7)  (6,10) 2 2360.5 304.88 | 4.6 12.4 2411.3 29.29 0.23 2.15 1
DSC30 | 30 | - - (7,11)  (7,5) 2242.8 293.05 | 7.4 10.9 2246.6 11.02 1.01 0.17 17
DSC35 | 35 | - - (9,14) (5,7) 2 2900.6 506.00 | 88 11.9 3009.0 77.07 1.50 3.74 2

(4,9 (13,14
(10,12) (13,10

o
[ e

Table 3: Comparison of MILP and GA solutions on small scale examples

only 1 second (e.g. STT_25). Note that the number of used trucks is fractional in the GA
solution as reported in the table, since we run the GA for 20 times and take the average. On
average, GA tends to use more 40ft trucks than the optimal solution, because the insertion
heuristic assumes 40ft trucks are used by default and tries to place as many orders on it
as possible. This could be one of the main reason for the sub-optimality gap. In addition,
GA performs notably well on Discharge-only instances (DSC_x), no matter whether the
numbers of import and export containers are balanced or not.

CPLEX is based on Branch-and-Bound which gives intermediate, feasible integer so-
lutions although sometimes it cannot prove their optimality within reasonable time. So
on slightly larger instances where MATLAB/CPLEX runs without memory issues, we run
another set of tests to compare the GA solutions with the best feasible integer solutions
or the tightest LP bound (lower bound for any feasible solutions) that CPLEX can find
within limited time. Results are summarised in Table 4. To allow a fair comparison while
avoiding CPLEX running indefinitely, for each instance we report the CPLEX solutions
after 1,000 seconds and after one hour.

As shown in Table 4, when CPLEX finds feasible integer solutions (not necessarily
optimal), GA finds better or close solutions in most instances such as BLC_25, UBLC_15,
UBLC_20, STP_15 and STP_20. In other cases when GA gives slightly higher gaps (3% -
13%) such as for BLC_30, UBLC_30 and DSC_50, the sub-optimality gaps of the CPLEX
solution are close to zero which means they might be the optimal solution but CPLEX
needs longer than 1 hour to prove their optimality. However, the running time for GA is
just a few seconds compared to the CPLEX running time of 1,000 or 3,600 seconds.

Due to the large size of instances, CPLEX can’t even find a feasible integer solution in
one hour of CPU time, for some of them. When CPLEX fails to find any feasible integer
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Number & Type of orders MILP solution GA solution (average)

Index # # # # # # trucks cost time gap # trucks cost s.d. time gap #
Or- | 20ft 40ft 20ft  40ft (s) (%) (s) from bet-
ders CPLEX ter

(%) than
CPLE
Strip Strip Disch. Disch.| 20ft 40ft 20ft 40ft
0 7 2118.7 1000 _ 8.45 0.59 6
BLC25 | 36 | (34,34) (1,31,3) (34) (34) | g 20800 3600 0o | 62 89 21312 5027 664 , .o 4
; ] . s ) - » - 1000 - - i ] E E

BLC30 | 46 | (3,535) (4,444) (62) (24) | , 23864 3600 005 | 36 121 27012 66.50 7.39 . oo o

BLC.35 | 49 | (2,6,2,6) (3,3,3,3) (4,4) (9,4) Best LP b‘;‘;;g g“er 3600s: 5.5 15.8 3078.5 79.53 13.13 < 12.90 -

2 7 1409.1 1000  11.55 -0.67 13

UBLC15| 18 | (1,2,1,0) (2,4,02) (22) (0.2) | 5 14091 3600 1155 | 03 T9 13997 13.84 137 o0 13

1 10 2070.7 1000  8.51 -1.00 16

UBLC20| 23 | (2,02,0) (1,503) (21) (34) | | o 20198 3600 756 | 10 101 20499 2653 1.34 o0 3

5 8 2043.4 1000 _ 10.09 -0.15 11
UBLC25| 29 | (2,5,1,2) (3,40,1) (3,1) (43) | o ¢ lo%o8 3600 345 | 26 105 20404 2007 413 oo o
8 8 2485.2 1000  1.55 4.60 0
) - ) oo
UBLC30| 35 | (54,2,3) (3,1,00) (28) (52) | g ¢ 24770 3600 016 | 43 109 2599.6 41.80 447 oo o
UBLC.35| 45 (3,7,1,1) (7,5,5,3) (2,2) (4,5) Best LP b‘;‘;rég gfter 3600s: 4.1 15.9 2778.6 61.98 9.50 < 17.26 -
’ STT_40 ‘ 52 ‘ (4,8,4,3) (5,4,4,1) (8,3) (4,4) Best LP b‘;‘é‘;g ;‘fmr 3600s: 5.1 16.4 3128.3 61.58 10.21 < 10.15 -
T 8 1302.2 1000  23.64 -7.62 20
STP_15 | 20 | (2,4,0,1) (4,5,3,1) - - - 19655 3600 1058 | 28 67 12030 2053 260 ;o7 20
0 11 2124.8 1000  10.85 -0.49 12
= - =

STP20 | 29 | (1,2,1,0) (8,9,5,3) - - o 10 20614 3600  Tes | 07 98 21143 33.92 650 o o

STP_25 39 (8,6,4,3) (4,7,3,4) - - Best LP b‘;‘igg Tf“er 3600s: 3.9 10.4 2410.6 34.61 12,12 < 10.12 -

STP_30 47 | (8,9,6,3) (6,7,3,5) - - Best LP b‘;‘i‘{g ;‘fmr 3600s: 4.0 13.3 2850.9 40.63 12.31 < 34.72 -

DSC_50 50 - - (7,11) (20,12) | . ) 1000 - 5.5 23.8 4160.2 59.04  4.41 | -

- ’ 49 20 4031.6 3600  0.17 : : : : : 3.19 0

Table 4: Comparison of MILP and GA solutions on medium scale examples

solutions, the best LP bound obtained after one hour is reported. Note that this LP bound
is a theoretical lower bound which cannot be achieved by any feasible integer solution, and
its tightness varies from instance to instance - in some cases the optimal objective could
be much higher than the LP bound. While considering the difficulty of the problem it
is unlikely to develop tighter bounds for these instances, so we compare the GA solution
with the LP bound to show the maximum possible sub-optimality gap the GA solution
generates, while bearing in mind that the actual gap might be much smaller than the values
shown in these cases in Table 4. Despite this, the sub-optimality gaps of GA solution in
all but one case are smaller than 18%, which justifies its performance on larger instances.
The outlier of 34.72% for STP_30 could be due to the poor LP bound, as its value (2116.1)
is even lower than that of the STP_25 (2189.1) with obviously less number of orders.

5.2 GA on large scale instances

Due to the NP-hard nature of the problem, large instances of the MILP model cannot
be solved to optimality. In this section we report on the performance of GA on various
instances with 50, 100, 200, 300, 400 and 500 orders. Again all orders are randomly
generated from actual customer locations serviced by the Port of Felixstowe (PoF), the
largest container port in the UK. Both Depot-turn and Street-turn are allowed in these
tests. GA results are the average of 10 runs. To find how many iterations are actually
needed for GA to converge, we inspect the decrease in the lowest fitness values as shown
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in Figure 11 for the BLC_50 and UBLC_50. The final results are summarised in Table 5.
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Figure 11: Convergence and number of iterations for the GA approach
Number & Type of orders GA solution (average)
Index # Or- # 20ft # 40ft # 20ft # 401t # fleet used cost s.d. time
ders (s)
Strip Strip Disch. Disch. 20ft 401t
BLC_50 76 (6,7,6,7) (7,6,7,6) 6,8) G 2.1 21.5 1535.7 92.93 28.19
UBLC_50 67 (8,6,3,6) (4,8,2,6) (6,6) (5,7) 2.1 20.6 4354.9 80.27 23.84
BLC-100 149 (10,12,10,12) _ (12,15,12,15) __ (8,16) (10,17) | 6.0 15.9 9380.6 107.31 94.30
UBLC-100 123 (11,9,3,5) (11,17,6,9) (8,15) (12,17) | 5.1 46.6 8382.9 48.20 90.28
BLC_200 298 (20,26,20,26) (19,33,19,33) (26,22) (30,24) 10.8 92.9 21112.0 205.30 279.07
UBLC_200 248 (20,27,10,9) (29,22,17,12) (27,18) (31,26) 12.4 85.2 17575.0 138.95 260.14
BLC_300 458 (32,41,32,41) (53,32,53,32) (27,41) (42,32) 18.4 137.9 31255.0 230.64 845.52
UBLC_300 373 (24,37,14,19) (45,44,23,17) (27,36) (41,46) 17.4 133.2 27216.0 179.48 679.83
BLC_400 593 (45,48,45,48) (46,54,46,54) (43,52) (46,66) 22.8 188.8 40994.0 230.18 1481.80
UBLC_400 519 (46,62,26,27) (51,57,28,38) (32,37) (66,49) 25.1 176.7 37769.0 210.32 1331.88
BLC_500 741 (42,54,42,54)  (64,81,64,81)  (64,67)  (55,73) | 28.2 294.0  48178.0 357.568  2015.31
UBLC_500 628 (57,47,30,27) (69,66,38,33) (42,55) (87,77) 31.3 223.3 47278.0 239.15 2009.33

Table 5: Results of solving larger examples by GA alone

Looking at the results we can see that the unbalanced problems are smaller in size so
they end up with shorter solution times and smaller costs. While the number of iterations
that are needed for the GA to converge in each category are not significantly different.
With the GA method, examples with 500 orders can be solved within one hour.

5.3 The value of combining Strip and Discharge orders

Here, we investigate how much can be saved by combining Strip and Discharge orders. To
this end, we use GA to solve three problem settings: Strip only, Discharge only, Strip and
Discharge jointly with the same set of orders as used in the separate case. Both Depot-
turn and Street-turn are allowed under all these three settings. In Table 6 we summarize
the results for instances with 100, 200, 300, 400 and 500 orders, solved separately and
jointly. Some of them have balanced order numbers in each category while some others
have randomly allocated numbers. Results are the average of 10 runs with GA. Note that
the full result for every example consists of four rows in Table 6: the first two rows show
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the solution of solving Strip only and Discharge only problems, respectively; the third row
is a summation of the first two rows which show the total cost and resource consumption
for delivering these two types separately; the fourth row shows the solution of joint delivery
of both Strip and Discharge orders. So the fleet usage and cost in the third row and the
fourth row are comparable.

Number & Type of orders GA solution (average) % sav-
ing
Index # Or- # 20ft # 40ft # # 7# fleet used cost s.d. time from
ders 20ft 40ft (s) sepa-
rate
Strip Strip Disch. Disch. 20ft 40ft
STP_46 92 (10,12,10,12) (10,14,10,14) - - 2.1 21.5 4563.3 23.62 27.01 -
DSC_54 54 - - (9,8) (16,21) | 1.5 24.3 5191.1 98.03 11.23 -
SPR_100 146 (10,12,10,12) (10,14,10,14) (9,8) (16,21) | 3.6 45.8 9754.4 121.65 38.24 -
JIT_100 146 (10,12,10,12)  (10,14,10,14)  (9,8) (16,21) | 4.3 43.6 9090.6 78.45  92.13 6.81
STP.98 144 (18,22,7,11) (30,28,12,16) - - 5.2 43.7 8534.3 46.94 89.22 -
DSC_102 102 - - (15,30) (19,38) | 4.6 50.7 9261.1 85.02 37.82 -
SPR_200 246 (18,22,7,11) (30,28,12,16) (15,30) (19,38) | 9.8 94.4 17795.4 115.41 127.04 -
JIT_200 246 (18,22,7,11) (30,28,12,16) (15,30) (19,38) | 14.5 86.4 16432.0 94.82 297.38 7.66
STP_142 216 (40,34,25,15) (30,38,14,20) - - 6.7 60.2 13259.0 134.32  124.74 -
DSC_158 158 - - (29,46)  (40,43) | 10.3 64.3 13887.0 173.74 56.33 -
SPR_-300 374 (40,34,25,15) (30,38,14,20) (29,46) (40,43) | 17.0 124.5 27146.0 308.06 181.07 -
JIN_300 374 (40,34,25,15) (30,38,14,20) (29,46) (40,43) | 21.8 119.8 24855.0 166.16 755.03 8.44
STP_201 402 (36,54,36,54) (65,46,65,46) - - 15.4 83.5 20695.0 122.91 320.04 -
DSC_199 199 - - (36,48) (64,51) | 12.2 108.1 22103.0 308.56  74.90 -
SPR_400 601 (36,54,36,54) (65,46,65,46) (36,48) (64,51) | 27.6 191.6 42798.0 431.47 394.94 -
JIN_400 601 (36,54,36,54) (65,46,65,46) (36,48) (64,51) | 28.3 181.0 38422.0 264.44 1515.39 10.22
STP_252 504 (56,63,56,63) (68,65,68,65) - - 17.4 97.6 23939.0 182.19 458.07 -
DSC_248 248 - - (65,58) (64,61) | 19.9 139.1 29886.0 316.88 195.82 -
SPR_500 752 (56,63,56,63) (68,65,68,65) (65,58) (64,61) | 37.3 236.7 54825.0 499.07 653.89 -
JIN_500 752 (56,63,56,63) (68,65,68,65) (65,58) (64,61) | 31.8 223.5 48872.0 219.89 2672.62 10.86

Table 6: Comparison of transporting Strip and Discharge orders separately or jointly

As illustrated in Table 6, the delivery cost is reduced by 6.81 —10.86% when combining
Strip and Discharge orders in transportation is allowed. This cost reduction becomes more
significant as the problem size grows. Compared to separate delivery, joint delivery tends
to use more 20ft trucks whereas less 40ft ones, which is actually a feature of the optimal
solution we have observed from solving small scale problems. On average, the Strip-only
problem is harder to solve than the Discharge-only one with the same (or similar) number
of initial delivery requests as it leads to larger problem size, whereas the cost of the Strip-
only problem is in general cheaper due to the flexibility it offers in transportation. The
computational time to perform the joint case is larger (but still acceptable) compared to
the two individual cases, since more iterations are needed for the GA to converge.

5.4 Value of the inland depots

In this section we evaluate the value of using the inland depots in container transportation.
To this end, we solve the same problem with or without inland depots, for the scenarios
with roughly balanced (BLC_XX) or significantly unbalanced (UBLCE_XX) number of
empty requests. Note that the “without inland depot” case is indicated by an extension
“_STT” in Table 7, standing for “street-turn only”. While the usage of port terminal as an
empty storage is still allowed in the “_STT” case because all routes start and finish at the
port terminal, by default.
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Number and Type of orders GA solution (average) % Gap

Index # # 20ft # 40ft # # # fleet used cost s.d. time

Or- 20ft 40ft (s)

ders

Strip Strip Disch. Disch. 20ft 40ft

BLC_50_STT . . . . N . . 3.8 21.8 4546.4 95.94 15.03
BLC_50 76 (6,7,6,7) (7,6,7,6) (6,8) (3.7) 1.7 21.3 4452.8 66.49 15.44 2.06
UBLCE_50_STT 2.8 31.7 5445.4 67.23 22.25
UBLCE_50 74 (7,2,7.2) (13,2,13,2) (5:4) (14,3) 2.3 31.9 5294.1 39.86 23.51 2.78
BLC_100_STT 8.6 51.5 10935.0 147.33 104.82
BLC_100 161 (16,11,16,11) (17,17,17,17) (8,8) (11,12) 4.6 46.0 10074.0 125.00 100.09 7.87
UBLCE_100_STT 8.1 61.4 11950.0 146.98 103.81
UBLCE_100 145 (9:4,9,4) (25,7,25,7) (16,5) (25,9) 6.0 56.7 10961.0 100.22 105.98 8.28
BLC_200_STT . . p ap 20.4 101.3 21291.0 134.14 351.87
BLC_200 290 (16,20,16,20) (24,30,24,30) (21,26) (27,36) 11.2 93.0 19678.0 130.65 295.63 7.58
UBLCE_200_STT 16.8 118.6 24667.0 162.49 265.15
UBLCE_200 299 (30,13,30,13) (45,11,45,11) (32,13) (49,7) 13.6 119.5 22331.0 159.83 263.64 9.47
BLC_300_STT 22.0 157.6 34453.0 252.00 655.03
BLC_300 463 (30,36,30,36) (53,44,53,44) (20,29) (48,40) 17.1 146.8 33049.0 141.00 663.35 4.08
UBLCE_300_STT 18.0 171.8 37302.0 250.75 965.58
UBLCE_300 463 (48,14,48,14) (68,33,68,33) (85,15) (66,21) 18.5 169.8 34282.0 209.03 928.37 8.10
BLC_400_STT . . P . 26.0 190.2 42663.0 314.84 1587.08
BLC_400 595 (45,46,45,46) (45,59,45,59) (85,58) (56,56) 23.6 186.6 41619.0 220.62 1591.10 2.45
UBLCE_400_STT N 25.5 220.1 45653.0 357.19 1651.05
UBLCE_400 588 (66,18,66,18) (67,37,67,37) (67,25) (93,27) 24.5 218.2 43363.0 191.44 1677.83 5.02
BLC_500_STT 36.3 244.3 51561.0 445.86 2709.45
BLC_500 750 (63,64,63,64) (61,62,61,62) (41,62) (63,84) 32.8 238.6 50540.0 441.43 2683.35 1.98
UBLCE_500_STT 43.9 278.5 60975.0 244.00 2791.29
UBLCE_500 762 (87,24,87,24)  (122,20,122,29) (66,35)  (9047) | 341 3768  58160.0  310.36  2033.26| *+6°

Table 7: Comparison between the Street-and-Depot-turn and Street-turn-only cases

As shown in Table 7, the cost decreases by 1.98 - 9.47% for the inclusion of inland
depots, which becomes more significant when the numbers of import and export orders,
and therefore the demand and supply of the empty containers, are obviously unbalanced.
The reduced cost is obtained from the better routes constructed when inland depots are
used to temporarily store the empties and to balance the demands and supply of empties,
and a higher truck utilization.

6 Conclusions

In this paper the most general form of the inland container transportation problem is solved.
Explicitly, we consider the transportation of 12 types of orders involving, 20ft and 40ft,
loaded and empty, Strip and Discharge containers using a heterogeneous fleet of 20ft and
40ft trucks. The two major strategies for storing and relocating empty containers, namely
Street-turn and Depot-turn are both allowed. An MILP model is designed to represent
this problem. Small instances of this problem can be solved to optimality. For industrial
sized instances we suggest a novel implementation of GA which uses a sequential insertion
method to convert chromosome/solutions to executable delivery routes, so as to maintain
the viability of the routes with both crossover and mutation operators. This methodology
works well and introduces an average sub-optimality gap of 2.21% on all tested small scale
instances. We also proposed a route for the combined delivery of Strip and Discharge
containers. These two types are investigated separately and jointly in route planning, to
show how much can be saved by servicing them simultaneously. The result shows that by
combining them in delivery one can save up to 11% in the total delivery costs.
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Note that we assume orders are fixed and known in advance, while in practice orders are

received dynamically covering multiple days. It is worthwhile to investigate this situation.

References

1]

2]

Federica Bomboi. New Routing Problems with possibly correlated travel times. PhD
thesis, Universita degli Studi di Cagliari, January 2020.

K. Braekers, A. Caris, and G.K. Janssens. Integrated planning of loaded and empty
container movements. OR Spectrum, 35(2):457-478, 2013.

K. Braekers, A. Caris, and G.K. Janssens. Bi-objective optimization of drayage oper-
ations in the service area of intermodal terminals. Transportation Research Part E:
Logistics and Transportation Review, 65:50-69, 2014.

A. Caris, , and GK. Janssens. A local search heuristic for the pre-and end-haulage of
intermodal container terminals. Computers € Operations Research, 36(10):2763-2772,
2009.

R. Cheng and Gen M. Parallel machine scheduling problems using memetic algorithms.
Computers & Industrial Engineering, 33(3-4):761-764, 1997.

H. R. Choi, B. K. Park, J. W. Lee, and C. H. Park. Dispatching of container trucks us-
ing genetic algorithm. Interaction Sciences (ICIS), 2011 4th International Conference,
pages 146-151, 2011.

K. H. Chung, C. S. Ko, J. Y. Shin, H. Hwang, and K. H. Kim. Development of math-
ematical models for the container road transportation in korean trucking industries.
Computers & Industrial Engineering, 53(2):252-262, 2007.

L. Davis. Handbook of genetic algorithms. VNR computer library. Van Nostrand
Reinhold, 1991.

RTS Financial. How to calculate cost per mile for your trucking company.
https://www.rtsinc. com/quides/trucking-calculations-formulas, Tuesday, Apr 16 2019.

P. Francis, G. Zhang, and K. Smilowitz. Improved modeling and solution methods

for the multi-resource routing problem. Furopean Journal of Operational Research,
180(3):1045-1059, 2007.

J. Funke and H. Kopfer. A model for a multi-size inland container transportation
problem. Transportation Research Part E: Logistics and Transportation Review, 89:70—
85, 2016.

30



[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Ghezelsoflu, M. Di Francesco, A. Frangioni, and P. Zuddas. A set-covering for-
mulation for a drayage problem with single and double container loads. Journal of
Industrial Engineering International, 14(4):665-676, 2018.

M. Gronalt, RF. Hartl, and M. Reimann. New savings based algorithms for time
constrained pickup and delivery of full truckloads. Furopean Journal of Operational
Research, 151(3):520-535, 2003.

A. D. Hajem, X. Yang, and M. K. Warnes. An efficient mixed integer programming
model for pairing containers in inland transportation based on the assignment of
orders. Journal of the Operational Research Society, 68(6):678-694, 2017.

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press,
Cambridge, MA, USA, 1992.

Y. Ileri, M. Bazaraa, T. Gifford, G. Nemhauser, J. Sokol, and E. Wikum. An opti-
mization approach for planning daily drayage operations. Central European Journal
of Operations Research, 14(2):141-156, 2006.

A. Imai, E. Nishimura, and J. Current. A lagrangian relaxation based heuristic for the
vehicle routing with full container load. Furopean Journal of Operational Research,
176(1):87-105, 2007.

H. Jula, A. Chassiakos, and P. Ioannou. Port dynamic empty container reuse. Trans-
portation Research Part E: Logistics and Transportation Review, 42(1):43-60, 2006.

H. Jula, M. Dessouky, P. Ioannou, and A. Chassiakos. Container movement by trucks
in metropolitan networks: modeling and optimization. Transportation Research Part
E: Logistics and Transportation Review, 41(3):235-259, 2005.

H. Kopfer, J. Schonberger, S. Sterzik, and R. Y. Zhang. Optimization of inland
container transportation with and without container sharing. Proceedings of the 1st
International Conference on Logistics and Maritime Systems, 2010.

M. Lai, M. Battarra, M. Di Francesco, and P. Zuddas. An adaptive guidance meta-
heuristic for the vehicle routing problem with splits and clustered backhauls. Journal
of the Operational Research society, 66(7):1222-1235, 2015.

M. Lai, TG. Crainic, M. Di Francesco, and P. Zuddas. An heuristic search for the
routing of heterogeneous trucks with single and double container loads. Transportation
Research Part E: Logistics and Transportation Review, 56:108-118, 2013.

Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, USA, 1998.

31



[24]

[25]

[26]

[36]

M. Moghaddam, R.H. Pearce, H. Mokhtar, and C.G. Prato. A generalised model for
container drayage operations with heterogeneous fleet, multicontainer sizes and two

modes of operation. Transportation Research Part E: Logistics and Transportation
Review, 139, 2020.

P. Nagl. Longer combination vehicles (lcv) for asia and the pacific region: some
economic implications. United Nations Publications, 2007.

R. Namboothiri and AL. Erera. Planning local container drayage operations given
a port access appointment system. Transportation Research Part E: Logistics and
Transportation Review, 44:185-202, 2008.

J. Nossack and E. Pesch. A truck scheduling problem arising in intermodal container
transportation. European Journal of Operational Research, 230(3):666—680, 2013.

T. Notteboom and W. Winkelmans. Factual report on the european port sector 2004-
2005. Report commissioned by FEuropean Sea Ports Organisation (ESPO), 2004.

T. E. Notteboom and J-P. Rodrigue. Port regionalization: towards a new phase in
port development. Maritime Policy & Management, 32(3):297-313, 2005.

H. M. Pandey. Performance evaluation of selection methods of genetic algorithm and
network security concerns. Procedia Computer Science, 78:13-18, 2016.

D. Popovi¢, M. Vidovi¢, and M. Nikoli¢. The variable neighborhood search heuristic
for the containers drayage problem with time windows. Soft Computing in Industrial
Applications, pages 351-364, 2014.

C.R. Reeves. Genetic algorithms for the operations researcher. INFORMS journal on
computing, 9(3):231-250, 1997.

L. B. Reinhardt, D. Pisinger, S. Spoorendonk, and Sigurd M. M. Optimization of the
drayage problem using exact methods. INFOR: Information Systems and Operational
Research, 54(1):33-51, 2016.

F. Schulte, E. Lalla-Ruiz, R. G. Gonzalez-Ramirez, and S. Vof§. Reducing port-related
empty truck emissions: a mathematical approach for truck appointments with col-
laboration. Transportation Research Part E: Logistics and Transportation Review,
105:195-212, 2017.

S. Shiri and N. Huynh. Assessment of us chassis supply models on drayage productiv-

ity and air emissions. Transportation Research Part D: Transport and Environment,
61:174-203, 2017.

Y. Song, J. Zhang, Z. Liang, and C. Ye. An exact algorithm for the container drayage
problem under a separation mode. Transportation Research Part E: Logistics and
Transportation Review, 106:231-254, 2017.

32



[37]

[38]

[39]

[40]

[44]

[45]

[46]

[47]

[48]

S. Sterzik and H. Kopfer. A tabu search heuristic for the inland container transporta-
tion problem. Computers € Operations Research, 40(4):953-962, 2013.

K. C. Tan, Y. H. Chew, and L. H. Lee. A hybrid multi-objective evolutionary algorithm
for solving truck and trailer vehicle routing problems. European Journal of Operational
Research, 172(3):855-885, 2006.

M. Vidovi¢, D. Popovi¢, B. Ratkovi¢, and G. Radivojevi¢. Generalized mixed inte-
ger and vns heuristic approach to solving the multisize containers drayage problem.
International Transactions in Operational Research, 24(3):583-614, 2017.

M. Vidovi¢, G. Radivojevi¢, and B. Rakovi¢. Vehicle routing in containers pickup up
and delivery processes. Procedia-Social and Behavioral Sciences, 20:335-343, 2011.

W. F. Wang and W. Y. Yun. Scheduling for inland container truck and train trans-
portation. International journal of production economics, 143(2):349-356, 2013.

X. Wang and C. A. Regan. Local truckload pickup and delivery with hard time window
constraints. Transportation Research Part B: Methodological, 36:97-112, 2002.

S. Wen and P. Zhou. A container vehicle routing model with variable traveling time.
Automation and Logistics, 2007 IEEE International Conference, pages 22432247,
2007.

Z. Xue, W. H. Lin, L. Miao, and C. Zhang. Local container drayage problem with
tractor and trailer operating in separable mode. Flexible Services and Manufacturing
Journal, 27(2-3):431-450, 2015.

Z. Xue, C. Zhang, W. H. Lin, L. Miao, and P. Yang. A tabu search heuristic for
the local container drayage problem under a new operation mode. Transportation
Research Part E: Logistics and Transportation Review, 62:136-150, 2014.

X. Yang and A. D. Hajem. A column generation based decomposition and aggregation

approach for combining orders in inland transportation of containers. OR Spectrum,
42:261-296, 2020.

R. Zhang, J. C. Lu, and D. Wang. Container drayage problem with flexible orders
and its near real-time solution strategies. Transportation Research Part E: Logistics
and Transportation Review, 61:235-251, 2014.

R. Zhang, W. Y. Yun, and Moon I. K. A reactive tabu search algorithm for the
multi-depot container truck transportation problem. Transportation Research Part E:
Logistics and Transportation Review, 45(6):904-914, 2009.

R. Zhang, W. Y. Yun, and H. Kopfer. Heuristic-based truck scheduling for inland
container transportation. OR spectrum, 32(3):787-808, 2010.

33



[50] R. Zhang, W. Y. Yun, and H. Kopfer. Multi-size container transportation by truck:
modeling and optimization. Flexible Services and Manufacturing Journal, 27(2-3):403—
430, 2015.

[51] R. Zhang, W. Y. Yun, and I. K. Moon. Modeling and optimization of a container
drayage problem with resource constraints. International Journal of Production Eco-
nomics, 133(1):351-359, 2011.

34



