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Abstract

�e joint order batching and picker routing problem (JOBPRP) is a promising

approach to minimize the order picking travel distance in a picker-to-parts ware-

house environment. In this paper, we show that the JOBPRP can be modelled as

a clustered vehicle routing problem (CluVRP), a variant of the capacitated VRP

in which customers are grouped into clusters. To solve this cluster-based model

of the JOBPRP, we apply a two-level variable neighborhood search (2level-VNS)

metaheuristic, previously developed for the CluVRP, and study which adapta-

tions are required for it to perform efficiently in a warehouse environment. Ad-

ditionally, we evaluate if the Hausdorff distance used as an approximation for

the clusters’ proximity in the CluVRP, performs equally well when determining

closeness between pick orders in a warehouse. We compare the performance of

the Hausdorff-based batching criterion to the cumulative minimal aisles visited-

criterion, known as a well-performing batching metric in rectangular warehouses

with parallel aisles.

�e 2level-VNS performswell compared to state-of-the-art algorithms specifically

developed for the order batching problem (OBP) in a single-block warehouse. A

multi-start VNS remains slightly superior to our approach. Concerning the Haus-

dorff distance, we conclude that in most experiments, the minimum-aisles crite-

rion retains a be�er fit in the warehouse context.

Keywords: Order batching, Picker routing, Vehicle routing, Variable neighbor-

hood search

1 Introduction

Order picking, the act of retrieving Stock Keeping Units (SKUs) from storage loca-

tions to fulfil order requests, is the most costly operation in warehouse management

∗corresponding author: babiche.aerts@uantwerpen.be
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(Petersen and Schmenner, 1999). �is is especially true for picker-to-parts systems

where the pickers walk through aisles, search and pick items, and bring them to a

depot for consolidation. With the advent of e-commerce, a shi� has occurred from

unit-load (pallet) orders to customer orders consisting of various SKUs in small quan-

tities (Van Gils et al., 2018), creating evenmoremovement in thewarehouse. Certainly

in those e-commerce environments, walking is by far the most time consuming ac-

tivity (De Koster et al., 2007) and the minimisation of pickers’ travel distance is an

objective pursued in both academia and in practice.

�e pickers’ travel distance is affected by tactical decisions such as the layout of the

warehouse (warehouse design), storage location of the items (storage assignment) and

assignment of pickers to specific picking areas (zoning). �e act of clustering customer

orders into batches (batching) and sequencing the picking of items (routing), on the

other hand, are considered main factors to influence the picking performance at op-

erational level (Yu and De Koster, 2009). Since B2C e-commerce orders are generally

small, pickers’ travel distances can be reduced by combining, i.e., batching, multiple

orders in one pick tour instead of picking them separately. �is gives rise to two opti-

mization problems, both pursuing a minimisation of the total travel distance: how to

combine orders into batches, and how to sequence the pick operations for each batch.

Since large savings on the walking distance can be realised by solving the batching

and routing problem simultaneously (Van Gils et al., 2018), we focus in this paper on

the combined problem, known as the joint order batching and picker routing problem

(JOBPRP).

Just as the picker routing problem (PRP) bears large similarities with the travelling

salesman problem (TSP), we observe that the JOBPRP closely resembles the clustered

VRP (CluVRP), a variant of the capacitated VRP. �e capacitated VRP aims to assign

the delivery packages of customers to vehicles of a specific capacity such that the to-

tal travel distance of the vehicles is minimised. In the CluVRP, introduced by Sevaux

et al. (2008), customers are partitioned into clusters based on a predefined criterion

(e.g., postal code), with the additional constraint that customers belonging to the same

cluster need to be visited by the same vehicle. By replacing vehicles by batches, clus-

ters by orders, and customers by pick operations, the JOBPRP can be modelled as the

CluVRP. �is structural overlap between vehicle routing and order picking was high-

lighted early in the literature by Chisman (1975) who introduces the idea of a clustered

TSP (CTSP). Since then, further studies on the cluster-based models are rather found

within the VRP literature, apart from Löffler et al. (2018) who exploit the similarities

between the CTSP and the PRP to plan the routing in an AGV-assisted order picking

system.

In this paper, we model the JOBPRP as the CluVRP, and study the two-level vari-

able neighborhood search (2level-VNS) metaheuristic, previously developed for the

CluVRP by Defryn and Sörensen (2017), as a solution method for the JOBPRP. �is

two-level approach alternates between a VNS at the order level to assign orders to

batches, and a VNS at pick operation-level to construct the routes. In the original al-

gorithm, Defryn and Sörensen (2017) utilize the Hausdorff distance at the cluster level

(respectively, order level) to determine how far two customer clusters (respectively,

orders) are located from each other, and consequently decide which clusters are com-

bined in one trip. �e sequence of customers (respectively, pick locations) in a trip
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is not optimized until the second level of the VNS, and differs from VNS algorithms

developed by Albareda-Sambola et al. (2009) and Menéndez et al. (2017). �ese al-

gorithms optimize the batch composition and routes simultaneously and require the

assumption of a routing heuristic to do so, which not always guarantees the shortest

tour. In this paper, we test if the Hausdorff distance, and by extension the two level

approach, proposed for the CluVRP performs equally well for the JOBPRP by com-

paring it to state-of-the-art algorithms specifically developed for the order batching

problem (OBP).

�e remainder of this paper is organised as follows. In section 2 we describe in detail

the JOBPRP and highlight the similarities and differences with the CluVRP. Section 3

presents a literature review on the OBP, PRP, JOBPRP and CluVRP. In section 4, we

introduce the Hausdorff distance as used for the CluVRP, and suggest improvements

to the implementation in case of the JOBPRP. In section 5 we describe the 2level-

VNS algorithm in detail. �e experimental setup and computational results, as well

as a comparison with state-of-the-art OBP algorithms, are discussed in section 6. We

conclude and elaborate on future research in section 7.

2 �e joint order batching and picker routing prob-

lem

2.1 Problem description

In an e-commerce environment, a customer order typically consists of one or mul-

tiple order lines that each contain a particular item and a requested quantity. �ese

items are stored at different pick locations, according to a predefined storage policy.

Pickers are provided with a pick list with all order lines that must be handled and the

particular sequence of pick locations (i.e., picking route). To avoid additional sorting

operations and associated costs at the depot, items that belong to the same order are

not split over different pick lists but forced to be processed together (order integrity

rule). Consequently, a batch is defined as the set of complete orders processed in the

same pick tour. �e capacity of a batch is defined by the number of items that fit into

the batch (to the example of Gibson and Sharp (1992), Zhang et al. (2017) and Scholz

and Wäscher (2017)). �e pick tours always start and end at the (single) depot.

Given the objective of minimizing the total travel distance, the batch capacity and all

orders that have to be picked, two sub-questions remain:

• How are orders combined into batches?

• For each batch, in which sequence does the picker visit the pick locations that

store the items requested by the orders in the batch?

When both questions are treated in an integrated way, this gives rise to the combined

problem, known as the JOBPRP.
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(a) Clustered VRP with hard cluster constraints (b) Clustered VRP with so� cluster constraints

Figure 1: Representation of the clustered VRP with (a) hard and (b) so� cluster constraints. So� cluster

constraints allow to visit clusters multiple times if this leads to shorter routes, shown by the dashed line at

the bo�om.

2.2 Comparison with the clustered VRP

In the CluVRP, customers are clustered according to a specific criterion such as geog-

raphy (e.g., same postal code) or preference (e.g., preferring the same driver). �ese

clusters are assigned to vehicles while respecting the vehicle’s capacity, that is, a clus-

ter can only be assigned to a vehicle if the demand of all customers in the cluster fits

in the vehicle. Once all clusters are assigned, a route is constructed for each vehicle

such that all customers are served and the total travel distance is minimized (Defryn

and Sörensen, 2017).

Barthélemy et al. (2010) introduce a heuristic approach to solve the CluVRP where

all customers of the same cluster are forced to be served before the vehicle moves

on to the next cluster. �is problem is referred to as the clustered VRP with strong

cluster constraints. However, for distance purposes it could be be�er to relax this rule

and allow vehicles to enter and leave clusters multiple times. Customers of the same

cluster, however, are still to be visited by the same vehicle. Defryn and Sörensen (2017)

introduced this variant as the clustered VRP with so� cluster constraints. Both variants

of the CluVRP are illustrated in fig. 1a and fig. 1b.

�e CluVRP with so� cluster constraints shares its mathematical structure with the

JOBPRP. Indeed, the JOBRPR can be modelled on an undirected graph G = (V,E),
where V represents the set of pick operations to be executed. A pick operation Vi is

characterized by an item requested by a specific order. �e quantity of the item to

be retrieved by the pick operation Vi is denoted by qi. Items from the same storage

location but requested by different orders are included as separate pick operations,

and as such as separate nodes. Node V0 refers to the depot, visited at the start and

end of each pick route. For each edge (i, j) ∈ E that connects two nodes (i.e., pick

operations), the distance dij is defined as the shortest travel distance between the

locations related to pick operation Vi and pick operation Vj . For pick operations Vi

and Vj that request the same item stored at the same location but for different orders,

the distance dij is equal to 0.

K is a set of homogeneous batches, each with a capacityQ, defined as the total num-

ber of items that can be picked by a batch. �e set of orders is given by R. �e set of

pick operations to complete an order r is presented by Cr = {Vi ∈ V \V0 : ri = r}.
S is any subset of V that is not equal to V , δ+(S) is the set of outgoing edges
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(i, j) ∈ S × V \S and δ−(S) the set of incoming edges (i, j) ∈ V \S × S. �e

mathematical model is described as follows:

xijk =











1, if the route for batch k goes from the location to perform pick operation i to the

location to perform pick operation j

0, otherwise

yik =

{

1, if pick operation i is performed by batch k

0, otherwise

�e objective function of the JOBPRP is modelled as

Min
∑

(i,j)∈E

∑

k∈K

dijxijk (1)

Subject to

∑

k∈K

yik = 1 ∀i ∈ V \V0 (2)

∑

k∈K

y0k =
∑

j∈V \V0

∑

k∈K

x0jk ≤ |K| (3)

∑

j∈V

xijk =
∑

j∈V

xjik = yik ∀k ∈ K, ∀i ∈ V (4)

∑

i∈V \V0

qiyik ≤ Q ∀k ∈ K (5)

∑

i∈S

∑

j 6∈S

xijk ≥ yhk ∀S ⊆ V \V0, ∀h ∈ S, ∀k ∈ K

(6)
∑

(i,j)∈δ+(Cr)

∑

k∈K

xijk =
∑

(i,j)∈δ−(Cr)

∑

k∈K

xijk ≥ 1 ∀r ∈ R (7)

yik = yjk ∀i, j ∈ Cr, ∀r ∈ R, ∀k ∈ K (8)

xijk ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀k ∈ K (9)

yik ∈ {0, 1} ∀i ∈ V, ∀k ∈ K (10)

�e objective function (1) minimizes the total travel distance over all batches. Con-

straints (2) guarantee that each pick operation is executed by one batch only. Con-

straint (3) forces all batches, that perform at least one pick operation, to start their

tour at the depot. Constraints (4) ensure each location related to a specific pick oper-

ation is accessed and le� by the same batch. Constraints (5) state that the capacity of

the batch cannot be exceeded by the number of items related to the pick operations

performed by that batch. �e subtour elimination constraints are described by (6).

Constraints (7) refer to the so� cluster constraints. Lastly, the order integrity rule is

represented by constraints (8).
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CluVRP with so� cluster constraints JOBPRP

Concepts

Vehicle ↔ Batch

Cluster ↔ Order

Customer ↔ Pick operation

Input data & precomputation

List of customer clusters, for each cluster: = List of orders, for each order:

- Cluster demand = sum of customers demand - Order quantity = sum of requested item quantities

- Customers’ coordinates - Items’ number

Routing environment ↔ Warehouse layout

- Available road network - Warehouse layout structured by aisles

- Item storage locations

Cluster - Assignment to vehicle / to batch

Clusters are combined and assigned to a vehicle = Orders are combined and assigned to a batch

Customers of same cluster visited by same vehicle = Order integrity rule

Each customer visited only once ↔ Items can reoccur in multiple orders

Cluster demand cannot exceed vehicle capacity = Order quantity cannot exceed batch capacity

Route construction for vehicle / for batch

Create route for each vehicle that minimizes the to-

tal travel distance

= Create route for each batch that minimizes the total

travel distance

Start and end route at depot = Start and end route at depot

Table 1: Comparison of the CluVRP with so� cluster constraints and the JOBPRP.

Apart from terminology-based adaptations, themathematical structure of the JOBPRP

and the CluVRP with so� cluster constraints is identical. Differences between both

problems are rather reflected in the input data. A first dissimilarity is the warehouse

layout, which requires aisles to enter and exit to move from one pick location to the

next. To our knowledge, a similar routing environment has not yet been considered in

the CluVRP.�is dissimilarity, however, does not require any adaptations to themath-

ematical model. Instead, we find all information regarding the warehouse layout and

its aisle-structure to be reflected in the distancematrix. A second difference, is that the

CluVRP not allows to visit a customer more than once, while in the JOBPRP multiple

orders can request the same item, stored at the same location. In the mathematical

formulation no constraint has to be adapted or added to deal with this disparity. In-

stead, we define V as the set of pick operations rather than pick locations, where two

pick operations can refer to the retrieval of the same item at the same location but for

different orders. A summary of similarities and differences between the CluVRP and

JOBPRP is presented in table 1.

3 Literature review

In section 3.1, we give a literature overview for the OBP and PRP. In the following

sections, we summarise the literature on the JOBPRP (section 3.2) and CluVRP (sec-

tion 3.3).

3.1 �e order batching and picker routing problem

�e order batching problem (OBP) and the picker routing problem (PRP) have been

extensively studied in the warehouse literature as two separate problems. Because

6



both problems are strongly connected (Van Gils et al., 2018), assumptions have to

be made in order to solve the OBP or PRP as individual problems: the PRP cannot

be solved without knowing the outcome of the OBP, i.e., which items to pick. �e

OBP, on its own turn, cannot be solved without the assumption of a routing strategy.

It is clear that larger distance savings could be realised if the batching and routing

decisions were optimized simultaneously. However, research on the joint problem

is not found in the warehouse literature until 2005, discussed in section 3.2, and the

majority of studies have focused on either the PRP or OBP. We give an overview of

both problems and proposed solution methods.

Knowing which items to collect and the pick locations where to find them, the PRP

aims to determine the sequence in which pick locations are visited, while minimizing

the total travel distance of the pick tour (Scholz and Wäscher, 2017). �e PRP in a

rectangular warehouse with parallel aisles, proven to be NP-hard (Won and Olafsson,

2005), is o�en solved using heuristics dedicated to the typical aisle-structure. Such

heuristics give straightforward guidelines (e.g. ”traverse the aisle if a pick location has

to be visited”) which are considered easy to memorize and execute, although they not

always result in the best, i.e., shortest, route. Among them, the s-shape (or traversal)

(fig. 2a), largest gap (fig. 2b) and combined routing heuristic (fig. 2c) are implemented

most frequently. For a full description of these dedicated routing heuristics we refer

to De Koster et al. (2007).

(a) S-shape routing (b) Largest gap routing (c) Combined routing

Figure 2: Visulation of routing heuristics dedicated to warehouse layout, illustrated for a warehouse layout
with parallel aisles.

Ratliff and Rosenthal (1983) developed an exact algorithm to solve the PRP in a single-

block warehouse with parallel aisles, and is later extended to a two-block warehouse

by Roodbergen and Koster (2001). For larger multi-block layouts, Cambazard and

Catusse (2018) solve the PRP in a warehouse with up to eight cross-aisles using a dy-

namic programming approach, although the complexity is exponential in the number

of cross-aisles. An alternative solution method for the PRP is available as the PRP

shares many similarities with the well-studied travelling salesman problem (TSP).

Indeed, the Lin-Kernighan-Helsgaun (LKH) algorithm, considered one of the best

heuristics to solve the TSP, outperforms the warehouse dedicated routing heuristics

and has proven to solve the PRP close to optimality (�eys et al., 2010); (Van Gils

et al., 2018). Despite their good performance, we observe the use of these more com-

plex routing heuristics in the warehouse literature to be limited. Gademann and Velde

(2005) argue that these algorithms result in illogical routes and inconvenient for pick-

ers. Scholz and Wäscher (2017) deem this argument to be valid for a single-block

warehouse but not when more complex warehouse layouts are considered in which
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also simple, dedicated routing heuristics become less straightforward.

Knowing the maximum capacity of the batch, the list of orders, and the routing strat-

egy to be used, the OBP aims to combine orders into batches that require a minimal

total travel distance. Gademann and Velde (2005) have proven that the OBP is NP-hard

and polynomially solvable when batches consist of only two orders. Consequently,

a large share of OBP research is devoted to the study of heuristics to solve the prob-

lem for realistic instances. �e few proposed exact solution approaches are limited to

small problem instances (up to 32 orders in the case of Gademann and Velde (2005)).

Öncan (2015) introduced Mixed Integer Linear Programming (MILP) formulations in

three variants, where each variant considers another routing strategy (s-shape, return

and midpoint routing).

Batching heuristics to solve the OBP can be distinguished into five groups: priority

rule-based algorithms (e.g., First-Come-First-Serve (FCFS) rule), seed algorithms, sav-

ings algorithms, metaheuristics, and data mining approaches. We refer the reader

to the detailed reviews of De Koster et al. (2007) and Henn and Wäscher (2012) and

supplement with further references to contributions we deem relevant for this paper.

Seed algorithms create batches one by one, in which the choice of the next order to be

assigned is based on a chosen batching criterion. O�en different criteria are used to

select the seed, i.e., first order of the batch, and the additional, or accompanying, orders

(De Koster et al., 2007). It is common to assign orders to a particular batch until its

remaining capacity is insufficient to include the smallest unassigned order of the in-

stance. Ho et al. (2008) present an extensive study in which 11 seed-order criteria and

14 accompanying-order criteria were tested. Many of these batching criteria utilize a

metric to approximate the closeness between orders instead of considering the actual

distance between pick locations. Moreover, we observe many of these criteria make

use of the characteristics related to the warehouse layout. For instance, the number

of aisles integrated in the minimum aisles visited batching criterion, which combines

orders into batches such that the total number of aisles visited is minimized.

Seed algorithms can be implemented in two ways. In single mode, the seed and ac-

companying orders in a batch are treated as individual orders. In cumulative mode, the

seed order is renewed every time an order is added to the batch (De Koster et al., 1999).

We illustrate for the aisle-based batching criterion. Imagine two orders, each request-

ing items from the first two aisles. �e total number of aisles visited in single mode is

four, ignoring the overlap of aisles, while in cumulative mode, the total is equal to two.

�e frequent renewals of the seed order make the cumulative modemore complex and

time consuming, but in general, the cumulative information positively influences the

outcome. Ho and Tseng (2006), Ho et al. (2008) and Van Gils et al. (2018) study the

cumulative minimal aisles visited-criterion, which proved to work well in compari-

son to other studied batching criteria. De Koster et al. (1999), however, showed that

the cumulative mode outperformed the single mode only to a minor extent for other

studied batching criteria, e.g., the maximum aisles visited-criterion.

Savings algorithms are based on the Clarke and Wright algorithm, originally devel-

oped to solve VRPs. �e algorithm initially assigns each order to a separate batch. In

a second stage, orders are merged if a distance saving can be realised. �is move is

evaluated using a savings matrix, which is o�en only calculated once, referred to as

the C&W(i) variant of the savings algorithm (Van Gils et al., 2018). Instead of travel
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distance, the savings concept can be applied to other metrics, illustrated by Rosen-

wein (1996). �e authors consider the minimum aisles visited-criterion, for which the

merge of orders is beneficial if less aisles have to be visited.

Metaheuristics to solve the OBP have been proposed in the warehouse literature since

2005. Many of these heuristics create an initial solution using the savings algorithm

discussed above (Henn and Wäscher, 2012). Next, the metaheuristic aims to improve

the solution by neighborhood exploration through which alternative batch assign-

ments are found and evaluated. Different types of metaheuristics have been pro-

posed: genetic algorithms (Hsu et al., 2005), variable neighborhood search algorithms

(Albareda-Sambola et al., 2009); (Menéndez et al., 2017), tabu search algorithms (Öncan,

2015) and a�ribute-based hill climber algorithms (Henn and Wäscher, 2012). Among

them, the multi-start VNS approach by Menéndez et al. (2017), is considered the state

of the art solution method for the OBP.

Figure 3: Illustration of a parallel, two-block warehouse.

Most OBP metaheuristics have in common to explore the neighborhood of the incum-

bent solution through the execution of moves which are generally accepted when the

total travel distance is improved. �is total travel distance is computed assuming

dedicated routing heuristics, described earlier. Some OBP metaheuristics use more

advanced routing heuristics (e.g., an alternative routing algorithm based on the com-

bined routing strategy proposed byMenéndez et al. (2017)) than others, but all have in

common that the choice of routing is fixed which might obstruct to solve the OBP to

optimality. Moreover, Roodbergen (2001) showed that the performance of dedicated

routing algorithms tends to deteriorate when altering the number of cross aisles. In-

deed, the majority of studies on the OBP perform experiments for a parallel single-

blockwarehouse (fig. 2), rather thanmultiple-block layouts (fig. 3) or warehouses with

an atypical layout. For such warehouses, the performance of these OBP metaheuris-

tics is unknown.
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3.2 �e joint order batching and picker routing problem

Because of the strong connection between the OBP and PRP, studies have started to

focus on the joint problem, known as the JOBPRP (Briant et al., 2020). In the JOBPRP,

the batching and routing decisions are optimized in a simultaneous way, and differs

from the OBP where the routing strategy is considered to be known in advance and

fixed throughout the algorithm. Methods to solve the JOBPRP mainly include meta-

heuristics, summarized below.

Won and Olafsson (2005) are one of the first to study the JOBPRP, and propose a

heuristic based on the savings concept while the corresponding PRPs are solvedwith a

two-opt heuristic. Kulak et al. (2012) use a tabu search algorithm based on a similarity-

regret value index (RS-RV) that defines the overlap in travel distance if orders are

merged. �e resulting PRPs are solved by two TSP heuristics. Tsai et al. (2008) present

a multiple genetic algorithm approach, one to compose the batches, one to construct

the routes. Cheng et al. (2015) propose a hybrid approach in which a particle swarm

optimization is used for the order allocation, while an ant colony optimization al-

gorithm determines the route for each batch. Scholz and Wäscher (2017) present an

iterated local search approach in which they propose a routing heuristic derived from

the exact solution approach presented by Roodbergen and Koster (2001). Briant et al.

(2020) propose a heuristic based on column generation, providing lower and upper

bounds for JOBPRP instances that take place in a rectangular warehouse. �e authors

state that the PRP on itself can be easily solved to optimality by specifically making

use of the properties of a rectangular warehouse layout. So far, Valle et al. (2017) are

the only ones to develop an exact approach for the JOBPRP. With a branch-and-cut

algorithm, they are able to solve instances up to 20 orders to optimality.

3.3 �e clustered vehicle routing problem

�e CluVRP is an extension of the clustered TSP (CTSP), introduced by Chisman

(1975). In the CTSP, a route is determined that visits all customers which have been

assigned to predetermined clusters. Both the customer sequence within a cluster and

the sequence of clusters are optimized to minimize the length of the route. �e au-

thor shows that the cluster concept can be extended to the warehousing context, and

presents a MILP formulation to solve the clustered PRP for a one batch-problem. �e

MILP forces orders to be handled one by one, currently known as the strong clus-

ter constraint variant of the problem (visualised in fig. 1a for the CluVRP). Recently,

Löffler et al. (2018) revived the application of the CTSP with strong cluster constraints

in the field of warehousing. �e authors study a picking environment in which pick-

ers are assisted by an AGV (automated guided vehicle). �e AGV is utilized as pick

cart and autonomously follows the picker during his pick tour. Once the order is com-

pleted, the AGV returns to the depot while the picker resumes his pick tour assisted

by a new, empty AGV.

Despite the early application of the CTSP in the warehousing context, we find further

research on the CTSP, the CluVRP, and in general, cluster-based routing problems,

mostly to be dedicated to the field of vehicle routing. Among these problems, we

find the Generalised Vehicle Routing Problem (GVRP), introduced by Ghiani and Im-
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Exact algorithm Heuristic algorithm

Clustered Traveling Salesman Problem (CTSP)

Introduced by Chisman (1975) Chisman (1975) (warehouse application)

Laporte et al. (1997)

Ding et al. (2007)

Löffler et al. (2018) (warehouse application)

Generalised Vehicle Routing Problem (GVRP)

Introduced by Ghiani and Improta (2000) Pop et al. (2012) Pop et al. (2011)

Bektaş et al. (2011) Pop et al. (2013)

Clustered Vehicle Routing Problem (CluVRP)

Introduced by Sevaux et al. (2008)

Hard-cluster constraint variant Ba�arra et al. (2014) Barthélemy et al. (2010)

Pop and Chira (2014)

Vidal et al. (2015)

Marc et al. (2015)

Hintsch and Irnich (2018)

Decomposition-based approach:

Defryn and Sörensen (2015)

Expósito-Izquierdo et al. (2016)

Defryn and Sörensen (2017)

Horvat-Marc et al. (2018)

Pop et al. (2018)

So�-cluster constraint variant

Introduced by Defryn and Sörensen (2017) Hintsch and Irnich (2020) Defryn and Sörensen (2017)

Hintsch et al. (2019)

Selective Vehicle Routing Problem (SVRP)

Introduced by Posada et al. (2018) Posada et al. (2018) Posada et al. (2019)

Sabo et al. (2020)

Table 2: Literature overview of the clustered vehicle routing problem, and related problems.

prota (2000). In the GVRP, customers are assigned to a predetermined cluster which

is visited exactly once. �e demand of the entire cluster is delivered at the location of

just one customer, included in the respective cluster. Which customer this is, will be

determined while optimizing the inter-cluster routes over all vehicles. �e CluVRP,

proposed by Sevaux et al. (2008), is an extension of the CTSP to multiple vehicles,

and a variant of the GVRP since each customer has to be visited. Both inter- and

intra-cluster routes have to be optimized. �e latest addition to the pool of cluster-

based routing problems, is the Selective VRP (SVRP), presented by Posada et al. (2018).

�e SVRP is a variant of the GVRP in which customers are allowed to be assigned to

more than one cluster. �rough the optimization of the inter-cluster routes, and while

respecting the vehicles’ capacity, one determines which customers to visit, two cus-

tomers each belonging to another cluster or one customer shared by both clusters, and

in which order. In table 2 we present a non-exhaustive overview of research on the

cluster-based routing problems discussed above, categorised by the proposed solution

method (exact versus heuristic algorithm). Due to the NP-hardness of each discussed

cluster-based routing problem, we find the majority of papers to focus on a heuristic

solution approach.

In the current paper, we study whether the two-level VNS developed by Defryn and

Sörensen (2017) (highlighted in bold in table 2) can be used to solve the JOBPRP. �is

paper advances from previous research by Defryn and Sörensen (2015), and is con-
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sidered the first to utilize a two-level (or decomposition-based) approach to solve the

strong cluster constraint CluVRP. On the first level, the authors focus on the assign-

ment of clusters to vehicles as well as the cluster sequence within each vehicle. A

VNS is applied to find a local optimum. On this level, the travel distance between

customers is not considered. Instead, the authors propose an approximation for the

closeness between clusters to make the evaluation of vehicle assignments and cluster

sequences easier. �e optimization of the customer sequence is thereby postponed

to a second level. On this second level, the route for each vehicle is optimized while

considering the travel distance between customers. Again, a VNS is utilized to find a

local optimum, while respecting the strong cluster constraints. �e algorithm contin-

ues to iterate between both levels until a stopping criterion is met. To determine the

closeness between clusters, i.e., the criterion applied in the VNS at the cluster level,

the authors propose the clusters’ Euclidean center.

�e idea to decompose the CluVRP into two subproblems is further explored by Expósito-

Izquierdo et al. (2016). �ey propose a combination of the record-to-record travel al-

gorithm using the clusters’ Euclidean centres to solve the subproblem at cluster-level

and the LKH algorithm to solve the routing problem within the clusters. Horvat-

Marc et al. (2018) and Pop et al. (2018), on the other hand, both present a genetic

algorithm to solve the subproblem at cluster-level. At customer-level, Horvat-Marc

et al. (2018) propose a simulated annealing approach, while Pop et al. (2018) utilize the

TSP concorde solver (an online solver tool, available at http://www.math.uwaterloo.ca/

tsp/concorde.html) to optimize the intra-cluster routes.

Both Defryn and Sörensen (2015) and Expósito-Izquierdo et al. (2016) propose the

clusters’ Euclidean center as an approximation for the closeness between customer

clusters, which restricts their approaches to VRPs defined by Euclidean distances.

As an alternative, Defryn and Sörensen (2017) suggest to use the Hausdorff distance

as closeness criterion. �e Hausdorff distance is o�en used for object matching in

the field op computer vision and object recognition (Sim et al., 1999) to measure the

similarities between two sets (Hung and Yang, 2004). �e Hausdorff distance can be

applied to problems defined by Euclidean (e.g., VRP), as well as Manha�an distances

(e.g., PRP).

�e solution methods discussed above tackle the CluVRP with strong cluster con-

straints. Defryn and Sörensen (2017) acknowledge that, if the situation allows, travel

distances can be reduced by no longer obliging clusters to be visited consecutively.

�ey introduce the problem as the so� cluster constraints CluVRP and solve it with

their two-level VNS approach developed for the strong-constraint variant, with only

minor adaptations. For all instance classes, the authors are able to reduce the total

travel distance when relaxing the cluster constraints. Hintsch and Irnich (2020) con-

firmed that this relaxation enables a reduced total travel distance and quantified this

reduction at 6.21% for medium-sized instances. A heuristic approach to solve the so�

cluster constraints CluVRP is presented by Hintsch et al. (2019). �e authors adopt

the large multiple neighborhood search algorithm developed for the strong cluster

constraints CluVRP ((Hintsch and Irnich, 2018)), and acknowledge that major modi-

fications are in order to fit the algorithm to the so�-constraint characteristics of the

problem.

Even though other heuristic approaches exist for both the strong- and so�-cluster
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constraints CluVRP, we chose to solve the JOBPRP by means of the two-level VNS

approach proposed by Defryn and Sörensen (2017). We deem the use of the Haus-

dorff distance as approximation for inter-cluster distances, an interesting and unique

feature of this approach. �e two-level VNS offers a good se�ing to experiment with

this measure of approximation in the warehousing context as other batching criteria

can be implemented as benchmark without interfering with the further course of the

algorithm.

4 Proposed order batching heuristics

In this section we describe three different constructive heuristics to assign orders to

batches. One will be chosen later to integrate in the 2level-VNS to solve the JOBPRP.

First, we describe the batching heuristic based on the Hausdorff distance as originally

developed by Defryn and Sörensen (2017) (section 4.1). In section 4.2, we propose

adaptations to the original batching heuristic to align be�er with the characteristics

of the JOBPRPwhile keeping the Hausdorff distance as batching criterion. To evaluate

both batching heuristics and the Hausdorff distance as batching criterion, we include

the aisle-based batching heuristic as benchmark. �e aisle-based heuristic is described

in detail in section 4.3.

4.1 Original Hausdorff-based batching heuristic - HausOrig

�e one-way Hausdorff distance is calculated for each pair of orders (ri, rj ) as follows:

for each pick location to be visited for order ri, select the closest (i.e., for which the

shortest distance is travelled) pick location visited for order rj . �e largest of these

distances is the one-way Hausdorff distance between ri and rj (Hung and Yang, 2004).

We illustrate the calculation of the one-way Hausdorff distance on a five-order ex-

ample, visualised in fig. 4a. Each cell refers to a pick location, the number in the

cell indicates the order(s) requesting the item stored at the respective pick location.

We compute the one-way Hausdorff distance between r1 and r2 by determining for

each pick location visited for r1, the closest pick location visited for r2, visualised by

the thick full lines. Of the four distances, the longest (8 m) is the one-way Hausdorff

distance between r1 and r2, indicated by H12.

�e one-way Hausdorff distance is not necessarily symmetrical. Consider the one-

way Hausdorff distance between r2 and r1. �e dashed lines in fig. 4a show for each

pick location visited for r2 the closest pick location visited for r1. �e travel distance

marked H21 is the longest (11 m) and differs from the 8 m distance found for H12.

In the field of object recognition it is common to take the maximum of both values

to define the Hausdorff distance between two sets, such that the direction no longer

ma�ers (Hung and Yang, 2004). Similarly, we apply this definition when computing

the Hausdorff distance between two orders in future experiments. Consequently, the

Hausdorff distance between r1 and r2 is 11 m. �e Hausdorff distance between each

pair of orders is saved in the symmetrical interorder distance matrix (fig. 4b).

Defryn and Sörensen (2017) describe the followingHausdorff-based constructive heuris-

tic, from now on referred to as the HausOrig batching heuristic. Prior to the assign-
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(a) JOBPRP example

r0 r1 r2 r3 r4 r5

r0 / 20.5 13.5 19.5 14.5 21.5

r1 20.5 / 11 12 8 15

r2 13.5 11 / 11 11 14

r3 19.5 12 11 / 15 15

r4 14.5 8 11 15 / 14

r5 21.5 15 14 15 14 /

Nb requested items

r0 r1 r2 r3 r4 r5

/ 4 3 3 4 3

(b) Interorder distance matrix and order size

Figure 4: JOBPRP example (a) illustrating the computation of the Hausdorff distance between order 1 and

order 2. �e numbers in the cells represent the items requested by the orders. Corresponding interorder

distance matrix, based on the Hausdorff distance, and orders’ sizes are presented on the right.

ment, orders are sorted in decreasing order according to size (number of requested

items (see fig. 4b)), without further distinction between equally sized orders. For the

example in section 4.1, orders are sorted as follows: r4, r1, r5, r3, r2. At this stage, also

the number of available batches is known, which is the minimal number necessary

to have all orders assigned to a batch (discussed in more detail in section 5.1). �e

capacity of the batch is given and equal for all batches. For the five order-example,

we compute two available batches, each with a capacity of 12 items. Both batches

are considered when deciding to which batch the next order is assigned. �e first or-

der on the list, r4, is assigned to the batch with sufficient remaining capacity, and for

which the last added order is closest to r4, i.e., smallest Hausdorff distance. For empty

batches the depot is considered as the last added order. Next, r1 is added to Batch 1 as

r1 is considered to be closer to r4 than to the depot. �e procedure is repeated until

all orders are assigned, resulting in the order assignment presented in table 3.

Order assignment Hausdorff distance batch

Batch 1 0 4 1 5 0 14.5 + 8 + 15 + 21.5 = 59 m

Batch 2 0 3 2 0 19.5 + 11 + 13.5 = 44 m

Total original Hausdorff distance 103 m

Batch capacity = 12 items

Table 3: Order assignment for the example in fig. 4a, determined by the HausOrig batching heuristic.

Because the HausOrig heuristic assigns orders primarily on a size-based criterion,

the potential of the Hausdorff distance as a batching criterion might not be fully ex-

ploited. Moreover, the HausOrig heuristic only considers the last order added to each

batch to select the batch for the next order. In the JOBPRP, the sequence of orders

in the assignment should no longer ma�er, which creates opportunities currently not

embraced. We propose a variant of the HausOrig heuristic in the following section.
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4.2 Adapted Hausdorff-based batching heuristic - HausAdap

Given the remarks in the previous section, we propose an alternative constructive

heuristic which we deem to align be�er with the characteristics of the JOBPRP. We

do not adapt the Hausdorff-based batching criterion, but rather make adaptations to

the heuristic such that it is used to its full potential. We refer to this batching heuristic

as HausAdap, of which the outline is shown in Algorithm 1.

Algorithm 1 HausAdap batching heuristic

1: Input: Set of unassigned orders R with r ∈ {1, ..., n}, batch capacity Q

2: Step 0: Precomputation

3: H[0...n][0...n]← interorder (Hausdorff) distance matrix;

4: K ← minimal number of batches;

5: for each k ≤ K do

6: Initialize batch k (assign depot, remaining capacity←Q, total Hausdorff distance← 0);

7: end for

8: Step 1: Assignment

9: k← 1;

10: while R is non empty do

11: if batch k only includes depot then

12: Assign r ∈ R to batch k for which H[0][r] is the smallest*;

13: Update remaining capacity, increase total Hausdorff distance batch k by H[0][r];
14: Remove r from R;

15: else if remaining capacity batch k ≥ size of the smallest order ∈ R then

16: bestHausDist←∞, rbest ← ∅;
17: for each s ∈ batch k\depot do
18: Find r ∈ R for which H[s][r] is the smallest* and for which size ≤ remaining

capacity batch k;

19: bestHausDist← min{bestHausDist;H[s][r]}, update rbest if necessary;
20: end for

21: Assign rbest to batch k;

22: Update remaining capacity, increase total Hausdorff distance batch k by bestHausDist;

23: Remove rbest from R;

24: else if remaining capacity batch k < size of the smallest order ∈ R then

25: Find r ∈ batch k\depot for whichH[0][r] is the largest;
26: Increase total Hausdorff distance batch k by H[0][r];
27: k ← k + 1;
28: end if

29: end while

30: *In case of a tie, choose r that requests the most number of items

A first modification we propose, is to fill batches one by one instead of considering

all batches at once. In the HausAdap heuristic, orders are added to the current batch

as long as the smallest unassigned order fits into the remaining capacity (line 15 in

Algorithm 1). Secondly, we omit the sorting operation and use the Hausdorff distance

as primary criterion to assign orders to batches, rather than order size. In case of a tie,

preference goes to the largest order, with the argument that with the limited capacity
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it is easier to assign larger orders first.

�e third adjustment is to extend the pool of information when deciding which order

will be assigned next. Since the JOBPRP resembles the so� cluster constraints vari-

ant of the CluVRP, one can benefit from this property by considering the Hausdorff

distance of all orders already assigned to the batch (lines 17-20 in Algorithm 1), in-

stead of considering only the last one. �e depot, however, is not considered, unless

the seed-order is selected (lines 11-14 Algorithm 1). We argument that a visit to the

depot is obliged anyway, and it is more relevant to take into account only fellow or-

ders when selecting the next order to add to the batch. With a similar reasoning we

determine the Hausdorff distance to return to the depot, that is when the batch is full

or has insufficient remaining capacity. However, instead of the smallest we consider

the largest of all Hausdorff distances between the depot and any order included in the

batch as experiments showed a clear preference for the la�er option (lines 25-28 in

Algorithm 1).

We apply the HausAdap batching heuristic to the example of fig. 4a, which results in

the following order assignment:

Order assignment Hausdorff distance batch

Batch 1 0 2 1 4 0 13.5 + 11 + 8 + 20.5 = 53 m

Batch 2 0 3 5 0 19.5 + 15 + 21.5 = 56 m

Total adapted Hausdorff distance 109 m

Batch capacity = 12 items

Table 4: Order assignment for the example in fig. 4a, determined by the HausAdap batching heuristic.

Both the HausOrig and HausAdap heuristic are implemented in single rather than

cumulative mode, explained in section 3.1. In the cumulative mode it is unclear how

to correctly handle the final Hausdorff distance of a batch given that its orders are

treated as one, cumulative order. �e Hausdorff distance of the batch would become

the travel distance between the farthest location visited by the batch and the depot,

ignoring all intermediate visited locations and geographical similarities between or-

ders. �is would make the Hausdorff distance deviate from its original definition.

Together with former mentioned time-based arguments (discussed in section 3.1), we

decide to implement both Hausdorff-based batching heuristics in single mode.

4.3 Aisle-based batching heuristic - Aisles

With the HausOrig and HausAdap batching heuristics, we are the first, to our knowl-

edge, to propose the minimal Hausdorff distance as a batching criterion in the ware-

house literature. To evaluate this new batching criterion, we include the minimal

aisles visited-criterion as benchmark, proven in prior OBP studies to be a performant

batching criterion. We briefly explain the aisle-based batching heuristic, referred to

as Aisles.

�e Aisles heuristic is implemented as seed-algorithm (batch per batch) in cumulative

mode. �e order requiring the least number of aisles is selected as seed. Accompa-

nying orders are chosen based on the least number of additional aisles to visit on top
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of the ones already accessed for the batch. Only the number of aisles is taken into

account; information regarding the distance between aisles is not considered.

assigned\
to add r0 r1 r2 r3 r4 r5

Stage 1 r0 / 3 3 2 4 3

Stage 2 r3 / 1 1 / 2 2

Stage 3 r3, r1 / / 1 / 1 2

Table 5: �e interorder distances in terms of the additional aisles to visit, worked out for the example in

fig. 4a.

With the calculations provided in table 5, we illustrate the Aisles heuristic for the

example given in fig. 4a. In contrast to the interorder distance matrix showed in fig.

4b, we find the structure of the matrix to be different when the Aisles heuristic is

applied. Due to the cumulative implementation of the Aisles heuristic, the values of

the matrix are no longer fixed, but change according to the orders already assigned

to the batch. In the first stage, with no order other than the depot assigned yet, the

values indicate for each order the number of aisles requiring a visit. Given that the

order with the smallest number is selected, r3, we compute for each remaining order

the additional number of aisles to visit in the second stage. �e final batch assignment

is presented in table 6.

Order assignment Number of aisles

Batch 1 0 3 1 4 0 4 aisles

Batch 2 0 2 5 0 4 aisles

Total number of aisles 8 aisles

Batch capacity = 12 items

Table 6: Order assignment for the example illustrated in fig. 4a, determined by the Aisles batching heuris-

tic.

5 Metaheuristic approach for the joint order batch-

ing and picker routing problem

In this paper, we solve the JOBPRP with the two-level variable neighborhood search

(2level-VNS) algorithm proposed by Defryn and Sörensen (2017). At order-level, or-

ders are assigned to batches using one of the batching criteria presented in section 4.

Next, batches of orders are passed on to the pick operation-level, where a route is

constructed for each batch. At both levels, a variable neigborhood search (VNS) al-

gorithm is used to find a local optimum, although at both levels another objective,

minimal value with respect to the chosen batching criterion versus minimal travel

distance, is pursued. A full description of the algorithm is given in the following sec-

tions.
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5.1 Step 1: Precomputation

For each instance, the following information is known:

• Warehouse layout (e.g., parallel aisles), number and width of aisles, number and

width of cross-aisles, width and depth of pick locations, length of the rack.

• List of pick locations of the items: each pick location is dedicated to one SKU

and each SKU is located at a single pick location (no sca�ered storage).

• Capacity of the batch: equal for all batches, defined by number of items.

• List of orders, with for each order the list of items and required quantity.

During precomputation, the shortest travel distance between pick locations (including

the depot) is calculated. Interorder distances are computed according to the chosen

batching criterion, illustrated in fig. 4b and table 5.

Given the capacity of the batch and the total number of items requested, the minimum

number of batches is defined. De Koster et al. (1999) show that the number of batches

used and the total travel distance are strongly related, confirmed by Menéndez et al.

(2017) who obtained a shorter total travel distance when less batches are used. We

determine the number of batches K as follows:

K =

⌈

Total number of items

Capacity

⌉

K is currently a lower bound on the number of batches and does not guarantee that

the order integrity rule is obeyed. We describe in section 5.3 how K is updated if

necessary.

5.2 Step 2: Construction phase

An initial assignment of orders to batches is generated according to theHausOrig (sec-

tion 4.1), HausAdap (section 4.2) or Aisles batching heuristic (section 4.3). A feasible

solution on order level is found if all orders are assigned to a batch.

5.3 Step 3: Redistribution phase

During the construction phase, it occurs that not all orders fit into the predefined

number of batchesK . In that case, the redistribution function is called to free capacity

by swapping two orders of different batches (i.e., inter batch swap, visualised in fig. 5a)

or to reallocate an order to a another batch (i.e., inter batch relocation, visualised in

fig. 5b). Both operators are detailed in table 7, withn referring to the number of orders.

During redistribution, orders are reshuffled to gain capacity. �e orders’ size is the

primary criterion to do so, while the batching criterion not ma�ers in this stage. �e

move that leads to sufficient capacity release or to the largest capacity release (in case

multiple redistributions are required to create enough space in a batch) is executed.

We remove the respective order(s) from its current batch and add it last in the sequence
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(a) Example of an inter batch swap (b) Example of an inter batch relocation

Figure 5: Illustrations of an inter batch swap (a) and relocation (b) during redistribution to free capacity

for an order of five items.

Inter batch operators

Swap Swap two orders belonging to two different batches.

Each order is added last in the sequence of the other batch.

Complexity: O(n2)

Relocation Remove an order from one batch, add it last in the sequence of another batch.

Complexity: O(n)

Table 7: Operators performed during redistribution at the order level. �e same operators are used during

intensification at order-level when the HausAdap or Aisles batching heuristic is implemented.

of the other batch. To avoid moves being reversed directly a�er execution, a simple

tabu list is included which prevents the last move to be undone.

A�er 10 consecutive reassignments with insufficient capacity saving, the number of

batchesK is increased by one. All orders are reverted back to the status ’unassigned’

and we restart the construction from scratch.

5.4 Step 4: Intensification at the order level

�e initial batch assignment is based on a greedy heuristic that makes the best local

choice at each step rather than looking at the entire solution. During the intensifica-

tion phase, we aim to improve the batch assignment by a VNS algorithm at the order

level, based on the batching criterion chosen at the start.

In the original CluVRP approach with the HausOrig heuristic implemented, the se-

quence of orders in a batch is of great importance. �erefore, it is relevant to not only

explore inter batch moves (e.g., swap orders between batches), but also to consider in-

tra batch moves that seek to optimize the order sequence within a batch. Defryn and

Sörensen (2017) propose five local search operators that explore inter and intra batch

neighbourhoods, presented in table 8. In table 9 we show an example of such a move

starting from the initial assignment determined by the HausOrig heuristic, provided

in table 3. Order r1 is relocated from Batch 1 to the first position in the sequence of

Batch 2. �e difference in total Hausdorff distance, represented by delta, is positive

and gives a negative advice regarding this move.
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Intra batch operators

Swap Swap the position of two orders in the sequence of the same batch.

Relocate Remove an order from a sequence, insert it at another position in the

sequence of the same batch.

Two-Opt Remove two edges from the batch’s sequence, replace them by two new edges.

Inter batch operators

Swap Swap two orders belonging to two different batches.

Relocation Remove an order from one batch, insert it at a position in the sequence

of another batch.

Table 8: Moves at the order level during intensification, when implementing the HausOrig batching heuris-

tic. All operators have complexity O(n2).

Order assignment Hausdorff distance batch

Batch 1 0 4 5 0 14.5 + 14 + 21.5 = 50 m

Batch 2 0 1 3 2 0 20.5 + 12 + 11 + 13.5 = 57 m

Delta Batch 1 - 8 - 15 + 14

Delta Batch 2 - 19.5 + 20.5 + 12

Total original Hausdorff distance Delta = 4 m 107 m

Batch capacity = 12 items Do not perform move

Table 9: Illustration of an inter batch relocation when the HausOrig heuristic is implemented.

In section 4.2, we proposed an alternative Hausdorff-based constructive heuristic.

Suggestions were introduced to benefit more from the JOBPRP characteristics, and

continue to apply during intensification. �erefore, we present the following adap-

tations to the intensification at order-level when the HausAdap heuristic is imple-

mented. First, we no longer perform intra batch operators. We argue that the opti-

mization of the orders’ sequence has no influence on the routes of the batches com-

posed a�erwards. Aligned with the former argument, we decide to no longer swap or

relocate orders to a specific position in an order sequence, but move them to the end of

the order sequence. �e operators performed during intensification at order-level are

listed in table 7, which are the same operators used during redistribution. �ese oper-

ators are also applicable when the Aisles heuristic is implemented, for which similar

arguments hold because of its cumulative implementation.

Despite the fact that less moves have to be evaluated, we find that the correspond-

ing time benefit compensates only partly for the complexity of the HausAdap imple-

mentation. �is is because in the HausAdap heuristic all orders are considered when

determining the Hausdorff distance of the batch. Consequently, the removal of one

order can have a large impact on the batch’s Hausdorff distance, illustrated in table 10.

We show an example of an inter batch relocation performed on the initial order as-

signment determined with the HausAdap heuristic (see table 4). Order r1 is removed

from Batch 1 and added last in the sequence of Batch 2, which reduces the number

of relocation possibilities (before r3, before r5, last in the sequence) to only one. In

contrast to the HausOrig implementation, more computational effort is required to

compute the Hausdorff distance of the modified batches. For instance, to return to

the depot, the largest Hausdorff distance between the depot and any order included

in the batch is considered. For Batch 1, that was 21.5 m, the Hausdorff distance be-
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tween the depot and r1. With the removal of r1, we have to find again the largest

Hausdorff distance between the depot and any of the remaining orders in Batch 1.

Order assignment Hausdorff distance batch

Batch 1 0 2 4 0 13.5 + 11 + 14.5 = 39 m

Batch 2 0 3 5 1 0 19.5 + 15 + 12 + 21.5 = 68 m

Delta Batch 1 - 8 - 20.5 + 11 + 11 + 14.5

Delta Batch 2 12

Total adapted Hausdorff distance Delta = -2 m 107 m

Batch capacity = 12 items Perform move

Table 10: Illustration of an inter batch relocation when the HausAdap heuristic is implemented.

During intensification at the order level, a move is accepted if the value of the cho-

sen batching criterion improves. �e neighborhoods are checked in a random way by

the algorithm and for each neighborhood all possible moves are evaluated. If an im-

provement is found, the algorithm returns to the first neighborhood. Otherwise, the

algorithm randomly picks one of the remaining neighborhoods. �e intensification at

the order level terminates when all neighborhoods were consecutively checked with

no improvement.

5.5 Step 5: Conversion from order to pick operation-level

For each batch constructed in the previous stage, a routing is determined in which

all pick locations required to fulfil the orders of a batch, are included. �is routing

problem is solved as a TSP by means of a greedy heuristic: the pick location with the

shortest travel distance to the previous pick location is visited next. �e procedure is

repeated until all pick locations to be visited are included.

5.6 Step 6: Intensification at the pick operation level

�e intensification process at the pick operation level aims to improve the routes com-

posed in the previous stage. Again, a VNS is applied and follows the same procedure

as described in section 5.4. Both intra and inter batch operators, described in table 11,

are implemented, which are no longer evaluated by the chosen batching criterion but

by total travel distance.

Apart from intra batch operators, also inter batch moves at pick operation-level are

included by Defryn and Sörensen (2017). �is means that orders are swapped or re-

located between batches if it results in a reduced total travel distance. In some way it

seems strange to include these moves since much a�ention already has been paid to

swapping and relocating orders at the order level. However, these moves have only

been evaluated using the chosen batching criterion, while further travel distance im-

provements could be found when the position of and distance between pick locations

is taking into account.

At this point, the algorithm has produced an initial solution. �e total travel distance

of the solution, used later to evaluate the performance of the algorithm, cumulates

the travel distance over all batches.
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Intra batch operators

Swap Swap the position of two pick operations in a single pick tour.

Relocate Remove a pick operation, insert it at another position in the same pick tour.

Two-opt Remove the edges between two pick operations, replace them by two new edges.

Inter batch operators

Swap Remove two orders’ pick operations from the sequence, insert them at the best

position in the sequence of the other batch.

Relocation Remove an order’s pick operation from the sequence, insert it at the best

position in the sequence of another batch.

Table 11: Description of operators implemented during intensification at the pick operation level. All

operators have complexity O(n2).

5.7 Step 7: Diversification phase and iterative loop

A�er the initial solution has been obtained, the algorithm continues to explore the

solution space through diversification. Part of the solution is destroyed and subse-

quently repaired to comply with feasibility rules. Because of the order integrity rule,

we perform the perturbation at order-level to ensure orders remain complete. From

each batch, a number of orders is removed (we currently set this number to 10% of

the orders included in a batch) and reassigned to batches randomly, while meeting

the capacity constraint. Redistribution (described in section 5.3) is performed when

no sufficient remaining capacity is available to fit all orders.

Steps 4 to 6 of the algorithm are repeated for the newly composed batches. In case a

be�er solution is found, the incumbent solution is updated. We currently apply the

same stopping criterion as Defryn and Sörensen (2017): the algorithm terminates a�er

1000 consecutive iterations without improvement.

6 Numerical experiments

In this section we present the experimental results to evaluate the performance of

the proposed 2level-VNS algorithm. All experiments are conducted on the instance

set developed by Henn and Wäscher (2012). �e characteristics of the dataset are de-

scribed in section 6.1. In section 6.2, we report preliminary tests on the configuration

of our 2level-VNS algorithm, with in particular adaptations required to obtain good

results in an acceptable time.

Finally, we analyse the outcome of the 2level-VNS approach in a twofold way:

• We compare the results for the HausOrig, HausAdap and Aisles heuristic to

conclude which batching heuristic is superior, and whether this depends on

features such as the number of orders or the batch size (section 6.3).

• We compare the performance of the 2level-VNS with algorithms considered

state-of-the-art in the OBP literature (section 6.4).

We have implemented the 2level-VNS in C++ Visual Studio 17. All experiments are

carried out on an Intel(R) Core i7-6820HQ CPU, 2.7 GHz laptop with 16 GB RAM

of memory. A peak performance of 132,06 GFlops was reached by our laptop in the
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LINPACK benchmark (8 threads, LinX program version 0.6.5). For all experiments the

average of three runs is reported.

6.1 Instance description

�e dataset of Henn and Wäscher (2012) originally includes 5760 instances, of which

half follow an ABC storage policy (ABC) and half a random distribution (Ran). As

we did not explicitly include decisions related to the storage allocation, we currently

focus only on instances following a random distribution. Of these 2880 instances,

Menéndez et al. (2017) report the results for a limited set, which they found to be a

representative subset. �is set includes 32 instances, referred to as Ran 32.

In the Ran 32 dataset, half of the instances are originally labelled as ’s-shape in-

stances’, half as ’largest gap instances’. When comparing both subsets in terms of vari-

ous parameters (number of orders, number of total items requested, number of unique

items requested), we were not able to explain in what way both instance groups differ,

apart from their solution method which we do not value important during instance

generation. In further experiments, we make no distinction and report the accumu-

lated results.

All instances are defined on a warehouse with a single-block layout, consisting of

10 aisles. Each aisle contains 90 pick locations, 45 on each side, leading to 900 pick

locations in total. Each pick location has a width of 1 m. It takes 5 m to move from

one aisle to the next, and 1.5 m to move from the depot to the first pick location.

Instances differ in terms of the number of orders (n) and the batch capacity (C). For

each (n,C)-combination, of which the values can be found in table 12, two instances

are included in the Ran 32 dataset. For all instances, the number of items per order

are uniformly distributed in U{5,25}.

Number of orders (n) Batch capacity (C)

40 30

60 45

80 60

100 75

Table 12: Overview of (n,C)-values represented in instances of Ran 32 dataset.

Although the 2level-VNS is currently tested for a single-block warehouse, our ap-

proach can easily be extended to instances defined on a warehouse with a multi-block

layout, as well as layouts other than the o�en used parallel warehouse layout.

6.2 Preliminary experiments to speed up the algorithm

We test the 2level-VNS algorithm on the 32 instances of Ran 32 by alternately imple-

menting the HausOrig, HausAdap and Aisles batching heuristic. Regardless of the

batching heuristic, we find the computation time to be extremely high in comparison

to state-of-the-art references. On average, the 2level-VNS requires 11 timesmore com-

putation time than the multi-start VNS by Menéndez et al. (2017). Since the JOBPRP
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is an operational problem, the instances should be solved in a realistic time, which

is currently not guaranteed. Adaptations to the algorithm are necessary to make it

competitive to available (J)OBP(RP) algorithms.

We propose three adaptations:

• Omit the inter batchmoves at pick operation-level: during the VNS at pick

operation-level, only intra batchmoves are evaluated and performed. Swapping

and relocating orders between batches will be reserved for the VNS performed

at the order level.

• Omit the diversification stage: we take the initial solution as the final solu-

tion.

• Adapt the stopping criterion of the algorithm: the algorithm terminates af-

ter 60 seconds. �is replaces the original stopping criterion of 1000 consecutive

iterations without improvement, counted once an initial solution was found.

All adaptations are tested separately on the Ran 32 instances and evaluated in ta-

ble 13. We report for each adaptation the average percentage deviation relative to the

original algorithm implementation (all stages included and with the original stopping

criterion), together with the time improvement realised by the adaptation. Each sug-

gestion, independent of the implemented batching heuristic, reduces the computation

time significantly. However, with a switch to a time-based stopping criterion we find

the solution quality to deteriorate only li�le (< 0.48%). We therefore decide to con-

tinue experiments with the 2level-VNS in which a time-based stopping criterion is

adopted.

Avg. gap total travel distance (% ) Avg. gap computation time (%)

HausOrig HausAdap Aisles HausOrig HausAdap Aisles

1) Algorithm without inter batch moves at routing-level

Ran 32 3.63% 3.13% 3.10% -94.42% -93.81% -93.95%

2) Algorithm without diversification stage

Ran 32 3.28% 2.70% 2.70% -99.92% -99.92% -99.92%

3) Algorithm with time-based stopping criterion (60 seconds)

Ran 32 0.48% 0.42% 0.44% -77.48% -78.97% -76.64%

Table 13: Evaluation of three alternatives to speed up the 2level-VNS. Values represent the average gap

(%) in respect of the solution and computation time obtained by the 2level-VNS algorithm with the original

stopping criterion.

To conclude about the duration adopted in this time-based stopping criterion, we per-

form additional experiments. Figure 6 shows for a random chosen instance how the

solution’s quality evolves in time when solved with the 2level-VNS with original stop-

ping criterion in which respectively the HausOrig, HausAdap or Aisles heuristic is

implemented. Each mark refers to a point in time when an improved total travel dis-

tance is found. On the y-axis one reads the solution’s improvement (in %) relative to
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Figure 6: Evolution in time of the solution’s objective for instance 40s-60-75-0, solved by the original

2level-VNS algorithm with the HausOrig, HausAdap or Aisles heuristic implemented. Each mark refers to

the moment when a be�er solution is found, with on the y-axis the % improvement relative to the initial

solution found by the respective batching heuristic.

the initial solution found by the respective batching heuristic. For all batching heuris-

tics tested, improvements to the solution are significant during the first minute. A�er

60 seconds, the solution improves only li�le, while the time between improvements

generally increases. For further experiments we decide to terminate the 2level-VNS

a�er 60 seconds. We denote the 2level-VNS algorithm with time-based stopping cri-

terion as 2level-VNS60.

6.3 Two-level VNS approach - Comparison of batching heuris-
tics

In this section, we analyse the results for the HausOrig, HausAdap and Aisles heuris-

tic, to conclude which one performs best when implemented in the 2level-VNS60 al-

gorithm. In section 6.3.1, we compare the performance of the batching heuristics in

a pairwise manner for the Ran 32 dataset. To validate our observations, we perform

similar experiments on a larger dataset. Results are provided and discussed in sec-

tion 6.3.2.

6.3.1 Results for limited dataset, Ran 32

For the Ran 32 instances, we analyse the results of the HausOrig, HausAdap and

Aisles batching heuristic, summarized in table 14. We compare the heuristics in a

pairwise manner and count the number of instances for which each was able to find

the best solution, i.e., the best of both outcomes, over the set. �is number includes in-

stances for which both batching heuristics obtained the same total travel distance. For

instances for which the heuristic performs worse, we compute the average deviation

relative to the best solution. Detailed results are provided in Appendix A.

Of both Hausdorff-based batching criteria, the HausAdap clearly finds the best solu-

tion for more instances than the HausOrig heuristic. For the remaining instances, the

solutions provided by HausAdap are only 0.14% worse, in contrast to 0.46% when the

HausOrig heuristic is adopted. Despite the large similarities between the CluVRP and
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JOBPRP, these findings prove the merit of our adaptations to the original Hausdorff

batching heuristic in order to produce JOBPRP-fit solutions.

Despite these adaptations, we observe that the minimal aisles visited-criterion still

performs be�er. �e Aisles heuristic is able to find the best solution for 62.5% of the

instances. For the remaining instances, the aisle-based heuristic deviates on average

0.38% from the best solution, while a slightly larger average is recorded for the Hau-

sAdap heuristic (0.54%). Before stating a clear preference, for any batching heuristic,

we validate our observations with a similar analysis conducted on a larger dataset.

Results are discussed in the next section.

# best solution Avg. solution gap (%) Computatation time (sec)

Nb. Haus Haus Aisles Haus Haus Aisles Haus Haus Aisles

Inst. Orig Adap Orig Adap Orig Adap

2level-VNS60

Ran 32 60 60 60

HausOrig-HausAdap 32 13 20 0.46% 0.14%

HausOrig-Aisles 32 9 23 0.75% 0.45%

HausAdap-Aisles 32 12 20 0.54% 0.38%

Table 14: Pairwise comparison of the HausOrig, HausAdap and Aisles batching heuristic when imple-

mented in the 2level-VNS60 algorithm, applied to the instances of the Ran 32 dataset.

6.3.2 Validation on larger dataset, Ran 1280

We extend the pairwise comparisons to a larger dataset, that is the initial set from

which Ran 32 was drawn. Each (n,C)-combination (values given in table 12) is now

represented by 80 instances instead of two, leading to a set of 1280 instances, referred

to as Ran 1280.

We repeat the experiments of section 6.3.1 on the instances of Ran 1280, and record

the results in table 15. Based on this set, which statistically includes more variation

than Ran 32, we confirm that the HausAdap implementation outperforms the Hau-

sOrig heuristic. Moreover, we find for this larger dataset more obvious preference for

the Aisles heuristic in comparison to the best performing Hausdorff based-heuristic.

�e aisle-based heuristic is able to find a be�er (or the same) solution for a double

amount of instances than the HausAdap heuristic.

# best solutions Avg. gap (%) Computation time (sec)

Nb. Haus Haus Aisles Haus Haus Aisles Haus Haus Aisles

Inst. Orig Adap Orig Adap Orig Adap

2level-VNS60

Ran 1280 60 60 60

HausOrig-HausAdap 1280 454 840 0.51% 0.20%

HausOrig-Aisles 1280 298 990 0.85% 0.35%

HausAdap-Aisles 1280 412 879 0.63% 0.36%

Table 15: Pairwise comparison of the HausOrig, HausAdap and Aisles batching heuristic implemented in

the 2level-VNS60 algorithm, applied to the instances of the Ran 1280 dataset.

Notwithstanding the results in favour of the Aisles heuristic, we remark that a small

subset of instances (32.5%) seems to perform be�er when the HausAdap heuristic
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is implemented. By decomposing the results by number of orders and batch capac-

ity, we find that especially the la�er influences these results. �is decomposition is

graphically presented in table 16. Each cell summarizes the results for one (n,C)-

combination, represented by 80 instances. �e bars show the percentage of instances

for which the HausAdap, respectively Aisles heuristic is able to find the best solution.
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Table 16: Pairwise comparison of the HausAdap and Aisles heuristic, broken down by number of orders

and batch capacity. Each cell represents 80 instances.

When the batch capacity is set at 30 items, we observe that the HausAdap heuristic

o�en performs be�er than the Aisles heuristic, except when the number of orders is

rather small. However, the percentages remain too low to declare a clear preference

for the HausAdap heuristic for this particular set of instances. As the batch capacity

grows, the superiority of the Aisles heuristic increases.

We conclude that the results found for the Ran 32 subset align with the results ob-

tained for the extended dataset, Ran 1280. We are able to confirm that the HausOrig

heuristic is outperformed by both the HausAdap and Aisles heuristic. Regarding the

comparison of the HausAdap and Aisles heuristic, we found evidence for the Ran 32

instances to state a preference for the la�er, which was validated by the Ran 1280

dataset. In particular, there is a larger absolute number of instances for which the

Aisles heuristic performs be�er than the HausAdap heuristic. However, the domi-

nance of the Aisles heuristic is only visible for 69% of the instances and we decide to
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continue experiments with both the HausAdap and Aisles heuristics.

6.4 Two-level VNS approach - Comparison with state of the art
algorithms

In this section, we compare the 2level-VNS60 algorithm with the following state-of-

the-art OBP algorithms:

• Variable Neighborhood Descent (VND) approach by Albareda-Sambola et al.

(2009)

• A�ribute-Based Hill Climbing approach with s-shape routing (AHBC + SS) by

Henn and Wäscher (2012)

• A�ribute-Based Hill Climbing approach with largest gap routing (AHBC + LG)

by Henn and Wäscher (2012)

• Multi-Start Variable Neighborhood Search (MS-VNS) by Menéndez et al. (2017)

Following analyses are based on the results for the Ran 32 set, made available by

Menéndez et al. (2017) (available at http://grafo.etsii.urjc.es/optsicom/obp/(Menéndez

et al., 2019))1.

In table 17 we compare the 2level-VNS60 and the four algorithms mentioned above.

�is comparison is performed twice: once when implementing the HausAdap heuris-

tic in the 2level-VNS60, once with the Aisles heuristic adopted. �e results are found

in the penultimate, respectively last column. We start with an overall comparison for

which we report how many times each algorithm is able to find the best solution out

of the five obtained results. Next, we conduct a pairwise comparison between the

2level-VNS60 and each of the four state-of-the-art algorithms. We report how many

times the 2level-VNS60 is able to find the best result, as well as the average improve-

ment (%) achieved by the algorithm for that particular set of instances. For the cases

where the 2level-VNS60 performed worse, we report the average deviation (%) rel-

ative to the best solution. We close table 17 with the average computation time (in

seconds).

Overall, the 2level-VNS60 performs well for both the HausAdap and Aisles batching

heuristic. It outperforms the VND and ABHC+LG algorithms for all instances, with an

average improvement up to 6.20 and 10.53%, respectively. Compared to the ABHC+SS

method, the 2level-VNS60 performs be�er for 22 out of the 32 instances, and improves

the ABHC+SS solution up to 6.29% on average for those 22 cases. Results are similar

for the HausAdap and Aisles heuristic, although in general, larger improvements are

obtained with the Aisles heuristics. Differences, however, are minor.

In comparison to the MS-VNS, the 2level-VNS60 performs be�er for only 8 out of 32

instances. From the detailed results provided in Appendix A, we derive that, inde-

pendent of the implemented batching heuristic, the 2level-VNS60 o�en finds be�er

1�e results of the 2level-VNS are compared to publicly available results obtained on an Intel�adCore

with 2.5 GHz and 6 GB of RAM with Xubuntu 14.04 64 bit OS, a platform that is less performant than ours.

However, the intention of this paper is not to compare the solution quality of our algorithm in terms of

CPU performance, but in terms of total picker travel distance.
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solutions than the MS-VNS method for instances where the batch capacity is small

(30 or 45 items). For larger batch size (≥ 60 items) the MS-VNS method consistently

performs be�er.

Ran 32

# inst. Algorithm
2level-VNS60
HausAdap

2level-VNS60
Aisles

Overall comparison
# best solutions 32 2level-VNS60 8 8

VND 0 0

ABHC+SS 7 7

ABHC+LG 0 0

MS-VNS 17 17

Pairwise comparison
# best solutions by 2level-VNS60 32 VND 32 32

ABHC+SS 22 22

ABHC+LG 32 32

MS-VNS 8 8

Avg. improvement (%) VND -6.02% -6.20%

when 2level-VNS60 be�er ABHC+SS -6.14% -6.29%

ABHC+LG -10.37% -10.53%

MS-VNS -1.51% -1.38%

Avg. gap (%) 2level-VNS60 VND - -

in respect of best found solution ABHC+SS 2.88% 2.60%

ABHC+LG - -

MS-VNS 1.81% 1.51%

Avg. computation time (sec) 2level VNS60 60 60

VND 0.66 0.66

ABHC+SS 13.45 13.45

ABHC+LG 61.57 61.57

MS-VNS 49.09 49.09

Table 17: Comparison of the 2level-VNS60 with state-of-the-art OBP algorithms. Table shows the num-

ber of times the 2level-VNS60 or OBP algorithms obtain the best solution for the Ran 32 instances, with

respectively the HausAdap or Aisles batching heuristic implemented.

Finally, we perform a similar comparison with the original 2level-VNS algorithm, i.e.,

the 2level-VNS that terminates a�er 1000 consecutive iterations without improve-

ment. Results are reported in table 18, which deviate only li�le from the results

in table 17. �is is remarkable, given that the average computation time required

by the original 2level-VNS is significantly larger than the 60 seconds adopted in the

2level-VNS60. Overall, we find prior conclusions to remain valid and confirm that the

adoption of a time-based criterion is a good approach to retain performant solutions,

competitive with state of the art OBP algorithms.

We conclude that the 2level-VNS60 algorithm is able to outperform theVND,ABHC+SS

and ABHC+LG algorithms for the majority of instances. However, our algorithm is

not able to dominate the MS-VNS approach, although the solutions deviate to a minor

extent (<1.81%). Concerning the batching criteria, we conclude that when the 2level-

VNS60 approach is used, it is best to implement the aisle-based batching heuristic.
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Ran 32

# inst. Algorithm
2level-VNS
HausAdap

2level-VNS
Aisles

Overall comparison
# best solution 32 2level-VNS 9 11

VND 0 0

ABHC+SS 7 7

ABHC+LG 0 0

MS-VNS 16 14

Pairwise comparison
# best solution by 2level-VNS VND 32 32

ABHC+SS 22 23

ABHC+LG 32 32

MS-VNS 10 11

Avg. improvement (%) VND -6.41% -6.61%

when 2level VNS be�er ABHC+SS -6.50% -6.38%

ABHC+LG -10.74% -10.93%

MS-VNS -1.36% -1.22%

Avg. gap (%) 2level-VNS VND - -

in respect of best found solution ABHC+SS 2.36% 2.30%

ABHC+LG - -

MS-VNS 1.43% 1.16%

Avg. computation time (sec) 2level VNS 576.51 486.07

VND 0.66 0.66

ABHC+SS 13.45 13.45

ABHC+LG 61.57 61.57

MS-VNS 49.09 49.09

Table 18: Comparison of the 2level-VNS including original stopping criterion with state-of-the-art OBP

algorithms. Table shows the number of times the 2level-VNS or OBP algorithms obtain the best solution

for the Ran 32 instances, with respectively the HausAdap or Aisles batching heuristic implemented.

7 Conclusion

We demonstrate that the joint order batching and picker routing problem (JOBPRP),

studied in the warehouse literature, and the clustered vehicle routing problem (Clu-

VRP), studied in the VRP literature, share many similarities. Despite the mathematical

overlap of both problems, only limited a�empts have been found to use existing Clu-

VRP algorithms when solving the JOBPRP. In this paper, we propose the two-level

VNS presented by Defryn and Sörensen (2017) for the CluVRP, as a metaheuristic ap-

proach to solve the JOBPRP. In contrast to existing algorithms for the (J)OBP(RP), our

approach does not primarily assign orders to batches based on the total travel dis-

tance, but rather utilizes the Hausdorff distance between orders to compose batches

in a first phase. We implemented the Hausdorff-based batching heuristic (HausOrig)

as originally proposed by Defryn and Sörensen (2017), and proposed an adapted ver-

sion (HausAdap) to create a be�er alignment with the JOBPRP. Both the HausOrig and

HausAdap heuristics were compared with an aisle-based batching heuristic, regularly

used in warehouse literature.
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We consider the 2level-VNS with adapted Hausdorff batching heuristic to be success-

ful as it found a be�er solution for almost twice the number of instances than the

original Hausdorff-based batching heuristic. Nonetheless, we observe that the aisle-

based heuristic remains superior. �e Aisles heuristic finds the best solution for 69%

of the instance set, in contrast to 32.5% when the adapted Hausdorff batching heuris-

tic is implemented. Moreover, we find that if the Aisles heuristic performs worse, the

average deviation relative to the best solution remains small. We therefore conclude a

preference for the aisle-based batching heuristic. Additionally, we compared the 2lev-

elVNS to state of the art OBP algorithms. Our 2level-VNS, modified to a time-based

stopping criterion for a fair comparison, outperformed three of the four algorithms,

with average improvements between 6% and 10%. However, the MS-VNS algorithm,

developed by Menéndez et al. (2017), maintains its superiority and performs best, es-

pecially when the batch capacity is large.

We note that these conclusions hold for a single-block warehouse with parallel aisles

and the instance characteristics used in this study. We acknowledge the need of fur-

ther studies on other warehouse layouts and other instance sets to validate the con-

clusions regarding the performance of the Hausdorff heuristic and proposed meta-

heuristic in solving the JOBPRP.

In this paper, we showed that more similarities can be found between the vehicle rout-

ing context and warehouse environment besides the resemblances between the TSP

and PRP. We therefore encourage future experimentation of existing VRP algorithms

for warehousing problems that share similar structures with their VRP-counterparts

although, we do recommend to implement small adaptations to ensure a proper fit

with the problem under study.
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Appendix A. Detailed results

Appendix A shows the detailed results when comparing the original 2level-VNS algo-

rithm (table A.1), respectively 2level-VNS60 algorithm (table A.2) to state-of-the-art

OBP algorithms and is complimentary to the data provided in section 6.4.
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Total travel Avg. deviation (%) relative to
distance (m) outcome OBP algorithm

n C 2level-VNS VND ABHC+SS ABHC+LG MS-VNS

HausOrig 40 30 9390 -6.82% -6.40% -6.54% -1.87%

40 30 9826 -6.77% -12.00% -9.47% -1.94%

40 45 6239 -6.78% -1.52% -11.29% -0.06%

40 45 7257 -6.61% -8.06% -11.99% -1.36%

40 60 5674 -7.93% 2.75% -13.10% 0.76%

40 60 5034 -6.41% -5.41% -12.70% 0.72%

40 75 4433 -7.08% 2.15% -15.09% 1.09%

40 75 4071 -4.53% -5.76% -17.32% 1.07%

60 30 14825 -7.16% -5.77% -8.31% -0.90%

60 30 13660 -9.23% -13.87% -10.27% -2.49%

60 45 9628 -7.02% 0.15% -6.72% 0.02%

60 45 10458 -6.20% -4.69% -10.19% 1.78%

60 60 7844 -7.28% 0.40% -10.15% 1.08%

60 60 7448 -5.92% -4.21% -12.73% 1.71%

60 75 5562 -6.60% 1.48% -14.05% 1.63%

60 75 5590 -3.97% -3.04% -14.97% 0.88%

80 30 19223 -7.23% -9.76% -5.64% -2.31%

80 30 17533 -6.66% -14.10% -9.16% -0.14%

80 45 14204 -5.93% -0.83% -6.89% 1.44%

80 45 12045 -6.95% -5.94% -10.27% 1.40%

80 60 9990 -3.49% 3.15% -5.81% 2.11%

80 60 9977 -7.43% -4.14% -12.00% 1.74%

80 75 8149 -6.56% 3.88% -11.65% 1.74%

80 75 8199 -5.67% -3.13% -15.30% 1.52%

100 30 21017 -8.36% -7.99% -5.78% -0.52%

100 30 23068 -8.31% -12.63% -9.58% -1.97%

100 45 14756 -3.42% 1.21% -4.49% 2.29%

100 45 14664 -5.33% -5.87% -9.78% 1.67%

100 60 11796 -4.26% 5.34% -7.84% 3.32%

100 60 13434 -4.87% -4.62% -12.29% 1.75%

100 75 9635 -5.41% 5.55% -14.76% 2.55%

100 75 9970 -4.25% -0.61% -13.17% 4.37%

HausAdap 40 30 9395 -6.77% -6.35% -6.49% -1.82%

40 30 9821 -6.81% -12.05% -9.52% -1.99%

40 45 6249 -6.63% -1.37% -11.15% 0.10%

40 45 7263 -6.54% -7.98% -11.92% -1.28%

40 60 5645 -8.40% 2.23% -13.54% 0.25%

40 60 5010 -6.86% -5.86% -13.11% 0.24%

40 75 4431 -7.13% 2.11% -15.13% 1.05%

40 75 4078 -4.36% -5.60% -17.18% 1.24%

60 30 14817 -7.21% -5.83% -8.36% -0.96%

60 30 13673 -9.14% -13.78% -10.19% -2.40%

60 45 9626 -7.04% 0.12% -6.74% 0.00%

60 45 10322 -7.42% -5.93% -11.35% 0.46%

60 60 7824 -7.52% 0.14% -10.38% 0.82%

60 60 7442 -6.00% -4.28% -12.80% 1.63%

60 75 5560 -6.63% 1.44% -14.08% 1.59%

60 75 5583 -4.09% -3.16% -15.07% 0.76%

80 30 19229 -7.20% -9.73% -5.61% -2.28%

80 30 17532 -6.67% -14.10% -9.16% -0.15%

80 45 14223 -5.80% -0.70% -6.76% 1.57%

80 45 12072 -6.74% -5.72% -10.07% 1.62%

80 60 9952 -3.85% 2.76% -6.17% 1.72%

80 60 9979 -7.41% -4.12% -11.99% 1.76%

(continued on next page)32



Table 19 - Continued

Total travel Avg. deviation (%) relative to
distance (m) outcome OBP algorithm

n C 2level-VNS VND ABHC+SS ABHC+LG MS-VNS

80 75 8129 -6.79% 3.62% -11.87% 1.49%

80 75 8212 -5.52% -2.98% -15.17% 1.68%

100 30 20914 -8.81% -8.44% -6.24% -1.01%

100 30 23125 -8.08% -12.41% -9.36% -1.73%

100 45 14785 -3.23% 1.41% -4.30% 2.50%

100 45 14645 -5.46% -6.00% -9.90% 1.54%

100 60 11693 -5.10% 4.42% -8.65% 2.42%

100 60 13430 -4.90% -4.65% -12.31% 1.72%

100 75 9618 -5.58% 5.37% -14.91% 2.37%

100 75 9832 -5.57% -1.98% -14.37% 2.92%

Aisles 40 30 9380 -6.92% -6.50% -6.64% -1.98%

40 30 9820 -6.82% -12.05% -9.53% -2.00%

40 45 6251 -6.60% -1.33% -11.12% 0.13%

40 45 7208 -7.24% -8.68% -12.59% -2.03%

40 60 5645 -8.40% 2.23% -13.54% 0.25%

40 60 4992 -7.19% -6.20% -13.42% -0.12%

40 75 4446 -6.81% 2.45% -14.84% 1.39%

40 75 4053 -4.95% -6.18% -17.69% 0.62%

60 30 14874 -6.85% -5.46% -8.01% -0.57%

60 30 13660 -9.23% -13.87% -10.27% -2.49%

60 45 9630 -7.00% 0.17% -6.70% 0.04%

60 45 10242 -8.14% -6.66% -12.04% -0.32%

60 60 7843 -7.29% 0.38% -10.16% 1.07%

60 60 7417 -6.32% -4.60% -13.09% 1.28%

60 75 5476 -8.04% -0.09% -15.38% 0.05%

60 75 5531 -4.98% -4.06% -15.87% -0.18%

80 30 19262 -7.05% -9.58% -5.44% -2.11%

80 30 17615 -6.22% -13.69% -8.73% 0.32%

80 45 14191 -6.01% -0.93% -6.97% 1.34%

80 45 12011 -7.22% -6.20% -10.53% 1.11%

80 60 9988 -3.51% 3.13% -5.83% 2.09%

80 60 9924 -7.92% -4.65% -12.47% 1.20%

80 75 8092 -7.21% 3.15% -12.27% 1.02%

80 75 8193 -5.74% -3.20% -15.36% 1.45%

100 30 21048 -8.22% -7.85% -5.64% -0.37%

100 30 23240 -7.63% -11.98% -8.91% -1.24%

100 45 14697 -3.80% 0.81% -4.87% 1.89%

100 45 14653 -5.40% -5.94% -9.85% 1.59%

100 60 11566 -6.13% 3.29% -9.64% 1.31%

100 60 13469 -4.62% -4.37% -12.06% 2.01%

100 75 9591 -5.84% 5.07% -15.15% 2.09%

100 75 9757 -6.29% -2.73% -15.02% 2,14%

Table A.1: Detailed results for the original 2level-VNS algorithm with stopping criterion ’1000 consecutive

iterations without improvement’ with HausOrig, HausAdap or Aisles heuristic implemented. Results are

provided for the Ran 32 instances.
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Total travel Avg. deviation (%) relative to
distance (m) outcome OBP algorithm

n C 2level-VNS60 VND ABHC+SS ABHC+LG MS-VNS

HausAdap 40 30 9399 -6.73% -6.31% -6.45% -1.78%

40 30 9833 -6.70% -11.94% -9.41% -1.87%

40 45 6269 -6.33% -1.05% -10.86% 0.42%

40 45 7265 -6.51% -7.96% -11.90% -1.25%

40 60 5680 -7.84% 2.86% -13.00% 0.87%

40 60 5025 -6.58% -5.58% -12.85% 0.54%

40 75 4454 -6.64% 2.64% -14.69% 1.57%

40 75 4086 -4.17% -5.42% -17.02% 1.44%

60 30 14840 -7.06% -5.68% -8.22% -0.80%

60 30 13677 -9.12% -13.76% -10.16% -2.37%

60 45 9669 -6.62% 0.57% -6.33% 0.45%

60 45 10370 -6.99% -5.50% -10.94% 0.92%

60 60 7901 -6.61% 1.13% -9.50% 1.82%

60 60 7472 -5.62% -3.90% -12.44% 2.03%

60 75 5550 -6.80% 1.26% -14.23% 1.41%

60 75 5640 -3.11% -2.17% -14.21% 1.79%

80 30 19292 -6.90% -9.44% -5.30% -1.96%

80 30 17587 -6.37% -13.83% -8.88% 0.17%

80 45 14224 -5.80% -0.69% -6.76% 1.58%

80 45 12126 -6.33% -5.30% -9.67% 2.08%

80 60 9982 -3.56% 3.07% -5.88% 2.02%

80 60 10062 -6.64% -3.32% -11.25% 2.61%

80 75 8195 -6.03% 4.46% -11.16% 2.31%

80 75 8271 -4.84% -2.28% -14.56% 2.41%

100 30 21103 -7.98% -7.61% -5.39% -0.11%

100 30 23348 -7.20% -11.57% -8.48% -0.78%

100 45 14799 -3.14% 1.51% -4.21% 2.59%

100 45 14725 -4.94% -5.48% -9.41% 2.09%

100 60 11623 -5.67% 3.80% -9.20% 1.80%

100 60 13546 -4.08% -3.83% -11.56% 2.60%

100 75 9609 -5.66% 5.27% -14.99% 2.28%

100 75 9801 -5.87% -2.29% -14.64% 2.60%

Aisles 40 30 9371 -7.01% -6.59% -6.73% -2.07%

40 30 9809 -6.93% -12.15% -9.63% -2.11%

40 45 6277 -6.22% -0.92% -10.75% 0.54%

40 45 7234 -6.91% -8.35% -12.27% -1.67%

40 60 5634 -8.58% 2.03% -13.71% 0.05%

40 60 5007 -6.92% -5.92% -13.16% 0.18%

40 75 4485 -5.99% 3.35% -14.10% 2.28%

40 75 4062 -4.74% -5.97% -17.51% 0.84%

60 30 14938 -6.45% -5.06% -7.61% -0.15%

60 30 13696 -8.99% -13.64% -10.04% -2.23%

60 45 9675 -6.57% 0.63% -6.27% 0.51%

60 45 10318 -7.45% -5.97% -11.39% 0.42%

60 60 7897 -6.65% 1.08% -9.54% 1.77%

60 60 7446 -5.95% -4.23% -12.75% 1.68%

60 75 5517 -7.36% 0.66% -14.74% 0.80%

60 75 5553 -4.60% -3.68% -15.53% 0.22%

80 30 19302 -6.85% -9.39% -5.25% -1.91%

80 30 17713 -5.70% -13.21% -8.22% 0.88%

80 45 14259 -5.56% -0.45% -6.53% 1.83%

80 45 12044 -6.96% -5.94% -10.28% 1.39%

80 60 10050 -2.91% 3.77% -5.24% 2.72%

80 60 10035 -6.89% -3.58% -11.49% 2.34%

(continued on next page)
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Table 20 - Continued

Total travel Avg. deviation (%) relative to
distance (m) outcome OBP algorithm

n C 2level-VNS60 VND ABHC+SS ABHC+LG MS-VNS

80 75 8151 -6.54% 3.90% -11.63% 1.76%

80 75 8240 -5.20% -2.65% -14.88% 2.03%

100 30 21103 -7.98% -7.61% -5.39% -0.11%

100 30 23348 -7.20% -11.57% -8.48% -0.78%

100 45 14799 -3.14% 1.51% -4.21% 2.59%

100 45 14725 -4.94% -5.48% -9.41% 2.09%

100 60 11623 -5.67% 3.80% -9.20% 1.80%

100 60 13546 -4.08% -3.83% -11.56% 2.60%

100 75 9609 -5.66% 5.27% -14.99% 2.28%

100 75 9801 -5.87% -2.29% -14.64% 2.60%

Table A.2: Detailed results for the 2level-VNS60 algorithm, with HausAdap or Aisles heuristic imple-

mented. Results are shown for the Ran 32 instances.
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