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Abstract

In this study we consider the shortest path problem, where the arc costs are subject to distribu-

tional uncertainty. Basically, the decision-maker attempts to minimize her worst-case expected

loss over an ambiguity set (or a family) of candidate distributions that are consistent with the

decision-maker’s initial information. The ambiguity set is formed by all distributions that satisfy

prescribed linear first-order moment constraints with respect to subsets of arcs and individual

probability constraints with respect to particular arcs. Under some additional assumptions

the resulting distributionally robust shortest path problem (DRSPP) admits equivalent robust

and mixed-integer programming (MIP) reformulations. The robust reformulation is shown to

be NP -hard, whereas the problem without the first-order moment constraints is proved to be

polynomially solvable. We perform numerical experiments to illustrate the advantages of the

considered approach; we also demonstrate that the MIP reformulation of DRSPP can be solved

effectively using off-the-shelf solvers.

Keywords: shortest path problem; distributionally robust optimization; mixed-integer

programming; polyhedral uncertainty

1. Introduction

The shortest path problem (SPP) has been attracting much interest both theoretically and

computationally since the early 1950s [1, 2]. Being one of the classical network optimization

problems it finds various applications in transportation, planning, network interdiction and

design; see, e.g., [3, 4, 5, 6] and the references therein.

Consider a weighted directed connected graph G = (N,A, c), where N and A denote its sets

of nodes and directed arcs, respectively. With each arc a ∈ A we associate a nonnegative cost

ca, that is, c = {ca : a ∈ A}. We refer to s ∈ N and t ∈ N as the source and destination nodes,
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respectively. Recall that the standard deterministic problem of finding an s−t path of the mini-

mum total cost is known to be polynomially solvable, e.g., by dynamic programming algorithms

of Dijkstra and Bellman-Ford [1, 7]. We also refer to [2, 8] for a more comprehensive discussion.

However, in practice the decision-maker often does not know the nominal arc costs/travel

times in advance. In fact, uncertain factors such as variability of travel times, path capacity

variation may significantly influence the quality of routing decisions; see, e.g., [9, 10]. The

modeling approach for data uncertainty depends on a concrete application, but in general

consists of the following two major principles.

On the one hand, a robust optimization approach represents unknown costs/travel times2

through uncertainty sets, i.e., the cost vector c is assumed to belong to some uncertainty set S.

Then a particular measure of robustness is optimized across all possible realizations of costs

c ∈ S; see surveys [11, 12, 13, 14]. Despite a great modeling power robust solutions assume

no distributional knowledge and thus, potentially provide overly conservative decisions.

On the other hand, a stochastic programming approach assumes that the cost vector c is

governed by some known probability distribution Q0; see, e.g., [15, 16], which is referred to as

the nominal distribution. In this case one may optimize some risk measure under the specified

distribution Q0. Nevertheless, it is often argued, see, e.g., [17], that fitting a single candidate

distribution to the available information potentially leads to biased optimization results with

poor out-of-sample performance. What is probably more important, the distribution of the cost

vector is often not known to the decision-maker in advance; see [18] and the references therein.

Alternatively, a distributionally robust optimization approach represents the uncertainty by

an ambiguity set (or a family) Q of probability distributions that are compatible with the

decision-maker’s initial information; see, e.g., related studies in [17, 19, 20, 21]. The idea is

to optimize some utility function across the constructed family of probability distributions,

i.e., with respect to Q ∈ Q. This approach attempts to balance between the lack of distribu-

tional information and the complete knowledge of the underlying distribution. In particular,

Wiesemann et al. [17] introduce a unified approach to solving distributionally robust convex

optimization problems. In this paper we adopt the optimization techniques proposed in [17] to

the shortest path problem with distributional uncertainty.

1.1. Related literature

This section provides an overview of the most related literature and is organized as follows.

First, we briefly outline robust optimization and stochastic programming models for the shortest

path problem. Next, we describe existing formulations of SPP under distributional uncertainty.

The literature on the robust shortest path problem (RSPP) is vast, see, e.g., a survey in [22].

2We use the terms “costs” and “travel times” interchangeably.
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Various types of uncertainty sets including polyhedral, discrete or budgeted ones, are used to

model a variability of the cost vector; see [23]. In particular, the robust shortest path problem

with interval data is considered in [9, 24].

Typically, robust optimization methods focus on the control of a conservatism level of the

proposed solutions. For example, Bertsimas et al. [9] introduce a parameter Γ, which can be

used to limit the maximal number of components of vector c that deviate from their nominal

values. Hence, by varying Γ the decision-maker is able to control her level of protection against

uncertainty in a more sophisticated manner. The robust optimization approach proposed in [9]

preserves polynomial solvability, while most of the robust versions of the shortest path problem

are NP -hard in general; see, e.g., [23, 25, 26]. Naturally, the robust optimization approach may

lead to suboptimal decisions when some distributional information is available to the decision-

maker; this observation is also validated numerically in our computational experiments, see the

discussion in Section 5.

Next, we refer to [27, 28, 29, 30, 31] for stochastic programming models related to SPP.

Typically such models assume that the nominal distribution of the cost vector is known to the

decision-maker and seek optimal paths with respect to some predefined reliability criterion.

Such problems are usually computationally challenging since even evaluation of the objective

function for a fixed decision requires calculation of a multidimensional integral [32]. Thus, some

approximation methods such as sample average approximation and discretization have been

developed; see, e.g., [31, 33]. At the same time, in practice we frequently encounter a lack of data

to reconstruct the nominal distribution of arc costs/travel times; we refer to [34] for more details.

An interesting version of the stochastic shortest path problem is studied by Rinehart et al. [35].

In their setting side information about arc costs is incorporated through a specialized condi-

tional expectation model. The authors provide analytic information bounds for the performance

of their model and highlight some practical insights when the travel times are Gaussian.

Also, several studies consider the distributionally robust shortest path problem (DRSSP).

For example, one line of research focuses on distributionally robust mixed-integer programming

problems; we refer to [36, 37, 38] and the review by Li et al. [39]. The major contributions of

these research studies can be summarized as follows. (i) The authors consider max-min prob-

lems, where decisions are implemented after realization of uncertainty; also, (ii) the ambiguity

sets include marginal moment, cross-moment sets as well as some generalizations (that account

for both moment and cross-moment information). The authors exploit conic duality to obtain

finite-dimensional reformulations of the corresponding distributionally robust problems. (iii) It

is shown in [37] that for the marginal moment ambiguity set (the set with a predefined marginal

mean and variance for each component of the cost vector) the resulting distributionally robust

formulation is polynomially solvable, as long as the original MIP problem is also polynomially

solvable. Furthermore, for the cross-moment ambiguity set (which accounts for the mean and
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covariance of the cost vector) the problem is proved to be NP -hard even for a class of linear

programs [38]. (iv) The authors define persistency of a decision variable, i.e., the probability

that it is contained in the optimal solution. It is shown in [37] that under the marginal moment

model persistency can be computed efficiently as a byproduct of the basic solution procedure.

Additionally, a number of studies consider min-max formulations of DRSPP where routing

decisions are made here-and-now, prior to the realization of uncertainty. Thus, Gavriel et al. [40]

explore dynamic programming-based approximations for the risk-averse shortest path problem

with distributional uncertainty. The arc travel times are assumed to be independent random

variables with a given mean and variance.

Zhang et al. [18] and Cheng et al. [41] propose min-max versions of DRSPP, which consider

correlation between arc costs. In their settings the distributional ambiguity set accounts for

information about the support, mean and covariance matrix of uncertain parameters. Guided

by the work in [19], they view DRSPP as a mixed-integer semidefinite programming problem.

Since the resulting problem is computationally difficult, a sequence of semidefinite relaxations

is considered and the tightness of the obtained bounds is demonstrated numerically.

Recently, Jaillet et al. [42] have proposed an index-based approach to a class of distribu-

tionally robust routing problems. The authors introduce a Requirements Violation (RV) index,

which quantifies the risk associated with an uncertain parameter violating specified upper and

lower limits. The uncertain parameter is given by individual arc travel times/uncertain demands

or their linear combination. Specifically, RV index resolves a trade-off between two extreme sit-

uations, i.e., a situation where the limits are met almost surely (resulting in support constraints)

and a situation where the limits are satisfied only in expectation (resulting in the worst-case

expectation constraints). Then the problem of minimizing cumulative RV index is formulated

and the corresponding solution techniques based on Benders decomposition are developed.

The travel times/uncertain demands in [42] are assumed to be either independent or inher-

ently dependent via a linear regression model. Importantly, the proposed ambiguity sets are

moment-based, but yield a confidence region for the mean (and possibly higher-order moments)

of each uncertain parameter.

Finally, some data-driven approaches for modeling the distributional uncertainty are also

available in the literature. In such models the distribution of the uncertain parameters is only

observable through a finite training dataset. Then a family of distributions is designed based on

a distance metric in the space of probability distributions “centered” at the empirical distribu-

tion of the training samples. We refer to [43] for a model of DRSPP based on Wasserstein balls

and to [44] for a formulation of network sensor allocation problem based on phi-divergences.
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1.2. The approach and contribution in this study

The primary goal of this paper is to develop an approach to capture distributional uncer-

tainty in the context of the shortest path problem. In the view of discussion above, we assume

that the cost vector c is subject to distributional uncertainty. We explore a min-max version of

DRSPP, i.e., optimize here-and-now decisions implemented before the realization of uncertainty.

The key feature of our model is that instead of moment-based ambiguity sets, which account

for the first- and second-order moments explicitly, we use standardized ambiguity sets proposed

by Wiesemann et al. [17]. This prerequisite allows us to construct the ambiguity sets from

partially observable and unreliable data. In addition, our distributional constraints can be

strengthened with a new information available and therefore, can be adopted in sequential

decision-making settings; see our further discussion below and in Section 2.2.

Next, we briefly discuss our construction of the distributional constraints. Furthermore, we

provide some practical insights and motivation behind the choice of both the objective function

and ambiguity set in our modeling approach.

Let Q be a joint distribution of the random vector c. Then for a given vector b ∈ RD0 and

real-valued matrix B ∈ RD0×|A| we introduce linear expectation constraints of the form:

EQ{Bc} ≤ b, (1)

where D0 ∈ Z+ denotes the number of expectation constraints.

By leveraging (1) the decision-maker can limit the cumulative expected cost of any s − t

path or any subset of arcs A′ ⊆ A. This idea finds applications in online learning frameworks,

where the feedback received by the decision-maker is typically limited; see, e.g., [45, 46]. For

example, she may have access to some historical data containing observations of a total cost

with respect to particular routes in the network. In Section 2.2 we discuss how this informa-

tion can be exploited to construct linear expectation constraints of the form (1) subject to a

prescribed confidence level. In particular, if we introduce auxiliary random variables u ∈ RD0

such that u := b−Bc, then linear expectation constraints (1) coincide with those considered

by Wiesemann et al. [17].

Let Qa ∈ Q0(R), a ∈ A, be a marginal distribution induced by Q. Then guided by [17] for

each particular arc a ∈ A we introduce individual support and quantile constraints :

Qa{ca ∈ [la, ua]} = 1 (2)

Qa{ca ∈ [l(i)a , u(i)
a ]} ∈ [q(i)

a
, q(i)a ], i ∈ Da, (3)

where 0 ≤ la ≤ ua < ∞; [l
(i)
a , u

(i)
a ] ⊆ [la, ua], i ∈ Da := {1, . . . , Da}, is a set of Da ∈ Z+ subin-

tervals; q(i)
a

and q(i)a specify the probability that random cost ca belongs to the i-th subinterval,
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where 0 ≤ q(i)
a

≤ q(i)a ≤ 1.

Remark 1. Note that support constraints (2) can be represented in the form of (3). Hence,

without loss of generality, we assume that for each a ∈ A and i = Da the constraint

Qa{ca ∈ [l(i)a , u(i)
a ]} ∈ [q(i)

a
, q(i)a ]

is a support constraint with l
(i)
a = la, u

(i)
a = ua and q(i)

a
= q(i)a = 1. �

Next, we briefly discuss the intuition behind quantile constraints in the form of (3). On

the one hand, these constraints can be constructed from interval-censored or unreliable data.

In other words, to model (3) it is necessary to verify whether the arc cost ca belongs to a

specified subinterval, i.e., ca ∈ [l
(i)
a , u

(i)
a ] for some i ∈ Da. Meanwhile, pointwise observations of

the arc costs can be either unreliable or unavailable to the decision-maker; we refer the reader

to Section 2.2 for more details.

On the other hand, by leveraging quantile constraints (3) the decision-maker can substan-

tially improve the quality of a distributionally robust optimization model. The role of individual

probability constraints is examined, e.g., in [47, 48], with applications to air traffic flow man-

agement. As a remark, it is rather straightforward to verify that distributional constraints (3)

can provide a high quality approximation of the marginal distribution Qa, a ∈ A. For example,

one can imagine a situation where the subintervals are sufficiently small, mutually disjoint and

cover the support interval [la, ua], whereas the upper and lower quantiles, namely, q(i)
a

and q(i)a ,

i ∈ Da, coincide.

For each particular arc a ∈ A we consider separate probability constraints. In fact, proba-

bility constraints with respect to subsets of arcs must satisfy so called nesting condition for the

distributionally robust counterpart (i.e., the second-level optimization problem in the min-max

formulation) to be a tractable convex problem; see Theorems 1 and 2 in [17]. This condition is

quite restrictive since it requires for the confidence sets (in our case, the subintervals [l
(i)
a , u

(i)
a ],

i ∈ Da, a ∈ A) to be either disjoint or nested within each other. However, given a specialized

structure of the objective function and quantile constraints in our problem formulation we avoid

using the nesting condition, but preserve tractability of the second-level problem.

With respect to the objective function, our study focuses on minimizing of the worst-case

expected loss incurred by the decision-maker. From the modeling perspective our choice of the

objective function can be justified as follows.

First, it is outlined in [49] that in some applications, especially those of a repetitive nature, it

may be sufficient to find the paths with minimal expected travel time. In our setting repetitive

decisions arise naturally, if the decision-maker learns the nominal distribution by trial and errors

through multiple decision epochs. Specifically, she may refine some distributional information

by implementing her solutions sequentially several times; see Section 2.2 for modeling the
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distributional constraints. Besides, the paths with the least expected cost are often used in

intelligent transportation and in-vehicle route guidance systems; see, e.g., [50].

Under the expected loss criterion we identify a form of the worst-case distribution and pro-

vide an efficient solution procedure for DRSPP without linear expectation constraints. With

respect to the general case, we obtain a linear mixed-integer programming (MIP) reformula-

tion of DRSPP in contrast to the semidefinite MIP formulations proposed in [18, 41]. In our

computational experiments we demonstrate that the proposed MIP formulation can be solved

rather effectively using off-the-shelf solvers.

Note that linear MIP reformulations of combinatorial optimization problems with objective

uncertainty can also be derived, if one uses optimized certainty equivalent risk measures com-

bined with specified expectation constraints; see, e.g., [51]. We briefly discuss the applicability

of some other objective criteria to our problem setting in Section 5.

As a remark, bounds on the covariance matrix used in [19, 41] exploit the mean of the cost

vector c. However, if the expected costs are known, then the objective function value in our

setting is fully defined. Therefore, we “handle” correlation information between travel times

by leveraging linear expectation constraints (1).

In summary, this paper describes a rather simple approach for solving the shortest path

problem under distributional uncertainty. To the best of our knowledge, the vast majority of

ambiguity sets proposed in the related literature (including moment-based sets, Wasserstein

balls and etc.) are highly sensitive to both incompleteness and unreliability of historical data.

For instance, an accurate estimation of the correlation matrix (as it is proposed in [18]) typically

requires a sufficiently large number of pointwise observations with respect to each component

of vector c; see, e.g., [52]. Contrariwise, we demonstrate that the distributional constraints con-

sidered in this study can be constructed based on interval-censored observations for particular

arcs and observations of the total cost for some subsets of arcs.

In the view of discussion above the contributions and the remaining structure of the paper

can be summarized as follows:

• In Section 2 we formulate DRSPP and discuss how to obtain the distributional constraints

(1) and (3) from real-data observations.

• In Section 3 we prove that DRSPP without expectation constraints can be solved in poly-

nomial time by retrieving optimal costs for each particular arc and solving a deterministic

shortest path problem. Also, we provide some structural observations on the form of the

worst-case distribution.

• Section 4 provides a robust formulation of DRSPP with a polyhedral uncertainty set.

The resulting bilevel optimization problem turns out to be NP -hard in general and we

describe its single-level MIP reformulation.
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• In Section 5 we conduct a numerical study using the proposed approach and evaluate its

out-of-sample performance. Additionally, we provide a comparison with standard robust

and distributionally robust optimization techniques.

• Section 6 concludes the paper and outlines possible directions for future research.

Notation. All vectors and matrices are labelled by bold letters. Arc a ∈ A adjacent to nodes

v1, v2 ∈ N is denoted as (v1, v2). Let Pst(G) be the set of all simple directed paths from s to t in

the networkG. Any path P ∈ Pst(G) is given by a sequence of arcs (s, v1), (v1, v2), . . . , (v|P |−1, t),

which we introduce as {s → v1 → . . . → v|P |−1 → t} for convenience. For a subset of arcs

A′ ⊆ A we define a subgraph of G induced by this subset of arcs as G[A′] := (N,A′, c′), where,

in particular, c′ := {ca, a ∈ A′}.

We use 1{Z} as an indicator of event Z. The uniform distribution on an interval [l, u] is

referred to as U(l, u). Finally, denote by M+(R
k) and Q0(R

k) the spaces of all nonnegative

measures and probability distributions on Rk for some k ∈ Z+, respectively.

2. Problem formulation

2.1. Distributionally robust shortest path problem

As outlined in Section 1 the cost vector c is assumed to be a nonnegative random vector

governed by some unknown joint distribution Q ∈ Q0(R
|A|). With each arc a ∈ A we associate

a marginal probability distribution Qa ∈ Q0(R) induced by Q.

The joint distribution Q is supposed to belong to an ambiguity set Q comprised of all

probability distributions that satisfy linear expectation constraints (1) and individual quantile

constraints (3). That is,

Q =
{
Q ∈ Q0(R

|A|): EQ{Bc} ≤ b;

Qa{ca ∈ [l(i)a , u(i)
a ]} ∈ [q(i)

a
, q(i)a ] ∀i ∈ Da, a ∈ A

} (4)

For each node i ∈ N we refer to RSi (FSi) as the set of the arcs directed out of (into)

node i. Denote by y ∈ {0, 1}|A| a path-incidence vector and introduce the standard flow-

balance constraints [2] as:

y ∈ Y = {y ∈ {0, 1}|A| : Gy = g}, (5)
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where G ∈ {−1, 0, 1}|N |×|A| and g ∈ {0, 1}|N |. Specifically, for each i ∈ N

gi =





1, if i = s

−1, if i = f

0, otherwise

Furthermore,

Gij =





1, if j ∈ RSi

−1, if j ∈ FSi

0, otherwise

Then the distributionally robust shortest path problem (DRSPP) is formulated as follows:

min
y∈Y

max
Q∈Q

EQ{c
⊤y} (F1)

That is, we minimize the worst-case expected loss of the decision-maker, i.e., the worst-case

expected path cost, across all probability distributions consistent with the decision-maker’s

prior information. Henceforth, we need the following modeling assumptions:

A1. For each a ∈ A there exists a marginal distribution Qa ∈ Q0(R) such that

Qa{l
(i)
a ≤ ca ≤ u(i)

a } ∈ (q(i)
a
, q(i)a ),

whenever q(i)
a

< q(i)a , i ∈ Da.

A2. For each a ∈ A and any pair of subintervals in (3), namely, [l
(i1)
a , u

(i1)
a ] and [l

(i2)
a , u

(i2)
a ],

i1, i2 ∈ Da, we have l
(i1)
a 6= u

(i2)
a and l

(i2)
a 6= u

(i1)
a .

Assumption A1 guarantees existence of a probability distribution that satisfies quantile

constraints (3) as strict inequalities, if interval [q(i)
a
, q(i)a ] is non-degenerate. Additionally, it

allows us to exploit the strong duality results for the moment problems in Section 3; we refer

the reader to [17, 53] for a more comprehensive discussion.

Next, Assumption A2 stipulates that the inner optimization problem in (F1) has a finite

maximum; see the proof of Lemma 2 in Section 3 and Example 1. We emphasize that Assump-

tion A2 is not restrictive since, if, e.g., l
(i1)
a = u

(i2)
a for some i1, i2 ∈ Da, then a sufficiently small

perturbation of the endpoints makes this assumption satisfied.

2.2. Data-driven approach for modeling the ambiguity set

Next, we discuss how to construct the family of distributions (4) from real-data observations.

For simplicity we assume that, if the decision-maker traverses through s−t paths multiple times,

then the joint distribution Q of the cost vector is fixed across all decision epochs.
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As outlined in Section 1.2, linear expectation constraints in the form of (1) model a situation,

where the decision-maker observes only the total path cost in each decision epoch. Thus,

suppose that a path P ∈ Pst(G) is traversed by the decision-maker r ∈ Z+ times. We refer to

ξ(P ) ∈ Rr as a vector comprised of r i.i.d. observations of the total path cost
∑

a∈P ca. Using

support constraints (2) observe that:

l(P ) :=
∑

a∈P

la ≤ ξ
(P )
i ≤ u(P ) :=

∑

a∈P

ua, ∀i ∈ {1, . . . , r}

Furthermore, Hoeffding inequality [54] for the sum
∑r

i=1 ξ
(P )
i of r bounded i.i.d. random vari-

ables implies that for any ε > 0 one has:

QP

{
|EQ{

∑

a∈P

ca} −
1

r

r∑

i=1

ξ
(P )
i | ≥ ε

}
≤ 2 exp

( −2rε2

(u(P ) − l(P ))2

)
, (6)

where QP ∈ Q0(R) is a distribution of the empirical mean 1
r

∑r
i=1 ξ

(P )
i . Hence, with high

probability the following expectation constraints hold:

1

r

r∑

i=1

ξ
(P )
i − ε ≤ EQ{

∑

a∈P

ca} ≤
1

r

r∑

i=1

ξ
(P )
i + ε (7)

Specifically, ε is defined by setting the right-hand side of (6) equal to a prescribed confidence

level. Also, note that instead of complete s − t paths one may consider any nonempty subset

of arcs A′ ⊆ A.

Then support constraints (2) can be derived from some physical limitations, i.e., the arc

costs/travel times are typically bounded depending upon a concrete application. We also refer

to [19] for a construction of the support constraints based on empirical data.

Finally, we discuss how to construct individual quantile constraints (3). In the sequel, we

fix a ∈ A and consider the quantile constraints associated with the marginal distribution Qa.

Denote by ξ(a) ∈ Rr a vector of r ∈ Z+ i.i.d. observations of random cost ca and pick a

subinterval [l′a, u
′
a] ⊆ [la, ua]. Furthermore, we define

χ
(a)
i =




1, if ξ

(a)
i ∈ [l′a, u

′
a]

0, otherwise,

where i ∈ {1, . . . , r}. Then χ
(a)
i ∈ {0, 1} is a Bernoulli random variable with an unknown

probability of success qa ∈ [0, 1], that is,

qa = Qa{l
′
a ≤ ca ≤ u′

a}
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Let Qa ∈ Q(R) be a distribution of the empirical mean 1
r

∑r

i=1 χ
(a)
i . Using Hoeffding inequality

for arbitrary ε > 0 observe that:

Qa

{
|qa −

1

r

r∑

i=1

χ
(a)
i | ≥ ε

}
≤ 2 exp(−2rε2) (8)

As a result, with high probability we have:

Qa{l
′
a ≤ ca ≤ u′

a} = qa ∈ [
1

r

r∑

i=1

χ
(a)
i − ε;

1

r

r∑

i=1

χ
(a)
i + ε] (9)

where parameter ε depends on a prescribed confidence level and thus, can be defined from (8).

In general, there are no theoretical limitations with respect to the choice of subinterval

[l′a, u
′
a]. However, one can adopt some practical limitations, e.g., ca ≤ u′

a may indicate that

the decision-maker has completed a task in time (and is untimely, otherwise). In Section 5 we

provide some analysis on how the width of the subintervals influences the optimal solution of

DRSPP (F1) in the absence of expectation constraints.

As a result, following the discussion in Section 1 the construction of linear expectation

constraints relies on observations of a total cost with respect to some subsets of arcs. Likewise,

the construction of quantile constraints does not require precise knowledge of data observations,

but only indicates whether an observation belongs to some predefined subinterval. Therefore,

the observations can be collected indirectly, e.g., by checking whether the arc costs/travel times

satisfy specified upper and lower limits. We also refer to [55, 56] for a comprehensive analysis

of interval-censored data.

As a remark, instead of Hoeffding inequality one can employ more advanced measure con-

centration results from [54]. Furthermore, as outlined in [17] to guarantee a specified confidence

level for the ambiguity set Q one can adopt confidence levels of the individual constraints by

using Bonferroni’s inequality [57].

3. Model without expectation constraints

In this section we examine DRSPP (F1) without linear expectation constraints (1). We

prove that the resulting problem can be solved in polynomial time. More precisely, it is tackled

by solving a particular linear programming problem for each a ∈ A and a single deterministic

shortest path problem.

Hereafter, we suppose that the ambiguity set of probability distributions is given by:

Q̃ :=
{
Q ∈ Q0(R

|A|): Qa{ca ∈ [l(i)a , u(i)
a ]} ∈ [q(i)

a
, q(i)a ] ∀i ∈ Da, a ∈ A

}
(10)
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Consider the following DRSPP without linear expectation constraints:

min
y∈Y

max
Q∈Q̃

EQ{c
⊤y} (F1′)

First, leveraging the structure of (10) we show that optimization problem (F1′) can be

partitioned into |A| individual moment problems with respect to each particular arc a ∈ A and

then resolved as a deterministic shortest path problem. The following result holds.

Lemma 1. Let

Q̃a :=
{
Qa ∈ Q0(R): Qa{ca ∈ [l(i)a , u(i)

a ]} ∈ [q(i)
a
, q(i)a ] ∀i ∈ Da

}
(11)

Suppose that y∗ ∈ Y and Q∗ ∈ Q0(R
|A|) is an optimal solution of (F1′). In particular, let

Q∗
a ∈ Q0(R), a ∈ A, be the marginal distributions induced by Q∗. Then

• for each a ∈ A the worst-case expected cost EQ∗

a
{ca} coincides with the optimal objective

function value of the following individual moment problem:

max
Qa∈Q̃a

EQa
{ca} (12)

• an optimal path-incidence vector y∗ can be attained by solving a deterministic shortest

path problem of the form:

min
y∈Y

∑

a∈A

EQ∗

a
{ca}ya (13)

Proof. Note that the set of constraints in (10) can be partitioned into |A| non-overlapping

subsets, i.e., the quantile constraints for each particular arc a ∈ A. Thus, taking into account

the linearity of expectation DRSPP (F1′) can be equivalently reformulated as:

min
y∈Y

∑

a∈A

(
max
Qa∈Q̃a

EQa
{ca}

)
ya

and the result follows.

Next, we apply the duality theory to solve the individual moment problem (12) for each

particular arc; see [53]. For simplicity of our further exposition we need the following prepro-

cessing step. For each arc a ∈ A from the baseline set [l
(i)
a , u

(i)
a ], i ∈ Da, of subintervals we form

a set [L
(j)
a , U

(j)
a ], j ∈ Wa := {1, . . .Wa}, of Wa ∈ Z+ elementary subintervals [58].

Specifically, consider a list of distinct interval endpoints, that is,

{l(1)a , u(1)
a , l(2)a , u(2)

a , . . . l(Da)
a = la, u

(Da)
a = ua}

12



and sort them in a nondecreasing order. Regions of the resulting partitioning of interval [la, ua]

are referred to as elementary subintervals and denoted by [L
(j)
a , U

(j)
a ], j ∈ Wa. For instance, a

baseline set of subintervals

{[20, 60], [30, 70], [0, 100]}

is split into a set

{[0, 20], [20, 30], [30, 60], [60, 70], [70, 100]}

of elementary subintervals.

For any j ∈ Wa we denote by Da(j) ⊆ Da indices of the baseline subintervals contained in

the elementary subinterval [L
(j)
a , U

(j)
a ]. Analogously, for any i ∈ Da we denote by Wa(i) ⊆ Wa

indices of the elementary subintervals contained in the baseline subinterval [l
(i)
a , u

(i)
a ].

Finally, we note that the overall complexity of preprocessing is given by O(Da logDa) for

each a ∈ A and the number of nonempty elementary subintervals does not exceed 2Da − 1 by

construction. Now, we are ready to introduce an equivalent linear programming reformulation

of the individual moment problem (12).

Lemma 2. Optimization problem (12) for fixed a ∈ A can be equivalently reformulated as:

max
δa

∑

j∈Wa

U (j)
a δaj (14a)

s.t. δaj ≥ 0 ∀j ∈ Wa (14b)
∑

j∈Wa

δaj = 1 (14c)

q(i)
a

≤
∑

j∈Wa(i)

δaj ≤ q(i)a , ∀i ∈ Da \ {1} (14d)

Proof. Optimization problem (12) for fixed a ∈ A coincides with the following moment problem:

max
µ

∫ ua

la

ca dµ(ca) (15a)

s.t. µ ∈ M+(R) (15b)
∫ ua

la

1

{
l(i)a ≤ ca ≤ u(i)

a

}
dµ(ca) ≤ q(i)a ∀i ∈ Da (15c)

∫ ua

la

1

{
l(i)a ≤ ca ≤ u(i)

a

}
dµ(ca) ≥ q(i)

a
∀i ∈ Da, (15d)

AssumptionA1 implies that the strong duality holds; see Proposition 3.4 in [53]. More precisely,

individual moment problem (12) is a particular case of the moment problem considered by

Wiesemann et al. [17]; see equation (4) in [17].
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Denote by ka ∈ RDa

+ and ha ∈ RDa

+ dual variables corresponding to the primal constraints

(15c) and (15d), respectively. Then the dual reformulation of (15) is given by:

min
ka,ha

∑

i∈Da

(q(i)a kai − q(i)
a
hai) (16a)

s.t. kai ≥ 0, hai ≥ 0 ∀i ∈ Da (16b)
∑

i∈Da

1

{
l(i)a ≤ ca ≤ u(i)

a

}
(kai − hai)− ca ≥ 0 ∀ca ∈ [la, ua] (16c)

Note that the set of constraints (16c) is satisfied if and only if

min
ca∈[la,ua]

{ ∑

i∈Da

1

{
l(i)a ≤ ca ≤ u(i)

a

}
(kai − hai)− ca

}
≥ 0 (17)

Assume that ca ∈ [L
(j)
a , U

(j)
a ] for some j ∈ Wa. Then using Assumption A2 observe that:

∑

i∈Da

1

{
l(i)a ≤ ca ≤ u(i)

a

}
(kai − hai) =

∑

i∈Da(j)

(kai − hai)

and the minimum value in the left-hand side of (17) is achieved at ca = U
(j)
a .

Otherwise, if Assumption A2 is violated, then there exist i1, i2 ∈ Da and j0 ∈ Wa such that

u
(i1)
a = l

(i2)
a = U

(j0)
a . In this case, the function

φ(ca) :=
∑

i∈Da

1

{
l(i)a ≤ ca ≤ u(i)

a

}
(kai − hai)− ca

is discontinuous at ca = U
(j0)
a , and the minimum value in the left-hand side of (17) does not

necessarily exist.

Taking the minimum across the set of all elementary subintervals, i.e., with respect to

j ∈ Wa, results in the following dual reformulation:

min
ka,ha

∑

i∈Da

(q(i)a kai − q(i)
a
hai) (18a)

s.t. kai ≥ 0, hai ≥ 0 ∀i ∈ Da (18b)

min
j∈Wa

{ ∑

i∈Da(j)

(kai − hai)− U (j)
a

}
≥ 0 (18c)

Observe that (18) can be viewed as a linear programming (LP) problem. Specifically,

14



constraint (18c) is equivalent to Wa linear constraints of the form:

∑

i∈Da(j)

(kai − hai)− U (j)
a ≥ 0, ∀j ∈ Wa

Recall that for any a ∈ A we have q(1)a = q(1)
a

= 1 by construction. Then by the standard LP

duality we derive a dual formulation of (18) and the result follows.

Remark 2. Let Q∗
a ∈ Q0(R) and δ∗

a be optimal solutions of optimization problems (12) and

(14), respectively, for some fixed a ∈ A. Then by the strong duality the worst-case expected

cost, i.e., the expected cost under the worst-case distribution Q∗
a, is given by:

EQ∗

a
{ca} =

∑

j∈Wa

U (j)
a δ∗aj (19)

Furthermore, Lemma 2 provides us an intuition behind the construction of the worst-case

distribution. Thus, it is a discrete distribution, which takes values at the endpoints of elemen-

tary subintervals, U
(j)
a , j ∈ Wa. �

The next example explains some motivation behind AssumptionA2. Specifically, we demon-

strate that, if Assumption A2 is not satisfied, then the maximum in the moment problem (12)

may not be attained.

Example 1. For some a ∈ A let la = 0, ua = 100 and Da = 3. Consider two baseline

subintervals, i.e.,

[l(1)a , u(1)
a ] = [0, 50] and [l(2)a , u(2)

a ] = [50, 100]

that do not satisfy Assumption A2. Assume that

Qa{ca ∈ [0, 50]} = Qa{ca ∈ [50, 100]} = 0.5

Then the worst-case distribution is a discrete distribution such that:

ca =




50− ε, with probability 0.5

100, with probability 0.5

for arbitrarily small ε > 0. We conclude that the maximum in (12) does not exist. �

The next theorem states a key theoretical result of this section.

Theorem 1. Optimization problem (F1′) is polynomially solvable.

15



1

2

3

4

[0,1
00] [1,101]

[0,100]

[0,100] [0,1
00]

Figure 1: The network used in Example 2. The cost range [la, ua] is depicted inside each arc a ∈ A. The arc a′

is highlighted in bold.

Proof. In fact, Lemmas 1, 2 and Remark 2 imply that optimization problem (F1′) can be

tackled by solving |A| linear programming problems (14) and a single deterministic shortest

path problem (13). Observe that each LP has Wa variables and 2Da + Wa + 1 constraints.

Since the number of elementary subintervals Wa does not exceed 2Da − 1 by construction we

conclude that optimization problem (14) is polynomially solvable for each a ∈ A.

In particular, Theorem 1 mimics the results of Bertsimas et al. [37] for the distributionally

robust max-min problems with a marginal moment ambiguity set. Naturally, if the underlying

combinatorial optimization problem is polynomially solvable, then its distributionally robust

version with quantile constraints is also polynomially solvable. Also, if quantile constraints

(3) coincide with support constraints (2), then ca ∈ [la, ua], a ∈ A, results in the expectation

constraints of the form EQa
{ca} ∈ [la, ua]. Hence, in this particular case (F1′) is equivalent to the

min-max robust shortest path problem with interval data [22]. The next example demonstrates

that exploiting partial distributional information potentially improves the quality of myopic

robust solutions.

Example 2. Consider the network depicted in Figure 1. Let s = 1 and t = 4. Suppose that

besides the support information for arc a′ = (1, 2) we know that its cost ca′ exceeds 70 with

probability of at most 0.1. Therefore, we add the following quantile constraint:

Qa′{70 ≤ ca′ ≤ 100} ∈ [0, 0.1]

By Lemma 2 and Remark 1 the worst-case expected cost of arc a′ is obtained by solving

the following individual linear programming problem:

min
δ
a′

70δa′1 + 100δa′2 (20a)

s.t. δa′i ≥ 0 ∀i ∈ {1, 2} (20b)

δa′1 + δa′2 = 1 (20c)
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s− t path Naive robust approach Distributionally robust approach Nominal solution

{1 → 2 → 4} 201 174 88.5

{1 → 3 → 4} 200 200 100

{1 → 2 → 3 → 4} 300 273 137.5

Table 1: The nominal expected cost and expected cost under both naive robust and distributionally robust
uncertainty for each path P ∈ Pst(G) in Example 2. For the former approach all the arc costs are set to their
upper bounds.

0 ≤ δa′2 ≤ 0.1 (20d)

Here, Da′ = Wa′ = 2 and the elementary subintervals are given by [0, 70] and [70, 100]. Also,

Wa′(1) = {2} and Wa′(2) = {1, 2}. The worst-case distribution Q∗
a′ with respect to arc a′ is a

discrete distribution such that:

ca′ =




100, with probability 0.1

70, with probability 0.9

Hence, the worst-case expected cost of a′ is given by:

EQ∗

a′
{ca′} = 0.9× 70 + 0.1× 100 = 73

Next, we define a nominal distribution Q0 ∈ Q0(R
|A|) of the cost vector c, which is compat-

ible with the decision-maker’s initial information. That is, for a 6= a′ suppose that the induced

marginal distribution Q0
a ∈ Q0(R) is uniform, i.e., ca ∼ U(la, ua). Additionally, for a = a′

assume that:

ca′ ∼




U(0, 70), with probability 0.95

U(70, 100), with probability 0.05

Therefore, the nominal expected cost of a′ is given by:

EQ0

a′
{ca′} = 0.95× 35 + 0.05× 85 = 37.5

In Table 1 for each s−t path we report its nominal expected cost as well as the expected cost

under both robust and distributionally robust uncertainty. The optimal values are in bold. In

fact, a naive robust optimization approach sets all the arc costs to their upper bounds. Observe

that the optimal distributionally robust solution, in turn, dominates the optimal robust solution

in terms of the nominal expected cost. �

Example 2 illustrates that robust solutions may suffer from underspecification, especially,

when some partial distributional information is available to the decision-maker. In Section 5 we
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extend the methodology behind Example 2 to a class of randomly generated problem instances

with both quantile and linear expectation constraints. The next section provides robust and

mixed-integer programming reformulations of DRSPP (F1).

4. General case

4.1. Equivalent robust reformulation

We exploit the results outlined in the previous section to reformulate DRSPP (F1) as

an instance of the robust shortest path problem (RSPP) with a polyhedral uncertainty set.

Furthermore, we show that the resulting problem is NP -hard in general and describe a linear

MIP reformulation of (F1).

Suppose that a path-incidence vector y ∈ Y is fixed. Now, we analyze the inner optimization

problem in (F1), that is,

max
Q∈Q

∑

a∈A

EQa
{ca}ya (21)

The key observation is that optimization problem (21) can be reformulated as a linear program-

ming problem in terms of the marginal expectations EQa
{ca}, a ∈ A. Specifically, we show that

for each a ∈ A there exists a surjective mapping from a set of marginal probability distributions

Q̃a =
{
Qa ∈ Q0(R) : Qa{ca ∈ [l(i)a , u(i)

a ]} ∈ [q(i)
a
, q(i)a ] ∀i ∈ Da

}
(22)

onto a set formed by linear expectation constraints

cmin
a ≤ EQa

{ca} ≤ cmax
a , (23)

for some cmin
a , cmax

a ∈ R+. In other words, we prove that for any a ∈ A and ca ∈ [cmin
a , cmax

a ]

there exists a marginal probability distribution Qa ∈ Q̃a such that its expectation satisfies

EQa
{ca} = ca. The next result holds.

Lemma 3. Fix a ∈ A and consider the set of marginal distributions Q̃a given by (22). Define

cmin
a := min

Qa∈Q̃a

EQa
{ca} (24a)

cmax
a := max

Qa∈Q̃a

EQa
{ca} (24b)

Then for any ca ∈ [cmin
a , cmax

a ] there exists a marginal probability distribution Qa ∈ Q̃a such that

EQa
{ca} = ca.

Proof. We need to verify whether the following set of probability distributions is nonempty:
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{
Qa ∈ Q0(R) : Qa{ca ∈ [l(i)a , u(i)

a ]} ∈ [q(i)
a
, q(i)a ] ∀i ∈ Da

EQa
{ca} = ca

} (25)

In order to establish this fact, we construct the corresponding feasibility problem:

max 0 (26a)

s.t. µ ∈ M+(R) (26b)
∫ ua

la

1

{
l(i)a ≤ ca ≤ u(i)

a

}
dµ(ca) ≤ q(i)a ∀i ∈ Da (26c)

∫ ua

la

1

{
l(i)a ≤ ca ≤ u(i)

a

}
dµ(ca) ≥ q(i)

a
∀i ∈ Da, (26d)

∫ ua

la

ca dµ(ca) = ca (26e)

In the sequel, we fix a ∈ A. Following the proof of Lemma 2 we obtain a dual reformulation

of the feasibility problem (26), i.e.,

min
ka,ha,γ

∑

i∈Da

(q(i)a kai − q(i)
a
hai) + caγ (27a)

s.t. kai ≥ 0, hai ≥ 0 ∀i ∈ Da (27b)

min
j∈Wa

{ ∑

i∈Da(j)

(kai − hai) + min{γL(j)
a , γU (j)

a }
}
≥ 0 (27c)

Here, γ ∈ R is a dual variable corresponding to the primal constraint (26e). In particular,

notice that the feasible region of (27) is nonempty since the zero solution, i.e., ka,ha = 0 and

γ = 0, is feasible.

Hence, by the strong duality; see [17, 53], either primal optimization problem (26) is feasible,

or there exists a dual feasible solution k̃a, h̃a ∈ RDa , γ̃ ∈ R such that:

∑

i∈Da

(q(i)a k̃ai − q(i)
a
h̃ai) + caγ̃ < 0 (28)

In fact, inequality (28) indicates that the dual problem (27) is unbounded as long as the

dual feasible solution (k̃a, h̃a, γ̃)
⊤ can be multiplied by any positive constant. Therefore, it is

sufficient to show that for any dual feasible solution ka,ha ∈ RDa , γ ∈ R inequality (28) does

not hold, that is, we have: ∑

i∈Da

(q(i)a kai − q(i)
a
hai) + caγ ≥ 0 (29)

First, assume that γ = −1. Then the feasible region of optimization problem (27) coincides
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with the feasible region of dual problem (18); recall the proof of Lemma 2. Hence, for any dual

feasible solution (ka,ha,−1)⊤ we have:

∑

i∈Da

(q(i)a kai − q(i)
a
hai)− ca ≥ cmax

a − ca ≥ 0

Here, the first inequality is implied by the strong duality, i.e., the optimal objective function

values in (24b) and (18) coincide, whereas the second inequality stems from the assumption

ca ∈ [cmin
a , cmax

a ]. We conclude that (29) holds.

It is rather straightforward to verify that a dual reformulation of the minimization problem

min
Qa∈Q̃a

EQa
{ca}

is given by:

max
ka,ha

∑

i∈Da

−(q(i)a kai − q(i)
a
hai) (30a)

s.t. kai ≥ 0, hai ≥ 0 ∀i ∈ Da (30b)

min
j∈Wa

{ ∑

i∈Da(j)

(kai − hai) + L(j)
a

}
≥ 0 (30c)

Thus, if γ = 1, then the feasible regions of (27) and (30) coincide. Analogously, for any dual

feasible solution (ka,ha, 1)
⊤ we have:

∑

i∈Da

(q(i)a kai − q(i)
a
hai) + ca ≥ −cmin

a + ca ≥ 0

and thus, (29) holds. Furthermore, for any γ 6= ±1 the result is induced by scaling of the

parameters, i.e., by introducing new endpoints given by:

L̃(j)
a := γL(j)

a , if γ ≥ 0

Ũ (j)
a := −γU (j)

a , if γ < 0

This observation concludes the proof.

Lemma 3 provides an intuition behind the robust reformulation of DRSPP (F1). Indeed,

quantile constraints (3) can be replaced by the constructed linear expectation constraints (23)

with respect to each a ∈ A. In particular, the values of cmin
a and cmax

a are derived by solving

the individual moment problems (24a) and (24b), respectively. These problems can be solved

in polynomial time via their dual reformulations; see the proofs of Theorem 1 and Lemma 3.
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As a consequence, the next result provides a reformulation of (F1) as an instance of the robust

shortest path problem with polyhedral uncertainty.

Theorem 2. Let

S := {c ∈ R|A| : cmin ≤ c ≤ cmax; Bc ≤ b}

Assume that cmin = {cmin
a , a ∈ A} and cmax = {cmax

a , a ∈ A} are given by (24a) and (24b),

respectively. Then the distributionally robust shortest path problem (F1) is equivalent to the

following robust shortest path problem with polyhedral uncertainty:

min
y∈Y

max
c∈S

∑

a∈A

caya (F2)

Proof. The result follows from Lemma 3 by setting EQa
{ca} = ca, a ∈ A.

Importantly, under AssumptionsA1 andA2 Theorem 2 can be applied to any combinatorial

optimization problem with distributional constraints (1), (2) and (3). In particular, bounds

(24a) and (24b) for the cost vector c can be computed in polynomial time. Next, we explore

complexity of RSPP (F2) and briefly discuss the associated solution techniques.

4.2. Complexity and solution approach

We deduce that RSPP (F2) is NP -hard by leveraging an equivalent robust formulation with

a finite number of scenarios. The latter problem is known to be NP -hard even for a restricted

class of networks, i.e., for layered graphs of width 2 [25]. Regarding the solution techniques we

employ the structure of the second-level optimization problem in (F2) to derive a single-level

linear MIP reformulation.

The complexity results of this section are similar to the results discussed in [23]. However,

we reiterate some basic ideas to preserve consistency and completeness of the manuscript.

First, observe that RSPP (F2) can be introduced as follows:

min z (31a)

s.t. z ≥ c⊤y ∀c ∈ S (31b)

y ∈ Y (31c)

Observe that the polyhedron S is bounded due to the added linear expectation constraints (23).

Let c(1), . . . , c(m) be a vertex representation [59] of the polyhedral uncertainty set S, i.e.,

S = Conv(c(1), . . . , c(m))

Specifically, Conv(c(1), . . . , c(m)) denotes a convex hull of c(1), . . . , c(m). Then RSPP (F2) is
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equivalent to the robust shortest path problem with m discrete scenarios given by:

min z (32a)

s.t. z ≥ c(i)⊤y ∀i ∈ {1, . . . , m} (32b)

y ∈ Y (32c)

More precisely, any constraint in (31b) can be represented as a convex combination of the

constraints in (32b). Vice versa, constraints (32b) are contained in (31b).

Optimization problem in the form of (32) is known to be NP -hard even for two scenarios

and for layered networks of width 2 [25]. We conclude that RSPP (F2) is NP -hard for m = 2

since we can reduce the two-scenario case by choosing S as a convex hull of the two scenarios.

As a remark, the complexity class of (F2) for a general polyhedral uncertainty set is undefined

as the number of facets of S might be exponential in m. We refer the interested reader to

Theorem 4 in [60] for a more comprehensive discussion.

Next, we provide a linear mixed-integer programming reformulation of DRSPP (F1) by

dualizing the lower-level optimization problem in the robust formulation (F2); see, e.g., [61].

The following result concludes our theoretical analysis.

Theorem 3. Distributionally robust shortest path problem (F1) admits a mixed-integer pro-

gramming reformulation:

min
y,λ,µ,ν

b⊤λ+ (cmax)⊤ν − (cmin)⊤µ (F3)

s.t. λ,µ,ν ≥ 0

− y +B⊤λ+ ν = µ

y ∈ Y,

where cmin and cmax are given by (24a) and (24b), respectively.

Proof. Consider the robust reformulation (F2) of DRSPP (F1). Notice that for fixed y ∈ Y

the lower-level maximization problem

max
c∈S

c⊤y (34)

is a linear program. Hence, RSPP (F2) can be viewed as a single-level MIP problem by

dualizing (34). This observation results in formulation (F3) and concludes the proof.

MIP problem (F3), in turn, can be tackled using off-the-shelf mixed-integer programming

software. Numerical results of the next section allude that MIP problem (F3) can be solved

reasonably fast even for large-scale problem instances.
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5. Computational study

We test DRSPP (F1) on a class of synthetic randomly generated instances. We also ap-

ply the methodology of Section 2.2 for modeling the ambiguity set and analyse the model’s

out-of-sample performance. Specifically, our approach is compared with some other robust and

distributionally robust optimization techniques in terms of the nominal expected loss. Addi-

tionally, we analyze the solution times of MIP formulation (F3).

The remainder of this section is organized as follows. Section 5.1 describes the alternative

approaches. In Section 5.2 we discuss how to generate the test instances. In Sections 5.3 and

5.4 we provide a brief discussion of our numerical results and conclusions, respectively.

5.1. Benchmark approaches

With respect to robust solution techniques, we consider the budget constrained approach

of Bertsimas et al. [9]. The authors introduce a parameter Γ ∈ {0, . . . , |A|}, which corresponds

to the maximal number of cost coefficients that deviate from their nominal values; the rest

coefficients are set to their lower bounds. That is, we solve the following optimization problem:

min
y∈Y

{
l⊤y + max

{A′⊆A:|A′|≤Γ}

∑

a∈A′

(ua − la)ya

}
(R0)

For fixed Γ ∈ {0, . . . , |A|} optimization problem (R0) can be solved by considering |A| + 1

deterministic shortest path problems; we refer to [9] for more details. The choice of Γ adjusts

the robustness of the proposed method against the level of conservatism of the solution.

Also, we compare our model with a specialized distributionally robust model. We adopt a

marginal moment ambiguity set from [36] by leveraging support constraints as well as an upper

bound for the first- and second-order moments. That is, the ambiguity set has the form:

Q2 :=
{
Q ∈ Q0(R

|A|): Qa{la ≤ ca ≤ ua} = 1,

EQa
{ca} ≤ µ̂a, EQa

{c2a} ≤ σ̂2
a, a ∈ A

} (35)

and the distributionally robust problem is given by:

min
y∈Y

max
Q∈Q2

EQ{c
⊤y} (DR0)

For simplicity we assume that µ̂a ≤ ua and σ̂a ≤ ua for each a ∈ A; otherwise the corre-

sponding moment constraint is redundant. Similar to the problem without linear expectation

constraints (F1′), optimization problem (DR0) is partitioned into |A| individual moment prob-

lems and a single deterministic shortest path problem.
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Figure 2: A fully-connected layered graph with v = 3 intermediate layers and ri = 3, i ∈ {1, . . . , v} nodes at
each layer.

It is rather straightforward to verify that the optimal expected costs in (DR0) are given

by min{µ̂a; σ̂a}, a ∈ A. Furthermore, for any a ∈ A the worst-case distribution is a discrete

distribution, which takes value min{µ̂a; σ̂a} with probability 1. In particular, this fact follows

from the nonnegativity of variance, i.e.,

(EQa
{ca})

2 ≤ EQa
{c2a} ≤ σ̂2

a

Next, we discuss generation of the test instances.

5.2. Test instances

In our experiments we consider a fully-connected layered graph with v intermediate layers

and ri nodes at each layer i ∈ {1, . . . , v}. The first and the last layer consist of unique nodes,

which are the source and the destination nodes, respectively, i.e., with some abuse of notation

let r0 = rv+1 = 1. For example, a network with v = 3 and ri = 3, i ∈ {1, 2, 3}, is depicted in

Figure 2.

5.2.1. Construction of the nominal distribution

We construct a nominal distribution Q0 of the cost vector c as a product of the corresponding

marginal distributions Q0
a ∈ Q0(R), a ∈ A. For each a ∈ A we construct the support by setting

la uniformly distributed on [0, 100], i.e., la ∼ U(0, 100), and ua := la+∆a, where ∆a ∼ U(0, 100).

Assume that for fixed a ∈ A the arc cost ca is governed by a generalized beta distribution

with parameters αa, βa ∈ R+ and the support given by [la, ua]. Denote by ma and σa its mean

and variance, respectively. By standard calculations [62] observe that:

αa =
m̃2

a(1− m̃a)

σ̃a

− m̃a

βa = αa(
1

m̃a

− 1),

(36)
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Parameter Definition Value(s)

n0 ∈ Z+ number of samples for each a ∈ A 100

n1 ∈ Z+ number of subintervals for each a ∈ A n1 ∈ {1, 2, 3, 4}

η0 ∈ (0, 1) probability of violation for the ambiguity set Q 0.05

η ∈ (0, 1) probability of violation for each individual constraint η0

n1|A|+D0

κ ∈ (0, 1) relative width,
u(i)
a

−l(i)
a

ua−la
, for each i ∈ Da \ {1} and a ∈ A κ ∈ {0.2, 0.4, 0.6, 0.8}

Table 2: Parameters of the ambiguity set. Recall that Da = {1, . . . , Da} are the indices of baseline subintervals
for each a ∈ A; D0 is the number of linear expectation constraints.

where m̃a := (ma− la)/(ua− la) and σ̃a := σa/(ua− la)
2 are the normalized mean and variance.

Now, to construct a beta distribution for each particular arc a ∈ A we set σ̃a = 1/64 and

m̃a ∼ U(
1

2
(1−

√
1− 4σ̃a),

1

2
(1 +

√
1− 4σ̃a)), m̃a 6=

1

2
(1±

√
1− 4σ̃a)

Indeed, the abovementioned conditions stipulate that a beta distribution with the parameters

αa, βa defined by (36) exists, i.e., αa, βa > 0.

5.2.2. Construction of the distributional constraints

We apply the methodology of Section 2.2 to construct our distributional constraints from

historical data. The summary of our parameter’s settings is provided in Table 2. Initially, for

each arc a ∈ A we generate n0 random i.i.d. observations of ca, which are referred to as ξ
(a)
i ,

i ∈ {1, . . . , n0}.

At first, we use (9) to generate quantile constraints in the form of (3). Given relative width

κ ∈ (0, 1) we generate the subintervals [l
(i)
a , u

(i)
a ], i ∈ Da \ {1}, by setting

l(i)a ∼ U(la, ua − κ(ua − la))

and u
(i)
a := l

(i)
a +κ(ua− la); see Table 2. Then we introduce a probability of violation, η ∈ (0, 1),

for each individual constraint and follow the procedure described in Section 2.2.

Next, we model linear expectation constraints (1) in the following way. Initially, we construct

a subset of “near-optimal” paths P̃ ⊆ Pst(G) with respect to the worst-case expected costs cmax
a ,

a ∈ A; recall Lemma 1. Specifically, let P̃ ∗ be an optimal path induced by (F1′). For each arc

a ∈ P̃ ∗ we remove this arc from the network G and seek the shortest path P̃ ∗
a in the resulting

network G[A\a]. As a result, assume that the set P̃ is comprised of the path P̃ ∗ and the newly

constructed paths P̃ ∗
a for each a ∈ P̃ ∗. For each path P ∈ P̃ we introduce the associated linear

expectation constraints (7) subject to probability of violation η.

Example 2 (Continued). Consider the network used in Example 2; see Figure 3. The shortest

path P̃ ∗ with regard to cmax is given by {1 → 2 → 4}. If we remove either arc (1, 2), or arc (2, 4)
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Figure 3: The network used in Example 2. The worst-case expected costs with regard to formulation (F1′), i.e.,

cmax
a , are depicted inside each arc a ∈ A. The shortest path P̃ ∗ is in bold.

from the network, then the shortest path in the resulting network is given by {1 → 3 → 4}.

Hence, the set P̃ consists of two distinct paths {1 → 2 → 4} and {1 → 3 → 4}. �

Observe that by construction AssumptionA1 holds since the discrete uniform distribution at

the generated samples satisfies both quantile and linear expectation constraints. Furthermore,

AssumptionA2 is satisfied due to randomness in the choice of baseline subintervals. As outlined

in Section 2.2 we use Bonferroni’s inequality to provide a required confidence level for the

ambiguity set Q. More precisely, we denote by η0 ∈ (0, 1) the probability that at least one

distributional constraint contained in Q is violated; see Table 2.

Finally, we briefly discuss construction of the ambiguity set (35) for the moment-based

formulation (DR0). Recall that to construct (9) we only need to verify whether random samples

ξ
(a)
j , j ∈ {1, . . . , n0}, belong to a prescribed subinterval [l

(i)
a , u

(i)
a ], i ∈ Da, a ∈ A, or not. Hence,

to provide a fair comparison we replace pointwise observations ξ
(a)
j (which can be unavailable

to the decision-maker) with their maximal possible values. Then we estimate µ̂a and σ̂2
a for

each a ∈ A; we refer to Appendix A for further details.

5.2.3. Computational settings

All experiments are performed on a PC with CPU i5-7200U and RAM 6 GB. MIP problem

(F3) is solved in Java with CPLEX 12.7.1. The deterministic shortest path problems are

solved with Dijkstra’s algorithm [1]. Additionally, we set v = 20, ri = 10, i ∈ {1, . . . , 20},

n0 = 100 and η0 = 0.05 for the distributionally robust formulations (F1) and (DR0). We

consider several possible values of the relative width, κ, and the number of subintervals, n1,

that is, κ ∈ {0.2, 0.4, 0.6, 0.8} and n1 ∈ {1, 2, 3, 4}. Eventually, let Γ ∈ {0, 7, 14, 21} in the

budget constrained formulation (R0).

5.3. Results and discussion

5.3.1. Comparison with formulations (R0) and (DR0)

We compare formulations (F1), (F1′) with the robust formulation (R0) and distributionally

robust formulation (DR0) in terms of their out-of-sample performance. In other words, for any
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Solution approach Relative expected loss

DRSPP (F1′) 1.29 (0.12)

DRSPP (F1) 1.22 (0.10)

DRSPP (DR0) 1.59 (0.15)

RSPP (R0) with Γ = 0 2.23 (0.27)

RSPP (R0) with Γ = 7 1.86 (0.23)

RSPP (R0) with Γ = 14 1.88 (0.22)

RSPP (R0) with Γ = 21 2.19 (0.20)

Table 3: Let κ = 0.6 and n1 = 4. We report the average relative losses (37) and standard deviations (in
brackets) across 100 random instances.

path P̂ ∈ Pst(G) we introduce a relative expected loss

ρ0(P̂ ) :=
EQ0

∑
a∈P̂ ca

minP∈Pst(G){EQ0

∑
a∈P ca}

=

∑
a∈P̂ ma

minP∈Pst(G){
∑

a∈P ma}
, (37)

which enables to evaluate the quality of robust (distributionally robust) solutions. Specifically,

(37) reflects the ratio of the nominal expected loss incurred by the decision-maker to the optimal

expected loss in the full-information setting, i.e., when the expected valuesma, a ∈ A, are known

in prior. In particular, observe that ρ0(P̂ ) ≥ 1.

Let κ = 0.6 and n1 = 4. In Table 3 we report the average relative loss (37) incurred by the

decision-maker across 100 random network instances.

Going back to the discussion in Section 1 observe that robust formulation (R0) does not

exploit any distributional information and thus, provides overly conservative solutions; see

lines 3-7 of Table 3. Then in lines 1 and 3 we ensure that our formulation of DRSPP (F1′)

outperforms the moment-based formulation (DR0) in terms of the relative expected loss. In

particular, both formulations (F1′) and (DR0) assume no correlation information between the

travel times. However, it is rather intuitive that the out-of-sample performance can be improved

by utilizing linear expectation constraints; see line 2 in Table 3.

Next, we discuss dependence of the out-of-sample performance on the relative width, κ, and

number of subintervals, n1.

5.3.2. Dependence on κ and n1

Consider the formulation without linear expectation constraints (F1′) and moment-based

formulation (DR0) with η0 = 0.05. We explore how parameters κ and n1 affect the quality of

distributionally robust solutions in terms of the relative expected loss (37). That is, for κ = 0.6

we assume that n1 ∈ {1, 2, 3, 4}; for n1 = 4 we assume that κ ∈ {0.2, 0.4, 0.6, 0.8}. The results

are reported in Tables 4 and 5, respectively.

Naturally, with the increase of n1 the relative expected loss decreases; see Table 4. In
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Solution approach n1 = 1 n1 = 2 n1 = 3 n1 = 4

DRSPP (F1′) 1.59 (0.15) 1.40 (0.12) 1.31 (0.11) 1.29 (0.12)

DRSPP (DR0) 1.82 (0.18) 1.65 (0.16) 1.61 (0.14) 1.59 (0.15)

Table 4: The relative expected losses (in average) and standard deviations (in brackets) across 100 random
instances for fixed κ = 0.6 and n1 ∈ {1, 2, 3, 4}.

Solution approach κ = 0.2 κ = 0.4 κ = 0.6 κ = 0.8

DRSPP (F1′) 1.87 (0.17) 1.39 (0.12) 1.29 (0.12) 1.32 (0.11)

DRSPP (DR0) 2.02 (0.19) 1.75 (0.16) 1.59 (0.15) 1.62 (0.16)

Table 5: The relative expected losses (in average) and standard deviations (in brackets) across 100 random
instances for fixed n1 = 4 and κ ∈ {0.2, 0.4, 0.6, 0.8}.

fact, despite the probability of violation for individual constraints increases; recall Table 2,

introducing new subintervals refines both formulations (F1′) and (DR0). In particular, we

append an additional quantile constraint to the ambiguity set (4) and specify the estimates of

the first- and second-order moments in the ambiguity set (35).

Further, with the increase of parameter κ the relative expected loss decreases for κ ≤ 0.6

and increases otherwise; see Table 5. This observation for formulation (F1′) can be justified as

follows. For large values of κ the subintervals in quantile constraints (9) contain a major part of

the support [la, ua], a ∈ A. Hence, the distributionally robust approach provides “near-robust”

decisions. In other words, for each a ∈ A our estimate cmax
a of the arc cost ca is sufficiently close

to the upper bound ua; this fact follows from the construction of the worst-case distribution

with regard to (F1′), see Lemma 2. Alternatively, if κ is small, then the probability that ca

belongs to these subintervals is typically small, which results in “near-robust” decisions too.

From Table 5 we conclude that intermediate values of κ, e.g., κ = 0.6, provide better solutions

in terms of the relative expected loss (37).

In a similar way, one may provide the intuition with regard to formulation (DR0). We also

note that our formulation (F1′) outperforms the moment-based formulation (DR0) across the

considered values of parameters κ and n1.

5.3.3. Running time

In conclusion, we show that DRSPP (F1) with both linear expectation (7) and quantile

constraints (9) can be solved effectively using MIP solvers. Specifically, the solution procedure

is divided into two stages:

(i) bounds cmax and cmin for the cost vector c are obtained by solving the individual moment

problems (24a) and (24b), respectively, for each a ∈ A;

(ii) the optimal solution of (F1) is attained by solving the linear MIP problem (F3).
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Running time v = 20 v = 40 v = 60 v = 80 v = 100

Stage (i)

{
Average running time (s) 0.6 1.21 1.9 2.64 3.56

Maximal running time (s) 3.1 2.55 2.47 5.78 4.8

Stage (ii)

{
Average running time (s) 0.06 0.12 0.17 0.3 0.5

Maximal running time (s) 0.89 0.41 0.25 0.96 1.13

Table 6: Let η0 = 0.05, κ = 0.6 and n1 = 4. We report average and maximal running times for solving DRSPP
(F1) as a function of the network size, i.e., the number of intermediate layers v, over 100 random instances.

Let η0 = 0.05, n1 = 4 and κ = 0.6. Assume that the number v of intermediate layers is such

that v ∈ {20, 40, . . . , 100} and there are ri = 10, i ∈ {1, . . . , v}, nodes at each layer. For each

stage (i) and (ii) we report average and maximal running times over 100 randomly generated

instances as a function of v; see Table 6.

Recall that the cost bounds cmax
a and cmin

a for each a ∈ A can be computed in polynomial

time, while MIP formulation (F3) is NP -hard in general. Nevertheless, observe that the average

solution times for the stage (ii) are sufficiently small compared with the average solution times

for the stage (i). These observations can be explained by a specific construction of the linear

expectation constraints (7). In particular, the intuition is two-fold.

On the one hand, the number of linear expectation constraints is sufficiently small, that is,

D0 = |P̃| = v + 2 ≪ |A|. Actually, guided by the discussion of Section 2.2 the construction of

(7) alludes that the decision-maker has a sufficient number of random observations of a total

path cost. On the other hand, (7) can provide initial feasible solutions for RSPP (F2) with

a reasonable linear programming relaxation quality. Namely, linear expectation constraints of

the form (7) bound the worst-case expected cost for paths P ∈ P̃ as well.

5.4. Summary

Summarizing the discussion above distributional constraints (1) and (3) provide a viable

and flexible methodology to account for distributional uncertainty. The reported numerical

results demonstrate the advantages of our approach against standard robust and distribution-

ally robust optimization techniques. We conclude that the quality of distributionally robust

solutions depends both on quality of information collected and a structure of the distribu-

tional constraints. In particular, with an appropriate choice of the parameters, distributionally

robust solutions may provide a reasonable approximation of the optimal solution in the full-

information setting. Moreover, we demonstrate that DRSPP (F1) can be solved sufficiently

fast using state-of-the-art mixed-integer programming solvers.

6. Conclusion

In this paper we consider the shortest path problem, where the arc costs are governed

by some probability distribution, which is itself subject to uncertainty. A distributionally
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robust version of the shortest path problem (DRSPP) is formulated, where the decision-maker

attempts to minimize her worst-case expected loss over a family of candidate distributions that

are compatible with the decision-maker’s prior information.

The distributional family is formed by linear expectation constraints with respect to subsets

of arcs and individual quantile constraints with respect to particular arcs. Our distributional

constraints can be constructed from incomplete or partially observable data. For instance, one

can employ observations of the cumulative cost for prescribed subsets of arcs and interval-

censored observations for particular arcs. Then a family of candidate distributions is formed

by leveraging standard measure concentration inequalities.

We propose equivalent robust and mixed-integer programming reformulations of DRSPP.

In particular, the problem without linear expectation constraints is proved to be polynomially

solvable. We demonstrate numerically that our approach is competitive against basic robust and

distributionally robust optimization techniques. Flexibility of the distributional constraints en-

ables the decision-maker to collect distributional information and improve her solutions through

multiple decision epochs. Furthermore, the proposed mixed-integer programming formulations

can be solved effectively using state-of-the-art solvers.

Naturally, the theoretical results of this paper can be generalized to a class of polynomially

solvable combinatorial optimization problems. Furthermore, our ambiguity set can also be

applied to conditional value at risk [63] and some other optimized certainty equivalent objective

criteria [17, 51]. To this end, one would need to apply the min-max theorem, dualization of

the inner optimization problem and our construction of the elementary subintervals; recall the

proof of Lemma 2. This approach also results in a mixed-integer programming reformulation

of DRSPP, but after applying some auxiliary linearization techniques.

As a future research direction, one can consider adapting the results of this paper for two-

and multi-stage decision-making problems. For example, one can assume that the first part of a

decision is picked before the realization of uncertainty, while the second part is determined after

the uncertain costs are realized; see [64]. An interesting concept of K-adaptability is discussed

in [51], where a restricted number of preselected decisions is implemented at the second stage.

Also, it may be possible to exploit the enhanced linear decision rules proposed in [21] to provide

a fairly good approximation for some classes of two- or multi-stage distributionally robust

formulations.
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Appendix A. Modeling the ambiguity set for moment-based formulation (DR0)

Here, we discuss how to construct the ambiguity set (35) from interval-censored observations

ξ
(a)
k , k ∈ {1, . . . , n0}, a ∈ A. Specifically, for each baseline subinterval [l

(i)
a , u

(i)
a ], i ∈ Da, a ∈ A,

the decision-maker learns whether a given observation ξ
(a)
k for some k ∈ {1, . . . , n0} belongs to

this subinterval or not.

Henceforth, we fix a ∈ A and derive an upper bound for the mean, µ̂a, for each a ∈ A.

Estimation of σ̂2
a is analogous. Initially, we replace ξ

(a)
k with its maximal possible value, ξ

(a)

k ,

and assume that:

µ̂a ≈
1

n0

n0∑

k=1

ξ
(a)

k (A.1)

In particular, ξ
(a)

k , k ∈ {1, . . . , n0}, can be defined as follows. Let

u(i∗)
a := min{u(i)

a : ξ
(a)
k ∈ [l(i)a , u(i)

a ], i ∈ Da}

Then

ξ
(a)

k =




min{l

(i)
a : ξ

(a)
k ≤ l

(i)
a and u

(i∗)
a ∈ [l

(i)
a , u

(i)
a ], i ∈ Da}, if the minimum exists

u
(i∗)
a , otherwise

(A.2)

Similarly to the Hoeffding bounds in (6) and (8) we attempt to provide a probabilistic

guarantee with respect to our estimate (A.1). Specifically, we partition the support interval

[la, ua] into a set of elementary subintervals [L
(j)
a , U

(j)
a ], j ∈ Wa; see Section 3. For each

elementary subinterval we define Bernoulli random variables as follows:

χ
(a)
kj =




1, if ξ

(a)
k ∈ [L

(j)
a , U

(j)
a ]

0, otherwise

Furthermore, if χ
(a)
kj = 1, then the maximal possible value of ξ

(a)
k is uniquely defined from (A.2).

Thus, we define Ξ
(a)
j := ξ

(a)

k , j ∈ Wa, for k such that χ
(a)
kj = 1.
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Then estimate (A.1) can be expressed as:

µ̂a ≈
1

n0

∑

j∈Wa

Ξ
(a)
j

n0∑

k=1

χ
(a)
kj

Observe that:

1

n0

∑

j∈Wa

Ξ
(a)
j

n0∑

k=1

χ
(a)
kj − E{

1

n0

∑

j∈Wa

Ξ
(a)
j

n0∑

k=1

χ
(a)
kj } =

∑

j∈Wa

Ξ
(a)
j (

1

n0

n0∑

k=1

χ
(a)
kj − q

(a)
j ),

where q
(a)
j = Q0

a{ca ∈ [L
(j)
a , U

(j)
a ]}, j ∈ Wa.

Hoeffding inequality implies that for any given εa > 0 the following inequality holds:

q
(a)
j −

1

n0

n0∑

k=1

χ
(a)
kj ≥ ε′aj :=

εa

WaΞ
(a)
j

,

with probability of at most exp(−2rε′2aj). By leveraging Bonferroni’s inequality we have:

µ̂a =
∑

j∈Wa

Ξ
(a)
j q

(a)
j ≤

∑

j∈Wa

Ξ
(a)
j

1

n0

n0∑

k=1

χ
(a)
kj + εa =

1

n0

n0∑

k=1

ξ
(a)

k + εa, (A.3)

with probability of at least 1−
∑

j∈Wa
exp(−2rε′2aj). Finally, by setting

η0 = 2|A|
∑

j∈Wa

exp(−2rε′
2
aj) = 2|A|

∑

j∈Wa

exp(−2r
( εa

WaΞ
(a)
j

)2

)

for each particular a ∈ A we find the value of εa, which provides a prescribed confidence level,

1− η0, for the ambiguity set (35).

Despite the fact that the first-order moment constraint in (35) is unique for each a ∈ A

its probability of violation is overestimated, i.e., violation of (A.3) does not necessarily imply

violation of the constraint EQa
{ca} ≤ µ̂a. In fact, concentration inequalities cannot be applied

directly to the moment constraints whenever the data is interval-censored. Alternatively, if

random samples ξ
(a)
k , k ∈ {1, . . . , n0}, are available to the decision-maker for each particular

arc a ∈ A (and n0 exceeds some instance-dependent threshold), then a confidence region for

the mean and covariance matrix can be constructed using techniques from [19].

Overall, the outlined approach is myopic and not without limitations. Nevertheless, we

attempt to exploit the key properties of our formulation (F1) to provide a valid comparison of

two distributionally robust models, namely, (F1) and (DR0).
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