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ABSTRACT

In this paper, we propose an approximate dynamic programming (ADP) algorithm to solve a Markov

decision process (MDP) formulation for the admission control of elective patients. To manage the elec-

tive patients from multiple specialties equitably and efficiently, we establish a waiting list and assign

each patient a time-dependent dynamic priority score. Then, taking the random arrivals of patients into

account, sequential decisions are made on a weekly basis. At the end of each week, we select the patients

to be treated in the following week from the waiting list. By minimizing the cost function of the MDP

over an infinite horizon, we seek to achieve the best trade-off between the patients’ waiting times and the

over-utilization of surgical resources. Considering the curses of dimensionality resulting from the large

scale of realistically sized problems, we first analyze the structural properties of the MDP and propose

an algorithm that facilitates the search for best actions. We then develop a novel reinforcement-learning-

based ADP algorithm as the solution technique. Experimental results reveal that the proposed algorithms

consume much less computation time in comparison with that required by conventional dynamic pro-

gramming methods. Additionally, the algorithms are shown to be capable of computing high-quality

near-optimal policies for realistically sized problems.

Keywords: patient admission control, operating theatre planning, Markov decision process, approximate

dynamic programming, recursive least-squares temporal difference learning

1 Introduction

Globally, the aging population and a rising quality of life are driving the demand for health services to increase

rapidly, leading to shortages of medical resources and imposing a heavy financial burden on national governments.

In the United States, the healthcare expenditure has been increasing continually, reaching $3.5 trillion in 2017 and

accounting for 17.9% of the gross domestic product (Centers for Medicare & Medicaid Services, 2018). The same

figures for Australia in 2015–2016 were $170 billion and 10.3%, respectively, while health expenditure increased (by

50%) much faster than the population growth (17%) (Australian Institute of Health and Welfare, 2018). During the

period from 2010 to 2017, China increased its government spending on health and the number of medical personnel

employed by 163% and 43%, respectively. However, its health expenditure per capita was still much lower than

that of developed countries and the increase in its health service capacity was not enough to cope with the rising

demands on the service (Xiao et al., 2016; National Bureau of Statistics of China, 2019). The same challenges have

also been faced by European countries. For example, Portugal’s surgical demand grew by 43.7% from 2006 to 2014,

while the median waiting time for surgery reached 3.0 months and 12% of patients waited longer than their clinically

recommended maximum waiting time (Marques & Captivo, 2017).

In order to satisfy a growing demand for health services and to slow down the increase in health expenditure,

hospital managers should improve the efficiency and quality of healthcare activities while reducing the hospitals’

expenditures as much as possible. In a hospital, the operating theatre (OT) is generally considered to be both the

main revenue center as well as the most expensive department since providing surgical services consumes more than

40% of the hospital’s budget and contributes a similarly large proportion to the hospital’s total revenues (Denton et

al., 2007). Therefore, the management of OT and the scheduling of surgeries have drawn much attention from both

researchers and practitioners.

The complexity of OT management problems is the result of many factors including the expensiveness and

shortage of OT resources (Rath et al., 2017), the conflicting interests of different stakeholders (e.g., patients and

hospitals) (Marques & Captivo, 2017), and the uncertainty associated with surgical activities (Banditori et al.,
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2013; Jebali & Diabat, 2015). For these reasons, researchers have developed and applied various operations research

methodologies to cope with OT management problems. In the various relevant works, OT management decisions

are generally divided into three hierarchical levels (Guerriero & Guido, 2011; Zhu et al., 2019): the strategic level

determines the distribution of OR capacity among different specialties on a long-term basis; the tactical level involves

the development of a master surgery schedule (MSS) for one or several months; the operational level concerns the

assignment of a definite date and a specific OR for each elective surgery (advance scheduling) and the intra-day

sequencing of the scheduled surgeries (allocation scheduling). The three decision levels are interrelated since each

level depends on the decisions made at the higher level (Koppka et al., 2018).

This paper addresses the admission control of elective patients at the operational level. It is assumed that

the allocation of OT resources among specialties is already determined by the strategic level and that an MSS has

been fixed at the tactical level. A dynamic waiting list is built to manage the elective patients according to their

specialties, urgency coefficients and actual waiting times. At the end of each week, the surgery planner updates the

waiting list by adding the newly arrived patients and removing the postoperative ones, then determines the number

and type of elective cases that will be performed in the next week. Our objective is to shorten patients’ waiting

times and to optimize the utilization of OT resources, including ORs and the recovery beds in a surgical intensive

care unit (SICU). Emergency cases are not involved in the problem studied in this paper because they can be treated

by dedicated facilities (Dios et al., 2015; Guido & Conforti, 2017). Since uncertainty is a key feature of surgical

activities and significantly impacts the efficiency and quality of surgical services (Guerriero & Guido, 2011; Jebali &

Diabat, 2015), three major sources of uncertainty are considered in our mathematical model and/or our numerical

experiments: new patient arrivals, surgery durations, and the length of stay (LOS) of postoperative patients in the

SICU.

The patient admission control problem studied in this paper can be regarded as a subproblem of advance

scheduling. In a typical advance scheduling problem, the surgery planner determines the patients to be treated

in the current planning period (usually one week) and assigns these patients to specific ORs and surgery dates

(e.g., Min & Yih, 2010b; Jebali & Diabat, 2015; Neyshabouri & Berg, 2017; Marques & Captivo, 2017; Moosavi &

Ebrahimnejad, 2018). Such a problem is usually formulated as a pure mathematical programming model that only

optimizes the cost of one single planning period without considering the impact on subsequent periods. However, two

consecutive planning periods are always correlated since the postponed surgeries of the present period will continue

to incur waiting costs or surgery costs in the next period. Therefore, optimizing the costs of each period separately

cannot guarantee global optimality. In contrast, a patient admission control problem is usually formulated as a

Markov decision process (MDP) (e.g., Patrick et al., 2008; Min & Yih, 2010a, 2014; Astaraky & Patrick, 2015;

Truong, 2015). It focuses on the management of the patient waiting list and determines the selection of patients

to be treated in each planning period (usually one week or one day). Though the MDP model does not address

intra-week or intra-day assignment decisions, it optimizes the flow of patients and minimizes the expected total costs

over an infinite horizon. Hence, the optimal policy of an MDP offers a better long-term performance than the myopic

policy provided by a pure mathematical programming model.

In this paper, we propose an MDP model for patient admission control that considers the needs of multiple spe-

cialties, the limited capacity of ORs and SICU, as well as time-dependent dynamic patient priority scores. Sequential

decisions are made at the end of each week that determine the patients to be treated in the following week. Since the

MDP model does not capture intra-week scheduling, hospital-related costs (incurred by overusing ORs and the SICU)

cannot be exactly computed. Hence, for a given selection of patients, the cost function of the MDP model computes

the exact patient-related costs incurred by performing and postponing surgeries and estimates the hospital-related

costs based on total resource availability and the scheduled patients’ total expected surgery durations and LOSs.
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While taking into account the random arrivals of new patients in each week, the MDP model provides an optimal

policy that leads to the lowest expected total costs over an infinite horizon. Once the selection of patients is deter-

mined, these patients’ assignments to surgical blocks (made up of a combination of ORs and dates) can be optimized

using a stochastic programming model. For example, J. Zhang et al. (2019b) propose a two-level optimization model

that combines MDP and stochastic programming to optimize all the decisions required by an advance scheduling

problem. Their model addresses simple instances with a single specialty and two surgical blocks, while the MDP

model proposed in this paper can be combined with a more complicated stochastic programming model in future

research and can thereby be used to solve more realistic advance scheduling problems.

Compared to existing research into patient admission control (Patrick et al., 2008; Min & Yih, 2010a, 2014;

Astaraky & Patrick, 2015; Truong, 2015), this work presents two main innovations. First, it proposes a comprehensive

patient admission control model that simultaneously incorporates time-dependent dynamic patient priority scores,

the needs of multiple specialties, and the capacity constraints of ORs and SICU. Second, in order to tackle the curses

of dimensionality for realistically sized problems, this paper investigates the mathematical properties of the proposed

model in depth and develops a novel approximate dynamic programming (ADP) algorithm based on recursive least-

squares temporal difference (RLS–TD(λ)) learning. The proposed algorithm is tested through extensive numerical

experiments and its capability to solve realistically sized problems is validated.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive review of the existing

literature on patient admission control and MDP. Section 3 describes the studied patient admission control problem

and presents the infinite-horizon MDP formulation. Section 4 addresses the structural analysis for the MDP model

and proposes an algorithm to predigest the exploration of action space. The RLS–TD(λ)-based ADP algorithm is

introduced in Section 5, and the results of numerical experiments are presented and discussed in Section 6. Finally,

the conclusions and several possible future extensions of this work are given by Section 7.

2 Literature Review

In this section, we review the existing literature relevant to patient admission control and the MDP.

2.1 Patient admission control

Typically, in a patient admission control problem, the surgery planner manages a dynamic waiting list of elective

patients and makes sequential decisions at the beginning (or end) of each planning period (day or week) to determine

which patients are treated in the present (or the next) period. Since the patient-to-block assignments are not

considered, patient admission control can be regarded as a subproblem of advance surgery scheduling. Among the

existing research on advance surgery scheduling, mathematical programming (MP) models are commonly used to

optimize the cost of one single planning period (e.g., Lamiri, Xie, Dolgui, & Grimaud, 2008; Min & Yih, 2010b; Jebali

& Diabat, 2015; Neyshabouri & Berg, 2017; Moosavi & Ebrahimnejad, 2018). However, these MP models minimize

the short-term cost myopically and may lead to high costs-to-go in the future. In contrast, patient admission control

is usually formulated as an MDP model in order to minimize the expected total costs over a long planning horizon.

Though the MDP model does not address the issue of patient-to-block assignments, it can be combined with an MP

model to optimize all the advance scheduling decisions. Such a combination may lead to a much better long-term

performance in comparison to that achieved by a pure MP model (J. Zhang et al., 2019b). This paper aims to

formulate and efficiently solve a comprehensive MDP model for realistic patient admission control problems, while

the optimization of patient-to-block assignments is left for further research.
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In the literature on patient admission control and surgery scheduling, elective patients and non-elective patients

are two commonly addressed patient groups. The former group is usually added onto a waiting list before being

treated. These patients’ surgeries can be postponed for some period of time. In comparison, the latter group is made

up of emergent patients (emergencies) that should be treated as soon as possible. Among the relevant research, two

policies are commonly adopted to deal with the two different patient groups. The first one is a dedicated policy

under which all emergent patients are channeled to dedicated surgical facilities, so that scheduled elective surgeries

are not interrupted. When this policy is employed, the surgery planner focuses on the planning of elective surgeries

using non-dedicated resources, while emergent patients can usually be ignored since they are treated in dedicated

facilities on a first-come-first-served (FCFS) basis (e.g., Fei, Chu, & Meskens, 2009; Denton et al., 2010; Jebali &

Diabat, 2015; Addis et al., 2016; Marques & Captivo, 2017; Neyshabouri & Berg, 2017; Roshanaei et al., 2017b,

2020; Y. Zhang et al., 2020). The second policy is more flexible. It allows emergent surgeries to be performed in any

unoccupied OR. Scheduling surgeries under this flexible policy is more complex than doing so under the dedicated

policy since emergencies introduce more uncertainty into the scheduling problem. In research into the employment

of the flexible policy, the authors usually assume the emergency demand to be a stochastic parameter and optimize

the surgical resources (e.g., OR capacity and recovery beds) reserved for emergencies in a way that balances the

satisfaction of elective patients and the quick access to care of emergent ones (e.g., Y. Wang et al., 2014; Truong,

2015; Rachuba & Werners, 2017). In addition to the two policies discussed above, some papers plan elective and

non-elective surgeries using a hybrid policy that maintains both dedicated and versatile ORs (e.g., Tancrez et al.,

2013; Hosseini & Taaffe, 2014; Ferrand et al., 2014). Ferrand et al. (2010) present a study of a two-OR planning

problem. They conclude that adopting the dedicated policy reduces the elective patients’ waiting times and the

overtime of ORs, but that it leads to longer waiting times for emergent patients. Duma and Aringhieri (2019)

provide a detailed comparison that reveals that the dedicated policy results in fewer elective surgery cancellations,

higher resource utilization rates, and shorter waiting lists, and that the flexible policy brings about a better trade-off

between the interests of elective and non-elective patients. Moreover, they establish that a further improvement can

be achieved through a mixture of the two policies (i.e., hybrid policies). The authors also claim that the performances

of different policies depend on the scenario and the operative conditions at hand. Hence, any policy could be the

best one under a specific problem setting. In this paper, we assume a dedicated policy meaning that emergencies

are excluded from our patient admission control problem.

Effectively managing the waiting list of elective patients is the key to patient admission control. To determine

the relative priority of elective patients on the waiting list, it is important to adopt a proper prioritization system

(Guerriero & Guido, 2011; Van Riet & Demeulemeester, 2015). Patrick et al. (2008) classify elective patients into

several urgency-related groups (URGs) with static priority scores and specify a priority-related waiting-time target

for each group. However, Testi et al. (2007) and Testi et al. (2008) suggest that classifying patients into URGs is not

enough to guarantee the efficiency and equity of schedules. They propose a time-dependent prioritization scoring

system that uses the product of urgency coefficient and waiting time to capture a patient’s priority. Further to this,

Valente et al. (2009) introduce a pre-admission model that has been put into practice in an Italian hospital. This

model assesses the urgency level of each new patient and thereby determines a corresponding maximum time before

treatment (MTBT). It then prioritizes the patient in real-time according to his/her urgency level and actual waiting

time. Hospital data show that this pre-admission model allows homogeneous and standardized prioritization and

enhances transparency, efficiency and equity. Min and Yih (2014) conduct numerical simulations that compare the

effects of static and time-dependent dynamic prioritization on patients’ waiting time. The results indicate that the

waiting time for non-urgent patients is much longer than that of urgent ones when the static priority score is applied,

whereas the dynamic priority score minimizes the total weighted waiting time of all patients, so that the gap in the
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length of waiting time between urgent patients and non-urgent ones is significantly reduced. In the relevant research

on advance surgery scheduling and patient admission control, time-dependent priority scores are widely used as

multipliers of the patient-related costs (including surgery costs and waiting costs, e.g., Addis et al., 2016; Agnetis et

al., 2012, 2014; Aringhieri et al., 2015; Jebali & Diabat, 2015, 2017; Lamiri, Xie, & Zhang, 2008; Lamiri, Xie, Dolgui,

& Grimaud, 2008; Marques & Captivo, 2017; Min & Yih, 2010b; Rachuba & Werners, 2017; Roshanaei et al., 2017b,

2020; Tànfani & Testi, 2010; Testi & Tànfani, 2009; Vancroonenburg et al., 2019; S. Wang et al., 2016; J. Zhang

et al., 2019a, 2019b, 2020). With this setting, patients with the longer waiting times are given the higher priority

scores, and the surgery planner is encouraged to schedule the surgeries as early as possible because the unscheduled

patients will incur higher costs in the future. In addition to the time-dependent priority scores, Neyshabouri and

Berg (2017) introduce a new multiplier that addresses the relative importance of different specialties. This feature

gives surgical cases from more important specialties (e.g., cardiology) higher priority than those from less important

specialties (e.g., otolaryngology). Referring to these prioritization methods, we use the product of urgency coefficient,

waiting time, and specialty-related importance factor to describe patient priority in this paper. Moreover, we assume

that every patient is given a maximum recommended waiting time (dependent on his/her specialty and urgency

coefficient) and that any patient that is not scheduled in the currently considered planning period incurs a waiting

cost (multiplied by his/her time-dependent priority score, as mentioned above). Thus, the surgery planner gives

priority to the patients who join the waiting list earlier with higher urgency coefficients.

While ORs are considered to be the most important surgical resources and their utilization is optimized in almost

all the relevant works, recently, more and more researchers take the supporting facilities of surgical activities into

consideration and address multi-resource patient admission control and surgery scheduling problems (e.g., Min &

Yih, 2010b; Gocgun & Ghate, 2012; Huh et al., 2013; Astaraky & Patrick, 2015; Truong, 2015; Jebali & Diabat,

2015, 2017; Samudra et al., 2016; Neyshabouri & Berg, 2017; J. Zhang et al., 2019b, 2020). Among the various

supporting facilities, the downstream recovery units, such as SICU, have drawn much attention from the researchers

and practitioners, because the unavailability of SICU beds may block the postoperative patients in ORs and affect

the feasibility of the ongoing surgery schedule (Min & Yih, 2010b; Jebali & Diabat, 2015). Moreover, Jonnalagadda

et al. (2005) point out that the unavailability of recovery room is the cause of 15% of surgery cancellations in the

hospital they have studied, and Utzolino et al. (2010) report that the readmission rate to SICU of the patients that

are discharged due to the lack of recovery beds is almost 3 times that of the patients discharged electively. Given that

SICU is an important surgical facility and usually becomes the bottleneck resource of an OT, in this work, we believe

that considering the capacities of ORs and SICU together results in better resource utilization than only considering

the OR capacity. By jointly planning ORs and SICU, the inconvenience and extra costs caused by exceeding the

regular capacity of any of the two resources can be minimized, meanwhile the success rate of the intra-week surgery

scheduling can be improved.

With different problem settings, patient admission control problems have been studied by many researchers.

Gerchak et al. (1996) address a patient admission control problem in which decisions are made at the beginning of

each day that determine the optimal number of patients to be treated that day. Similarly, Green et al. (2006) present

a finite-horizon MDP formulation that deals with an intra-day diagnostic facility scheduling problem for multiple

classes of patients. Further to this, Patrick et al. (2008) use an infinite-horizon MDP model to dynamically assign

patients to diagnostic facilities. Their model differs from that of Gerchak et al. (1996) in that it considers multiple

priority classes and quantifies the actual waiting times of elective patients. They also introduce a booking horizon

that consists of a number of future days, so that patients can be assigned to anyone of the days within the booking

horizon at each decision epoch. A similar booking horizon is adopted by Liu et al. (2010) to schedule single-priority

outpatient appointments. Min and Yih (2010a) extend the model developed by Gerchak et al. (1996) to apply to
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a multi-priority case; they then evaluate the impact of patient priority and cost settings on the resulting surgery

schedules. Min and Yih (2014) go one step further and consider dynamic patient priority: each patient is initially

assigned a fixed urgency coefficient when he/she joins the waiting list, then the product of the urgency coefficient and

actual waiting time, which dynamically increases over time, determines his/her priority score. Astaraky and Patrick

(2015) and Truong (2015) extend the model developed by Patrick et al. (2008) to incorporate multiple surgical

resources (ORs, recovery beds, etc.); however, the multi-priority setting is dropped in Truong (2015).

In this paper, we extend the aforementioned extant research by taking into account time-dependent dynamic

patient priority scores, the capacity constraints of ORs and the SICU, and the needs of multiple specialties and the

different patient characteristics with which they are presented. To the best of our knowledge, this is the first time

that these factors are collated into a comprehensive MDP model in order to handle realistically large-sized patient

admission control problems.

2.2 Markov decision process

MDP is a discrete mathematical model used to facilitate sequential decision-making in the presence of uncertainty

(White, 2001). It is the most commonly used mathematical model by existing research into patient admission control

(e.g., Patrick et al., 2008; Min & Yih, 2010a, 2014; Astaraky & Patrick, 2015; Truong, 2015). In an MDP model,

the status of the problem under consideration is described by the state variables from a set named state space. The

possible actions that can be taken are included in another set called the action space. At every discrete time point

(i.e., decision epoch), the agent observes the state of the problem and selects an action from the action space. The

current state and the selected action determine the instant cost (or revenue) of the problem and the probability

distribution of the subsequent state to which the problem transfers at the next decision epoch (Puterman, 1994).

The objective of an MDP model is to find the optimal policy that specifies a mapping from the state space to the

action space and optimizes the value function (i.e., minimizes the expected total costs or maximizes the expected

total revenues over all decision epochs) (Mausam & Kolobov, 2012).

Most algorithms used to solve an MDP are based on dynamic programming (DP), such as policy iteration (PI),

value iteration (VI), real-time dynamic programming (RTDP) and its variants. VI and PI evaluate the entire state

space iteratively, updating the value function until the improvement is lower than a given threshold. These algorithms

employ brute-force search strategies and the computational resources (memory and time) they need are exponential

to the problem size. As a result, solving realistically sized MDP models using VI or PI is usually intractable. In order

to improve the computational efficiency, Barto et al. (1995) propose a RTDP algorithm that only evaluates a subset

of the state space. At every decision epoch, RTDP explores the state space along several sampled trajectories that

are rooted at the state that describes the problem’s current status (i.e., the initial state). Specifically, at each visited

state (including the initial state), RTDP updates the value function and policy then randomly samples the next state

to visit according to the probability distribution determined by the current state and the corresponding action under

the current policy. When a certain number of states are evaluated, RTDP returns to the initial state and repeats the

above procedure. Since RTDP only visits those states that are reachable from the initial state, it outperforms PI and

VI in terms of computational efficiency. However, the original version of RTDP lacks a mechanism for convergence

detection and a proper criterion for terminating the computation; hence, it may waste computational resources on

those states where the value function has already converged, or terminate so early that the value function is still far

from convergence. To overcome these drawbacks, several extensions of RTDP have been developed in the literature.

Bonet and Geffner (2003) propose labelled-RTDP (LRTDP), which incorporates a labelling scheme into the original

RTDP. They label the states where the value function no longer improves; in this way, the computational resources

can be concentrated on the non-labelled states where the value function has not converged. McMahan et al. (2005)
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and Smith and Simmons (2006) propose bounded-RTDP (BRTDP) and focused-RTDP (FRTDP), respectively. These

extended RTDP algorithms compute both an upper bound and a lower bound on the optimal value function; the gap

between the two bounds can then be used to judge whether the value function has converged and the exploration of

the state space can be guided towards the poorly understood states (i.e., the states where the gap between the two

bounds is large). Further to this, Sanner et al. (2009) improve BRTDP by introducing a value of perfect information

(VPI) analysis to detect whether the policy at a state has converged. The VPI–RTDP algorithm they propose saves

computational resources by not visiting the states where the value function has not converged but the policy has

already converged.

Though the DP-based algorithms have advanced in different ways, their computational performance is highly

dependent on the problem scale; i.e., the CPU time and memory consumed by the DP-based algorithms increase

exponentially as the size of the MDP model increases. Specifically, J. Zhang et al. (2019a) employ VI and the

above-mentioned RTDP algorithms to solve patient admission control problems. Their experimental results show

that VPI–RTDP outperforms VI significantly and that it is the best DP-based algorithm in terms of accuracy

and efficiency. However, the problem size that VPI–RTDP can cope with is still fairly limited since the CPU

time consumed by VPI–RTDP increases greatly as the size of the MDP model becomes slightly larger. Therefore,

more advanced algorithms should be developed that can solve realistically sized patient admission control problems

efficiently.

In short, the challenges faced by DP-based algorithms are the so-called three curses of dimensionality: state

space, action space, and outcome space (containing all the possible subsequent states of a state–action pair) (Powell,

2011). Regarding the large action spaces, many researchers addressing patient admission control perform structural

analyses of their MDP models to reduce the number of actions that should be evaluated (e.g., Min & Yih, 2010a, 2014;

Truong, 2015). Moreover, approximate dynamic programming (ADP) provides a set of powerful algorithms that are

able to cope with large state spaces and outcome spaces. Firstly and the most importantly, since the dimension of

the value function depends on the cardinality of the state space, the computational complexity caused by a large

state space can be reduced by estimating the high-dimensional value function with a low-dimensional approximator.

Secondly, the enumeration of a large outcome space can be avoided by randomly sampling a subsequent state to

evaluate. To the best of our knowledge, the application of ADP in the literature on patient admission control is

very limited, although we note that Patrick et al. (2008) and Astaraky and Patrick (2015) have developed a linear

programming–based ADP algorithm and a simulation–based ADP algorithm, respectively.

In this paper, we formulate the patient admission control problem being studied as an MDP model with an

infinite horizon. Recognizing that the problems involved in this paper are much larger than those addressed in the

existing research (e.g., Patrick et al., 2008; Min & Yih, 2010a, 2014; Astaraky & Patrick, 2015; Truong, 2015),

we reduce the computational complexity of solving the MDP model in two ways. First, we perform an in-depth

analysis to investigate the optimal policy’s properties, based on which we develop an efficient algorithm to simplify

the exploration of the action space and to accelerate the solution approaches employed. Second, we develop an

ADP algorithm based on RLS–TD(λ), an efficient reinforcement learning method proposed by Xu et al. (2002).

RLS–TD(λ) updates a low-dimensional linear function to estimate the high-dimensional value function; thus, the

RLS–TD(λ)-based ADP algorithm is capable of providing near-optimal policies for large-scale patient admission

control problems and consumes much less CPU time than do conventional DP-based algorithms. In the literature, a

similar RLS–TD(λ)-based ADP algorithm has been proposed by Yin et al. (2017) to solve a real-time traffic signal

control problem. Their experimental results show that the proposed ADP algorithm provides high-quality policies

and is much more efficient than DP-based algorithms.
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3 Problem description and formulation

This section describes the patient admission control problem in detail and presents the infinite-horizon MDP model.

We manage an OT that provides surgical service for elective patients from J specialties. Every specialty j has a

relative importance factor denoted by vj , and the patients in specialty j are divided into Uj urgency groups, each

associated with a maximum recommended waiting time Wju. An MSS has been fixed at the tactical level and specifies

the surgical blocks (i.e., OR-days) preallocated to each specialty, and the SICU is shared by all the J specialties.

Patients’ surgery durations and LOSs are subject to uncertainty, whereas the regular capacities of the ORs and SICU

are fixed. Extra use of an OR leads to a cost of co per hour, while a penalty of ce per bed/per day is incurred if the

recovery beds in SICU are insufficient for the actual demand (since some patients in need of intensive care have to

be transferred to other recovery units with a lower level of care, or extra beds have to be added to SICU). It should

be mentioned that the actual LOSs of some patients can be 0, which means that not all the patients need intensive

care after surgery.

In addition to the hospital-related costs, we consider two types of patient-related costs in this paper: 1) surgery

costs incurred by the booked surgeries which require surgical staff’s work, utilization of surgical facilities, etc.; 2)

waiting costs incurred by the postponed surgeries which cause patient dissatisfaction and may lead to deterioration

in patients’ health. We define cb and cd as the unit surgery cost and the unit waiting cost, respectively. In the

literature, patient priority scores are commonly used as multipliers in the patient-related costs (e.g., Lamiri, Xie, &

Zhang, 2008; Min & Yih, 2010a, 2014; Marques & Captivo, 2017; Neyshabouri & Berg, 2017; Roshanaei et al., 2017b,

2020). Hence, considering the dynamic patient priority score Pr = vjuw, we assume that every scheduled patient

produces a surgery cost cbvjuw, and that every unscheduled patient incurs a waiting cost cdvjuw. The two types

of time-dependent patient-related costs are both incorporated into the cost function, so that patients’ waiting times

can be minimized. It can be observed that scheduling a patient reduces the patient-related costs by (cd − cb)vjuw,

which is proportionate to the relative importance factor vj . Hence, the ORs preallocated to the specialties with

higher vj are more likely to be overused, and when the patients of J specialties compete for SICU recovery beds,

priority is given to the specialties with higher vj . We note that the priority score Pr = vjuw may be simplistic from

the perspective of practitioners, since it imposes a relationship among the three criteria and may not be sufficiently

accurate. In fact, the prioritization systems adopted by hospitals tend to be more comprehensive and usually vary

from one specialty to another (e.g., Mullen, 2003; Las Hayas et al., 2010; Montoya et al., 2014; Oliveira et al., 2020).

As this paper focuses on mathematical optimization instead of prioritization strategies, we define Pr in a simple

format, which is well accepted by the research community (as discussed in Section 2.1), to keep our model concise.

From the existing research studying advance scheduling, we find that elective surgeries are usually planned over

a fixed planning horizon (e.g., one week) (e.g., Fei et al., 2008; Fei, Meskens, et al., 2009; Fei, Chu, & Meskens,

2009; Fei et al., 2010; Denton et al., 2010; Min & Yih, 2010b; Y. Wang et al., 2014; Hashemi Doulabi et al., 2016;

Marques & Captivo, 2017; Neyshabouri & Berg, 2017; Roshanaei et al., 2017a, 2017b; Moosavi & Ebrahimnejad,

2018; Pang et al., 2018). In such studies, decisions to assign the patients on the waiting list to specific ORs are

made at the beginning (or the end) of each horizon, with the dates of such assignations being within the present (or

the next) horizon. When new elective patients arrive, the surgery schedule of the present horizon has already been

determined. As a result, they are left unscheduled until the beginning of the next horizon. The patient admission

control problem studied in this paper is a subproblem of advance scheduling; therefore, we assume that the newly

arrived patients cannot be scheduled during the week of their arrival (i.e., direct admission is not allowed). The same

assumption is also adopted by other research that addresses patient admission control, such as Min and Yih (2010a,

2014) and J. Zhang et al. (2019b).

At the end of each week, we update the patient waiting list by removing the treated patients and adding the
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newly arrived ones. We then determine which patients will be treated during the week after the current week.

Let njuw be the total number of type-{juw} patients (i.e., specialty-j patients with urgency coefficient u and

actual waiting time w) on the waiting list; the state of the MDP model can then be defined as the vector of njuw:

s = {njuw: j = 1, 2, ..., J ;u = 1, 2, ..., Uj ;w = 1, 2, ...,Wju}. Similarly, the action of the MDP model is defined as

vector a = {mjuw: j = 1, 2, ..., J ;u = 1, 2, ..., Uj ;w = 1, 2, ...,Wju}, where mjuw denotes the number of scheduled

type-{juw} patients. In reality, it may be impossible to strictly comply with the maximum recommended waiting

times, but Patrick et al. (2008) demonstrate that, in their patient admission control problem, a suboptimal policy can

schedule the vast majority of patients earlier than their waiting-time targets. Hence, we assume in this paper that

Wju are “achievable”, i.e., they are determined by hospital managers according to the urgency of surgeries as well

as the scarcity of surgical resources, such that it is not difficult to find good policies under which the proportion of

the deferred patients (w > Wju) is sufficiently small and can be ignored. This assumption may result in a departure

from the real practice because the primary criterion for determining Wju is usually the urgency only (e.g., Testi

et al., 2008; Valente et al., 2009), but it can avoid incorporating into our MDP model the deferred patients with

w = Wju + 1,Wju + 2, ..., which lead to an infinite-dimensional state space. Under this assumption, all patients are

supposed to be treated before their waiting times exceeding Wju, and the deferred patients are thus excluded from

any state s and action a, as defined above. Let A(s) be the set of feasible actions for state s, then, for any a ∈ A(s):{
mjuw 6 njuw if w < Wju

mjuw = njuw if w = Wju

(1)

Let ñτju be the number of newly arrived specialty-j patients with urgency coefficient u during week τ ; the

transition of state from week τ to week τ + 1 can then be written as{
nτ+1
ju,1 = ñτju ∀ j, u
nτ+1
ju,w+1 = nτjuw −mτ

juw ∀ j, u, w < Wiu

(2)

Then, we can obtain the transition probability function of the MDP model as follows:

p(sτ , aτ , sτ+1) =

J∏
j=1

Uj∏
u=1

p(ñτju = nτ+1
ju,1)

Wju∏
w=1

p(nτjuw −mτ
juw = nτ+1

ju,w+1)

 (3)

In (3), p(ñτju = nτ+1
ju,1) ∈ (0, 1) is the probability that the number of newly arrived type-{ju, 0} patients in week τ is

equal to the total number of type-{ju, 1} patients in state sτ+1. Its value is computed by the probability mass function

of a Poisson distribution with an arrival rate n̄ju. p(nτjuw −mτ
juw = nτ+1

ju,w+1) ∈ {0, 1} is a deterministic term that

indicates if the number of unscheduled type-{juw} patients in week τ matches the total number of type-{ju, w+ 1}
patients in state sτ+1. Its value can either be 0 or 1.

In a patient admission control problem, we cannot compute the exact utilizations of surgical resources, which

depend on the intra-week schedule (i.e., patient-to-OR assignments) and the realizations of stochastic parameters.

It is straightforward to estimate the expected resource utilizations using the total capacities of ORs and SICU as

well as the distributional information of stochastic parameters (e.g., Astaraky & Patrick, 2015; Gerchak et al., 1996;

Gocgun & Ghate, 2012; Huh et al., 2013; Jebali & Diabat, 2017; Lamiri, Xie, Dolgui, & Grimaud, 2008; Min &

Yih, 2014; Truong, 2015). Even so, for the problem studied in this paper, computing the exact expectations of OR

overtime and SICU bed shortage is a considerable challenge, because this requires computing the expectations of

|J | + 1 truncated probability distributions (lognormal distributions are commonly adopted) for each state–action

pair. In order to reduce the computational complexity, we approximate the expected OR overtime and SICU bed

shortage by taking the sum of the expected surgery durations and LOSs of the scheduled patients, subtracting the
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available OR and SICU capacity, and taking the positive parts. This estimation method is adopted in many relevant

studies (e.g, Astaraky & Patrick, 2015; Molina-Pariente, Fernandez-Viagas, & Framinan, 2015; Molina-Pariente,

Hans, et al., 2015; S. Wang et al., 2016; Roshanaei et al., 2017a, 2017b, 2020) and its effectiveness in estimating

the over-utilization of ORs has been validated: Molina-Pariente, Fernandez-Viagas, and Framinan (2015) show that

the stochasticity of surgery durations does not influence the average OR utilization; S. Wang et al. (2016) reveal

that the under- and over-estimations of surgery durations are mostly counterbalanced, and that stochasticity has

little influence on the quality of their deterministically optimized surgery schedules; Roshanaei et al. (2017a, 2020)

anticipate that ignoring uncertainty does not drastically diminish the cost-savings achieved by their deterministic

optimization approach. However, we admit that estimating the SICU utilization in the same way may be inaccurate,

mainly because we assume that the demand for intensive care is smoothed out, but in reality, the postoperative

patients are likely to be clumped due to the restrictions imposed by the MSS, rather than being evenly distributed

throughout the week. In addition, we need to assume that all patients currently in the SICU will finish their stays

before the beginning of the next week. This assumption is relatively reasonable because most patients spend no

more than two days in the SICU (see the test instances of Min and Yih (2010b) and Neyshabouri and Berg (2017)).

In the numerical experiments of this work, we compute the overtime of ORs and the excess of SICU capacity using

large numbers of randomly sampled surgery durations and LOSs, thus the performance and robustness of our policies

under uncertainty can be effectively evaluated.

Then, the cost function of the MDP model for state–action pair (s, a) is defined as

C(s, a) =cb

J∑
j=1

Uj∑
u=1

Wju∑
w=1

vjuwmjuw + cd

J∑
j=1

Uj∑
u=1

Wju∑
w=1

vjuw(njuw −mjuw)

+ co

J∑
j=1

 Uj∑
u=1

Wju∑
w=1

mjuwd̄j − ρ1Bj

+

+ ce

 J∑
j=1

Uj∑
u=1

Wju∑
w=1

mjuw l̄j − ρ2R

+ (4)

where (···)+ = max{···, 0}; d̄j and l̄j are the expectations of surgery duration and LOS for specialty-j patients (we

assume that patients from the same specialty have the same lognormal distributions for surgery duration and LOS);

Bj is the regular OR capacity reserved for specialty j; R is the regular capacity of SICU; ρ1, ρ2 ∈ (0, 1] are the

estimated availability rates of the ORs and recovery beds, respectively. ρ1 and ρ2 are incorporated into the cost

function, since the intra-week scheduling cannot always fully utilize the surgical resources.

It can be observed that cost function (4) is independent of week τ . Moreover, since the number and type of

elective surgeries do not change too much over weeks (Guerriero & Guido, 2011), we assume that the arrival rates

n̄ju of new patients are constant. Thus, the transition probability function (3) is also independent of τ and the

MDP model is stationary (Mausam & Kolobov, 2012). In order to capture more dynamics of the problem, one might

want to shorten the time interval between two consecutive decision epochs from one week to one day. However,

making decisions on a daily basis requires us to consider the two following issues. First, elective surgeries cannot

be scheduled at weekends, implying that making the same decision on different weekdays leads to different expected

waiting times of patients and different costs-to-go. Second, the regular OR capacity preallocated to each specialty

by an MSS usually varies from Monday to Friday. Consequently, the resource constraints and cost function are

no longer independent of τ , and the state space of the non-stationary MDP model will be five times larger than

that of the stationary one. Given that the planning horizons of most advance surgery scheduling problems are one

week (e.g., Min & Yih, 2010b; Jebali & Diabat, 2015, 2017; Marques & Captivo, 2017; Neyshabouri & Berg, 2017;

Moosavi & Ebrahimnejad, 2018; Molina-Pariente et al., 2018; Zhu et al., 2019; Roshanaei et al., 2020), our MDP

model for patient admission control (a subproblem of advance surgery scheduling) is formulated on a weekly basis
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and is compatible with longer planning periods that are adopted by some hospitals: the decision epochs τ can be

changed from weekly to bi-weekly or monthly without the need for changing the structure of the MDP model.

Figure 1 demonstrates the evolution of the MDP model for an example patient admission control problem with

two specialties (j = 1, 2) and two urgency groups (u = 1, 2) in each specialty.
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transition probability from week τ+1 to 
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Figure 1: An example MDP model for a two-specialty, two-urgency-group problem

Finally, the objective of the MDP model is to find the optimal policy π∗ that minimizes the discounted expected

costs over the infinite horizon:

π∗ = arg min
π

E

{
+∞∑
τ=1

γτ−1C[sτ , π(sτ )]

}
(5)

where γ ∈ [0, 1) is the discount factor and π(sτ ) is the action corresponding to sτ under policy π.

4 Structural analysis

The MDP model presented in Section 3 can be regarded as a substantial extension of the MDP models formulated

by Gerchak et al. (1996) and Min and Yih (2010a, 2014). In these previous works, the authors explore the properties

of their MDP models to facilitate the solution procedures. In this paper, as we take time-dependent patient priority

scores, multiple resource constraints (ORs and SICU), and multiple specialties with different patient characteristics

into consideration, our MDP model is significantly more complex and most of the model properties proved by Gerchak
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et al. (1996) and Min and Yih (2010a, 2014) do not apply to our MDP model. Hence, we investigate the structural

properties of our MDP model in this section, and these properties will help us to improve computational efficiency

when evaluating the action space.

We first create a vector ∆j′u′w′ = {δjuw} ∈ S ∪A (S denotes the state space and A denotes the action space) in

which δj′u′w′ = 1 and the other elements are 0. Then, two partial orders on S ∪A are defined as follows:

Definition 1. Let x = {xjuw} ∈ S ∪A and y = {yjuw} ∈ S ∪A.

(i) If ∀j, u, w: xjuw 6 yjuw and ∃j′, u′, w′ s.t. xj′u′w′ < yj′u′w′ , then x < y.

(ii) If ∀j, u, w: xjuw = yjuw, then x = y.

(iii) Otherwise, x and y are incomparable.

Definition 2. Let x = {xjuw} ∈ S ∪A and y = {yjuw} ∈ S ∪A. The patient priority scores of x and y are denoted

by P (x) and P (y), respectively.

(i) If x = y + ∆j′u′w′ −∆j′u′′w′′ and u′w′ < u′′w′′, then P (x) < P (y).

(ii) If x = y, then P (x) = P (y).

(iii) Otherwise, P (x) and P (y) are incomparable.

Next, we propose Lemma 1 that will be used in the proofs of structural properties.

Lemma 1. For functions f, g : D → R with D ⊆ R: min f(x)−min g(x) > min[f(x)− g(x)].

Proof. See Appendix A.

Let C0(s) = mina∈A(s) C(s, a) be the optimal single-period cost and a0(s) = arg mina∈A(s) C(s, a) be the optimal

single-period action. For the sake of simplicity, we use Cp(s, a) to denote the patient-related cost, i.e., the sum of

the first term and the second term of (4), and use Ch(a) to denote the hospital-related cost, i.e., the sum of the third

term and the fourth term of (4). Using Definitions 1, 2, and Lemma 1, the following statements can be proved to be

true:

Proposition 1. (i) C0(s) is increasing in s.

(ii) If P (a) and P (a′) are comparable, then Ch(a) = Ch(a′) holds.

(iii) C0(s) is increasing in P (s).

Proof. See Appendix B.

From (i) and (iii) of Proposition 1, we know that the optimal single-period cost C0(s) is monotonically increasing

in njuw and the priority scores of the patients on the waiting list. In addition, (ii) of Proposition 1 indicates that the

expected hospital-related costs depend on the number of scheduled patients in each specialty and are independent

of patients’ urgency coefficients and waiting times. With Proposition 1, we can further analyze the optimal value

function (i.e., the value function under the optimal policy π∗) which is given by

V π
∗
(s) = E

{
+∞∑
n=1

γn−1C[sn, π
∗(sn)]

}
=

+∞∑
n=1

γn−1E{C[sn, π
∗(sn)]} (6)

where s1 = s. Since C[sn, π
∗(sn)] is finite and γ < 1, then γn−1E{C[sn, π

∗(sn)]} → 0 as n goes to infinity. We can

thereby assume γn−1E{C[sn, π
∗(sn)]} = 0 for any n > N � 0, then

V π
∗

n (s) =

 C[s, π∗(s)] + γ
∑
s′∈S

p[s, π∗(s), s′]V π
∗

n+1(s′) if n = 1, 2, ..., N

0 if n = N + 1, N + 2, ...
(7)
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where V π
∗

1 (s) = V π
∗
(s). Further, the Q-value of state-action pair (s, a) under π∗ is defined as

Qπ
∗
(s, a) = C(s, a) + γ

∑
s′∈S

p(s, a, s′)V π
∗
(s′) (8)

Qπ
∗
(s, a) can also be written as the following recursive formula:

Qπ
∗

n (s, a) = C(s, a) + γ
∑
s′∈S

p(s, a, s′)V π
∗

n+1(s′) (9)

where Qπ
∗

1 (s, a) = Qπ
∗
(s, a) and V π

∗

n+1(s′) = mina∈A(s′)Q
π∗

n+1(s′, a).

Before exploring the properties of V π
∗
(s), we present the following notations and analysis, which will be useful

when proving our propositions. Let vector Gsa = {gjuw} be the post-action state of (s, a):{
gju,1 = 0, ∀ j, u = 1, 2, ..., Uj

gju,w+1 = njuw −mjuw, ∀ j, u = 1, 2, ..., Uj , w = 1, 2, ...,Wju − 1
(10)

and Ψ = {ψjuw} be the vector of newly arrived patients:{
ψju,1 = ñju, ∀ j, u = 1, 2, ..., Uj

ψju,w+1 = 0, ∀ j, u = 1, 2, ..., Uj , w = 1, 2, ...,Wju − 1
(11)

Then, the subsequent state can be written as s′ = Gsa + Ψ. To keep the notations simple, we introduce PΨ in the

following equation:

p(s, a, s′) =


Uj∏
u=1

p(ñju = ψju,1) = PΨ, if s′ = Gsa + Ψ

0, if s′ 6= Gsa + Ψ

(12)

Then, we have ∑
s′∈S

p(s, a, s′)V π
∗
(s′) =

+∞∑
Ψ=000

PΨV
π∗(Gsa + Ψ) (13)

With these notations and analysis, we propose the following properties of V π
∗
(s):

Proposition 2. (i) V π
∗
(s) is increasing in s.

(ii) V π
∗
(s) is increasing in P (s).

Proof. See Appendix C.

Proposition 2 indicates that the properties of the single-period optimal cost C0(s) proposed in (i) and (iii) of

Proposition 1 also hold for the optimal value function V π
∗
(s). Considering that V π

∗
(s) is monotonically increasing

in s and P (s), we can prove the following properties of π∗(s) and Qπ
∗
(s, a) that enable us to simplify the exploration

of the action space.

Proposition 3. For any patient type {juw}: if (cd − cb)vjuw > cod̄j + ce l̄j holds, then all the type-{juw} patients

are scheduled by π∗(s).

Proof. See Appendix D.

Proposition 4. ∀s ∈ S: Qπ
∗
(s, a) is decreasing in P (a).

Proof. See Appendix E.
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Proposition 3 suggests that, if the reduction (cd − cb)vjuw in the patient-related costs induced by scheduling a

type-{juw} patient is greater than the maximum possible increase (cod̄j + ce l̄j) in the hospital-related costs, all the

type-{juw} patients should be scheduled in the current week without further postponement. Hence, the best action

π∗(s) under the optimal policy π∗ should hold the following property:

Remark 1. For any patient type {juw}: if (cd − cb)vjuw > cod̄j + ce l̄j, then mjuw = njuw holds in π∗(s).

Proposition 4 reveals another structural property that the best action π∗(s) should hold: in every week and

every specialty, the priority score of any scheduled patient should not be lower than that of any unscheduled patient.

More specifically, if ∀j ∈ {1, ..., J}: the total numbers of specialty-j patients scheduled by actions a and π∗(s) are

identical, i.e., P (a) and P (π∗(s)) are comparable (as defined in Definition 2), then P (a) 6 P (π∗(s)).

Remark 2. ∀s ∈ S: there exists no action a ∈ A(s) s.t. P (a) > P (π∗(s)).

By excluding the actions that do not hold the properties summarized in Remarks 1 and 2, π∗(s) can be searched

efficiently in a subset A∗(s) of the full action set A(s) (A∗(s) ⊆ A(s)). As ‖A∗(s)‖ < ‖A(s)‖ holds for most states

in our MDP model, the efficiency of exploring the action space can be significantly improved. The procedure of

determining A∗(s) is provided in Algorithm 1 and can be integrated into most MDP solution approaches, including

DP-based exact algorithms and simulation-based ADP algorithms.

5 Solution approach

The algorithm proposed in the previous section (Algorithm 1) can reduce the number of actions to be evaluated for

each state, thus facilitating the exploration of the action space. However, it cannot be independently employed to

solve the MDP model proposed in Section 3. As an acceleration technique, Algorithm 1 should always be integrated

into a solution approach of MDP, such as PI, VI, and RTDP. For the patient admission control problem studied in

this paper, there are
∑J
j=1

∑Uj
u=1Wju different patient types, and the dimension of the MDP model’s state space is

increasing in
∑J
j=1

∑Uj
u=1Wju at an exponential rate. Moreover, as there can be large numbers of

∑J
j=1 Uj different

types of newly arrived patients in each week, the number of possible subsequent states for any state–action pair is

enormous, i.e., the outcome space is huge as well (exponentially increasing in
∑J
j=1 Uj). Therefore, even with the

acceleration of Algorithm 1, solving the MDP model using traditional DP-based algorithms is still computationally

intractable. To cope with the curses of dimensionality in the state space and the outcome space, in this section, we

propose an ADP algorithm based on reinforcement learning.

The basic idea of the ADP algorithm is to reduce the model dimensionality by approximating the value function.

It is well known that value function approximation can either be parametric or non-parametric: the former adopts

a low-dimensional linear function to approximate the true optimal value function V π
∗
(s), while the latter does not

rely on functional structures but directly approximates the values of observed instances (Ulmer & Thomas, 2020).

A comprehensive overview of the two value function approximation methods is provided by Powell (2011). Non-

parametric methods often need to aggregate the state space and use lookup tables which may suffer from the curse

of dimensionality (Powell & Meisel, 2015; Voelkel et al., 2020). In comparison, parametric methods are easier to

compute and more suitable for online computation (Powell & Meisel, 2015). In the ADP algorithm proposed in this

paper, we adopt a parametric method that approximates the true optimal value function V π
∗
(s) using a classical

feature-based linear function:

V̂ (s,Θ) = ΦT (s)Θ =

Ξ∑
ξ=1

φξ(s)θξ ≈ V π
∗
(s) (14)

15



Algorithm 1: Procedure of determining A∗(s)

Input: state s = {njuw}
Output: action set A∗(s)

1 Initialize a′ = {m′juw} = 000;

2 for j = 1, 2, ..., J do

3 for u = 1, 2, ..., Uj do

4 for w = 1, 2, ...,Wju do

5 if ((cd − cb)vjuw > cod̄j + ce l̄j) ∨ (w = Wu) then m′juw = njuw;

6 Let A∗(s) = {a′} and I = ‖A∗(s)‖ = 1; //I is the size of A∗(s)

7 for j = 1, 2, ..., J do

8 Nj =
∑Uj
u=1

∑Wju

w=1(njuw −m′juw); //number of specialty-j patients with (cd − cb)vjuw 6 cod̄j + ce l̄j

9 Mj = 0; //number of scheduled specialty-j patients with (cd − cb)vjuw 6 cod̄j + ce l̄j

10 I = I × (Nj + 1); //compute the size of A∗(s)

11 for i = 1, 2, ..., I do

12 ai = {mjuw} = a′;

13 //exhaust all the possible combinations of Mj

14 for j = 1, 2, ..., J do

15 if Mj < Nj then

16 Mj = Mj + 1;

17 foreach integer k ∈ [1, j − 1] do Mk = 0;

18 break;

19 //for each combination of Mj, find the action with the maximum value of P (a)

20 for j = 1, 2, ..., J do

21 {u′, w′} = arg max((cd−cb)vjuw6cod̄j+ce l̄j)∧(w 6=Wu) vjuw;

22 x = Mj ;

23 while true do

24 if nju′w′ > x then

25 mju′w′ = x;

26 break;

27 else

28 mju′w′ = nju′w′ ;

29 x = x− nju′w′ ;
30 {u′, w′} = arg max(uw6u′w′)∧(w 6=Wu)∧((u6=u′)∨(w 6=w′)) vjuw;

31 A∗(s) = A∗(s) ∪ {ai};

In (14), φξ(s) captures the ξth feature of state s and each state s ∈ S has a corresponding feature vector Φ(s) =

[φ1(s), ..., φξ(s), ..., φΞ(s)]T . For our MDP model, it is straightforward to define that each component njuw of state s

corresponds to a feature φξ(s), thus the length of feature vector Φ(s) is Ξ =
∑J
j=1

∑Uj
u=1Wju. Θ = [θ1, ..., θξ, ..., θΞ]T

in (14) is a parameter vector of length Ξ and each component θξ is a tunable parameter. We want to compute the
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optimal parameter vector Θ∗ which minimizes the gaps between V̂ (s,Θ) and V π
∗
(s):

Θ∗ = arg min
Θ∈RΞ

∑
s∈S

[
V̂ (s,Θ)− V π

∗
(s)
]2

(15)

With Θ∗, we can compute a near-optimal policy based on the approximate value function V̂ (s,Θ∗). As the compu-

tation of the complex value function V π
∗
(s) in the high-dimensional state space S is replaced by the computation of

the low-dimensional parameter vector Θ∗, the curse of dimensionality in the state space can be drastically alleviated.

Many reinforcement learning methods can be used to compute Θ∗ (by iteratively updating Θ), such as temporal

difference learning (TD(λ): Sutton, 1988; Tsitsiklis & Van Roy, 1997), least-squares temporal difference learning

(LS-TD(λ): Barto et al., 1995; Boyan, 2002), and recursive least-squares temporal difference learning (RLS-TD(λ):

Barto et al., 1995; Xu et al., 2002). In order to combine reinforcement learning with ADP, we adopt an on-policy

learning strategy introduced by Powell (2011), under which the parameter vector Θ and the policy based on it are

updated simultaneously and all the computation is performed online.

Before making any decision, we first initialize Θ arbitrarily, e.g., Θ0 = 000. Then, at each decision epoch (week)

τ , we randomly sample the stochastic information (i.e., patient arrivals) of the next N epochs. At each simulated

epoch n, we select action an for the current state sn (note that s1 = sτ ) according to the approximate value function

with the latest parameter vector Θn−1:

an = arg min
a∈A∗(sn)

[
C(sn, a) + γΦT (Gsna + Ψa

n)Θn−1

]
(16)

where Gsna is the post-action state of state-action pair (sn, a); Ψa
n is a vector of the numbers of new patients (defined

in Section 4) and it is independently and identically sampled from Poisson distributions for each action a and each

epoch n. Then, we update Θn−1 to Θn and compute the next state to be visited sn+1 = Gsnan + Ψan
n . In this way, we

can obtain a trajectory (s1, a1,Ψ
a1
1 , s2, a2,Ψ

a2
2 , ..., sN , aN ,Ψ

aN
N ) with s1 = sτ .

The process described above can be repeated multiple times for the same state sτ , until some termination

criterion is satisfied. That is, at each real decision epoch τ , we generate M > 1 trajectories with independently and

identically sampled vectors Ψ. Thus, parameter vector Θ and the policy based on it are updated M ×N times before

we determine the action to be executed in week τ :

aτ = arg min
a∈A∗(sτ )

[
C(sτ , a) + γΦT (Gsτa + Ψ̄)Θτ

]
(17)

where vector Ψ̄ consists of the expected arrival numbers n̄ju of
∑J
j=1 Uj patient types, and Θτ is the latest updated

parameter vector. From (16) and (17), it can be seen that all the actions we take in simulations (an) and in the

real world (aτ ) are selected according to the approximate value function V̂ (s,Θ). This is the so-called on-policy

learning strategy. An advantage of this strategy is that we explore the outcome space along randomly sampled

trajectories, rather than evaluating all the possible subsequent states of each state-action pair. In this way, the curse

of dimensionality in the outcome space can be effectively solved.

Next, we briefly present the reinforcement learning method integrated into the ADP algorithm for updating Θ.

After action an is computed by (16) at simulated epoch n, we compute the gap between two successive value function

approximations, i.e., the temporal difference or TD error:

en = C(sn, an) + γV̂ (sn+1,Θn−1)− V̂ (sn,Θn−1) = C(sn, an)− [Φ(sn)− γΦ(sn+1)]TΘn−1 (18)

The TD(λ) method introduced by Sutton (1988) updates parameter vector Θ using gradient descent:

Θn = Θn−1 + ηnen

n∑
k=1

(γλ)n−k∇V̂ (sk,Θn−1) (19)
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where ηn is a sequence of step-size parameters, λ ∈ [0, 1] is a decaying factor, and gradient ∇V̂ (sk,Θn−1) = Φ(sk) is

the vector of partial derivatives with respect to the components of Θn−1. Equation (19) can be simplified by defining

zn as the eligibility trace which implicitly stores the history of a trajectory (Tsitsiklis & Van Roy, 1997):

zn =

n∑
k=1

(γλ)n−k∇V̂ (sk,Θn−1) =

n∑
k=1

(γλ)n−kΦ(sk) (20)

Thus, TD(λ) can be represented by the following recursive equations:{
zn = Φ(sn) + γλzn−1

Θn = Θn−1 + ηnenzn
(21)

where z is often arbitrarily initialized, e.g., z0 = 000. The convergence with probability one of TD(λ) has been

established by Tsitsiklis and Van Roy (1997). However, TD(λ) is particularly impacted by the step-size parameters

ηn, as a poor choice of ηn can drastically slow down the convergence (Barto et al., 1995). To eliminate ηn, Boyan

(2002) extends TD(λ) to LS-TD(λ) based on the fact that the changes of Θ made by TD(λ) are in the following

form:

Θn =

{
n∑
k=1

zk[Φ(sk)− γΦ(sk+1)]T

}−1 [ n∑
k=1

C(sk, ak)zk

]
= A−1

n bn (22)

It can be seen from (22) that step-size parameters ηn are eliminated, but the inverse of a Ξ×Ξ matrix An has to be

computed at each time epoch, hence the computational complexity of LS-TD(λ) is O(Ξ3).

Further, Xu et al. (2002) improve LS-TD(λ) using the recursive least-squares (RLS) method of Ljung and

Söderström (1983). Since the RLS-TD(λ) method proposed by Xu et al. (2002) has a lower computational complexity

O(Ξ2), we employ RLS-TD(λ) to update Θ in this paper. To facilitate the computation, RLS-TD(λ) defines a Ξ×Ξ

variance matrix Pn = A−1
n =

{
An−1 + zn[Φ(sn)− γΦ(sn+1)]T

}−1
. By Lemma 2.1 of Ljung and Söderström (1983),

Pn can be written in the following recursive form:

Pn = Pn−1 − Pn−1zn
{

1 + [Φ(sn)− γΦ(sn+1)]TPn−1zn
}−1

[Φ(sn)− γΦ(sn+1)]TPn−1 (23)

Then, using the RLS method with (22) and (23), Θ can be updated in the following way:

Θn = Θn−1 +
Pn−1znen

1 + [Φ(sn)− γΦ(sn+1)]TPn−1zn
(24)

Combining (18), the first line of (21), (23), and (24), we have the following update rules of RLS-TD(λ):

en = C(sn, an)− [Φ(sn)− γΦ(sn+1)]TΘn−1

zn = γλzn−1 + Φ(sn)

Pn = Pn−1 −
Pn−1zn[Φ(sn)− γΦ(sn+1)]TPn−1

1 + [Φ(sn)− γΦ(sn+1)]TPn−1zn

Θn = Θn−1 +
Pn−1znen

1 + [Φ(sn)− γΦ(sn+1)]TPn−1zn

(25)

where Pn is initialized as P0 = βI (β is a positive real number and I is the identity matrix).

Based on the methods discussed above, including parametric value function approximation (14), on-policy learn-

ing, and RLS-TD(λ), we develop the ADP algorithm presented in Algorithm 2. The depth of each sampled trajectory

is fixed to a positive integer N . In each week, the process of sampling new trajectories terminates when the relative

improvement of Θ is lower than a threshold ε > 0 (line 12). Before making the first decision in the first week τ = 1,
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all the components of z0, P0, and Θ0 are initialized as 0. Then, they are continuously updated in all the following

weeks. In line 5 and 14 of Algorithm 2, we assume that Algorithm 1 is used to reduce the actions to be evaluated.

If Algorithm 1 is not used, line 5 and 14 should be skipped and the reduced action spaces A∗(sn) and A∗(sτ ) in

Algorithm 2 should be replaced with the full action spaces A(sn) and A(sτ ), respectively.

Algorithm 2: ADP algorithm based on RLS–TD(λ) learning

Input: sτ , zτ−1, Pτ−1, and Θτ−1

1 Initialize s1 = sτ , z0 = zτ−1, P0 = Pτ−1, and Θ0 = Θτ−1;

2 while true do

3 //A new trial (trajectory) starts here;

4 for n = 1, 2, ..., N do

5 Determine A∗(sn) by Algorithm 1; //This step can be skipped;

6 foreach a ∈ A∗(sn) do

7 Randomly sample Ψa
n from Poisson distributions;

8 Compute an by (16);

9 Compute sn+1 = Gsnan + Ψan
n ;

10 Update zn, Pn, and Θn by (25);

11 //A trial (trajectory) ends here;

12 if ‖Θn−Θ0

Θ0
‖ < ε then break;

13 Let s1 = sτ , z0 = zn, P0 = Pn, and Θ0 = Θn;

14 Determine A∗(sτ ) by Algorithm 1; //This step can be skipped.

15 Let zτ = zn, Pτ = Pn, and Θτ = Θn;

16 Compute aτ by (17);

Output: aτ , zτ , Pτ , and Θτ

6 Experimental results

We conduct numerical experiments on different test problems to validate the efficiency and accuracy of the proposed

algorithms. All the programs are coded in C++ and run on a PC with an Intel(R) Core(TM) i7-3770 CPU @3.40GHz

processor and a RAM of 8GB. In Section 6.1, the algorithms proposed in this paper and several exact methodologies

are employed to solve a small-sized test problem. We compare the computational performances of these solution

approaches before examining the sensitivity of the resulting policy and the CPU time to the problem parameters. In

Section 6.2, we solve a large-sized single-specialty test problem and perform sensitivity analyses for the key parameters

of the RLS–TD(λ)-based ADP algorithm. Finally, we employ the proposed algorithms to solve a realistically sized

multi-specialty patient admission control problem and present the results in Section 6.3.

The quality of each policy computed in this section is evaluated through a numerical simulation with a finite time

length τmax. In each simulated week, the numbers of different types of newly arrived patients are randomly sampled

from Poisson distributions with constant arrival rates n̄ju. The values of τmax and n̄ju are different for different test

problems. When multiple policies are computed for the same test problem, the value of τmax and the sequences of

patient arrivals (Ψ1,Ψ2, ...,Ψτmax) are identical for the simulations of these policies. Each patient’s surgery duration

and LOS are realized when he/she is scheduled for surgery. The cost of each week is computed by taking the average

value of cost function (4) in a large number of scenarios. Each scenario contains the realizations of all the scheduled
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patients’ surgery durations and LOSs, which are randomly sampled from lognormal distributions. We arbitrarily set

the scenario number to 10000.

The notations used in this section for measuring the computational performances of the employed algorithms

are listed in Table 1.

Table 1: Definitions of variables used in Section 6
Variable Definition

T total CPU time (s)

t CPU time consumed in one week (ms)

ωju waiting time of specialty-j patients with urgency coefficient u (week)

o over-utilization of ORs in all specialties during one week (h)

oj over-utilization of ORs in specialty j during one week (h)

e shortage of SICU recovery beds during one week (bed-day)

c total cost of one week

cp patient-related cost of one week

ch hospital-related cost of one week

x̄ mean of variable x

σ(x) standard deviation of variable x

‖A‖ total number of feasible actions for all the visited states

‖A∗‖ total number of actually evaluated actions

6.1 Algorithm comparisons and sensitivity analyses of problem parameters

In this subsection, we conduct numerical experiments for an arbitrarily generated test problem. The proposed ADP

algorithm is compared to two DP-based algorithms: VI and VPI–RTDP, whose complete procedures can be found

in Mausam and Kolobov (2012) and Sanner et al. (2009), respectively. For each algorithm employed, we search

for the best actions in two different ways: by evaluating the action sets A∗(s) determined by Algorithm 1 and by

enumerating the full action sets A(s). We use a superscript * to highlight the algorithms with A∗(s) adopted. For

example, VI* searches for the best actions in A∗(s), while VI evaluates all the actions in A(s). Due to the low

computational efficiency of the DP-based algorithms, the test problem solved in this subsection is much smaller than

the realistically sized ones.

The small-sized test problem is a two-specialty patient admission control problem. The relative importance of the

two specialties j = 1, 2 are [v1, v2] = [1, 2]. Patients of the two specialties are divided into two urgency groups u = 1, 2,

and their maximum recommended waiting times are [W11,W12,W21,W21] = [4, 2, 3, 2] weeks. New patient arrivals are

assumed to follow Poisson distributions, with the parameters [n̄11, n̄12, n̄21, n̄22] = [1.0, 0.5, 0.25, 0.25]. Considering

that the DP-based algorithms are unable to tackle infinite state spaces, we truncate the Poisson distributions by

omitting the values whose probabilities are lower than 0.005; thus ñ11 < 5, ñ12 < 4, ñ21 < 3, and ñ22 < 3. The size of

the state space of this problem can thereby be calculated as |S| = 54×42×33×32 = 2.43×106. Surgery durations and

LOSs follow lognormal distributions, with [d̄1, d̄2] = [2, 4] hours and [l̄1, l̄2] = [4, 2] days, and the standard deviations

of surgery durations and the LOS for each specialty are assumed to be equal to their means. The unit costs of the

small-sized test problem are determined as [cb, cd] = [50, 100], co = 400 per hour and ce = 1000 per patient-day. The

regular OR capacities for the two specialties are [B1, B2] = [3, 2] hours, and the available SICU capacity is R = 7

bed-days per week. The estimated availability rates of ORs and the SICU are arbitrarily determined as ρ1 = ρ2 = 1

in the small-sized test problem.
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Using the Monte-Carlo simulation method, we randomly sample arrival information over 1,000 weeks, as well as

sampling the surgery durations and LOSs of all the arrived patients. Using these samples, we carry out a numerical

simulation for each solution approach for 1,000 consecutive weeks. The parameters of the ADP algorithm are

arbitrarily set as λ = 0, β = 1, N = 5000 and ε = 0.0001 in this subsection, while the discount factor of the MDP

model is γ = 0.99. The computational results are presented in Table 2.

Table 2: Experimental results of the small-sized test problem
Algorithm Type ω̄11 σ(ω11) ω̄12 σ(ω12) ω̄21 σ(ω21) ω̄22 σ(ω22) ō1 σ(o1) ō2 σ(o2) ē σ(e) c̄ σ(c) T

‖A∗‖
‖A‖

VI off-line 2.293 0.938 1.293 0.455 1.463 0.599 1.051 0.219 0.965 2.081 1.162 2.970 2.341 5.222 3,716 5,669 85,492 1.000

VI* off-line 2.280 0.922 1.304 0.460 1.474 0.606 1.051 0.219 0.961 2.099 1.160 2.971 2.340 5.234 3,711 5,706 6,835 0.063

VPI-RTDP on-line 2.277 0.925 1.316 0.465 1.452 0.604 1.046 0.210 0.957 2.101 1.161 2.973 2.336 5.226 3,704 5,701 5,437 1.000

VPI-RTDP* on-line 2.277 0.925 1.316 0.465 1.452 0.604 1.046 0.210 0.957 2.101 1.161 2.973 2.336 5.226 3,704 5,701 1,450 0.216

ADP on-line 2.521 1.090 1.432 0.495 1.099 0.299 1.000 0.000 0.997 2.168 1.186 3.037 2.373 5.383 3,821 5,808 14 1.000

ADP* on-line 2.521 1.092 1.432 0.495 1.096 0.294 1.000 0.000 0.998 2.166 1.186 3.026 2.371 5.384 3,820 5,802 12 0.901

Algorithms with superscript * evaluate the action set A∗(s) determined by Algorithm 1, the others enumerate the entire action space A∗(s) = A(s).

From Table 2, it can be observed that the RLS–TD(λ)-based ADP algorithm is the most efficient solution

approach. The CPU time consumed by ADP is only 0.02% and 0.26% of that consumed by VI and VPI–RTDP,

respectively. Moreover, applying Algorithm 1 drastically improves the computational efficiency of all the employed

solution approaches, and does not lead to any policy deterioration. To be specific, when applied to VI, VPI–RTDP,

and ADP, Algorithm 1 reduces CPU time by 92.00%, 73.33%, and 14.28%, respectively. Table 2 also indicates that

the resulting policies of the algorithms employed are similar. The relative gap between the total costs of ADP/ADP*

and those of the DP-based algorithms is below 3.16%. Among the DP-based algorithms, we can observe that the

total costs of VI/VI* are slightly higher than those of VPI–RTDP/VPI–RTDP*, implying that the policies of VI/VI*

are slightly further from convergence than those of VPI–RTDP/VPI–RTDP*. Obviously, the former can be further

improved by modifying the user-defined stopping criterion, but doing so requires even more CPU time. In summary,

the RLS–TD(λ)-based ADP algorithm provides a high-quality, near-optimal policy for the problem under study, and

Algorithm 1 is capable of accelerating the employed algorithms without any deterioration of the policy.

Next, we perform sensitivity analyses to evaluate the effects of the problem parameters on the resulting policy

and the computational complexity. We use an exact algorithm (VPI–RTDP*) and the proposed ADP* algorithm

to solve the small-sized two-specialty test problem with different values for the problem parameters cd, co, ce, B1,

B2, and R. The results of the sensitivity analyses are demonstrated in Figures 2 to 7. It can be seen from these

figures that the ADP* policy is very close to that of VPI–RTDP* in most cases, despite variations in the problem

parameters; again, this validates the accuracy of the ADP* algorithm. Specifically, Figure 2 shows that changing

the unit waiting cost cd (or the ratio of cd to cb) only leads to slight changes in the resulting policy. In contrast,

Figures 3 and 4 illustrate that the hospital-related cost ch and the total cost c are increasing in both the unit OR

overtime cost co and the unit SICU excess cost ce, while Figures 5, 6, and 7 show that ch and c are decreasing in the

OR capacity B1, B2, and the SICU capacity R. From Figures 2 to 7, we can also observe that the patient-related

cost cp remains relatively stable as the problem parameters change, which implies that the resulting policy is not

very sensitive to the problem parameters. In terms of computational complexity, Figures 2 to 7 show that the CPU

time consumed by VPI–RTDP* is increasing in co, ce and decreasing in cd, B2, R, while the CPU time for ADP*

does not change too much as the problem parameters vary. Additionally, the CPU time for ADP* is much less than

that of VPI-RTDP* in all cases.
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Figure 2: Sensitivity analysis for the unit waiting cost cd
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Figure 3: Sensitivity analysis for the unit cost co of overusing ORs
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Figure 4: Sensitivity analysis for the unit cost ce of exceeding SICU capacity
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Figure 5: Sensitivity analysis for the OR capacity B1 of specialty 1
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Figure 6: Sensitivity analysis for the OR capacity B2 of specialty 2
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Figure 7: Sensitivity analysis for the SICU capacity R
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6.2 Sensitivity analyses of the ADP algorithm parameters

The experimental results of the previous subsection reveal that the proposed RLS–TD(λ)-based ADP algorithm

is distinctly more efficient than the conventional DP-based algorithms. At the same time, the gaps between the

resulting costs of these algorithms are insignificant. To further evaluate the capability of the proposed algorithms to

cope with large cases, we employ the ADP* algorithm (i.e., the RLS–TD(λ)-based ADP algorithm in combination

with the action searching method presented by Algorithm 1) to solve a realistically sized single-specialty patient

admission control problem, and perform sensitivity analyses for the key parameters λ and β of the ADP/ADP*

algorithm.

The problem to be solved in this subsection is the admission control of coronary artery bypass grafting (CABG)

surgeries, which has previously been studied by Min and Yih (2010a). Our work differs from Min and Yih (2010a),

however, as it incorporates patient waiting times, dynamic patient priority scores, and due dates into the MDP

model. The problem settings are based on the configurations of Min and Yih (2010a) and the real-life data provided

by Sobolev and Kuramoto (2008). Patients from the same specialty (j = 1) are divided into three urgency groups,

with u = 1, 2, 6, [W11,W12,W16] = [12, 6, 2], [n̄11, n̄12, n̄16] = [3, 5, 1], ñ11 6 9, ñ12 6 13 and ñ16 6 5. The size

of the state space is as large as 1012 × 146 × 62 ≈ 2.71 × 1020. Parameters of lognormal distributions for surgery

durations and LOSs are [d̄1, σ(d1) = [4, 1.72] hours and [l̄1, σ(l1)] = [2, 2] days, respectively. Costs are determined

as [cb, cd, co, ce] = [100, 150, 1500, 1500]. Available surgical resources are B1 = 40 hours and R = 25 bed-days, with

estimated availability rates [ρ1, ρ2] = [0.9, 0.72].

Simulations for 1,000 consecutive weeks are performed to address the CABG surgery admission control problem.

As a result of the increasing problem scale, DP-based algorithms are no longer capable of computing the optimal

policy within an acceptable CPU time. Therefore, current practice is to compute a myopic policy in which each

action only minimizes the cost of the present week. This policy serves as the benchmark for the resulting ADP*

policy and can easily be obtained by solving the MDP model with discount factor γ = 0. Since the action spaces of

realistic problems are considerably large, we employ Algorithm 1 to reduce the number of actions to be evaluated.

The simulation results for the myopic policy, as well as the resulting ADP* policies with N = 1000 and ε = 0.001,

are listed in Table 3.

Table 3: Experimental results of the CABG problem
γ λ β ω̄11 σ(ω11) ω̄12 σ(ω12) ω̄16 σ(ω16) ō σ(o) ē σ(e) c̄ σ(c) t̄ σ(t)

‖A∗‖
‖A‖ (‰)

0.00 — — 4.855 2.362 2.493 1.168 1.159 0.366 1.658 2.583 1.697 2.808 19008 12651 0.011 0.104 <0.001

0.99 0.0 10−3 4.387 2.048 2.203 0.942 1.030 0.171 2.028 3.565 1.877 2.996 17008 12138 62.762 152.343 0.012
1 4.197 1.927 2.111 0.862 1.008 0.089 2.183 3.916 1.947 3.249 16416 12813 76.698 349.497 0.929

103 3.160 1.314 1.565 0.496 1.000 0.000 2.417 4.744 1.889 3.265 12382 12177 55.780 349.204 4.936

0.5 10−3 4.773 2.323 2.456 1.147 1.150 0.357 1.620 2.647 1.461 2.532 18185 12754 68.964 157.676 0.002
1 4.150 1.881 2.089 0.840 1.000 0.000 2.140 4.147 1.844 3.164 15957 13295 79.743 219.785 1.299

103 3.206 1.571 1.585 0.832 1.000 0.000 2.295 4.122 1.952 3.063 12468 12605 78.136 165.882 1.577

1.0 10−3 2.035 0.857 1.001 0.011 1.000 0.000 3.195 5.697 2.258 3.775 11032 13272 95.347 293.532 1.753
1 2.031 0.841 1.000 0.000 1.000 0.000 2.965 5.522 2.241 3.666 10662 13080 134.539 186.913 3.705

103 2.052 0.879 1.003 0.053 1.000 0.000 3.151 5.561 2.413 4.200 11199 13730 94.664 198.483 4.194

From the data presented in Table 3, we can see that all the simulations can be finished within a reasonable CPU

time, and that computing the myopic policy (γ = 0.00) is much easier than computing the ADP* policy (γ = 0.99);

that is, the CPU time consumed by the former (t̄ = 0.011ms) is much less than that of the latter (t̄ ∈ (62, 135)ms).

However, the ADP* policy significantly outperforms the myopic policy in terms of reducing the total costs and the

patients’ waiting times. In comparison to the ADP* policy, which minimizes the expected total costs over an infinite
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horizon, the myopic policy optimizes the cost of each week separately, without considering the inter-week correlations.

As a result, it generally schedules fewer patients than does the ADP* policy and thereby leads to longer waiting

times. To be specific, the average waiting times of patients with urgency coefficients 1, 2 and 6 under the ADP*

policy are lower than those under the myopic policy by 31.4± 21.4%, 33.1± 21.7% and 11.9± 4.0%, respectively. As

the ADP* policy tends to schedule more patients than does the myopic policy, it increases the over-utilizations of

the ORs and SICU by 0.79± 0.51 hours per week and 0.29± 0.27 patient-days per week, respectively. However, the

total cost of the ADP* policy is 26.8±14.6% lower than that of the myopic policy. Table 3 also illustrates the effects

of the values of λ and β on the resulting policy. It can be observed that the patients’ waiting times and the total

cost are decreasing in λ and β; however, the over-utilizations of surgical resources are increasing in these parameters.

We record the sizes of A(s) and A∗(s) for each visited state in the simulations for the CABG surgery admission

control problem. We find that the sizes of A(s) of some states can be as large as 1.59× 1011, while the sizes of A∗(s)

determined by Algorithm 1 are no larger than 75. Table 3 also shows that the ratio of ‖A∗‖ to ‖A‖ in each simulation

is lower than 5‰, which is significantly lower than the values of ‖A∗‖/‖A‖ for the small-sized test problem solved in

Section 6.1. This fact implies that Algorithm 1 leads to greater improvements in computational efficiency for larger

problems.

To further explore how the scheduling policy can be influenced by the key parameters of the ADP* algorithm,

we analyze the sensitivity of several performance measures to the variances of λ and β. Figure 8 demonstrates the

experimental results for the CABG problem; it indicates that λ varies from 0.0 to 1.0 and β varies from 10−5 to

105. It can be observed that, when λ exceeds 0.8, the patients’ waiting times and the total cost sharply decrease,

regardless of the value of β; meanwhile, the over-utilizations of the ORs and SICU increase significantly. When

λ 6 0.8, the larger value of β results in lower cost and shorter waiting times for patients. However, it also leads to

greater overuse of the ORs and SICU. More importantly, no matter how the values of λ and β vary, the average cost

per week c̄ of the ADP* policy is always significantly lower than that of the myopic policy (refer to Table 3).
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Figure 8: Experimental results for the CABG test problem with variations in λ and β
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Figure 9 compares the evolutions of the parameter vector Θ during the simulations, using different values for λ

and β. The length of vector Θ for the CABG problem is Ξ = 20; we arbitrarily select the values of θ1 and θ11 to be

demonstrated in Figure 9. The first row of Figure 9 shows that the smaller value of β leads to a lower convergence

rate, and that the values of θ1 and θ11 converge especially slowly when β = 10−5. The second row of Figure 9

reveals that the values to which parameters θξ converge are increasing in line with the value of λ, which explains why

different values of λ result in different policies (refer to Table 3 and Figure 8). In terms of computational efficiency,

Figure 10(a) shows that the CPU time goes up as λ increases from 0.0 to 0.8, which implies that larger values of

λ require more CPU time before the convergence of Θ occurs. When 0.8 6 λ 6 1.0, the resulting policy tends to

schedule more patients in each decision; we can see in Figure 8 that patients’ waiting times are obviously shorter,

hence there are fewer patients on the waiting list and the action spaces of the involved states are relatively small.

Consequently, the CPU time significantly drops when λ is larger than 0.8. In addition, Figure 10(b) shows the

influence of β on computational efficiency. As illustrated in Figure 8, the resulting policies for 10−5 6 β < 1 and

1 6 β 6 105 are significantly different. Accordingly, the tendencies of t̄ in the two intervals are also different: t̄ is

increasing in β for β < 1 and decreasing in β for β > 1.
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Figure 9: Evolutions of Θ when solving the CABG problem with different values of λ and β

6.3 Experimental results of a realistically sized multi-specialty patient admission con-

trol problem

In order to validate the proposed algorithms’ capability to solve realistically sized problems, we consider a realistic

multi-specialty patient admission control problem that is derived from Min and Yih (2010b) and Neyshabouri and

Berg (2017) (with some reasonable modifications). The configuration of specialties is presented in Table 4. The
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Figure 10: Comparison of CPU time consumed by the ADP* algorithm when used with different values of λ and β

regular OR capacity Bj listed in the last column of Table 4 is computed according to the MSS presented in Figure

1 of Min and Yih (2010b). The MSS specifies the assignments of 32 surgical blocks to 9 specialties over a one-week

period. Then, given that the regular time length of each surgical block is 8 hours, the values of Bj can be computed.

The unit costs are [cb, cd, co, ce] = [50, 200, 1000, 1000] and the regular SICU capacity is 105 bed-days per week (15

recovery beds). The estimated availability rates for ORs and recovery beds are ρ1 = ρ2 = 0.6. According to Table 4,

we can calculate that the size of the state space is as large as 2.14× 10176. Given that this multi-specialty problem

is on a much larger scale than the previously solved test problems, the length of the simulation is shortened to

100 weeks. ADP* is employed as the solution technique and a myopic policy is computed as the benchmark. The

parameters of the ADP* algorithm are arbitrarily set as λ = 0.5, β = 1, N = 25, and ε = 0.01.

Table 4: Problem configuration for the multi-specialty test problem

Specialty j vj u Wju n̄ju max ñju d̄j
* σ(dj)

* l̄j
** σ(lj)

** Bj
*

ENT 1 1 1 20 10.00 25 1.23 0.38 0.10 0.10 48.00

OBGYN 2 2 1 15 4.00 15 1.43 0.44 2.00 2.00 24.00

3 6 0.50 4

ORTHO 3 2 1 15 10.00 25 1.78 0.54 1.50 1.50 48.00

3 6 2.00 10

NEURO 4 5 1 8 2.50 12 2.67 1.65 2.00 2.00 8.00

GEN 5 1 1 20 9.00 20 1.55 0.67 0.05 0.05 64.00

2 15 2.00 10

OPHTH 6 2 1 15 1.50 8 0.63 0.10 0.05 0.05 32.00

VASCULAR 7 4 1 10 1.00 6 2.00 1.03 3.50 3.50 16.00

2 5 2.50 12

4 2 0.50 4

CARDIAC 8 5 1 8 0.25 3 4.00 2.95 2.00 2.00 8.00

2 3 1.25 7

6 1 0.50 4

UROLOGY 9 3 1 12 2.00 10 1.07 0.75 0.80 0.80 8.00

2 6 0.50 4

* unit: hours; ** unit: days
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Tables 5 and 6 present the experimental results for the multi-specialty problem in detail. Table 5 shows that, in

comparison with the myopic policy (γ = 0.00), the ADP* policy (γ = 0.99) significantly shortens patients’ waiting

times, but leads to a slight increase in the overuse of ORs. In the specialties where the OR capacities are relatively

sufficient and patients do not spend much time in the ORs and SICU, such as ENT and OPHTH, patients wait for

one week at most, and there are few instances where ORs are overused. In comparison, in the specialties NEURO,

CARDIAC and VASCULAR, where the OR capacities are limited and expectations of surgery duration and LOS are

relatively large, many surgeries are delayed for more than one week and there is greater overuse of the ORs. From

Table 6 it can be seen that, compared to the myopic policy, ADP* reduces the total cost by two thirds, saves 9.03%

of CPU time, and increases the overuse of ORs by 1.378 hours per week on average.

Table 5: Experimental results of the multi-specialty problem: patients’ waiting time and overtime of ORs

γ Variable ENT
OBGYN ORTHO

NEURO
GEN

OPHTH
VASCULAR CARDIAC UROLOGY

u = 1 u = 3 u = 1 u = 3 u = 1 u = 2 u = 1 u = 2 u = 4 u = 1 u = 2 u = 6 u = 1 u = 2

0.00 ω̄ju 1.000 1.740 1.000 1.427 1.000 3.900 1.000 1.000 1.000 2.700 1.511 1.000 6.063 2.955 1.000 1.218 1.000
σ(ωju) 0.000 0.417 0.000 0.280 0.000 0.709 0.000 0.000 0.000 1.750 0.342 0.000 0.371 0.043 0.000 0.189 0.000
ōj 0.000 0.052 0.015 1.097 0.086 0.000 0.052 0.369 0.000

σ(oj) 0.000 0.284 0.145 2.062 0.604 0.000 0.291 0.941 0.000

0.99 ω̄ju 1.000 1.358 1.000 1.213 1.000 2.294 1.000 1.000 1.000 1.509 1.000 1.000 1.971 1.015 1.000 1.000 1.000
σ(ωju) 0.000 0.436 0.000 0.167 0.000 1.270 0.000 0.000 0.000 0.341 0.000 0.000 0.885 0.015 0.000 0.000 0.000
ōj 0.000 0.004 0.216 1.304 0.044 0.000 0.740 0.743 0.000

σ(oj) 0.000 0.039 0.903 1.989 0.229 0.000 1.707 7.738 0.000

Table 6: Experimental results of the multi-specialty problem: overuse of OR and SICU, cost, and CPU time

γ ō σ(o) ē σ(e) c̄ σ(c) t̄ σ(t)

0.00 1.672 2.381 7.913 9.027 63715 21485 729,490 1078,424

0.99 3.050 3.271 8.690 9.518 21012 11487 663,610 736,206

Figure 11 compares the evolutions of the key performance measures under the two policies (myopic and ADP*).

Figure 11(a) clearly shows that the ADP* policy leads to lower costs over most of the weeks shown. Moreover, since

the patients’ waiting times are shortened under the ADP* policy, the costs incurred by performing and delaying

surgeries (i.e., the patient-related costs) are much lower and there are significantly fewer patients on the waiting list,

as shown in Figures 11(b) and 11(c). In addition, we can observe from Figure 11(d) that ADP* consumes more

CPU time at the beginning of the simulation, because the parameter vector Θ is still far from convergence, whereas

computing the myopic policy requires more CPU time at the end of the simulation, since the size of the waiting list

and the number of actions to be evaluated continually increase over time.

7 Conclusion

This work deals with the admission control of elective patients. It considers uncertainty, dynamic patient priority

scores, and multiple capacity constraints. Sequential decisions are made at the end of each week that determine which

patients on a waiting list will be treated in the following week. To guarantee equity and efficiency, each patient on

the waiting list is assigned a dynamic priority score according to his/her urgency coefficient, actual waiting time,

and the relative importance of his/her specialty. The studied patient admission control problem is formulated as

an infinite-horizon MDP model. The objective is to minimize a cost function that assesses the costs of performing

and delaying surgeries as well as the expected costs incurred by the over-utilizations of the ORs and SICU. Given

that the problem scales of real-life situations are usually very large, solving the MDP model with traditional DP

algorithms is computationally intractable. Therefore, we adopt two measures to tackle the curses of dimensionality:

first, we perform an intensive structural analysis for the MDP model, reducing the number of actions to be evaluated
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Figure 11: Comparison of two policies for the multi-specialty patient admission control problem

(and thus drastically reducing the dimensionality of the action space); second, we develop a novel ADP algorithm

based on RLS–TD(λ) learning to tackle the dimensionalities of the state space and the outcome space.

In the numerical experiments, multiple test problems are solved to validate the efficiency and accuracy of the

proposed algorithms. The experimental results of a small-sized test problem show that, in comparison with con-

ventional DP-based algorithms, the ADP algorithm consumes significantly less CPU time and only leads to a slight

increase in the total costs, regardless of the changes in problem parameters. Further, our sensitivity analyses on the

parameters of the ADP algorithm, performed on a large-sized CABG test problem, reveal that the patients’ waiting

times and the total costs decrease in λ and β, while the over-utilizations of ORs and SICU increase. For all the

values of λ and β, the resulting ADP policy significantly outperforms the myopic policy in terms of waiting times

and total costs. Following this, we solve a multi-specialty patient admission control problem using the proposed

ADP algorithm and validate its capability to tackle realistically sized problems. Our experimental results also show

that Algorithm 1, proposed in Section 4, drastically reduces the number of actions to be evaluated and improves the

computational efficiency of all the employed algorithms.

In the future, three aspects of this work can be extended for further research. First, to model patient admission

control problems more realistically, stochastic durations and violations of the maximum recommended waiting times

can be explicitly incorporated into the MDP model. As the model properties proved in this paper may no longer hold

true and the computational burden will increase, further structural analyses and more efficient solution approaches

should be studied and applied to the extended MDP model. Second, we find in this work that the RLS–TD(λ)-

based ADP algorithm tends to increase the over-utilization of surgical resources and reduce patients’ waiting times.
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However, the exact impact of the ADP algorithm on the nature of the resulting policy is unclear, since the interactions

between the MDP model and the ADP algorithm are highly complex. Hence, an in-depth theoretical analysis in this

respect can be studied as part of future research. Third, the MDP model for patient admission control can easily be

combined with a mathematical programming model which optimizes the intra-week surgery-to-block assignments.

For example, J. Zhang et al. (2019b) have addressed a relatively simple advance surgery scheduling problem (single

specialty, single OR) using MDP and stochastic programming. They show that the resulting surgery schedules

significantly outperform those of a pure stochastic programming model. Obviously, the MDP model proposed in

this paper has big potential to improve the long-term quality of advance surgery scheduling, as the future costs are

mostly ignored in the commonly used pure mathematical programming models.
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Aringhieri, R., Landa, P., Soriano, P., Tànfani, E., & Testi, A. (2015). A two level metaheuristic for the operating

room scheduling and assignment problem. Computers & Operations Research, 54 , 21–34.

Astaraky, D., & Patrick, J. (2015). A simulation based approximate dynamic programming approach to multi-class,

multi-resource surgical scheduling. European Journal of Operational Research, 245 (1), 309–319.

Australian Institute of Health and Welfare. (2018). Australia’s health 2018. https://www.aihw.gov.au/getmedia/

7c42913d-295f-4bc9-9c24-4e44eff4a04a/aihw-aus-221.pdf.aspx?inline=true (retrieved May 17, 2019).

Banditori, C., Cappanera, P., & Visintin, F. (2013). A combined optimization–simulation approach to the master

surgical scheduling problem. IMA Journal of Management Mathematics, 24 (2), 155–187.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995). Learning to act using real-time dynamic programming. Artificial

Intelligence, 72 (1-2), 81–138.

Bonet, B., & Geffner, H. (2003). Labeled RTDP: Improving the convergence of real-time dynamic programming. In

Proceedings of Thirteenth International Conference on Automated Planning and Scheduling (Vol. 3, pp. 12–21).

Boyan, J. A. (2002). Technical update: Least-squares temporal difference learning. Machine learning , 49 (2-3),

233–246.

Centers for Medicare & Medicaid Services. (2018). National health expenditures 2017 highlights.

https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/

NationalHealthExpendData/Downloads/highlights.pdf (retrieved May 17, 2019).

Denton, B., Miller, A., Balasubramanian, H., & Huschka, T. (2010). Optimal allocation of surgery blocks to operating

rooms under uncertainty. Operations research, 58 (4-part-1), 802–816.

30

https://www.aihw.gov.au/getmedia/7c42913d-295f-4bc9-9c24-4e44eff4a04a/aihw-aus-221.pdf.aspx?inline=true
https://www.aihw.gov.au/getmedia/7c42913d-295f-4bc9-9c24-4e44eff4a04a/aihw-aus-221.pdf.aspx?inline=true
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/highlights.pdf
https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/highlights.pdf


Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and scheduling decisions under

uncertainty. Health care management science, 10 (1), 13–24.

Dios, M., Molina-Pariente, J. M., Fernandez-Viagas, V., Andrade-Pineda, J. L., & Framinan, J. M. (2015). A

decision support system for operating room scheduling. Computers & Industrial Engineering , 88 , 430–443.

Duma, D., & Aringhieri, R. (2019). The management of non-elective patients: shared vs. dedicated policies. Omega,

83 , 199–212.

Fei, H., Chu, C., & Meskens, N. (2009). Solving a tactical operating room planning problem by a column-generation-

based heuristic procedure with four criteria. Annals of Operations Research, 166 (1), 91.

Fei, H., Chu, C., Meskens, N., & Artiba, A. (2008). Solving surgical cases assignment problem by a branch-and-price

approach. International Journal of Production Economics, 112 (1), 96–108.

Fei, H., Meskens, N., & Chu, C. (2010). A planning and scheduling problem for an operating theatre using an open

scheduling strategy. Computers & Industrial Engineering , 58 (2), 221–230.

Fei, H., Meskens, N., Combes, C., & Chu, C. (2009). The endoscopy scheduling problem: A case study with two

specialised operating rooms. International Journal of Production Economics, 120 (2), 452–462.

Ferrand, Y., Magazine, M., & Rao, U. (2010). Comparing two operating-room-allocation policies for elective and

emergency surgeries. In Proceedings of the 2010 Winter Simulation Conference (pp. 2364–2374).

Ferrand, Y., Magazine, M., & Rao, U. (2014). Partially flexible operating rooms for elective and emergency surgeries.

Decision Sciences, 45 (5), 819–847.

Gerchak, Y., Gupta, D., & Henig, M. (1996). Reservation planning for elective surgery under uncertain demand for

emergency surgery. Management Science, 42 (3), 321–334.

Gocgun, Y., & Ghate, A. (2012). Lagrangian relaxation and constraint generation for allocation and advanced

scheduling. Computers & Operations Research, 39 (10), 2323–2336.

Green, L. V., Savin, S., & Wang, B. (2006). Managing patient service in a diagnostic medical facility. Operations

Research, 54 (1), 11–25.

Guerriero, F., & Guido, R. (2011). Operational research in the management of the operating theatre: A survey.

Health Care Management Science, 14 (1), 89–114.

Guido, R., & Conforti, D. (2017). A hybrid genetic approach for solving an integrated multi-objective operating

room planning and scheduling problem. Computers & Operations Research, 87 , 270–282.

Hashemi Doulabi, S. H., Rousseau, L.-M., & Pesant, G. (2016). A constraint-programming-based branch-and-price-

and-cut approach for operating room planning and scheduling. INFORMS Journal on Computing , 28 (3),

432–448.

Hosseini, N., & Taaffe, K. (2014). Evaluation of optimal scheduling policy for accommodating elective and non-

elective surgery via simulation. In Proceedings of the 2014 Winter Simulation Conference (pp. 1377–1386).

Huh, W. T., Liu, N., & Truong, V.-A. (2013). Multiresource allocation scheduling in dynamic environments.

Manufacturing & Service Operations Management , 15 (2), 280–291.

Jebali, A., & Diabat, A. (2015). A stochastic model for operating room planning under capacity constraints.

International Journal of Production Research, 53 (24), 7252–7270.

Jebali, A., & Diabat, A. (2017). A chance-constrained operating room planning with elective and emergency cases

under downstream capacity constraints. Computers & Industrial Engineering , 114 , 329–344.

Jonnalagadda, R., Walrond, E., Hariharan, S., Walrond, M., & Prasad, C. (2005). Evaluation of the reasons

for cancellations and delays of surgical procedures in a developing country. International journal of clinical

practice, 59 (6), 716–720.

Koppka, L., Wiesche, L., Schacht, M., & Werners, B. (2018). Optimal distribution of operating hours over operating

31



rooms using probabilities. European Journal of Operational Research, 267 (3), 1156–1171.

Lamiri, M., Xie, X., Dolgui, A., & Grimaud, F. (2008). A stochastic model for operating room planning with elective

and emergency demand for surgery. European Journal of Operational Research, 185 (3), 1026–1037.

Lamiri, M., Xie, X., & Zhang, S. (2008). Column generation approach to operating theater planning with elective

and emergency patients. IIE Transactions, 40 (9), 838–852.
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Appendix A Proof of Lemma 1

Proof. Let x1 = arg min f(x) and x2 = arg min g(x), then g(x1) > g(x2), hence

min f(x)−min g(x) = f(x1)− g(x2) > f(x1)− g(x1) > min[f(x)− g(x)] (A.1)
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thus the lemma is proved.

Appendix B Proof of Proposition 1

Proof. (i) If a0(s+ ∆j′u′w′) ∈ A(s), then by Lemma 1,

C0(s+ ∆j′u′w′)− C0(s) = min
a∈A(s)

C(s+ ∆j′u′w′ , a)− min
a∈A(s)

C(s, a)

> min
a∈A(s)

[C(s+ ∆j′u′w′ , a)− C(s, a)] = cdvj′u
′w′ > 0

(B.1)

Otherwise, a0(s+∆j′u′w′)∈A(s+∆j′u′w′)\A(s). Let s={njuw}, a0(s)={m0
juw} and a0(s+∆j′u′w′)={m′juw},

then we have m′j′u′w′ = nj′u′w′ + 1 and a0(s+ ∆j′u′w′)−∆j′u′w′ ∈ A(s). Since a0(s) minimizes C(s, a), then

C0(s)−C[s, a0(s+∆j′u′w′)−∆j′u′w′ ]

=C0(s)−Cp[s, a0(s+∆j′u′w′)]+(cb−cd)vj′u′w′−Ch[a0(s+∆j′u′w′)−∆j′u′w′ ] 6 0
(B.2)

As a result,

Cp[s, a0(s+∆j′u′w′)]−C0(s)>(cb−cd)vj′u′w′−Ch[a0(s+∆j′u′w′)−∆j′u′w′ ] (B.3)

Given that Ch[a0(s+ ∆j′u′w′)] > Ch[a0(s+ ∆j′u′w′)−∆j′u′w′ ], we have

C0(s+ ∆j′u′w′)− C0(s)

=Cp[s+ ∆j′u′w′ , a0(s+ ∆j′u′w′)] + Ch[a0(s+ ∆j′u′w′)]− C0(s)

=Cp[s, a0(s+ ∆j′u′w′)] + cdvj′u
′w′ + Ch[a0(s+ ∆j′u′w′)]− C0(s)

>cbvj′u
′w′ + Ch[a0(s+ ∆j′u′w′)]− Ch[a0(s+ ∆j′u′w′)−∆j′u′w′ ] > 0

(B.4)

As C0(s+ ∆j′u′w′)− C0(s) > 0 holds in all the possible cases, C0(s) is increasing in s.

(ii) By Definition 2, if a = {mjuw} and a′ = {m′juw} are comparable, then
∑Uj
u=1

∑Wju

w=1mjuw =
∑Uj
u=1

∑Wju

w=1m
′
juw

holds for any specialty j. Further, according to the model descriptions presented in Section 3, patients from

the same specialty have the same expectations of surgery duration and LOS. Hence by the cost function (4),

Ch(a) = Ch(a′).

(iii) Let σ = s −∆j′u′w′ = s′ −∆j′u′′w′′ and u′w′ < u′′w′′, then P (s) < P (s′). Let σ = {σjuw}, a0(s) = {ms
juw}

and a0(s′) = {ms′

juw}, then we discuss all the possible cases:

If a0(s′) ∈ A(s′)\A(σ), then ms′

j′u′′w′′ = σj′u′′w′′+1 and ms′

j′u′w′ 6 σj′u′w′ , thus a′ = a0(s′)−∆j′u′′w′′+∆j′u′w′ ∈
A(s). Since Ch(a′) = Ch[a0(s′)] by (ii) and C0(s) = mina∈A(s) C(s, a), then

C0(s′)− C0(s) = Cp[s
′, a0(s′)] + Ch[a0(s′)]− C0(s)

=Cp(s, a
′) + cbvj′(u

′′w′′ − u′w′) + Ch(a′)− C0(s) > C(s, a′)− C0(s) > 0
(B.5)

Otherwise, a0(s′) ∈ A(σ). We suppose that a0(s) ∈ A(s) \ A(σ), then ms
j′u′w′ = σj′u′w′ + 1 and ms

j′u′′w′′ 6

σj′u′′w′′ , thus a′ = a0(s)−∆j′u′w′+∆j′u′′w′′ ∈ A(s′). Since C0(s′) = mina∈A(s′) C(s′, a), and Ch(a′) = Ch[a0(s)]

by (i), then

C[s, a0(s)]− C[s, a0(s′)] = C(s′, a′) + (cb − cd)vj′(u′w′ − u′′w′′)− C[s′, a0(s′)]

> C(s′, a′)− C0(s′) > 0
(B.6)
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As C[s, a0(s)]−C[s, a0(s′)] > 0 contradicts the fact that a0(s) minimizes C(s, a), a0(s) ∈ A(s) \A(σ) does not

hold, hence a0(s) ∈ A(σ) holds when a0(s′) ∈ A(σ). Then by Lemma 1, we have

C0(s′)− C0(s) > min
a∈A(σ)

[C(s′, a)− C(s, a)] = cdvj′(u
′′w′′ − u′w′) > 0 (B.7)

To summarize, since C0(s′)− C0(s) > 0 holds in all the possible cases, then C0(s) is increasing in P (s).

Appendix C Proof of Proposition 2

Proof. (i) Since V π
∗

1 (s) = V π
∗
(s), we first prove that V π

∗

n (s) is increasing in s for n = 1, 2, ..., N . The proof is

given by backward mathematical induction:

For n = N , since V π
∗

N+1(s′) = 0 holds for any s′ ∈ S, then V π
∗

N (s) = mina∈A(s) C(s, a) = C0(s). C0(s) is

increasing in s by (i) of Proposition 1, so is V π
∗

N (s).

For n = k < N , suppose that V π
∗

k+1(s) is increasing in s, then we distinguish the following cases:

If π∗(s+ ∆j′u′w′) ∈ A(s), then by Lemma 1,

V π
∗

k (s+ ∆j′u′w′)− V π
∗

k (s) > min
a∈A(s)

[Qπ
∗

k (s+ ∆j′u′w′ , a)−Qπ
∗

k (s, a)]

= min
a∈A(s)

{
cdvj′u

′w′+γ

+∞∑
Ψ=000

PΨ[V π
∗

k+1(G
s+∆j′u′w′
a +Ψ)−V π

∗

k+1(Gsa+Ψ)]

}
>0

(C.1)

Otherwise, π∗(s+∆j′u′w′)∈A(s+∆j′u′w′)\A(s). Let s={njuw}, π∗(s)={m∗juw} and π∗(s+∆j′u′w′)={m+
juw},

then we have m+
j′u′w′ = nj′u′w′ + 1 and π− = π∗(s+ ∆j′u′w′)−∆j′u′w′ ∈ A(s), thus

V π
∗

k (s+ ∆j′u′w′)− V π
∗

k (s)

=C[s+ ∆j′u′w′ , π
−+ ∆j′u′w′ ] + γ

+∞∑
Ψ=000

PΨV
π∗

k+1(G
s+∆j′u′w′

π−+∆j′u′w′
+ Ψ)− V π

∗

k (s)

=C[s, π−] + cbvj′u
′w′ + Ch(π− + ∆j′u′w′)− Ch(π−) + γ

+∞∑
Ψ=000

PΨV
π∗

k+1(Gsπ− + Ψ)− V π
∗

k (s)

>C[s, π−] + γ

+∞∑
Ψ=000

PΨV
π∗

k+1(Gsπ− + Ψ)− V π
∗

k (s) = Qπ
∗

k (s, π−)− V π
∗

k (s) > 0

(C.2)

As V π
∗

k (s + ∆j′u′w′) > V π
∗

k (s) holds in all the two possible cases, the induction hypothesis is satisfied, thus

V π
∗

n (s) is increasing in s for n = 1, 2, ..., N . Therefore, V π
∗
(s) = V π

∗

1 (s) is increasing in s.

(ii) We employ backward mathematical induction to prove that V π
∗

n (s) is increasing in P (s) for n = 1, 2, ..., N :

For n = N , since ∀s′ ∈ S: V π
∗

N+1(s′) = 0, then V π
∗

N (s) = mina∈A(s) C(s, a) = C0(s). C0(s) is increasing in P (s)

by (iii) of Proposition 1, so is V π
∗

N (s).

For n = k < N , suppose that V π
∗

k+1(s) is increasing in P (s). Let σ = s−∆j′u′w′ = s′−∆j′u′′w′′ and u′w′ < u′′w′′,

then P (s) < P (s′). Similar to the proof of (iii) of Proposition 1, the following cases are considered:

If π∗(s′) ∈ A(s′) \ A(σ), then a′ = π∗(s′) − ∆j′u′′w′′ + ∆j′u′w′ ∈ A(s), and Ch(a′) = Ch[π∗(s′)] by (ii) of

Proposition 1, hence

V π
∗

k (s′)− V π
∗

k (s) = C[s′, π∗(s′)] + γ

+∞∑
Ψ=000

PΨV
π∗

k+1(Gs
′

π∗(s′) + Ψ)− V π
∗

k (s)

=C(s, a′) + cbvj′(u
′′w′′ − u′w′) + γ

+∞∑
Ψ=000

PΨV
π∗

k+1(Gsa′ + Ψ)− V π
∗

k (s) > Qπ
∗

k (s, a′)− V π
∗

k (s) > 0

(C.3)
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Otherwise, π∗(s′) ∈ A(σ). Suppose that π∗(s) ∈ A(s) \ A(σ), then a′ = π∗(s) − ∆j′u′w′ + ∆j′u′′w′′ ∈ A(s′).

Because P (Gsπ∗(s′) +Ψ) < P (Gs
′

π∗(s′) +Ψ), then V π
∗

k+1(Gsπ∗(s′) +Ψ) < V π
∗

k+1(Gs
′

π∗(s′) +Ψ). Given that Ch[π∗(s)] =

Ch(a′) by (ii) of Proposition 1, we have

V π
∗

k (s)−Qπ
∗

k [s, π∗(s′)] = C[s, π∗(s)]−C[s, π∗(s′)]+γ

+∞∑
Ψ=000

PΨ[V π
∗

k+1(Gsπ∗(s)+Ψ)−V π
∗

k+1(Gsπ∗(s′)+Ψ)]

>C(s′, a′)−C[s′, π∗(s′)]+(cb−cd)vj′(u′w′−u′′w′′)+ γ

+∞∑
Ψ=000

PΨ[V π
∗

k+1(Gs
′

a′+Ψ)−V π
∗

k+1(Gs
′

π∗(s′)+Ψ)]

>Qπ
∗
(s′, a′)− V π

∗

k (s′) > 0

(C.4)

As V π
∗

k (s) − Qπ∗k [s, π∗(s′)] > 0 contradicts the fact that π∗(s) minimizes Qπ
∗

k (s, a), π∗(s) ∈ A(s) \ A(σ) does

not hold, hence π∗(s) ∈ A(σ). Then by Lemma 1,

V π
∗

k (s′)− V π
∗

k (s) > min
a∈A(σ)

[Qπ
∗
(s′, a)−Qπ

∗
(s, a)]

= min
a∈A(σ)

{
cdvj′(u

′′w′′−u′w′)+γ

+∞∑
Ψ=000

PΨ[V π
∗

k+1(Gs
′

a +Ψ)−V π
∗

k+1(Gsa+Ψ)]

}
>0

(C.5)

Since V π
∗

k (s′)− V π∗k (s) > 0 holds in all the possible cases, the induction hypothesis is satisfied, thus V π
∗

n (s) is

increasing in P (s) for n = 1, 2, ..., N , hence V π
∗
(s) = V π

∗

1 (s) is increasing in P (s).

Appendix D Proof of Proposition 3

Proof. Let s = {njuw}, π∗(s) = {m∗juw} and (cd− cb)vj′u′w′ > cod̄j′ + ce l̄j′ . Suppose that nj′u′w′ −m∗j′u′w′ = x > 0,

then a′ = π∗(s) + x∆j′u′w′ ∈ A(s). By (4), we know that Ch(a′)− Ch[π∗(s)] 6 (cod̄j′ + ce l̄j′)x, then

C[s, π∗(s)]− C(s, a′) =(cd − cb)vj′u′w′x+ Ch[π∗(s)]− Ch(a′)

>[(cd − cb)vj′u′w′ − cod̄j′ − ce l̄j′ ]x > 0
(D.1)

Besides, since Gsπ∗(s) + Ψ > Gsa′ + Ψ, and V π
∗
(s) is increasing in s by (i) of Proposition 2, then V π

∗
(Gsπ∗(s) + Ψ)−

V π
∗
(Gsa′ + Ψ) > 0. Therefore,

Qπ
∗
[s, π∗(s)]−Qπ

∗
(s, a′) = C[s, π∗(s)]− C(s, a′) + γ

+∞∑
Ψ=000

PΨ[V π
∗
(Gsπ∗(s) + Ψ)− V π

∗
(Gsa′ + Ψ)] > 0 (D.2)

Since Qπ
∗
[s, π∗(s)]−Qπ∗(s, a′) > 0 contradicts the fact that π∗(s) minimizes Qπ

∗
(s, a), then nj′u′w′−m∗j′u′w′ = x > 0

does not hold, proving the proposition.

Appendix E Proof of Proposition 4

Proof. Let a = a′ + ∆j′u′w′ − ∆j′u′′w′′ and u′w′ < u′′w′′, then P (a) < P (a′) and P (Gsa + Ψ) > P (Gsa′ + Ψ), thus

V π
∗
(Gsa + Ψ) > V π

∗
(Gsa′ + Ψ) holds by (ii) of Proposition 2, hence

Qπ
∗
(s, a)−Qπ

∗
(s, a′) = (cb − cd)vj′(u′w′ − u′′w′′) + γ

+∞∑
Ψ=000

PΨ[V π
∗
(Gsa + Ψ)− V π

∗
(Gsa′ + Ψ)] > 0 (E.1)

As Qπ
∗
(s, a)−Qπ∗(s, a′) > 0 holds for P (a) < P (a′), the proposition is proved.
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