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Abstract

The inventory routing problem (IRP) is an integrated inventory and transportation planning

problem that jointly determines the replenishment schedules for a given set of retailers, and the

routing decisions for a supplier that distributes a product to the retailers over a finite planning

horizon typically consisting of multiple periods. In the classical IRP, retailers are assumed to accept

deliveries at any time during a given period. However, this assumption does not always hold in

practice. Although the supplier is the central decision maker, the retailers may also have operational

restrictions preventing them from receiving deliveries at arbitrary times. With this motivation, we

study the IRP with time windows and develop an exact algorithm to solve it. In particular, we

propose a new formulation and an efficient branch-price-and-cut algorithm, which, to the best of our

knowledge, is the first exact approach specifically designed for solving the IRPTW. Our formulation

involves both arc and route based variables to obtain an easier structure in the pricing problems. We

use valid inequalities –originally derived for the lot sizing problem– to strengthen our formulation.

The results of a computational study conducted on a set of newly generated benchmark instances

demonstrate the effectiveness of our algorithm, which is capable of identifying optimal or fairly good

solutions to medium and large problem instances in reasonable computation times.
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1 Introduction

The inventory routing problem (IRP) is an integrated inventory and transportation planning problem

that jointly determines the replenishment schedules for a given set of retailers, and the routing decisions

for a supplier that needs to distribute a product to the retailers over a finite planning horizon typically

consisting of multiple periods. Demands of the retailers in every period are assumed to be known and
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should be satisfied without any shortages. Deliveries to the retailers are made by a set of vehicles,

each with a limited capacity, through a distribution network. Replenishment policies of the retailers are

determined by the supplier. There are two well-known and frequently used policies in the literature:

the order-up-to level (OU) and the maximum level (ML) policies. Under the OU policy, the inventory

level of a retailer is set to a quantity specified by the retailer –known as the order-up-to level– whenever

replenishment occurs. Under the ML policy, the inventory level upon replenishment should not exceed,

but is allowed to be less than, the order-up-to level in any period. The objective of the IRP is to minimize

the total transportation and inventory holding costs.

Applications of the IRP can be observed in many companies and industries today due to its success

in reducing the operational costs. Studies such as Andersson et al. (2010), Christiansen (1999) (liquefied

natural gas distribution through ships), Dauzère-Pérès et al. (2007) (raw material distribution in the

paper industry), Mercer and Tao (1996) (food distribution to supermarkets) are based on some practical

applications of the problem.

Different IRP variants have been studied in the literature. The special case of the problem that

includes only one vehicle was studied by Archetti et al. (2007) and Solyalı and Süral (2011). In both of

these studies, the problem was solved by a branch-and-cut algorithm. Solyalı and Süral (2011) applied

the shortest-path reformulation of the lot sizing problem (Eppen and Martin, 1987) to the IRP with a

single vehicle. A similar approach was used by Avella et al. (2015) to derive tight reformulations for the

lot sizing subproblems that arise for each retailer. Their reformulation makes use of the special structure

of the benchmark instances and its size grows quickly for arbitrary demands under the ML policy.

There are a few studies on the exact solution methods for the multi-vehicle IRP. Coelho and Laporte

(2013) proposed a branch-and-cut algorithm to solve several variants of the problem such as the IRP with

transshipment and the IRP with consistency features. Adulyasak et al. (2013) developed formulations

of the IRP (with/without using vehicle indexed variables) under OU and ML policies. Archetti et al.

(2014) extended the formulations proposed by Archetti et al. (2007) and Solyalı and Süral (2011) for

the single vehicle IRP to the multi-vehicle case, and tested them on benchmark instances. The authors

conclude that the vehicle indexed formulations are superior to more compact flow formulations. The

branch-and-cut algorithm developed by Coelho and Laporte (2014) was the best one in terms of its

ability to solve larger problem instances until the branch-price-and-cut algorithm of Desaulniers et al.

(2016). The latter study introduced an extended IRP formulation based on “route delivery patterns”,

which was inspired by a previously proposed model for the split delivery vehicle routing problem by

Desaulniers (2010). Recently, Avella et al. (2017) introduced a generic family of valid inequalities based

on the single period substructure of the problem and solved the IRP by a branch-and-cut algorithm. This

algorithm outperformed the algorithms of Desaulniers et al. (2016) and Coelho and Laporte (2014) on

the benchmark instances.

All the studies mentioned above assumes that there are no time window restrictions of the retailers,

i.e. a retailer could be visited at any time of the day. This assumption is rarely satisfied in practice. For

instance, a supermarket that receives products from many different suppliers has to manage the operations

in its loading dock and may not accept deliveries at arbitrary times. There are also restrictions imposed
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by local authorities concerning the entry of delivery vehicles into certain zones during busy hours of

traffic. Consequently, the supplier has to take into account these restrictions in planning the timing of

the deliveries. This can be achieved by introducing time windows to the IRP.

Even though heuristic approaches have been proposed for variants of the IRP with time windows

(IRPTW) (see, e.g., Liu and Lee (2011)), we are not aware of any exact algorithm for this problem. In

this study, we develop a branch-price-and-cut algorithm to solve the IRPTW. We formulate the problem

using both arc and route based variables to obtain an easier structure in the pricing problem. We model

the capacity restrictions using an exponential family of constraints. Moreover, we use the valid inequalities

derived for the lot sizing problem to improve our formulation. We generate a set of benchmark instances

for the IRPTW based on the available instances for the vehicle routing problem with time windows

(VRPTW) and the IRP, which can be seen as special cases of the IRPTW. The computational results

reveal that our algorithm is able to solve instances including up to 50 retailers and 6 periods optimally,

and produce satisfactory solutions to the instances for which an optimal solution cannot be obtained

within the specified time limit.

The remainder of this paper is organized as follows. In Section 2 we provide a formal definition of the

IRPTW and introduce our formulation. We present the valid inequalities for this formulation in Section

3, and describe the proposed branch-price-and-cut algorithm in detail in Section 4. The results of our

computational experiments are given in Section 5, followed by the concluding remarks in Section 6.

2 Problem Definition and Formulation

Let n be the length of the planning horizon T = {1, . . . , n}. In each period t, the supplier, denoted by 0,

produces or receives a delivery of d0t units of the product, and uses a homogeneous fleet of vehicles with

capacity Q to supply a set of retailers V . The vehicles are unlimited in number, but there is a fixed cost

f associated with using a vehicle. The demand dit of retailer i ∈ V in period t ∈ T should be satisfied on

time. Each retailer i ∈ V has a stock capacity ui, an initial inventory of s̄i, and unit inventory holding

cost of hit for period t ∈ T . The deliveries must be planned so that retailer i ∈ V is visited within the

time interval [ei, li] where ei ≤ li. Here, we assume that the time windows are time-invariant, i.e., the

delivery time window of a retailer does not change from one period to another. This is a reasonable

assumption to facilitate planning for both the supplier and the retailers. The supplier has an initial stock

of s̄0, and a unit inventory holding cost of h0t for period t ∈ T . We assume that h0t ≤ hit for all i ∈ V
and t ∈ T . To simplify the presentation, let T0 = T ∪ {0} and V0 = V ∪ {0}.

The distribution network is represented by a directed graph G = (V0, A) where A = {(i, j) : i, j ∈
V0, i 6= j} is the set of arcs. The travel cost and the travel time for arc a ∈ A are denoted by ca and τa,

respectively.The vehicle routes for all periods should be determined by the supplier. Each retailer can be

visited at most once in any given period. The problem is to determine the retailers that will be served in

each period, the amounts to be delivered to them, and the routes of the vehicles that minimize the total

storage and transportation costs.

We propose a formulation –involving both arc and route based variables– for the IRPTW. As the
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delivery quantities are not known in advance, we call a route feasible if it starts and ends at the supplier,

visits each retailer at most once, and satisfies the time window restrictions of the retailers in the route.

To formulate the problem, we define the following decision variables.

sit: amount of inventory at node i ∈ V0 at the end of period t ∈ T0

qit: amount shipped from the supplier to retailer i ∈ V in period t ∈ T

ztr: 1 if route r ∈ R is used in period t ∈ T and 0 otherwise

xta: 1 if arc a ∈ A is traversed in period t ∈ T and 0 otherwise.

For any subset S ⊆ V , let δ+(S) be the set of outgoing arcs, i.e., arcs (i, j) with i ∈ S and j ∈ V0 \S,

and δ−(S) be the incoming arcs, i.e., arcs (i, j) with i ∈ V0 \ S and j ∈ S. For ease of notation, we use

xt(A′) =
∑
a∈A′ x

t
a for A′ ⊆ A, δ−(i) = δ−({i}) and δ+(i) = δ+({i}) for i ∈ V0.

The IRPTW can be formulated as follows:

min
∑
i∈V0

∑
t∈T

hitsit +
∑
t∈T

∑
r∈R

(f +
∑
a∈r

ca)ztr (1)

s.t. s0,t−1 + d0t =
∑
i∈V

qit + s0t t ∈ T (2)

si,t−1 + qit = dit + sit i ∈ V, t ∈ T (3)

si0 = s̄i i ∈ V0 (4)

sit + dit ≤ ui i ∈ V, t ∈ T (5)

xt(δ−(i)) = xt(δ+(i)) ≤ 1 i ∈ V, t ∈ T (6)

QtSx
t(δ−(S)) ≥

∑
i∈S

qit S ⊆ V, t ∈ T (7)

∑
r∈R:a∈r

ztr = xta a ∈ A, t ∈ T (8)

sit ≥ 0 i ∈ V0, t ∈ T (9)

qit ≥ 0 i ∈ V, t ∈ T (10)

xta ∈ {0, 1} a ∈ A, t ∈ T (11)

ztr ∈ {0, 1} r ∈ R, t ∈ T (12)

where QtS = min{Q,
∑
i∈S min{ui,

∑n
t′=t dit′}} for S ⊆ V and t ∈ T . Note here that there exists

an optimal solution with sin = 0 for all i ∈ V since h0t ≤ hit for t ∈ T . Such a solution satisfies

qit ≤ min{ui,
∑n
t′=t dit′} for i ∈ V and t ∈ T .

The objective function (1) minimizes the total inventory holding and routing costs. Constraints (2)

and (3) are the inventory balance equations for the supplier and the retailers, respectively. Constraints

(4) define the initial stock levels at each node. Constraints (5) impose the inventory upper bounds at

each retailer. Constraints (6) ensure that each retailer is visited at most once per period. Constraints

(7) are the capacity constraints: for any subset S ⊆ V , the total amount sent to the retailers in S cannot
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be larger than the total capacities of the vehicles that visit these retailers. Here, we strengthened this

constraint by replacing the capacity Q with QtS . Constraints (8) relate the z and x variables, and variable

domain restrictions are given by (9)–(12).

Formulation (1)–(12) involves an exponential number of variables and constraints. Hence, we devise

a branch-price-and-cut algorithm to solve it efficiently. Note that because we use arc based variables to

formulate the constraints (7), the resulting pricing problems have a less complicated structure. Moreover,

since the formulation contains the lot sizing problem as a subproblem for each retailer, we use the valid

inequalities derived for the lot sizing problem to improve our formulation. Before going into the details

of our branch-price-and-cut algorithm, we first present these inequalities in the next section.

3 Valid Inequalities

Since the IRP contains the lot sizing problem (LS) as a subproblem, valid inequalities derived for LS can

be utilized to strengthen the formulation (see, e.g., Solyalı and Süral (2011), Avella et al. (2015), and

Mahmutoğulları and Yaman (2019)).

Pochet and Wolsey (1994) describe the convex hull of the feasible solutions for the LS problem with

Wagner-Whitin costs using O(n2) inequalities and variables. Although the inequalities (will be referred

to as WW inequalities from now on) derived by the authors are not sufficient to describe the polyhedra

associated with more complex LS problems, they can still improve the initial formulations. The modified

non-trivial WW inequalities for our problem are as follows:

l∑
t=k

∑
a∈δ−(i)

xta ≥ d∗e
d̄ikl

min{Q, ui}
i ∈ V, 1 ≤ k ≤ l ≤ n s.t. dikl > ui (13)

where d̄i1l = di1l− s̄i, d̄ikl = dik−1,l−ui if k ≥ 2, and dikl =
∑l
t=k dit. The right-hand-side of (13) represents

the minimum number of visits that should be made to retailer i to satisfy the demand between periods

k and l, thus, inequality (13) defines a lower bound on the number of visits to i between every pair of

periods k and l. Since the number of inequalities (13) is O(n2|V |), they can be added to our formulation

a priori. Similar inequalities have also been proposed by Archetti et al. (2007) and Coelho and Laporte

(2014).

Due to the assumption on stock bounds in the IRP literature, and consequently constraints (5), the

inventory upper bound for retailer i in period t is ui − dit. Atamtürk and Küçükyavuz (2005) study LS

with stock upper bounds and develop two classes of facet defining inequalities which are also valid for

our problem. The valid inequalities of Atamtürk and Küçükyavuz (2005) modified for our problem are

as follows:∑
t∈S

qit ≤
∑
t∈S

min{di1,t−1 + ui − s̄i, di1l − s̄i, ditl}
∑

a∈δ−(i)

xta + sil (14)

S ⊆ [1, l], l ∈ T s.t. di1l > s̄i, i ∈ V

si,k−1 +
∑
t∈S

qit ≤ ui − di,k−1 +
∑
t∈S

min{dik−1,t−1, dik−1,l − ui, ditl}
∑

a∈δ−(i)

xta + sil (15)
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S ⊆ [k, l], 2 ≤ k ≤ l ≤ n s.t. dik−1,l > ui, i ∈ V∑
t∈S

qit ≤
∑
t∈S

(dik,t−1 + ui − s̄i)
∑

a∈δ−(i)

xta S ⊆ [1, n], i ∈ V (16)

si,k−1 +
∑
t∈S

qit ≤ ui − di,k−1 +
∑
t∈S

dik−1,t−1
∑

a∈δ−(i)

xta S ⊆ [k, n], 2 ≤ k ≤ n, i ∈ V

(17)

Inequalities (14)–(17) introduce upper bounds on the maximum amount that can be sent to a retailer

i ∈ V by setting the inventory level at the retailer to its upper bound ui − di,t at some periods, i.e., at

the end of period k − 1 in inequalities (14)–(15), and at the end of periods k − 1 and l in inequalities

(16)–(17). Considering the large number of inequalities (14)–(17), one can try to add a small subset of

them, or use a cutting plane approach to separate the violated ones on the fly. The separation problem

for these inequalities will be described in the next section.

The (l, S) inequalities of Barany et al. (1984) derived for the uncapacitated LS problem are also valid

for our problem, but they are dominated by the inequalities above, and we choose not to present them

here as they are not used in our computations.

Inequalities (13)–(17), which are due to demand satisfaction and capacity constraints, can be written

for a subset of time periods for each retailer separately. In addition to the LS substructure of our problem,

the single period subproblem of (1)–(12) includes a special case of the single node flow set, and therefore

flow cover inequalities of Pochet and Wolsey (1994), and Van Roy and Wolsey (1986) can also be employed

to improve the formulation. Since we do not use them in our experiments, they are not provided here

either.

4 Branch-price-and-cut algorithm

As mentioned earlier, there are exponentially many variables and constraints in the formulation (1)–(12).

Therefore, we propose a branch-price-and-cut approach to solve it, that is, we iterate between a column

generation algorithm and a cutting plane algorithm to solve the LP relaxation –referred to as the master

problem (MP)– at each node of the branch-and-bound tree.

We include the capacity constraints (7) only for singletons (for |S| = 1) in the initial LP relaxation:

min{Q, ui,
n∑
t′=t

dit′}xt(δ−(i)) ≥ qit i ∈ V, t ∈ T (18)

Since ztr ≤ 1 for r ∈ R, t ∈ T is implied by xta ≤ 1 for a ∈ A, t ∈ T , we drop them from the LP

relaxation.

At each node of the solution tree, we first check if the node can be pruned by bound. If not, we start

the column and cut generation procedures to solve the relaxation. If the master problem is infeasible (due

to the constraints added to the model to enforce branching decisions), we prune the node by infeasibility.

Otherwise, we continue with column generation. When the pricing algorithm does not return any negative

reduced cost columns, we check whether it is possible to prune the node by bound. If not, we move on to
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the cutting plane phase. If one or more violated cuts are identified, we add them and return to column

generation. Else, we check if the solution is integer. If yes, we prune the node by optimality. Otherwise,

we branch. In the sequel, we explain how we generate columns and cuts as well as our branching scheme.

4.1 Column generation

Let R̄ ⊂ R be a subset of the routes for which there exists a feasible solution to the MP with ztr = 0 for

all r ∈ R \ R̄, t ∈ T . The LP relaxation of the formulation (1)–(12) that includes only the routes in R̄

is called the restricted master problem (RMP). As mentioned earlier, we relax the capacity constraints

(7) except the ones with |S| = 1, and add them on the fly. Therefore, with respect to the MP at a given

node of the solution tree, we are in fact solving a relaxation during each column generation phase. Let

RMP-R denote the relaxed RMP, which includes only the capacity constraints that have been separated

so far.

At each iteration of the column generation phase, first the RMP-R is solved, and using the optimal

dual solution, we check for every period t ∈ T whether there exists a variable ztr (a route) with negative

reduced cost. This is also known as a column generation iteration or a pricing iteration, and we will use

these two terms interchangeably from this point forward. If we associate the dual variable vector σ with

the set of constraints (8), the pricing problem, for each t ∈ T , seeks to find (if any) r ∈ R \ R̄ such that∑
a∈r

wta < 0 (19)

where

wta =

ca − σ
t
a + f if a ∈ δ+(0)

ca − σta otherwise
for a ∈ A.

Thus, the pricing problem for period t is an elementary shortest path problem with time window con-

straints (ESPPTW), where the cost of arc a is set to wta, i.e., the goal is to find an elementary path of

shortest length starting and ending at the depot and respecting the time window restrictions.

4.1.1 Solving the pricing problems

To solve the pricing problems efficiently, we employ the state-space augmenting technique proposed by

Boland et al. (2006), which is essentially an iterative label setting approach. Given a directed graph with

arbitrary arc lengths and a specified pair of source and sink nodes s and t, the elementary shortest path

problem with resource constraints is the problem of finding the shortest elementary resource-feasible path

from s to t. In the ESPPTW, we have a single resource arising from the time window restrictions. Hence,

an elementary resource-feasible path in our case is one that is free of cycles (i.e., elementary) and that

respects the availability of time resource. A common way to ensure that elementary paths are obtained

in a label setting algorithm is to use node-visit resources, which were introduced by Feillet et al. (2004).

A node-visit resource can be considered as a resource having unit capacity, which is saturated upon a

visit to the associated node.
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Label setting is a dynamic programming approach which constructs resource-feasible paths originating

at the source node s and ending at the sink node t. Starting with the trivial partial path {s}, the

unprocessed partial paths are extended along all feasible arcs to create new (partial) paths. The extension

of a partial path along an arc is infeasible if the resulting path would not be resource-feasible or if it

cannot be augmented to reach the sink node within the available resource limits. The efficiency of a

label setting algorithm highly depends on the use of dominance rules that are helpful in eliminating

those partial paths that cannot appear in any optimal path, and storing and extending only the so-called

efficient or non-dominated partial paths.

Every partial path is linked with a state determined by its cost and the resource consumption along

the path. The state corresponding to a partial path is represented using a label, i.e., a vector that has

as many components as the number of resources plus one (to store the cost). Hence, the size of the

state-space increases with the number of resources.

In order to limit the size of the state-space and to accelerate the solution procedure, we start with

a state-space relaxation in which node-visit resources are initially not present, as suggested in Boland

et al. (2006). After a label setting iteration is completed, if an elementary optimal path is found, it

means that the problem is solved to optimality. Otherwise, we compute the number of times each node

is visited in an optimal path, and introduce a node-visit resource for the node that takes the largest

number of visits among others. The label setting procedure is iteratively executed, each time starting

with the original resources and all the node-visit resources introduced during the previous iterations,

until an elementary optimal path is returned at the end of an iteration. The advantage of this state-space

augmenting approach is that the number of node-visit resources actually required to obtain a least-cost

elementary path is usually much smaller than the number of nodes in the graph.

4.1.2 Heuristic pricing

Although employing a straightforward implementation of the state-space augmenting technique can be

more efficient compared to using an off-the-shelf software to solve the pricing problems, it may still

be (too) time-consuming. Fortunately, to solve the master problem, it is not necessary to solve the

pricing problems optimally at every column generation iteration; finding (at least one) negative reduced

cost column suffices –as long as one exists. Returning any negative reduced cost column rather than a

most-negative one for each pricing problem may lead to a smaller improvement in the objective value of

the RMP-R, and consequently, more column generation iterations may have to be performed to achieve

optimality. Nonetheless, the reduction in solution time in each pricing step typically reduces the overall

computation time. Identifying most negative reduced cost columns is usually needed only towards the

end of a column generation phase, because few, if any, negative reduced cost columns exist at that

time. Hence, in our implementation, we attempt to solve a pricing problem optimally only if no negative

reduced cost columns can be detected heuristically, and even in that case, we terminate the state-space

augmenting algorithm as soon as a pre-specified number of negative reduced cost columns (for that pricing

problem) is obtained.

The above idea is easy to apply thanks to the constructive nature of label setting. In general, when
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solving a pricing problem, many elementary negative cost paths are discovered during the first few

label setting iterations. We collect elementary negative cost paths found in each iteration and stop the

algorithm prematurely, i.e., possibly before an optimal path has been identified, and return all elementary

negative cost paths accumulated up to that point. Another useful idea to speed up column generation

stems from the following observation: as the dual values are updated after each pricing iteration, some

elementary paths with a non-negative cost in one iteration may have a negative cost in a subsequent

iteration. Therefore, at the end of every column generation iteration, we store, in a column pool, all

non-dominated elementary paths with non-negative costs constructed in the last label setting iteration

performed during the solution process of each pricing problem. At the beginning of the next column

generation iteration, we first evaluate the columns in the pool to see if they (now) have a negative

reduced cost with respect to their associated pricing problems. We limit the size of the column pool to

ensure that it does not become too costly to explore. Every time new columns are added to the pool

after it becomes full, the oldest columns are removed until the desired pool size is reached.

We also implement a truncated version of the state-space augmenting approach, which essentially

serves as a heuristic to detect negative reduced cost columns quickly. Rather than maintaining all non-

dominated labels and their associated partial paths, we keep only a small number of such labels at each

node to accelerate the search procedure. In particular, we allow storing up to a pre-specified number of

efficient labels per node. Once the number of labels at any node hits the limit, every time a new efficient

label with smaller cost compared to at least one of the existing labels at that node is detected, it replaces

the one having the largest cost. This can facilitate faster detection of negative cost elementary paths by

means of reducing the number of labels treated at each label setting iteration. Note that excluding a

part of the search space may come at the expense of performing more iterations, i.e., there is a trade-off

between the number of efficient labels maintained and the number of label setting iterations performed

by the state-space augmenting approach.

A column generation/pricing iteration can be summarized as follows: for each pricing problem, we

try to identify negative reduced cost columns first by exploring the column pool, then by invoking the

truncated-search version of the state-space augmentation algorithm, and finally by invoking the full-search

version of the state-space augmentation algorithm when the other approaches fail to detect any negative

reduced cost column. To control the time spent in column generation iterations even further, we terminate

the solution process of any pricing problem as soon as a predetermined number of elementary negative

cost paths (in regard to that pricing problem) has been found. Based on some initial experiments,

our parameter choices are as follows: when solving the ESPPTW corresponding to any period, (1)

we terminate the state-space augmenting algorithm as soon as five negative reduced cost columns are

constructed, (2) we store at most five labels in truncated-search mode, and (3) we limit the size of the

column pool by 1000.

We would like to note here that when applying full-search version of the state-space augmentation

algorithm to solve the pricing problem associated with period t ∈ T , we keep track of the minimum cost

of the elementary paths detected during the search, which gives an upper bound on the optimal value of

the ESPPTW, and the cost of the optimal path obtained at the end of each label setting iteration, which
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gives a lower bound on the optimal value of the ESPPTW. Once the gap between these bounds is closed,

we can conclude that the pricing problem corresponding to period t has been solved optimally, i.e., there

is no need to continue with label setting iterations thereafter.

Finally, as mentioned earlier, the state-space augmenting algorithm starts without any node-visit

resources. However, the set S of critical nodes, i.e., the nodes for which a node-visit resource have

been introduced during a pricing iteration, are likely to be visited more than once in subsequent pricing

iterations, and initializing the algorithm with no node-visit resources (i.e., with S = ∅) at every pricing

iteration may therefore result in an increase in the number of label setting iterations. To prevent this

issue, we retain S throughout the column generation process at each node of the search tree, and clear it

only after the master problem solve at the node is completed as done in Ozbaygin et al. (2017).

4.2 Cutting planes

When the column generation phase terminates, the relaxation of the MP (which includes only a subset

of inequalities (7)) is solved to optimality. Provided that the optimal value is lower than the best upper

bound found so far, the next step is to check whether the optimal solution of the relaxed MP satisfies

the rest of the capacity constraints, i.e., the inequalities (7) that are excluded from the MP. To achieve

this, we solve a separation problem which either establishes that no violated capacity constraint exists,

or identifies and returns at least one such inequality.

The separation problem decomposes into n minimum cut problems, one for each t ∈ T . In particular,

given the optimal values of the variables x and q obtained at the end of a column generation phase, for

every period t, we construct the corresponding support graph Gt = (V0 ∪ {0′}, At), where 0′ is a dummy

node, and At = {a ∈ A : xta > 0} ∪ {(i, 0′) : i ∈ V } is the set of arcs. We set the capacity of arc (i, 0′)

with i ∈ V to qit and the capacity of the remaining arcs a to Qxta. The capacity of the minimum cut

separating the nodes 0 and 0′ on this graph is given by

Q
∑

a∈δ−(S)

xta +
∑
i∈V \S

qit.

If we add
∑
i∈V \S qit to both sides of a weaker version of the capacity constraints (7) where QtS is replaced

by Q, we get

Q
∑

a∈δ−(S)

xta +
∑
i∈V \S

qit ≥
∑
i∈V

qit S ⊆ V, t ∈ T.

Therefore, if the capacity of the minimum cut of the graph Gt –separating the nodes 0 and 0′– is greater

than or equal to
∑
i∈V qit, then no violated constraints are identified for period t. Otherwise, we add the

inequality (7) defined by the nodes in S, where 0′ ∈ S and (V0 \S, S) is the node partition corresponding

to the minimum cut.

Separation of the capacity constraints (7) must be performed in order to end up with a solution that

is feasible for the MP. However, when no violated capacity cuts are detected at a cutting plane iteration,

we can still look for and add other valid inequalities to strengthen the relaxed MP. To this end, we

also consider the separation of inequalities (14)–(17), which can be easily solved by inspection for each

10



retailer i and period pair (k, l) that satisfies the conditions given in (14)–(17). For example, to separate

inequalities (14), given a solution (x̃, q̃), if q̃it > min{di1,t−1 +ui− s̄i, di1l− s̄i, ditl}
∑
a∈δ−(i) x̃

t
a, then t will

be added to the set S for t = 1, . . . , l.

As long as at least one violated inequality is found during the cutting plane phase, it is added to

the relaxed MP, which is then solved by re-invoking the column generation procedure. Otherwise, the

solution at hand is optimal for the MP.

4.3 Initializing RMP-R at the root node of the search tree

A delivery schedule where all retailers are visited in each period is feasible with respect to the IRPTW as

long as the number of vehicles is large enough. Such a delivery schedule can be constructed by finding a

feasible solution to the VRPTW given the demands and the time windows of the retailers, and repeating

it in each period (since the demands and the time windows are time-invariant). Although this solution

may be far from optimum as it does not consider the possibility of delivering altogether an amount

that would meet the demand at a given retailer for several periods, we adopt this approach to provide

our algorithm with a starting solution. To find a feasible VRPTW solution, we use the free software

Heuristiclab (Klempous et al., 2014).

4.4 Branching

The optimal solution of the master problem at a given node of the solution tree may be fractional. In

that case, we need to branch, and update the master problem as well as the pricing problems at the child

nodes according to the branching decisions.

Traditionally, branching is performed on the arc flow variables in vehicle routing problems, and it

usually works well in a single period setting. However, since the planning horizon spans multiple periods

in inventory routing, branching on the arc flow variables may slow down the convergence of the algorithm.

Hence, we devise a hierarchical branching scheme in which we first attempt to branch on the retailers,

and then on the arcs. In particular, we first check if there exists i ∈ V and t ∈ T with fractional xt(δ−(i))

value. If we can find such i and t, then we define the child nodes by setting xt(δ−(i)) = 1 in one branch,

and xt(δ−(i)) = 0 in the other. Otherwise, we look for a ∈ A and t ∈ T for which xta is fractional. If such

an arc is identified, we define one child node with xta = 1, and another with xta = 0. Our preliminary

analyses showed that the branch-price-and-cut algorithm converges much faster using this hierarchical

strategy, which is therefore much more efficient compared to the conventional arc branching.

When a branching decision is implemented at a node of the solution tree, the columns and the cuts

that are present in the final RMP-R associated with that node are inherited to its children after a filtering

step. The cuts (i.e. constraints (7)) are globally valid, i.e., they remain valid throughout the entire tree.

Hence, they are passed to the child nodes without any filtering. However, for a child node, there may

be columns in the last solved RMP-R that do not comply with the branching decision defining the child

node. We note here that an important advantage of using arc based variables for branching is that even

though we may have to modify the master problem to enforce branching decisions, the structure of the
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pricing problems does not change.

To ensure compatibility with a fix retailer type of branching decision, i.e., xt(δ−(i)) = 1 for some i ∈ V
and t ∈ T , we do not have to eliminate any columns coming from the parent, but we add xt(δ−(i)) = 1

as a constraint to the master problem of the corresponding child node. Otherwise, it is not possible to

force the retailer i to be visited in period t. Notice that in this case, there is no need to modify the

pricing problems, because all columns generated at any pricing iteration will comply with the branching

decision.

On the other hand, if a remove retailer type of branching decision is executed, i.e. xt(δ−(i)) =

0, the resulting child node should not contain any columns in its master problem where retailer i is

visited in period t. Therefore, such columns are not inherited from the parent node. Moreover, in the

pricing problem corresponding to period t, we eliminate all incoming arcs of retailer i so that no columns

containing i in period t are generated during the solution process. Consequently, there is no need to

include the constraint xt(δ−(i)) = 0 in the master problem.

If all retailers in every period have integer inflow in a fractional solution, we choose an arc a and a

period t with fractional xta value. For the child node defined by the fix arc branching decision, i.e., xta = 1,

the columns that are inherited from the parent node are those that use arc a = (i, j) in period t, or that

do not visit either of the nodes i and j in period t. Moreover, in the pricing problem corresponding to

period t, we get rid of all outgoing arcs of node i and all incoming arcs of node j except for the arc (i, j)

itself. In this way, all columns generated will be consistent with the branching decision. Nevertheless, to

guarantee that the vehicle flow on arc a is equal to 1 in period t, we also have to introduce the restriction

xta = 1 to the master problem.

The way in which we ensure compatibility in case of a remove arc type of branching decision is similar

to that for remove retailer decisions. More specifically, we do not pass any columns that involve arc a in

period t to the child node, we eliminate arc a when solving the pricing problem of period t, and there is

no need to add xta = 0 to the master problem explicitly.

The rule based on which the retailer/arc and the period for branching is selected can also have a

significant impact on the performance of the branch-price-and-cut algorithm. A widely adopted strategy

is to select the most fractional variable, i.e, the one with value closest to 0.5. We employ a different

approach, which usually performed better in our preliminary experiments. Given a fractional solution,

we compute, for each retailer (arc) and each period, the number of columns containing that retailer

(arc). We select the period, among others, in which a retailer (an arc) appears most frequently, and that

particular retailer (arc). In case of ties, we choose retailer i (arc a) and period t for which the value

xt(δ−(i)) (xta) is closest to 0.5. If there are still multiple options, we break ties by picking the last retailer

(arc) and period pair encountered during our search.

4.5 Artificial columns

When a branching decision is executed and a new child node is defined accordingly, the columns inherited

from the final RMP-R of the parent node (after filtering) may not be sufficient to guarantee the existence

of a feasible solution to the initial RMP-R associated with the child node. To supply the initial RMP-
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R with a starting solution, we introduce a set of artificial columns, which depends on the sequence of

branching decisions leading to the current node. The reason why we cannot use the same set of artificial

columns at every node of the solution tree is that the master problem at distinct nodes can contain

different constraints (added to enforce different branching decisions).

At the root node, we define an artificial column of the form 0 − i− 0 for each retailer i ∈ V and for

each period t ∈ T . At deeper nodes of the tree, every time a fix arc decision is executed, e.g. to force

arc (i, j) to be used in period t, we pass the artificial columns coming from the parent node, merge the

two columns containing i and j (for period t) along the arc (i, j), and use the rest as is. A small example

with four retailers and a single period is provided in Figure 1 below where the set of routes next to each

node of the solution tree represents the artificial columns added to the initial RMP-R associated with

that node.

Figure 1: Artificial columns for an example with four retailers and a single period

It is important to note here that with the addition of branching related constraints (to fix retail-

ers/arcs), the master problem associated with some nodes of the tree can turn out to be infeasible. In

those situations, artificial columns do not help, and we prune the node by infeasibility. Otherwise, the

artificial columns guarantee the existence of a starting basis, and they never appear in the final solution

since we assign a very high cost to those columns.

5 Computational Experiments

In this section, we report the detailed results of our computational study with the proposed branch-price-

and-cut algorithm (BP&C) on a large set of newly generated IRPTW instances.

All tests were performed on a virtual machine running Intel Xeon processor E5-2640 v4 at 2.40 GHz
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with 16GB of RAM. The algorithm have been implemented in Java using the libraries JGraphT (Michail

et al. (2020)) and jORLib (Kinable et al. (2016)), and CPLEX 12.7. We allow at most four threads to

run in parallel during certain steps of the algorithm. In particular, at a column generation iteration,

jORLib can parallelize the solution of pricing problems depending on the number of threads available.

Furthermore, we let CPLEX use up to four threads whenever it is invoked. Notice that this does not mean

all four threads will be employed the entire time, jORLib manages the search tree and parallelization

is enabled when solving the pricing problems. Finally, we adopt a depth-first search strategy in our

implementation.

Next, we present the specifications of the problem instances we used in our computational experiments.

5.1 Test Instances

The test instances are generated on the basis of the VRPTW instances of Solomon (1987) and the IRP

instances of Archetti et al. (2007).

The x and y coordinates, demand, and time window of each node are taken from R105, R109 and

R201 instances of Solomon (1987). These three classes of problem instances have different time window

characteristics as it can be seen from Table 1: R105 and R109 have shorter scheduling horizons (230 for

both) compared to R201 (1000). Different from Solomon (1987), we assume that the service times are

equal to zero for all retailers. To compare the time window restrictions and determine the difficulty levels

of these instance classes, we compute the ratio
∑TW

t=1 γ
+
t

(|V |−1)TW , where TW is the length of the tightest time

window that covers the time windows of all retailers, γ+t = max{0, γt − 1} with γt being the number of

retailers whose time windows include time point t. We call this ratio as the time window density, which

essentially provides an indication of how much the time windows of the nodes in a problem instance

overlap. For example, if there exist three retailers with time windows [1, 10], [5, 10] and [3, 8], then the

time window density of this instance will be 10/20 = 0.50. If the time windows were [1, 5], [5, 10] and

[10, 15], the density would be 0, whereas for [1, 5], [1, 5] and [1, 5], it would be 1. Based on the time window

densities of these three instance classes given in Table 1, we argue that the IRPTW instances generated

based on R109 are much harder than the others, which, as we shall see later, is also supported by our

computational results presented in the next two subsections. Note that our algorithm can also solve the

inventory routing problem without time windows by defining large enough time windows. However this

does not make much sense as one can use a more effective pricing algorithm if time windows do not exist.

R105 R109 R201

Time window of the supplier [0, 230] [0, 230] [0, 1000]

Minimum time window length 30 37 27

Average time window length 30 59 116

Maximum time window length 30 83 212

Time window density for 100 retailers 0.15 0.28 0.11

Table 1: Time window characteristics of different problem instances
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Similar to Archetti et al. (2007) and Desaulniers et al. (2016), the demand of each retailer is assumed

to be constant over time, i.e. dit = di, t ∈ T, i ∈ V . The capacity of each vehicle is given by
⌈

3
2m

∑
i∈V di

⌉
for m ∈ {2, 3, 4} in R105 and R109 instances. Since R201 instances have longer scheduling horizons, we

replaced the multiplier 3
2 by 5

2 in these instances to ensure that the vehicle capacity is not too restrictive

relative to time window constraints, thereby allowing more retailers to be visited in the same route as

long as their time windows permit. We assume that there is no limit on the number of vehicles available

at the supplier, and the fixed cost of using each vehicle is zero. The latter assumption is based on the

observation that regardless of whether the fixed cost of using a vehicle is taken to be a positive number

or zero, the solutions we obtain did not change in our tests, mainly because the transportation costs

satisfy the triangle inequality. The transportation costs and travel times are taken to be equal to one

another, and computed by solving all pairs shortest path problem on a complete directed graph in which

arc lengths correspond to Euclidean distances rounded to nearest integer values.

A quantity equal to the total demand of all retailers is made available at the supplier at the beginning

of each time period, i.e., d0t = d0 =
∑
i∈V di, t ∈ T . The inventory upper bound for each retailer is

randomly generated by setting ui = αidi and selecting α randomly from the set {2, 3} or {1, 2, 3}. The

initial stock levels are set to s̄0 =
∑
i∈V ui at the supplier, and s̄i = ui−di at the retailers. The unit cost

of holding inventory at retailer i is randomly generated in the intervals [0.03, 0.05] -low - and [0.3, 0.5]-

high-, and is set to 0.03 and 0.3 at the supplier for these intervals, respectively. Note that, in this way,

we ensure that h0 ≤ hi, i ∈ V , which implies that keeping inventory at the supplier is at least as cheap

as keeping the same inventory at the retailers. Thus, we know that there exists an optimal solution to

the IRPTW such that the ending inventory level at each retailer is zero at the end of the last period.

Each instance is labeled as Y −n−{l, h}−m− ib, where Y is the number of retailers, n is the number

of periods, the attribute {l, h} denotes the level of the inventory holding costs (low or high), m is an

integer determining the vehicle capacity, and ib ∈ {1, 2} is an attribute indicating the inventory upper

bound at the retailer: 1 and 2 stand for the sets {2, 3} or {1, 2, 3}, respectively.

The instances with ib = 1 have the same inventory bound settings with Archetti et al. (2007), in

which the inventory bound (ui) of each retailer is selected randomly from the set {2di, 3di} and the

initial inventory level (s̄i) is set to ui − di. However, different from Archetti et al. (2007), we assume

that sufficiently many vehicles are available at the supplier location. Therefore, in these instances, first

period’s demand can be satisfied from the inventory at each retailer, and there exists an optimal solution

in which no delivery takes place within the first period since the inventory holding costs are positive, the

transportation costs are time-invariant, and the vehicles are not limited in number. Actually, this means

that an n period problem instance can be reduced to an n − 1 period problem instance when ib = 1.

To consider a more general setting, we introduce another instance class with ib = 2 where the inventory

bound of each retailer is selected randomly from the set {di, 2di, 3di}, i.e., there may be retailers with

zero initial inventory and they have to be visited in every period.

All test instances generated for the IRPTW are available upon request from the corresponding author.
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5.2 Results for Different Enhancements

First, we carried out an experiment in which several ideas to enhance the performance of our BP&C

algorithm are implemented and tested on a set of small IRPTW instances so that optimal or near optimal

solutions can be obtained for larger instances in reasonable computation times.

We experimented with the WW inequalities (13) for each retailer and every pair k, l of periods, the

most violated inequalities of (14)–(17) for each retailer (only at the root node of the solution tree), and

the (l, S) inequalities derived for the lot sizing problem. Among these, the utmost improvements were

observed by the inclusion of inequalities (14)–(15).

Figure 2: Average root gap closed by the valid inequalities in BP&C

Moreover, to achieve better upper bounds early on in the solution process, as soon as the column

and cut generation terminates at the root node of the search tree, i.e., the master problem is solved to

optimality at the root, we solve the integer version of the current RMP-R, which contains all the columns

and cuts that have been generated so far, via branch-and-cut. We refer to this mixed integer program

as rootIP, and store the capacity cuts (7) added while solving the rootIP, which are later included in the

master problem associated with deeper nodes of the tree.

We set the time limit to 1800 seconds, and evaluate the efficacy of the above mentioned ideas on

relatively small problem instances with 10 or 20 retailers and 3 or 6 periods. For the sake of brevity, we

report only the results achieved with the enhancements that proved to be most useful, and hence, later

employed when solving larger problem instances. In Tables 2–4, the results with our implementation of

BP&C before and after adding the valid inequalities (14)–(15), and additionally, solving the rootIP are

presented.

In Tables 2–4, BUB stands for best upper bound available when the BP&C algorithm terminates,

which is equal to the optimal value of a problem instance if it can be solved within the time limit. Gap

represents the percentage root gap which is computed as (z̄ − z)/z̄, where z̄ is the best upper bound

achieved considering all three implementations of the algorithm and z is the best lower bound obtained

at the root node (which is equal to the optimal value of the linear programming relaxation of the problem
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instance upon solving the master problem at the root). Time represents the solution time (in seconds) if

the instance is solved within the time limit, otherwise we use “TL” to indicate that the algorithm hits the

time limit. rootIP represents the upper bound obtained by solving the rootIP, and rTime shows the total

time (in seconds) elapsed, from the instant the execution starts, until the end of the rootIP solve. Since

the rootIP can be solved rather quickly via CPLEX, we do not report rootIP solution times separately

(we include that when reporting the solution time for each instance). Besides, we use N/A to indicate

that an optimal solution is identified at the root node of the search tree without solving the rootIP. Node,

pricing and cutting columns include the number of nodes explored in the solution tree, the number of

pricing and cutting iterations performed, respectively.

The differences between the root gaps of BP&C with and without the valid inequalities show that

the formulation can be significantly improved by adding the cuts (14) – (15). To demonstrate the

improvements clearly, for each instance, we compute the root gap reduction accomplished by the valid

inequalities through the ratio (zc − z)/(z̄ − z), where zc and z represent the lower bounds at the root

node with and without the inequalities, and z̄ is the best known upper bound for the problem instance

under consideration. We group the instances based on the instance class they belong to, the number

of periods, the capacity of each vehicle as well as the initial inventory setting, and report the average

root gap reductions in Figure 2 for each instance group. According to Figure 2, the valid inequalities

strengthen the lower bounds by more that 75% in all groups, and for 19 (out of 24) instance groups

the average improvements are larger than 95%. The root gap reductions are smaller when the vehicle

capacities and initial inventories are larger. The improvements slightly decrease as we increase the number

of periods: for 3 period instances, the average root gap reductions are 97%, 93%, and 98% for r105, r109,

and r201 instances, respectively, whereas for the 6 period instances, the corresponding improvements

are 95%, 90%, and 98%. We observe the least improvements in R109 instances which are the hardest

instances considered in our computational experiments. After the inclusion of valid inequalities, 8, 5 and

7 instances of R105, R109, and R201, respectively, are solved at the root node (without branching).

BP&C algorithm terminates by reaching the time limit in 16, 13 and 16 instances of R105, R109 and

R201, respectively. After the enhancements, we can solve most of these instances to optimality in very

short times: only 3 of R105 and 6 of R109 instances could not be solved within the time limit of 1800

seconds. But for those instances, the final gaps are reduced by 90% and 86% on the average. Besides,

for the instances solved to optimality by BP&C, the average solution time is decreased by 95%. The

improvement with respect to solution is depicted in Figure 3, where the average solution times of both

implementations (initial and the best) for the given instance groups are plotted. Note that only the

instances solved to optimality within the time limit are considered in this figure.

Tables 2–4 also reveal that the upper bounds identified by solving the rootIP are notably close to the

optimal values of the instances solved within the time limit; the average gap is about 0.13% between the

two values. On top of that, an optimal solution of the rootIP is found almost instantaneously in most

cases, the average time is 1 second across all instances. Solving the rootIP yields remarkable performance

improvements to our algorithm, which can also be observed by comparing the solution times with and

without the rootIP throughout the Tables 2–4.
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Figure 3: Average solution times of BP&C with and without the improvements

As a result of using the valid inequalities (14)–(15) and seeking stronger upper bounds via solving

the rootIP, both the best lower bound and the best upper bound at the root node are significantly

improved. This enables finding optimal solutions in smaller computation times by exploring fewer nodes

and performing fewer column generation and cutting plane iterations, as can be observed from Tables 2–4:

the numbers of nodes explored, pricing and cutting iterations are all reduced by 91-92% on the average.

Note that the smallest improvements are again observed in the R109 instances, which is consistent with

our observation in Section 5.1 on their difficulty level.

In the next section, we use a set of larger problem instances to test the fastest performing BP&C

implementation based on our observations regarding the small instances.

5.3 Results for Larger Problem Instances

In this part, we present the results of our second experiment, conducted on a set of medium and large

problem instances with 30, 50, or 100 retailers, and 3 or 6 periods, consistent with the existing literature

on IRP such as Avella et al. (2017), Desaulniers et al. (2016), Archetti et al. (2014). Different from

before, here we set the time limit to two hours for BP&C, and consider the instances with m = 4, i.e.

vehicles have smaller capacities, when |V | ∈ {50, 100}. Based on our first experiment, we allow CPLEX

to run at most 1800 seconds to solve the rootIP with the hope of attaining better upper bounds early on

in the search.

The results of this experiment are reported in Tables 5–7. In addition to rTime, we also provide the

solution time of rootIP itself when solved to optimality within the time limit under the column “Time”

under rootIP, otherwise we use “TL” to indicate that CPLEX hits the time limit of 1800 seconds allocated

to solve the rootIP.

We are able to solve all 30 retailer-6 period, 50 retailer-3 period instances of R105 and R201 to
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optimality, the average solution times are 1186s and 613s for R105, and 774s and 97s for R201, respectively.

We observe that it takes longer to solve the instances with low inventory holding costs and smaller stock

capacities, or high inventory holding costs and larger stock capacities. Note that all R201-50-3 instances

with ib = 1, i.e. high inventory upper bounds, are solved at the root node without the need to solve the

rootIP.

Among the large R105 and R201 instances, six of them (three in each group) involving 50 retailers

and 6 periods can be solved optimally, with average solution times of 1258s and 207s, respectively. The

average final gap is 2.22% across the other instances in the two groups (0.84% for R105, and 3.61% for

R201 instances).

Out of all R109 instances (medium and large), only six of them can be solved to optimality within the

time limit. However, for the remaining 38 instances for which the algorithm terminated upon reaching

the time limit, we observe that the final gap is less than 2% in most cases, and 2.17% on the average. The

largest percentage gap values are observed in the 100 retailer instances with low inventory holding costs,

which can be regarded as quite large instances considering the state of the art in the IRP literature. The

average final gaps for the instances that cannot be solved to optimality are given in Figure 4.

Figure 4: Average final gaps for the instances terminated due to the time limit

One of the key factors in the success of our algorithm is the high quality of the solutions obtained at

the root node by solving the rootIP. According to our computational results, the average gap between the

optimal values and the upper bounds produced by the rootIP is around 0.18% considering the instances

for which an optimal solution is found and the rootIP is solved during the search. A similar result applies

also to the instances that could not be solved to optimality within two hours, in 66% of all cases, the

best upper bound reported is found by solving the rootIP. For these instances, the average time spent

after the root node of the solution tree is around 4500 seconds, and the root gap is 2.87% on the average.

The main takeaway here is that solutions of acceptable quality can in fact be obtained reasonably quickly

using our BP&C algorithm.

We observe that the difficulty of a problem instance depends on its parameter configurations. Our

analyses show that the problem instances in R109 class are harder compared to the other two classes.
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We believe that this is due to higher time window density of this instance group which is discussed in

Section 5.1. As one might expect, the problem difficulty increases with the number of retailers and the

number of periods. We observe that the performance of our algorithm is affected more by the number of

retailers than it is by the number of periods. The inventory upper bound and initial inventory settings

of the retailers also have an impact on the problem difficulty. As discussed in Section 5.1, in our problem

setting, an instance with ib = 1 can be reduced to an n − 1 period instance, where n represents the

number of periods in the original problem. This observation implies that instances with ib = 2 –the more

general setting we introduced– may be more difficult than the instances with ib = 1. On the other hand,

when ib = 2, if there exists a retailer i with ui = di, then di should be sent to i in each period, i.e. qit = di

for all t. In other words, the lot sizing problem for i is trivial, but still, a route that visits i should be

determined for each period. According to the solution times and the root gaps reported in Tables 2–7,

despite a few exceptional cases, instances with ib = 2 are harder than the ones with ib = 1 in general.

Another important parameter is the level of inventory holding costs. We observe that for the instances

with lower inventory holding costs, the solution times (when the problem is solved to optimality) or the

final gaps (when the algorithm terminates due to the time limit) are larger in general. When the inventory

holding costs are low, the trade-off between inventory and transportation costs may be amplified, which

in turn may cause difficulties in proving optimality. In our solutions, when the inventory costs are high,

the delivery schedule involves a greater number of routes in total, which is not surprising since delivering

in small quantities frequently to a retailer may be cheaper than delivering large quantities less often and

increasing the inventory levels at the retailer. Finally, we note that the optimal values do not change with

the vehicle capacities, which implies that the time windows of the retailers are typically more restrictive

than the vehicle capacities for our larger test instances.

6 Conclusion

We have introduced a new formulation for the IRPTW that includes both arc and route based variables,

strengthened our formulation using valid inequalities derived for the lot sizing problem, and developed an

efficient branch-price-and-cut algorithm to solve it. To the best of our knowledge, ours is the first exact

approach specifically designed for solving the IRPTW. The results of our computational experiments

clearly demonstrate the efficacy of our solution approach, which is able to obtain optimal or fairly good

solutions to medium and large problem instances in reasonable computation times.

We observe that the existing lot sizing inequalities are very effective in improving the formulation,

thereby, boosting the algorithmic performance. Hence, new valid inequalities for the IRPTW may be

worth investigating in the future. Another direction for further research may be to work on adapting the

proposed BP&C algorithm to solve the production routing problem with time windows, a generalization

of the IRPTW, where production quantities at the supplier are also decision variables.
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Table 5: Results for larger R105 instances

Instance Gap Time BUB
rootIP

rTime Node Pricing
Cutting

BUB Time (cap; vi)

30-6-l-2-1 0.57 1527.03 1605.45 1605.45 0.68 5.97 1,833 14,574 933 (0; 245)

30-6-l-3-1 0.57 1221.26 1605.45 1605.45 0.57 8.28 1,367 9,586 799 (110; 238)

30-6-l-2-2 0.39 4599.88 2330.47 2341.47 7.57 12.76 8,979 61,570 5019 (0; 163)

30-6-l-3-2 0.39 1596.56 2330.47 2331.05 1.9 6.98 3,079 20,774 1639 (20; 163)

30-6-h-2-1 0.14 335.18 4363.24 4363.24 0.45 4.75 447 3,475 239 (3; 206)

30-6-h-3-1 0.14 116.56 4363.24 4363.24 0.99 7.25 165 1,186 132 (45; 212)

30-6-h-2-2 0.16 49.23 4447.41 4448.41 1.35 5.79 73 799 50 (0; 139)

30-6-h-3-2 0.16 41.20 4447.41 4448.41 1.33 5.78 63 684 44 (1; 139)

50-3-l-2-1 0.97 168.36 1065.99 1066.99 1.26 14.04 159 2,423 91 (0;97)

50-3-l-3-1 0.97 270.53 1065.99 1065.99 0.77 12.14 245 3,950 131 (0;97)

50-3-l-4-1 0.97 230.58 1065.99 1067.99 0.98 14.22 243 3,281 144 (11;99)

50-3-l-2-2 0.72 1985.00 1878.47 1878.86 0.48 8.62 2,255 26,469 1,145 (0;50)

50-3-l-3-2 0.72 1458.82 1878.47 1878.75 0.46 9.00 1,555 19,931 799 (0;52)

50-3-l-4-2 0.72 2135.50 1878.47 1888.93 0.62 8.30 2,385 29,936 1,241 (0;51)

50-3-h-2-1 0.30 317.00 3421.65 3422.65 1.33 12.60 325 4,680 176 (0;78)

50-3-h-3-1 0.30 287.27 3421.65 3421.65 0.92 10.62 271 3,966 148 (2;83)

50-3-h-4-1 0.30 330.12 3421.65 3423.65 1.14 26.31 351 4,228 203 (17;78)

50-3-h-2-2 0.10 46.74 3615.14 3616.14 0.32 7.77 41 692 25 (0;39)

50-3-h-3-2 0.10 71.94 3615.14 3617.14 0.48 8.45 65 908 42 (0;40)

50-3-h-4-2 0.10 55.84 3615.14 3616.14 0.31 8.20 53 756 32 (0;39)

50-6-l-2-1 0.58 TL 2614.15 2617.52 97.1 150.26 3,039 20,864 1,546 (0;366)

50-6-l-3-1 0.48 TL 2611.54 2611.54 40.86 82.46 3,385 23,219 1,715 (2;381)

50-6-l-4-1 0.68 TL 2616.65 2616.65 71.23 130.26 2,317 18,744 1,233 (76;381)

50-6-l-2-2 0.30 TL 3884.94 3884.94 8.18 33.60 4,478 30,772 2,277 (0;236)

50-6-l-3-2 0.23 TL 3881.96 3881.96 15.78 41.83 3,885 26,050 1,959 (0;245)

50-6-l-4-2 0.20 TL 3880.96 3880.96 14.81 43.21 3,939 25,765 1,997 (10;244)

50-6-h-2-1 0.26 TL 7316.38 7316.38 36.02 75.73 3,061 22,008 1,555 (0;356)

50-6-h-3-1 0.29 TL 7318.38 7318.38 46.52 88.34 3,089 24,443 1,573 (7;346)

50-6-h-4-1 0.28 TL 7317.53 7317.53 65.51 109.32 2,180 17,776 1,217 (122;355)

50-6-h-2-2 0.10 1425.07 7364.06 7366.06 7.96 36.85 719 5,311 391 (0;185)

50-6-h-3-2 0.10 1240.09 7364.06 7366.06 5.14 37.62 657 4,375 353 (0;196)

50-6-h-4-2 0.10 1109.44 7364.06 7366.06 2.12 29.89 607 4,504 336 (0;199)

100-3-l-2-1 1.37 TL 1681.47 1727.38 321.54 1571.84 572 13,051 311 (0;181)

100-3-l-3-1 1.37 TL 1681.47 1727.38 334 1575.54 570 12,948 311 (0;181)

100-3-l-4-1 1.37 TL 1681.47 1727.38 318.43 1584.91 575 13,134 312 (0;181)

100-3-l-2-2 2.18 TL 2822.39 2822.39 93.94 569.55 429 9,009 245 (0;119)

100-3-l-3-2 2.18 TL 2822.39 2822.39 95.86 590.93 430 9,063 245 (0;119)

100-3-l-4-2 2.18 TL 2822.39 2822.39 92.47 559.93 439 9,215 252 (0;119)

100-3-h-2-1 0.37 TL 6392.08 6430.08 356.91 1131.85 671 15,438 378 (0;153)

100-3-h-3-1 0.37 TL 6392.08 6430.08 357.03 1116.09 650 15,027 368 (0;153)

100-3-h-4-1 0.37 TL 6392.08 6430.08 357.64 1107.30 643 14,860 364 (0;153)

100-3-h-2-2 0.83 TL 6097.67 6097.67 122.44 584.75 413 9,066 234 (0;102)

100-3-h-3-2 0.83 TL 6097.67 6097.67 122.08 582.41 386 8,537 218 (0;102)

100-3-h-4-2 0.83 TL 6097.67 6097.67 121.85 578.57 397 8,777 225 (0;102)
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Table 6: Results for larger R109 instances

Instance Gap Time BUB
rootIP

rTime Node Pricing
Cutting

BUB Time (cap; vi)

30-6-l-2-1 1.83 TL 1463.39 1469.39 25.57 39.238 5,230 49,665 2,652 (10;222)

30-6-l-3-1 1.78 TL 1462.61 1466.21 24.2 41.043 3,360 30,750 1,872 (226;224)

30-6-l-2-2 3.13 TL 2104.44 2104.44 7.39 16.253 7,225 77,631 3,639 (0;161)

30-6-l-3-2 3.13 TL 2104.44 2104.44 3.54 12.281 5,479 71,776 2,773 (7;161)

30-6-h-2-1 0.43 2848.52 4218.96 4223.8 6.19 17.14 2,063 16,044 1,047 (3;211)

30-6-h-3-1 0.64 TL 4227.8 4227.97 12.52 27.933 3,243 33,824 1,823 (214;206)

30-6-h-2-2 1.05 TL 4208.41 4221.48 4.6 13.249 7,282 64,110 3,670 (0;145)

30-6-h-3-2 1.37 TL 4221.96 4221.96 5.28 13.941 801 22,443 13,635 (20;145)

50-3-l-2-1 1.19 3796.01 927.99 932.99 6.63 88.248 1,259 21,775 637 (0;79)

50-3-l-3-1 1.19 3852.46 927.99 932.99 6.24 87.101 1,203 21,213 613 (3;79)

50-3-l-4-1 1.19 6768.9 927.99 946.99 6.61 83.374 1,795 37,670 946 (40;85)

50-3-l-2-2 1.29 TL 1644.15 1664.93 6.79 42.25 1,914 25,176 1,002 (0;70)

50-3-l-3-2 1.29 TL 1644.15 1664.93 6.63 42.033 1,867 24,611 977 (0;70)

50-3-l-4-2 1.29 TL 1644.15 1664.93 6.64 41.506 1,975 25,808 1031 (0;70)

50-3-h-2-1 0.33 1573.37 3283.65 3288.65 4.63 63.051 591 8,867 303 (0;71)

50-3-h-3-1 0.33 1523.61 3283.65 3288.65 4.61 62.862 591 8,867 303 (0;71)

50-3-h-4-1 0.91 TL 3302.65 3308.01 15.79 261.862 1787 42,088 996 (90;79)

50-3-h-2-2 0.82 TL 3392.04 3405.48 1.55 31.494 2,238 29,568 1,164 (0;61)

50-3-h-3-2 0.82 TL 3392.04 3405.48 1.56 32.154 2,206 29,162 1,150 (0;61)

50-3-h-4-2 0.82 TL 3392.04 3405.48 1.54 32.87 2,213 29,255 1,153 (0;61)

50-6-l-2-1 1.82 TL 2259.34 2259.34 413.17 626.719 1,042 12,073 548 (0;353)

50-6-l-3-1 1.82 TL 2259.34 2259.34 253.84 437.308 1,195 12,668 625 (8;356)

50-6-l-4-1 1.93 TL 2262.02 2262.02 640.36 992.558 707 7,961 445 (157;361)

50-6-l-2-2 2.16 TL 3397.62 3397.62 27.49 116.36 1,346 14,550 710 (0;219)

50-6-l-3-2 2.28 TL 3401.7 3401.7 65.74 155.948 1,314 14,789 696 (3;219)

50-6-l-4-2 2.63 TL 3413.88 3413.88 267.34 360.483 1,288 13,479 685 (20;219)

50-6-h-2-1 0.67 TL 6971.14 6971.14 457.73 622.649 1,163 11,685 612 (0;340)

50-6-h-3-1 0.55 TL 6962.44 6965.04 295.49 524.236 950 10,161 516 (26;331)

50-6-h-4-1 0.88 TL 6985.61 6985.61 TL 2144.529 437 5,911 355 (230;336)

50-6-h-2-2 1.28 TL 6904.37 6904.37 30.73 138.717 1,232 15,479 662 (0;195)

50-6-h-3-2 1.28 TL 6904.37 6904.37 56.16 165.955 1,109 12,325 599 (2;195)

50-6-h-4-2 1.49 TL 6918.48 6918.48 143.16 252.926 1,023 12,558 563 (27;195)

100-3-l-2-1 4.72 TL 1497.47 1497.47 586.39 6196.169 10 1,843 13 (0;156)

100-3-l-3-1 4.72 TL 1497.47 1497.47 659.11 6218.141 9 1,778 12 (0;156)

100-3-l-4-1 4.72 TL 1497.47 1497.47 619.66 6254.332 9 1,794 12 (0;156)

100-3-l-2-2 6.5 TL 2465.97 2465.97 TL 4202.564 32 1,611 37 (0;140)

100-3-l-3-2 6.5 TL 2465.97 2465.97 TL 4325.815 31 1,608 36 (0;140)

100-3-l-4-2 6.5 TL 2465.97 2465.97 TL 4286.594 31 1,606 36 (0;140)

100-3-h-2-1 1.14 TL 6208.08 6208.08 257.18 5258.251 19 1,530 23 (0;126)

100-3-h-3-1 1.14 TL 6208.08 6208.08 259.88 5644.868 20 1,532 24 (0;126)

100-3-h-4-1 1.14 TL 6208.08 6208.08 279.58 5523.729 21 1,540 25 (0;126)

100-3-h-2-2 2.14 TL 5720.27 5720.27 1082.23 4072.555 32 1,648 37 (0;107)

100-3-h-3-2 2.14 TL 5720.27 5720.27 1006.87 4158.464 33 1,660 38 (0;107)

100-3-h-4-2 2.14 TL 5720.27 5720.27 1003.17 4049.972 32 1,652 37 (0;107)
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Table 7: Results for larger R201 instances

Instance Gap Time BUB
rootIP

rTime Node Pricing
Cutting

BUB Time (cap; vi)

30-6-l-2-1 0.55 1625.15 1577.79 1584.45 3.97 14.27 1,307 12,810 681 (0; 227)

30-6-l-3-1 0.55 3132.50 1577.79 1581.45 3.71 13.19 2,603 25,843 1,319 (5; 226)

30-6-l-2-2 0.11 77.59 2296.47 2298.14 1.36 9.54 101 710 71 (0; 164)

30-6-l-3-2 0.11 809.23 2296.47 2306.39 3.96 11.83 1,021 8,820 546 (0; 157)

30-6-h-2-1 0.23 29.86 4341.48 4345.68 2.49 10.82 17 245 19 (0; 211)

30-6-h-3-1 0.23 502.81 4341.48 4345.68 2.01 11.48 471 4,633 257 (5; 215)

30-6-h-2-2 0.00 8.49 4410.99 NA NA NA 1 119 9 (0; 134)

30-6-h-3-2 0.00 7.57 4410.99 NA NA NA 1 122 9 (0; 133)

50-3-l-2-1 0.00 75.72 1039.99 NA NA NA 1 558 4 (0;93)

50-3-l-3-1 0.00 74.38 1039.99 NA NA NA 1 558 4 (0;93)

50-3-l-4-1 0.00 73.21 1039.99 NA NA NA 1 558 4 (0;93)

50-3-l-2-2 0.48 125.24 1857.23 1859.89 1.29 38.75 37 709 28 (0;55)

50-3-l-3-2 0.48 109.07 1857.23 1859.89 1.33 37.93 37 709 28 (0;55)

50-3-l-4-2 0.48 107.86 1857.23 1859.89 1.32 38.15 37 709 28 (0;55)

50-3-h-2-1 0.00 70.11 3395.65 NA NA NA 1 485 4 (0;72)

50-3-h-3-1 0.00 82.90 3395.65 NA NA NA 1 485 4 (0;72)

50-3-h-4-1 0.00 69.85 3395.65 NA NA NA 1 485 4 (0;72)

50-3-h-2-2 0.15 123.55 3594.45 3600.45 1.12 33.03 41 778 27 (0;43)

50-3-h-3-2 0.15 120.97 3594.45 3600.45 1.13 33.21 41 778 27 (0;43)

50-3-h-4-2 0.15 124.78 3594.45 3600.45 1.09 32.91 41 778 27 (0;43)

50-6-l-2-1 0.77 TL 2572.14 2586.17 170.56 359.27 1,047 12,964 592 (0;382)

50-6-l-3-1 0.77 TL 2572.14 2586.17 173.37 363.13 1,046 12,961 591 (0;382)

50-6-l-4-1 0.68 TL 2569.62 2586.17 171.32 363.00 1,106 13,060 644 (3;382)

50-6-l-2-2 0.38 TL 3845.46 3848.85 26.37 119.76 1,998 20,908 1,050 (0;211)

50-6-l-3-2 0.38 TL 3845.46 3848.85 26.24 121.73 2,005 20,975 1,053 (0;211)

50-6-l-4-2 0.38 TL 3845.46 3848.85 25.85 119.01 1,965 20,558 1,031 (0;211)

50-6-h-2-1 0.17 TL 7268.4 7276.72 24.76 247.04 1,273 12,411 657 (0;337)

50-6-h-3-1 0.17 TL 7268.4 7276.72 24.91 251.78 1,266 12,326 654 (0;337)

50-6-h-4-1 0.20 TL 7270.58 7277.58 31.66 254.71 1,003 12,827 607 (34;337)

50-6-h-2-2 0.02 211.91 7317.22 7317.22 2.7 87.64 27 574 29 (0;209)

50-6-h-3-2 0.02 207.76 7317.22 7317.22 2.68 90.25 27 574 29 (0;209)

50-6-h-4-2 0.02 200.01 7317.22 7317.22 2.72 87.78 27 574 29 (0;209)

100-3-l-2-1 8.47 TL 1558.81 1558.81 TL 7805.11 1 1,797 4 (0;156)

100-3-l-3-1 8.40 TL 1557.7 1557.7 TL 7704.58 1 1,797 4 (0;156)

100-3-l-4-1 8.47 TL 1558.81 1558.81 TL 7741.34 1 1,797 4 (0;156)

100-3-l-2-2 9.11 TL 2536.88 2536.88 TL 4752.67 25 1,641 33 (0;141)

100-3-l-3-2 12.76 TL 2643.01 2643.01 TL 4743.19 24 1,639 32 (0;141)

100-3-l-4-2 11.25 TL 2598.12 2598.12 TL 4637.30 28 1,669 36 (0;141)

100-3-h-2-1 2.03 TL 6264.48 6264.48 TL 6395.58 5 1,581 9 (0;125)

100-3-h-3-1 2.03 TL 6264.48 6264.48 TL 6260.01 6 1,583 10 (0;125)

100-3-h-4-1 2.03 TL 6264.48 6264.48 TL 6080.79 6 1,588 10 (0;125)

100-3-h-2-2 2.44 TL 5738.16 5738.16 TL 4992.40 23 1,704 27 (0;106)

100-3-h-3-2 2.44 TL 5738.16 5738.16 TL 4966.08 21 1,678 25 (0;106)

100-3-h-4-2 2.41 TL 5736.16 5736.16 TL 5029.22 21 1,681 25 (0;106)
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