
On path ranking in time-dependent graphs

Tommaso Adamo, Gianpaolo Ghiani, Emanuela Guerriero,
Dipartimento di Ingegneria per l’Innovazione,

Università del Salento, Lecce, Italia

Abstract

In this paper we study a property of time-dependent graphs, dubbed ”path ranking invari-
ance”. Broadly speaking, a time-dependent graph is ”path ranking invariant” if the ordering
of its paths (w.r.t. travel time) is independent of the start time. In this paper we show that,
if a graph is path ranking invariant, the solution of a large class of time-dependent vehicle
routing problems can be obtained by solving suitably defined (and simpler) time-independent
routing problems. We also show how this property can be checked by solving a linear program.
If the check fails, the solution of the linear program can be used to determine a tight lower
bound. In order to assess the value of these insights, the lower bounds have been embedded into
an enumerative scheme. Computational results on the time-dependent versions of the Travel-
ling Salesman Problem and the Rural Postman Problem show that the new findings allow to
outperform state-of-the-art algorithms.

Keywords: time-dependent routing, path ranking invariance.

1 Introduction

Vehicle routing is concerned with the design of ”least cost” routes for a fleet of vehicles, possibly
subject to side constraints, such as vehicle capacity or delivery time windows. According to Toth
and Vigo (2014), the vast majority of the literature is based on the assumption that the data used
to formulate the problems do not depend on time. Only in recent years there has been a flourishing
of scholarly work in a time-dependent setting (Gendreau et al. (2015)).

The main goal of this paper is to study a fundamental property of time-dependent graphs that we
call path ranking invariance. As detailed in the following, a time-dependent graph is path ranking
invariant if the ordering of its paths w.r.t. travel duration is not dependent on the start travel
time. We demonstrate that this property can be exploited to solve a large class of time-dependent
routing problems including the Time-Dependent Travelling Salesman Problem (TDTSP) and the
Time-Dependent Rural Postman Problem (TDRPP). We prove that if a graph is path ranking
invariant, then the ordering of the solutions of these problems, w.r.t. travel duration, is the same
as a suitably-defined time-independent counterpart. In order to determine sufficient conditions
for path ranking invariance, we introduce a decision problem, named the Constant Traversal Cost
Problem (CTCP). A decision problem is a problem with a yes-or-no answer (Arora and Barak
(2009)). We prove that if a time-dependent graph is a yes-instance of the CTCP, then it is path
ranking invariant. Then, the decidability of the CTCP is demonstrated by devising a certificate-
checking algorithm based on the solution of a linear program. Finally, we show that, if the CTTP
feasibility check fails, our results can be used to determine an auxiliary path ranking invariant

1

ar
X

iv
:2

00
9.

07
58

8v
1

 [
cs

.D
M

]
 1

6
Se

p
20

20

graph, where the travel time functions are lower approximations of the original ones. Such less
congested graph can be used to determine lower bounds. We evaluate the benefits of this new
approach on both the TDTSP and the TDRPP.

The paper is organized as follows. Section 2 summaries the literature. In Section 3, we formally
define the path ranking invariance property and discuss its relationship with optimality conditions of
the Time-Dependent General Routing Problem (TDGRP) which includes the TDTSP and TDRPP
as special cases. In Section 4, we introduce a parameterized family of travel cost functions and define
a set of sufficient conditions for path ranking invariance. In Section 5, we define the Constant
Traversal Time Problem. In particular, we prove the decidability of the CTCP by devising an
algorithm that correctly decides if a time-dependent graph is a yes-instance. In Section 6, we
define a lower bounding procedure. In Section 7, we discuss the benefits obtained when this new
approach is embedded into state-of-the-art algorithms for the the TDTSP and TDRPP. Finally,
some conclusions follow in Section 8.

2 State of the art

The literature on time-dependent routing problems is quite scattered and disorganized. In this
section, we present a brief review of the Time-Dependent Travelling Salesman Problem (TDTSP)
and the Time-Dependent Rural Postman Problem (TDRPP) which are used in this paper to test
the computational potential of the path ranking invariance property. For a complete survey on
time-dependent routing, see Gendreau et al. (2015).

2.1 Time-Dependent Travelling Salesman Problem

Malandraki and Daskin (1992) were the first to address the TDTSP and proposed a Mixed Inte-
ger Programming (MIP) formulation. Then Malandraki and Dial (1996) devised an approximate
dynamic programming algorithm while Li et al. (2005) developed two heuristics. Schneider (2002)
proposed a simulated annealing heuristic and Harwood et al. (2013) presented some metaheuristics.
Cordeau et al. (2014) derived some properties of the TDTSP as well as lower and upper bounding
procedures. They also represented the TDTSP as MIP model for which they developed some fam-
ilies of valid inequalities. These inequalities were then used into a branch-and-cut algorithm that
solved instances with up to 40 vertices. Arigliano et al. (2018) exploited some properties of the prob-
lem and developed a branch-and-bound algorithm which outperformed the Cordeau et al. (2014)
branch-and-cut procedure. Melgarejo et al. (2015) presented a new global constraint that was used
in a Constraint Programming approach. This algorithm was able to solve instances with up to 30
customers. Recently, Adamo et al. (2020) proposed a parameterized family of lower bounds, whose
parameters are chosen by fitting the traffic data. When embedded into a branch-and-bound pro-
cedure, their lower bounding mechanism allows to solve to optimality a larger number of instances
than Arigliano et al. (2018).

Variants of the TDTSP have been examined by Albiach et al. (2008), Arigliano et al. (2018),
Montero et al. (2017) and Vu et al. (2020) (TDTSP with Time Windows), by Helvig et al. (2003)
(Moving-Target TSP) and by Montemanni et al. (2007) (Robust TSP with Interval Data).
Finally, it is worth noting that a scheduling problem, other than the above defined TDTSP, is also
known as Time-Dependent Travelling Salesman Problem. It amounts to sequence a set of jobs
on a single machine in which the processing times depend on the position of the jobs within the
schedule (Picard and Queyranne (1978), Fox et al. (1980), Gouveia and Voß (1995), Vander Wiel

2

and Sahinidis (1996), Miranda-Bront et al. (2010), Stecco et al. (2008), Godinho et al. (2014)).

2.2 Time-Dependent Rural Postman Problem

Tan and Sun (2011) were the first to propose an exact algorithm for the TDRPP. They devised an
integer linear programming model, based on an arc-path formulation enforced by the introduction
of valid inequalities. The computational results showed that no instance was solved to optimality,
with a relative gap between the best feasible solution and the lower bound equal to 3.16% on av-
erage. Calogiuri et al. (2019) provided both a lower bound and an upper bound with a worst-case
guarantee. The proposed bounds were embedded into a branch-and-bound algorithm that was able
to solve TDRPP instances with up to 120 arcs with a percentage of required arcs equal to 70%.

When the set of required vertices is empty, but all arcs of the time-dependent graph have to
be visited, the TDGRP reduces to the Time-Dependent Chinese Postman problem (TDCPP). An
integer programming formulation for solving the TDCPP was proposed by Sun et al. (2011). Sun
et al. (2011) also proved that the TDCPP is NP-hard and they proposed a dynamic program-
ming algorithm for solving it. A linear integer programming formulation, namely the cycle-path
formulation, was presented by Sun et al. (2015).

3 The path ranking invariance property

Let G := (V,A, τ) be a directed and connected graph, where V is the set of vertices, A := {(i, j) :
i ∈ V, j ∈ V } is the set of arcs. Moreover, let τ : A × R+ → R denote a function that associates
to each arc (i, j) ∈ A and starting time t ∈ [0,+∞) the traversal time when a vehicle leaves the
vertex i at time t. In particular, we suppose that it is given a planning horizon [0, T] and the travel
time functions are constant in the long run, that is τ(i, j, t) := τ(i, j, T) with t ≥ T . For the sake
of notational simplicity, we use τij(t) to designate τ(i, j, t). We suppose that traversal time τij(t)
satisfy the first-in-first-out (FIFO) property, i.e., leaving the vertex i later implies arriving later at
vertex j. In the following we denote with Tτ (i, j), the ordered set of time instants corresponding to
the breakpoints of τij(t).

For any given path pk := (i0, i1, . . . , ik), the corresponding duration zτ (pk, t) can be computed
recursively as:

z(pk, t) := z(pk−1, t) + τik−1ik(z(pk−1, t)), (1)

with the initialization z(p0, t) := 0.

Definition 3.1 (Path dominance rule). Given two paths p′ and p′′ of G and their traversal time
functions, z(p′, t) and z(p′′, t) respectively, we say that p′ dominates p′′, iff:

z(p′, t) ≥ z(p′′, t) ∀t ≥ 0. (2)

Definition 3.2 (Path ranking invariance). A time-dependent graph G is path ranking invariant,
if the path dominance rule holds true for any pair of paths p′ and p′′ of G.

The importance of path ranking invariance property is related to its relationship with the op-
timality conditions of some classical time-dependent routing problems. Given a time-dependent
graph G := (V,A, τ), a set of required vertices VR ⊆ V and a set of required arcs AR ⊆ A, let
us denote with P a set of paths starting from and ending to a given vertex i0 of V and passing

3

through each required vertex i ∈ VR and each required arc (i, j) ∈ AR at least once. Given a
starting time t0, we focus on the Time-Dependent General Routing Problem aiming to determine
the least duration path on P, that is

min
p∈P

z(p, t0). (3)

For notational convenience, we model the Time-Dependent Travelling Salesman Problem as a special
case of the compact formulation (3), where it is required that G is complete, AR := ∅ and VR := V .
Algorithms developed for the time-invariant counterpart of such routing problems are not able
to consider time-varying travel times without essential structural modifications. Nevertheless, we
observe that the absence of time constraints implies that time-varying travel times have an impact
on the ranking of solutions of the routing problem (3), but they do not pose any difficulty for
feasibility check of solutions. In particular, one can assert that there always exists a time-invariant
(dummy) cost function d : A→ R+ such that a least duration path of (3) is also a least cost path
of the time-invariant instance of

min
p∈P

∑
(i,j)∈p

d(i, j), (4)

where the notation (i, j) ∈ p means that the arc (i, j) ∈ A is traversed by the path p.

Definition 3.3. A time-invariant cost function d : A→ R+ is valid for G, if the least duration path
of the time-dependent instance (P, τ) of (3) is also a least cost path of the time-invariant instance
(P, d) of (4), for any set P of paths defined on G.

If we are given a cost function valid for a time-dependent graph G, then we can solve various
time-dependent routing problems defined on G, by exploiting algorithms developed for their time-
invariant counterpart. For example we can determine the least duration Hamiltonian circuit of G,
by solving a simpler (yet NP-Hard) TSP where cost of arc (i, j) ∈ A is equal to d(i, j). Similarly,
the least duration solution of an instance of TDGRP defined on G can be determined by solving a
time-invariant GRP. Nevertheless, the main issue of such approach is: how to certificate that a cost
function d : A→ R+ is valid for a given time-dependent graph. Since the travel time functions are
constant in the long run, the answer is quite straightforward for path ranking invariant graphs.

Remark 3.4. If the time-dependent graph G is path ranking invariant, then it is valid for G any
cost function d : A → R+, where each value d(i, j) is proportional to the traversal time of arc
(i, j) ∈ A when the vehicle leaves vertex i at time instant T , that is:

arg min
p∈P

∑
(i,j)∈P

τij(T) = arg min
p∈P

z(p).

This explain our previous assertion about the relationship between the path ranking invariance
property and the optimality conditions of the class of time-dependent routing problems (3). In the
following sections we demonstrate that a class of path ranking invariant graphs is computable. In
computability theory, a set of symbols is computable if there exists an algorithm that correctly
decides whether a symbol belongs to such set. In particular, we aim to devise an algorithm that
takes as input a time-dependent graph G and either decides correctly that G belongs to a class
of path ranking invariant graphs or returns a constant cost function suitable to determine a lower
bound on the optimal solution of (3).

4

4 A family of travel cost functions

In this section, we propose a parameterized family of travel cost functions and investigate its
relationship with path ranking invariance property. The parameter of such a cost model is a step
cost function. In particular, we are interested in time-dependent graphs, for which there exists a
step function generating a constant travel cost for each arc. In subsection 4.1, we prove that the
existence of such step function is a sufficient condition for stating that the graph is path ranking
invariant. In subsection 4.2, we discuss some properties of the proposed travel cost model. Such
properties are exploited in Section 5, in order to devise an algorithm that, given as input a time-
dependent graph, correctly decides if there exists or not a step function generating a constant travel
cost for each arc.

4.1 The model

Let b : Tb → R+ denote a step function such that Tb is an ordered set of time instants and

b(t) := bh t ∈ [th, th+1],

with bh > 0, th ∈ Tb and h = 0, . . . , |Tb| − 1. For notational convenience, we also use b =
[(t0, b0), . . . , (t|Tb|−1, b|Tb|−1)] to designate the step function b(t). The step-function b is the input
parameter of a family of travel cost functions cij(t,b) defined as follows. The set of breakpoints Tb
represents a partition of the planning horizon in |Tb| time intervals, whilst each value bh models the
cost associated to one time unit spent traveling during the h-th time interval, with h = 0, . . . , |Tb|−1.
Since each unit cost is strictly positive, it never pays to wait. Given a time instant t ≥ 0, the value
cij(t,b) represents the overall travel cost associated to arc (i, j) ∈ A, when the vehicle leaves the
vertex i at time t ∈ [tp, tp+1] and arrives at vertex j at time (t+ τij(t)) ∈ [tq, tq+1], that is:

cij(t,b) := (tp+1 − t)bp +

q−1∑
h:=p+1

(th+1 − th)bh + (t+ τij(t)− tq)bq, (5)

with (tp, bp), (tq, bq) ∈ b and p, q = 0, . . . , |Tb| − 1. In Figure 1 it is reported a numerical example
consisting of a given travel time function τij(t) and an arbitrarily chosen step function b, where the
sets of breakpoints are Tτ (i, j) := {0.0, 4.0, 5.0} and Tb := {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}. As shown in
Figure 1, the selected step function b generates a travel cost function cij(t,b) which has a constant
value equal to 3.

Let us denote with LC the set of time-dependent graphs such that there exists a step function
b∗ generating a constant travel cost for each arc (i, j) ∈ A.

Proposition 4.1. If a time-dependent graph G belongs to LC , then it is path ranking invariant.

Proof. Since b∗ is a step function, (5) can be rewritten as follows:

cij =

∫ t+τij(t)

t

b∗(µ)dµ.

5

We observe that for each path pk defined on G it is associated a travel cost computed as follows:

∑
(i,j)∈pk

cij =

∫ zτ (pk,t)

t

b∗(µ).

This implies that for any pair of paths p and p′ defined on G, it results that:∑
(i,j)∈p

cij ≤
∑

(i,j)∈p′
cij ⇔ zτ (p, t) ≤ zτ (p

′
, t),

for t ≥ 0. Since paths p and p′ have been arbitrarily chosen, the thesis is proven.

6

Figure 1: A continuous piecewise linear arc travel time function τij , the associated constant step
function b(t).

7

4.2 Properties of travel cost functions

We observe that, given a time-dependent graph G = (V,A, τ) and a step function b, each output
travel cost function cij(t,b) is continuous piecewise linear function, with a number of breakpoints
not greater than Tτ (i, j) + 2 × |Tb|, with (i, j) ∈ A. In particular, we denote with Tc(i, j, Tb)
the corresponding set of breakpoints. From Proposition 4.1, it descends that we are interested in
determining if there exists a step function b∗ satisfying (6):

Tc(i, j, Tb∗) = ∅. (6)

For this reason, we now provide both sufficient conditions and necessary conditions for asserting
that a time instant t is a breakpoint of a travel cost function cij(t,b), with (i, j) ∈ A and t ≥ 0.

Let Γij(t) denote the arrival time at node j when the vehicle starts to traverse the arc (i, j) ∈ A
at time instant t, i.e. Γij(t) = t+τij(t). First from (5) we have that if a time instant t is a breakpoint
of cij(t,b) then at least one of the following necessary conditions hold true: t is a breakpoint of
b(t); Γij(t) is a breakpoint of b(t); t is a breakpoint of τij(t). More formally:

t ∈ Tc(i, j, Tb) ⇒ t ∈ Tb ∨ t ∈ Tτ (i, j) ∨ Γij(t) ∈ Tb, (7)

As far as sufficient conditions is concerned, a time instant t is a breakpoint of cij(t,b) if the
following three conditions hold: t is a breakpoint of the step function b; t is not a breakpoint of
the travel time function τij(t); the arrival time Γij(t) is not a breakpoint of b. More formally:

t ∈ Tb ∧ t /∈ Tτ (i, j) ∧ Γij(t) /∈ Tb ⇒ t ∈ Tc(i, j, Tb). (8)

The implication (8) has been demonstrated in the Theorem 4.1.

Theorem 4.1. Let us suppose that we are given an arc (i, j) ∈ A, a step function b(t) and one of
its breakpoint tp, that is tp ∈ Tb with p = 1, . . . , |Tb|. If both the conditions (a) and (b) hold true,
then a breakpoint of cij(t, b) also occurs at time instant tp.

(a) The time instant tp is not a breakpoint of τij(t), i.e. tp /∈ Tτ (i, j).

(b) The arrival time Γij(tp) is not a breakpoint of b(t), that is Γij(tp) /∈ Tb

Proof. If we write Equation (5) for the time instant tp, we obtain:

cij(tp,b) = (tp+1 − tp)bp +

q−1∑
`=p+1

(t`+1 − t`)b` + (tp + τij(tp)− tq)bq. (9)

The thesis is proved if we demonstrate that there exists ∆ > 0 , such that

cij(tp,b)− cij(tp −∆,b)

∆
6= cij(tp +∆,b)− cij(tp,b)

∆
.

From the hypothesis it results that there exists a ∆ > 0 such that the following conditions hold true.
(1) The travel time function τij(t) does not change its slope in the time interval [tp−∆, tp+∆]. (2)
The step function b(t) does not change its value during the time intervals [(tp−∆), tp], [tp, (tp+∆)]
and [Γij(tp −∆), Γij(tp +∆)]. This implies that:

[(tp −∆), tp] ⊆ [tp−1, tp] ∧ [tp, (tp +∆)] ⊆ [tp, tp+1]

8

and
[Γij(tp −∆), Γij(tp +∆)] ⊆ [tq, tq+1],

with q > p. Let us write Equation (5) for the time instant (tp −∆):

cij(tp −∆,b) = (tp − tp +∆)bp−1 +

q−1∑
`=p

(t`+1 − t`)b` + (tp −∆+ τij(tp −∆)− tq)bq. (10)

By subtracting (10) from (9), we obtain:

cij(tp,b)− cij(tp −∆,b)

∆
= −bp−1 + bq +

τij(tp)− τij(tp −∆)

∆
bq. (11)

Similarly let us subtract (9) from (5) rewritten for time instant (tp +∆)

cij(tp +∆,b)− cij(tp,b)

∆
= −bp + bq +

τij(tp +∆)− τij(tp)
∆

bq

Since tp is not a breakpoint of τij(t), then we have that:

cij(tp,b)− cij(tp −∆,b)

∆
− cij(tp +∆,b)− cij(tp,b)

∆
= −bp−1 + bp.

As tp is a breakpoint of the given step function we have that bp−1 6= bp. The thesis is proved.

5 The Constant Traversal Cost Problem

As stated by Proposition 4.1, the membership of a graph G in the set LC implies its path ranking
invariance. To ease the discussion, from now on, we refer to the decision problem corresponding to
the set LC as the Constant Traversal Cost Problem.

Constant Traversal Cost Problem
Input: A time-dependent graph G.
Question: Is there a step function b∗ such that the corresponding travel cost cij(t,b

∗)
associated to each arc (i, j) ∈ A is constant?

In this section, we demonstrate that the CTCP is decidable. This goal is gained by demon-
strating that there exists a computable function 1C(G) which is characteristic for the set LC of
time-dependent graphs, that is 1C(G) := 1 if G ∈ LC and 1C(G) := 0 if G /∈ LC .

5.1 Definition of the characteristic function

We denote with γ(Tb,b) the maximum travel cost range of a graph G with respect to a step cost
function b, defined as follows:

γ(b) := max
(i,j)∈A

(max
t∈[0,T]

cij(t,b)− min
t∈[0,T]

cij(t,b)).

9

Let denote with γ∗ the min-max travel cost range of a graph G, that is:

γ∗ := min
b

(γ(b)|b(t) > ρ ∀t ≥ 0). (12)

By observing that a constant travel cost function has a range value zero, from (12) it descends the
following Proposition.

Proposition 5.1. The boolean function (13) is a total characteristic function of CTCP.

1C(G) :=

{
1 if γ∗ = 0

0 otherwise
. (13)

In order to assess the decidability of the CTCP, we have to devise an algorithm that decides
correctly whether the optimal value γ∗ has value zero. We observe that the optimization problem
(12) consists of two interdependent tasks: (a) determining the breakpoint set Tb; (b) determining
the values (b0, . . . , b|Tb|−1) so that to minimize the corresponding maximum travel cost range. As
far as the first task is concerned we limit the corresponding search space to a finite and discrete set
Ω, such that its elements are potential breakpoints of b∗, that is:

t ∈ Tb∗ ⇒ t ∈ Ω. (14)

With the aim of determining a set Ω satisfying these conditions, we associate to each arc (i, j) ∈ A
the set Ωij . In the definition of each Ωij a key role is played by ordered sets of time instants,
termed time sequences generated by a given time instant on arc (i, j) ∈ A.

Definition 5.1. An ordered set of time instants ω := {ω1, . . . , ωL}, is a time sequence generated
by time instant ω1 on the arc (i, j) ∈ A if the following conditions hold true:

Γ−1ij (ω1) < 0,

ω` := Γij(ω`−1) ` = 2, . . . , L

Γij(ωL) > T,

with 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωL ≤ T

We observe that there exists an infinite number of time sequences that can be generated on
an arc (i, j) ∈ A: one for each time instant t satisfying the first condition of Definition 5.1. For
example for the travel time function in Figure 1 there exists one time sequence for each time
instant belonging to the interval [0, 2[. On the other hand, due to the FIFO property, the arrival
time function Γij(t) is strictly increasing. This implies that each time instant t ∈ [0, T] belongs to
exactly one time sequence generated on the arc (i, j) ∈ A. We reference such time sequence with
ωij(t) := {ωij1(t), . . . , ωijL(t)}. In the numerical example of Figure 1, both of the time instants
2.0 and 4.0 belong to the (unique) time sequence generated by 0.0 on arc (i, j), i.e. ωij(2.0) :=
ωij(4.0) := {0.0, 2.0, 4.0}. Given a time-dependent graph G = (V,A, τ), the set Ωij is defined as
the union set of the time sequences ωij(t), such that t is a breakpoint of τ , that is:

Ωij :=
⋃
t∈T

ωij(t), (15)

with T :=
⋃

(i,j)∈A
Tτ (i, j) and (i, j) ∈ A. It is worth noting that since T is a subset of Ω, it is

guaranteed that Ω is not empty.

10

Theorem 5.2. The set Ω defined in (16) is a finite and discrete set of potential breakpoints of
b∗(t).

Ω :=
⋂

(i,j)∈A

Ωij . (16)

Proof. We first observe that due to the FIFO property, given a time instant t ∈ T , the corresponding
ωij(t) is a finite and discrete set of time instants. Therefore from (15), (16) and Definition 5.1, it
results that Ω consists of up to |A| × |T | × T

τmin
where τmin is the minimum traversal time of τ ,

that is τmin := min
(i,j)∈A

(τij(t)|t ≥ 0). This demonstrates that Ω is a finite and discrete set. We now

prove that (16) defines a set of potential breakpoints for b∗, that is:

t ∈ Tb∗ ⇒ t ∈ Ωij , (17)

with (i, j) ∈ A.
We prove (17) by contradiction. Let us suppose that there exists one arc (i, j) ∈ A and a

breakpoint t′ of b∗(t) such that t′ /∈ Ωij . We prove the thesis by demonstrating that:

t ∈ ωij(t
′) ∧ t ∈ Tb∗ ⇒ t ∈ Tc(i, j,b∗), (18)

which contradicts the hypothesis that t′ is a breakpoint of a step function b∗ generating a constant
travel cost on arc (i, j), that is Tc(i, j,b∗) = ∅. We first observe that, since a time instant belongs to
exactly one time sequence generated on arc (i, j), then we have that ωij(t

′) shares no time instant
with Ωij . This implies that no time instant belonging to ωij(t

′) is a breakpoint of the travel time
function τij(t), that is:

t` ∈ ωij(t
′)⇒ t` /∈ Ωij ⇒ t` /∈ Tτ ⊆ Ωij . (19)

with ` = 1, . . . , |ωij(t′)|.
From (8) and (19) it results that (18) can be demonstrate if we prove by induction on ` that:

t` ∈ ωij(t
′) ∧ t` ∈ Tb∗ ⇒ Γij(t`) /∈ Tb∗ ∧ t` /∈ Tτ (i, j), (20)

with ` = 1, . . . , |ωij(t′)|.
Case ` = |ωij(t′)|. In this case t` denotes the last element of the ordered set ωij(t

′). From Defini-

tion 5.1 it results that Γij(t`) > T . Since any step function is constant in the long run, it results
that the arrival time Γij(t`) is not a breakpoint of b∗ for ` = |ωij(t′)|. From (19) it results that
(20) holds true for ` = |ωij(t′)|.
Case ` ≤ |ωij(t′)| − 1. We suppose by induction that t`+1 satisfies (20). Since t` is the predecessor

of t`+1 in ωij(t
′), then from Definition 5.1 we have that t`+1 = Γij(t`). From (8), (6) and the induc-

tion hypothesis, it descends that Γij(t`) cannot be a potential breakpoint of b∗(t), i.e. Γij(t`) /∈ Tb∗ .
From (19) it results that (20) holds true for ` < |ωij(t′)|.

Given a constant value ρ > 0, let us define the following restriction of (12):

γ := min
b

(γ(b)|Tb ⊆ Ω ∧ b(t) ≥ ρ ∀t ≥ 0). (21)

11

Proposition 5.2. Given a time-dependent graph G, the travel cost range γ is equal to zero iff the
γ∗ has value zero.

Proof. Let us denote with γ1 an upper bound of γ∗ defined as follows:

γ1 := min
b

(γ(b)|Tb ⊆ Ω ∧ b(t) > 0 ∀t ≥ 0).

We have that:
γ∗ ≤ γ̄1 ≤ γ̄.

We divide the demonstration in two parts.
Part I. First, we prove that (γ∗ = 0⇔ γ1 = 0). Since γ1 is an upper bound of γ∗, then the necessity
part is proved, that is γ1 = 0 ⇒ γ∗ = 0. As far as the sufficiency part is concerned, we observe
that the main implication of Theorem 5.2 is that Tb∗ ⊆ Ω. This implies that γ∗ = 0⇒ γ1 = 0.
Part II. We now prove that (γ1 = 0⇔ γ = 0). Since γ is an upper bound of γ1, then the necessity
part is proved, that is γ = 0⇒ γ1 = 0. Therefore, we only need to prove that, when γ1 is equal to
zero, it is always possible to determine a step cost function b(t) ≥ ρ generating on each arc (i, j) ∈ A
a constant travel cost function. Let us suppose that there exists a step cost function 0 < b∗(t) < ρ,
generating travel constant cost functions, that is

cij(t,b
∗) = cij(b

∗),

with (i, j) ∈ A and t ≥ 0. Since b∗(t) > 0, then it is always possible to determine a positive number
α > 0, such that:

α× b∗(t) ≥ ρ,

with t ≥ 0. If we set b(t) equal to α× b∗(t), then we have that

cij(t,b) = α× cij(b∗),

with t ≥ 0. This implies that
γ(b, Tb) = α× γ(b∗, Tb∗) = 0,

which proves the thesis.

From Theorem 5.2 and Proposition 5.2 , it follows that 1C(G) can be reformulated as follows:

1C(G) :=

{
1 if γ = 0

0 otherwise
. (22)

As illustrated in the following section, the main advantage of formulation (22) is that the travel
cost range γ is the optimal objective function value of a Linear Programming (LP) problem.

5.2 Decidability of the CTCP

In order to assess the decidability of the CTCP, we outline an algorithm consisting of two steps. The
former determines the set Ω of potential breakpoints of b∗(t). The latter determines the optimal
objective function value of the optimization problem (21).

We recall that Ω is the intersection of |A| sets of time instants. Moreover each Ωij is the union

12

of a finite number of time sequences ωij(t), one for each travel time breakpoint t ∈ T and arc
(i, j) ∈ A. Therefore, we only need to devise an iterative procedure that, given a time instant t and
a travel time function τij(t), determines the ordered set ωij(t) in a finite number of iteration steps.
For this purpose we propose the Algorithm 1 consisting of two main steps.

(a) Firstly ωij(t) is iteratively enriched by the arrival time Γij(t) associated to a start time equal
to t, by the arrival time Γij(Γij(t)) associated to a start time equal to Γij(t), etc, until no time
instant less than or equal to T can be generated.

(b) Finally, ωij(t) is iteratively enriched by the start time Γ−1ij (t) associated to an arrival time

equal to t, by the start time Γ−1ij (Γ−1ij (t)) associated to an arrival time equal to Γ−1ij (t), etc,
until no time instant greater than or equal to 0 can be generated.

For example by running Algorithm 1 iteratively for each distinct breakpoint of τij(t) of Figure 1,
we obtain the time sequences ωij(4.0) = {0.0, 2.0, 4.0} and ωij(5.0) = {1.0, 3.0, 5.0}. Therefore the
set Ωij consists of the time instants {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}.

Proposition 5.3. Algorithm 1 converges in a finite number of iterations.

Proof. The thesis is proved by observing that each while-condition evaluates to false after a finite
number of iterations. Indeed, due to the FIFO hypothesis, the arrival time function Γij(t) as
well as the corresponding inverse function Γ−1ij (t) are, respectively, strictly increasing and strictly
decreasing functions, with (i, j) ∈ A.

Algorithm 1 Determining the timed sequence ωij(t)

INPUT: A continuous piecewise linear FIFO travel time function τij(t) and a time instant t.
OUTPUT: The ordered set ω of time instants.
ω ← ∅
ω ← t
t′ ← t
while (Γij(t

′) ≤ T) ∧ (Γij(t
′) /∈ ω) do

ω ← Γij(t
′)

t′ ← Γij(t
′)

t′ ← t
while (Γ−1ij (t′) ≥ 0) ∧ (Γ−1ij (t′) /∈ ω) do

ω ← Γ−1ij (t′)

t′ ← Γ−1ij (t′)

Once it has been determined the set Ω, it is possible to formulate an instance of the linear
program (23)-(30). A solution of such linear programming model represents the parameters of a
constant piecewise function y(t) and a continuous piecewise linear function xij(t), with (i, j) ∈ A.
We partition the time horizon into a finite number |Ω| of time slots [th, th+1](h = 0, . . . , |Ω| − 1).
The continuous variable yh represents the value of y(t) during the h− th time interval, that is:

y(t) = yh,

13

with t ∈ [th, th+1] and h = 0, . . . , |Ω| − 1. The function xij(t) is the continuous piecewise linear
function corresponding to the linear interpolation of the points (tijk, xijk), that is :

xij(tijk) = xijk,

where xijk is a continuous variable, with tijk ∈ Ωij , k = 0, . . . , |Ωij − 1| and (i, j) ∈ A. The
continuous variables xij and xij represent, respectively, the maximum and minimum value of xij(t),
with (i, j) ∈ A. The continuous variable ζij represents the range of the continuous piecewise linear
function xij(t), with (i, j) ∈ A. Finally the continuous variable ζ represents the max-min range
value associated to the overall set of xs functions generated by the problem.

ζ∗ := min ζ (23)

s.t.

xijk =

|Ω|−1∑
h=0

aijkh × yh k = 0, . . . , |Ωij | − 1, (i, j) ∈ A (24)

ζ ≥ xij − xij (i, j) ∈ A (25)

xij ≤ xijk k = 0, . . . , |Ωij | − 1, (i, j) ∈ A (26)

xij ≥ xijk k = 0, . . . , |Ωij | − 1, (i, j) ∈ A (27)

yh ≥ ρ h = 0, . . . , |Ω| − 1 (28)

xijk ≥ 0 k = 0, . . . , |Ωij | − 1, (i, j) ∈ A (29)

ζ ≥ 0 (30)

The objective function (23) states that the optimization model aims to determine a constant
stepwise function y∗(t), such that it is minimized the maximum range value of the corresponding xs
functions. Constraints (24) state the relationship between y(t) and xij(t) at time instant tijk ∈ Ωij .
In particular each coefficient aijkh represents the time spent on the arc (i, j) ∈ A during period
[th, th+1] if the start time is tijk ∈ Ωij , i.e.

aijkh =

{
min(th+1 − th,max(0, Γij(tijk)− th)) if k ≤ h
0 if k > h

, (31)

with h = 0, . . . , |Ω| − 1, k = 0, . . . , |Ωij | − 1. Constraints (25) state the relationship between the
objective function ζ and the range value of xij(t), modeled as the difference between xij and xij .
Constraints (26) and (27) state the relationship between xij , xij and the continuous variables xijk.
Constraints (28) state that the constant stepwise linear function y(t) has to be greater or equal
than the input parameter ρ > 0. Constraints (29) and (30) provide the non-negative conditions of
the remaining decision variables.

Theorem 5.3. Given a time-dependent graph G, the optimal solution of the linear program (23)-
(30) is also optimal for the optimization problem (21).

Proof. Let (Ty∗ ,y∗) denote the parameters of the constant stepwise function y∗(t) optimal for the
linear program (23)-(30). We observe that y∗(t) can be used to generate two continuous piecewise

14

linear functions for each arc (i, j) ∈ A. The former is the travel cost function cij(t,y
∗). The latter

is the continuous piecewise linear x∗ij(t) defined as the linear interpolation associated to the optimal
values x∗ijk with k = 0, . . . |Ωij | − 1 and (i, j) ∈ A. We want to prove that cij(t,y

∗) = x∗ij(t)
for t ≥ 0. We start by observing that the right hand side of constraints (24) corresponds to the
right-hand side of (5) when t = tijk ∈ Ωij , that is cij(tijk,y

∗) = x∗ij(tijk), with (i, j) ∈ A and
k = 0, . . . |Ωij − 1|. Therefore, the thesis is proved if we demonstrate that all breakpoints of each
travel cost function cij(t,y

∗) belong to Ωij , with (i, j) ∈ A. From (7) we have that:

t ∈ Tc(i, j,y∗) ⇒ t ∈ Ty∗ ∨ t ∈ Tτ (i, j) ∨ Γij(t) ∈ Ty∗ . (32)

Since there is no constraint stating that y∗h 6= y∗h+1, then the breakpoints set Ty∗ is a subset of each
Ωij , with (i, j) ∈ A. Moreover, from the definition of Ωij , we have that all breakpoints of τij(t)
belongs to it. Finally we observe that from the definition of Ωij , it descends that:

Γij(t) ∈ Ty∗ ⊆ Ωij ⇒ ωij(Γij(t)) ⊆ Ωij ⇒ t ∈ Ωij

Therefore, the implication (32) can be rewritten as:

t ∈ Tc(i, j, Ty∗)⇒ t ∈ Ωij ,

which proves the thesis.

From Proposition 5.3 and Theorem 5.3 it descends that, given a time-dependent graph G =
(V,A, τ), the value of the characteristic function 1C(G) can be computed as follows.
Step 1]. Determine Ω by iteratively running Algorithm 1, for each arc (i, j) ∈ A and each breakpoint
of the travel time function τij(t).
Step 2. Solve the linear program (23)-(30). The value the function 1C(G) takes on as output is

1C(G) :=

{
1 if ζ∗ = 0

0 otherwise
.

6 A lower bounding procedure

If the CTCP feasibility check fails, then the optimal solution of the linear program (23)-(30) can
be used to determine ”good” lower bounds for the optimal solutions of the class of time-dependent
routing problems (3).

We preliminarily define a parameterized family of travel time functions τ(b), where the param-
eter is the step function b. In particular, given a time-dependent graph G = (V,A, τ), the travel
time function τ ij(t,b) we generate is a lower approximation of the original travel time function
τij(t), that is:

τ ij(t,b) ≤ τij(t),

for each t ≥ 0 and (i, j) ∈ A. We start by observing that, given a step function b, it is univocally
associated to each arc (i, j) ∈ A the travel cost function cij(t,b). In order to generate τ ij(t,b),
we first approximate such travel cost function to its minimum value cij(b) = min

t
cij(t,b). Then

τ ij(t,b) is defined as the output function of the travel time model proposed by Ichoua et al. (2003a)
(IGP model).

15

Definition 6.1. The travel time function τ ij(t, b) is the continuous piecewise linear function gen-
erated by IGP model, where the input parameters are the step function b and the constant value
cij(b).

According to the IGP model, given a start time t the travel time value τ ij(t,b) is computed
by an iterative procedure (Algorithm 2). The relationship between the input parameters and the
output value of Algorithm 2 can be expressed in a compact fashion as follows:

cij(b) =

∫ t+τ ij(t,b)

t

b(µ)dµ. (33)

Algorithm 2 Computing the travel time τ ij(t,b)

INPUT: A step function b = [(t0, b0), . . . , (t|Tb−1|, b|Tb−1|)], a constant cost cij(b) and the start
time t

k ← p : tp ≤ t ≤ tp+1

d← cij(b)
t′ ← t+ d/bp
while t′ > tk+1 do

d← d− bk(tk+1 − t)
t← tk+1

t′ ← t+ d/bk+1

k ← k + 1
return t′ − t

Proposition 6.1. The travel time function τ ij(t, b) is a lower approximation of the original travel
time function τ .

Proof. We observe that a compact formulation of (5) is the following:

cij(t,b) =

∫ t+τij(t)

t

b(µ)dµ.

From (33) and the definition of cij(b), it results that:

cij(b) ≤ cij(t,b)⇔ τ ij(t,b) ≤ τij(t),

with t ≥ 0, which proves the thesis.

Proposition 6.2. Given a time-dependent graph G and a step function b, the time depedent graph
Gb = (V,A, τ(b)) is path ranking invariant.

Proof. Since b is a step function, from (33) it results that if the right-hand side of (5) is evaluated
w.r.t τ ij(t,b), then we obtain the constant value cij(b), for any time instant t ≥ 0 and arc (i, j) ∈ A.
This implies that the time-dependent graph Gb = (V,A, τ(b)) is a yes instance of the Constant
Traversal Cost Problem, which proves the thesis.

16

The family of lower approximations τ(b) gives rise to a parameterized family of lower bounds
z(b), defined as follows. We denote with z(pk, t,b) the traversal time of a path pk at time instant
t on the time-dependent graph Gb = (V,A, τ(b)), that is

z(pk, t,b) = z(pk−1, t,b) + τ ik−1ik
(z(pk−1, t),b), (34)

with the initialization z(p0, t,b) = 0. Since Gb is less congested than G, the duration of a path is
shorter on Gb, that is z(pk, t,b) ≤ z(pk, t). Given a set P of paths defined on (V,A), we compute
the lower bound z(b) as the duration of the quickest path of P on Gb, that is:

z(b) = min
p∈P

z(p, t,b) ≤ min
p∈P

z(p, t).

The main implication of Proposition 6.2 is that the lower bound z(b) can be computed by solving
a time-invariant routing problem. In particular, we have that:

z(b) = z(p∗
b
, t,b),

where
p∗
b

= arg min
p∈P

∑
(i,j)∈p

cij(b).

In determining p∗
b

we exploit that a cost function valid for Gb is d(i, j) = cij , with (i, j) ∈ A.
Indeed, since τ ij(t,b) is constant in the long run, we have that τ ij(T,b) = cij/b|Tb|−1.

In order to find the best (larger) lower bound, the following problem has to be solved:

max
b

z(b). (35)

Unfortunately, this problem is nonlinear, nonconvex and non differentiable. So it is quite unlikely
to determine its optimal solution with a moderate computational effort. Instead, we aim to find
a good lower bound as follows. We observe that the tightness of the lower bound z(b) clearly
depends on the maximum fitting deviation between the original travel time function τ and its
lower approximation τ(b). It is worth noting that we generate τ ij(b) by approximating travel cost
function cij(t,b) to its minimum value cij(b), with (i, j) ∈ A. The maximum fitting deviation of
such travel cost approximation is the maximum range value γ(b) defined in Section 5.1. If γ(b)
is equal to zero, then both travel time function τ(b) and each travel cost cij(b) are perfect fit,
with (i, j) ∈ A. In this case, the original graph G is path ranking invariant and z(b) is the best
(larger) lower bound. Otherwise the value of γ(b) represents a measurement of the distance from
this special case.

For these reasons we heuristically solve (35), by determining the optimal step function y∗ of
the linear program (23)-(30), which represents the step function with the min-max value of travel
cost range. In particular, we observe that the coefficient cij(y

∗) are also determined by the optimal
solution of such linear program. Indeed the optimal piecewise linear function x∗ij(t) corresponds to
the travel cost function cij(t,y

∗), and, therefore, its minimum value corresponds the optimal value
of the decision variable xij , namely x∗ij with (i, j) ∈ A. Summing up the proposed lower bounding
procedure consists of three main steps.

• STEP 1. Solve the linear program (23)-(30). Set the step function b equal to y∗. Similarly
we set the coefficient cij to x∗ij for each (i, j) ∈ A.

17

• STEP 2. Determine p∗
b

as the least cost solution of the following time-independent routing
problem:

min
p∈P

∑
(i,j)∈p

cij(b)

• STEP 3. Compute the lower bound z(b) by evaluating p∗
b

w.r.t. τ(b), that is:

z(b) = z(p∗
b
, t0,b)

It is worth noting that due to a huge number of travel time breakpoints, the linear program
(23)-(30) might not be solved in a reasonable amount of time (e.g., in realistic time-dependent
graph). In this cases we update the first step of the lower bounding procedure as follows. We solve
a smaller instance of the linear program, where each Ωij is set equal to a given (unique) set of time
instant B.

It results that each optimal continuous piecewise linear function x∗ij(t) is a surrogate function of
the travel cost cij(t,y

∗). This implies that during the first step we compute the coefficient cij(y
∗)

by enumerating all breakpoints of cij(t,y
∗), (i, j) ∈ A.

We finally observe that since the path p∗
b

belongs to the set of feasible paths P, we also generate
a parameterized family of upper bound z(b) obtained by evaluating p∗

b
w.r.t. the original travel

time function τ :
z(b) := z(p∗

b
, t0).

7 Computational Results

We have tested our lower bounding procedure on two well-known vehicle routing problems: the
Time Dependent Travelling Salesman Problem and the Time Dependent Rural Postman Problem.
The state-of-the-art algorithms for such time-dependent routing problems are, to the best of our
knowledge, Adamo et al. (2020)(TDTSP) and Calogiuri et al. (2019) (TDRPP). Both contributions
gave rise to lower bounding procedures which were used in an enumerative scheme. It is worth
noting that the idea of a lower bound based on a less congested graph G = (V,A, τ) is also the idea
underlying the lower bounds proposed by Adamo et al. (2020) and Calogiuri et al. (2019). Figure
2 reports an example concerning a time-dependent travel time function τij(t) associated with an
arc of a time-dependent graph G, consisting of both time-invariant arcs and time-dependent arcs.
The Figure also shows the τ ij(t) obtained by our approach along with the lower approximations
of τij(t) obtained by applying the approach proposed, respectively, by Calogiuri et al. (2019) and
Adamo et al. (2020). In particular, Calogiuri et al. (2019) assumed that the original traversal time
τij(t) was generated from the model by Ichoua et al. (2003b) as the time needed to traverse an arc
(i, j) ∈ A of length Lij at step-wise speed vij(t), when the vehicle leaves the vertex i at time t. Then
Calogiuri et al. (2019) exploited the speed decomposition proposed by Cordeau et al. (2014), where
given a partition of the planning horizon in H time periods, the speed value vijh of arc (i, j) ∈ A
during period h is express as:

vijh = δijhfhuij ,

where

• uij is the maximum travel speed across arc (i, j) ∈ A, i.e., uij = max
h=0,...,H−1

vijh;

18

• fh belongs to]0, 1] and is the best (i.e., lightest) congestion factor during h− th interval, i.e.,
fh = max

(i,j)∈A
vijh/uij ;

• δijh belongs to]0, 1] and represents the degradation of the congestion factor of arc (i, j) in
the h− th interval with respect to the less-congested arc in the same period.

In Calogiuri et al. (2019) the lower approximation τ was defined as the traversal time of the vehicle
evaluated w.r.t. the most favourable congestion factor during each interval h-th, i.e., vijh.← fhuij .
The main drawback of this approach is that, if a subset of arcs are time-invariant, then traffic
congestion factors fh are all equal to 1. In these cases, the lower approximation τ determined
by Calogiuri et al. (2019) are constant and equal to Lij/uij (see Figure 2). Adamo et al. (2020)
enhanced the speed decomposition of Cordeau et al. (2014), by determining its parameters through
a fitting procedure of the traffic data. As shown in the example reported in Figure 2, by apply-
ing our approach, we get a lower approximation τ that fits the original τ better than the travel
time approximation determined by Adamo et al. (2020). Indeed, the fitting procedure by Adamo
et al. (2020) aims to minimize the deviation between the (original) speed values vijh and the most
favourable speed value vijh, during some (not necessarily consecutive) periods. As shown in Figure
2 this approach do not assure that there exists at least one time instant closing the fitting devia-
tion between the lower approximation and the original travel time τ , which, on the contrary, it is
guaranteed by our procedure.
As discussed in the following subsections, computational results show that tighter approximation
travel times implies tighter lower bounds for both TDTSP instances and TDRPP instances. In par-
ticular, when embedded into a branch-and-bound procedure, the proposed lower bounding mecha-
nism allows to solve to optimality a larger number of instances than the state-of-the-art algorithms.

19

Figure 2: Comparing the τ functions determined by, respectively, our lower bounding procedure,
Cordeau et al. (2014), Adamo et al. (2020)

7.1 Results on the TDTSP

The procedure illustrated in Section 6 can be used to determine a ”good” lower bound for TDTSP as
follows. We run the first step of the proposed lower bounding procedure and solve the linear program
(23)-(30). Then we run the second and third steps of the lower bounding procedure. In particular
the solution p∗

b
corresponds to a first hamiltonian circuit determined by solving an Asymmetric TSP

with arc costs equal to dij = min
t≥0

x∗ij(t). The lower bound is embedded into the branch-and-bound

scheme presented by Arigliano et al. (2018) that we sketch here. First we initialize the subproblem
queue Q with the original problem P and set the upper bound UB = z(p∗

y∗
, t0). The instances

of the Asymmetric TSP are solved by means of Carpaneto and Toth (1980). At a generic step,
let P̃ be the subproblem extracted from Q and characterized by a set of branching constraints
corresponding to a fixed path pk = (0 = v0, v1, v2, . . . vk), and possibly some forbidden arcs. Then
we compute its lower bound, named LB1. In particular we run the proposed procedure by omitting
the first initialization step: the step function y∗ and the functions x∗ij(t) are inherited by the parent

20

problem, whilst the coefficient cij is updated as follows:

cij = min
t∈[z(pk,t0),UB]

x∗ij(t),

with (i, j) ∈ A. Hence, we examine the (integer) optimal solution of the P̃ relaxation:

(0 = v0, v1, . . . , vk, vk+1, . . . , vk′ , vk′+1, . . . , vn+1 = 0), (36)

which also gives an upper bound UB1 on the optimal solution of P̃ , obtained by evaluating (36)
w.r.t. the original travel time function τ . If UB1 < UB, then we determine the upper bound as
UB = UB1. If UB1 = LB1, then this solution is optimal for problem P̃ . Otherwise, if LB1 < UB,
the procedure branches as follows. Let k′ ∈ {k + 1, . . . , n} be the index such that its traversal
time evaluated w.r.t. τ is equal to the original traversal time, i.e. z(pk′ , t0) = z(pk′ , t0). We create
k′ − k + 1 subproblems as follows:

ψvk,vk+1
= 1, ψvk+1,vk+2

= 1, ψvk+2,vk+3
= 1, . . . , ψvk′ ,vk′+1

= 1; (37)

. . .

ψvk,vk+1
= 1, ψvk+1,vk+2

= 1, ψvk+2,vk+3
= 0; (38)

ψvk,vk+1
= 1, ψvk+1,vk+2

= 0; (39)

ψvk,vk+1
= 0, (40)

where ψij is a binary variable equal to 1 if and only if arc (i, j) ∈ A is in the solution, while the
arcs having ψij equal to 0 are forbidden.

We compared the obtained results with the results obtained in Adamo et al. (2020). Both
procedures are implemented in C++ and run on MacBook Pro with a 2.33-GHz Intel Core 2 Duo
processor and 4 GB of memory. Linear programs are solved with Cplex 12.9. We consider the same
instances generated in Adamo et al. (2020) and we impose a time limit of 3600 s. Two scenarios are
given: a first traffic pattern A in which a limited traffic zone is located in the center; a second traffic
pattern B in which a heaviest traffic congestion is situated in the center. In Adamo et al. (2020)
a fundamental role was played by ∆ which represents the worst degradation δijh of the congestion
factor of any arc (i, j) ∈ A over the entire planning horizon, i.e. ∆ = min

h=0,...,H−1
(min
(i,j)∈A

δijh). For

Adamo et al. (2020) hard instances are characterized by low value of ∆ in traffic pattern B. The
results for the two scenarios are shown in Tables 1 and 2 in which 30 instances are generated for
each combination of |V | = 15, 20, 25, 30, 35, 40, 45, 50 and ∆ = 0.90, 0.80, 0.70. The headings are as
follows:

• OPT : number of instances solved to optimality out of 30;

• UBI/LBF : average ratio of the initial upper bound value UBI the best lower bound LBF
available at the end of the search;

• GAPI : average initial optimality gap UBI−LBI
LBI

%;

• GAPF : average final optimality gap UBF−LBF
LBF

%;

21

• NODES: average number of nodes;

• TIME: average computing time in seconds.

Except for columns OPT , we report results on two distinct rows: the first row is the average across
instances solved to optimality, and the second row is the average for the remaining instances. For
the sake of conciseness, the first or the second row has been omitted whenever none or all instances
are solved to optimality. For columns NODES and TIME we report only averages for instances
that are solved to optimality. Computational results show that our algorithm is capable of solving
923 instances out of 1440 instances while the procedure by Adamo et al. (2020) solved only 566
problems. The improvement is remarkable for hard instances characterized by the traffic pattern
B. Here, the Adamo et al. (2020) algorithm solves 229 out of 720 instances while our algorithm
procedure succeeds on 505 instances. This can be explained by the quality of the new lower bound
as well as by the low computational effort spent to solve the linear program (23)-(30). In particular,
we formulate a reduced-size instance of such linear model by including in the set B only 75 time
instants. Moreover we set the value of ρ equal to 1/ min

h=0,...,|B|−1
(th+1 − th). We finally observe that

the average computational time is 438 seconds for our procedure and 710 seconds for Adamo et al.
(2020). Indeed, in spite of a higher initial gap, the new lower bound reduces the overall number
of visited branch-and-bound nodes: on average our procedure processes 413 nodes (i.e. ATSP
instances) less than Adamo et al. (2020).

22

T
a
b

le
1
:

P
a
tt

er
n

A

A
r
ig

li
a
n
o

e
t

a
l.

(
2
0
1
8
)

b
r
a
n
c
h
-a

n
d
-b

o
u
n
d

w
it
h

A
d
a
m

o
e
t

a
l.

(
2
0
2
0
)

L
B

A
r
ig

li
a
n
o

e
t

a
l.

(
2
0
1
8
)

b
r
a
n
c
h
-a

n
d
-b

o
u
n
d

w
it
h

t
h
e

n
e
w

L
B

∆
|V
|

O
P
T

U
B
I
/
L
B
F

G
A
P
I

G
A
P
F

N
O
D
E
S

T
I
M
E

O
P
T

U
B
I
/
L
B
F

G
A
P
I

G
A
P
F

N
O
D
E
S

T
I
M
E

0
.7

0

1
5

2
8

1
.0

1
4

7
.2

1
8

0
.0

0
0

2
1
3
7

2
9
6
.8

9
3
0

1
.0

1
4

7
.0

3
4

0
.0

0
0

1
1
7

2
9
.9

8
1
.0

0
2

7
.5

2
3

7
.3

4
3

4
2
0
8
8

–
–

–
–

–
–

2
0

2
1

1
.0

0
7

4
.9

9
8

0
.0

0
0

3
7
8
4

8
4
0
.8

5
2
7

1
.0

0
9

5
.6

6
2

0
.0

0
0

4
9
4

1
4
5
.5

0
1
.0

1
0

9
.7

8
2

7
.4

2
5

2
0
2
0
9

–
1
.0

0
2

7
.6

0
5

7
.5

4
2

1
3
5
7
4

–

2
5

1
0

1
.0

1
2

4
.0

8
3

0
.0

0
0

4
4
9
4

1
5
3
7
.2

6
2
1

1
.0

1
0

5
.1

4
1

0
.0

0
0

2
3
8
7

8
7
2
.4

5
1
.0

0
9

6
.4

1
2

5
.1

3
5

1
4
5
0
0

–
1
.0

0
5

6
.8

7
7

6
.4

9
0

1
0
3
3
9

–

3
0

7
1
.0

1
1

2
.8

2
1

0
.0

0
0

3
6
4
8

1
8
6
5
.1

1
1
0

1
.0

1
0

4
.6

9
6

0
.0

0
0

2
0
6
7

1
5
2
2
.5

4
1
.0

0
5

5
.8

1
2

5
.1

2
9

1
4
9
7
9

–
1
.0

0
8

5
.3

7
9

4
.6

2
5

6
0
8
1

–

3
5

3
1
.0

0
4

1
.8

9
7

0
.0

0
0

6
7
2

1
1
2
0
.4

1
2

1
.0

0
9

3
.3

7
1

0
.0

0
0

3
3
0

1
4
5
1
.7

2
1
.0

0
7

4
.4

1
0

3
.7

4
9

1
1
2
2
3

–
1
.0

0
6

5
.5

1
1

4
.9

8
9

2
7
9
4

–

4
0

3
1
.0

1
3

2
.4

9
4

0
.0

0
0

3
4
6
0

6
5
9
.1

1
3

1
.0

0
8

5
.3

1
9

0
.0

0
0

3
0
7

1
7
0
1
.2

0
1
.0

0
7

5
.4

6
8

4
.7

4
6

1
4
5
7
2

–
1
.0

0
3

5
.9

6
9

5
.7

1
2

4
9
8
1

–

4
5

7
1
.0

1
4

1
.9

8
4

0
.0

0
0

1
4
1
3

9
7
7
.8

3
7

1
.0

0
6

1
.3

7
9

0
3
2
1

9
9
2
.6

2
1
.0

0
6

4
.9

4
2

4
.3

4
7

1
2
1
1
7

–
1
.0

0
2

5
.6

4
6

5
.5

0
5

6
5
6
8

–

5
0

3
1
.0

0
1

0
.6

8
6

0
.0

0
0

6
4

2
1
4
.0

6
3

1
.0

0
4

2
.9

0
6

0
.0

0
0

1
5
3

6
0
4
.2

7
1
.0

0
3

5
.8

4
2

5
.5

7
6

2
2
6
8
2

–
1
.0

0
3

7
.0

9
2

6
.8

5
1

1
1
4
0
8

–

0
.8

0

1
5

3
0

1
.0

0
7

4
.5

2
8

0
.0

0
0

1
8
2
9

1
8
9
.0

4
3
0

1
.0

0
7

4
.2

5
9

0
.0

0
0

1
7
2

4
.5

4
–

–
–

–
–

–
–

–
–

–

2
0

2
7

1
.0

0
3

3
.5

0
0

0
.0

0
0

1
6
5
4

5
5
9
.2

3
3
0

1
.0

0
4

3
.4

9
1

0
.0

0
0

6
0
8

1
6
3
.9

8
1
.0

0
2

5
.9

6
2

5
.7

6
8

2
3
0
2
1

–
–

–
–

–
–

2
5

1
4

1
.0

0
6

3
.2

8
2

0
.0

0
0

3
0
3
6

1
0
7
2
.4

3
2
6

1
.0

0
6

3
.4

3
1

0
.0

0
0

9
9
7

3
6
7
.1

2
1
.0

0
5

3
.8

1
3

3
.5

4
3

1
1
2
2
6

–
1
.0

0
3

4
.6

3
9

4
.4

3
2

1
0
5
2
3

–

3
0

9
1
.0

0
4

2
.0

2
4

0
.0

0
0

1
6
8
9

1
5
8
4
.4

0
2
1

1
.0

0
6

2
.7

6
9

0
.0

0
0

1
4
3
9

8
4
6
.8

0
1
.0

0
2

3
.9

0
3

3
.7

3
0

1
2
5
6
8

–
1
.0

0
3

3
.8

3
3

3
.6

6
6

6
0
1
7

–

3
5

3
1
.0

0
2

1
.4

9
7

0
.0

0
0

6
5
4

9
7
8
.1

0
9

1
.0

0
6

3
.1

8
1

0
.0

0
0

4
1
6

1
6
8
2
.5

0
1
.0

0
5

2
.8

6
8

2
.5

4
2

6
6
1
0

–
1
.0

0
3

3
.2

8
8

2
.9

6
2

7
5
9
1

–

4
0

7
1
.0

0
5

1
.8

0
9

0
.0

0
0

2
8
2
2

1
1
8
8
.5

0
8

1
.0

0
1

3
.0

2
8

0
.0

0
0

3
1
8

1
7
5
2
.7

7
1
.0

0
5

3
.9

8
1

3
.5

4
2

1
1
2
6
0

–
1
.0

0
2

3
.7

0
0

3
.5

3
0

8
9
5
8

–

4
5

7
1
.0

0
6

1
.3

9
7

0
.0

0
0

6
3
1

9
9
0
.5

2
8

1
.0

0
3

3
.1

8
2

0
.0

0
0

4
0
3

5
1
5
.1

7
1
.0

0
3

3
.4

3
5

3
.1

5
7

9
8
3
8

–
1
.0

0
2

3
.4

9
3

3
.2

6
0

6
0
4
7

–

5
0

4
1
.0

0
2

0
.8

3
0

0
.0

0
0

3
8
0

9
4
5
.7

1
4

1
.0

0
4

3
.0

8
7

0
.0

0
0

2
2
6

5
7
6
.8

4
1
.0

0
1

3
.9

7
6

3
.8

7
3

1
6
2
9
3

–
1
.0

0
1

4
.3

1
1

4
.1

8
4

9
1
4

–

0
.9

0

1
5

3
0

1
.0

0
2

2
.2

1
8

0
.0

0
0

2
8
2

2
9
.8

6
3
0

1
.0

0
3

1
.8

4
2

0
.0

0
0

2
4

0
.8

8
2
0

3
0

1
.0

0
1

1
.8

8
3

0
.0

0
0

6
4
2

1
6
4
.8

3
3
0

1
.0

0
3

1
.6

0
3

0
.0

0
0

2
0
5

6
.2

0

2
5

2
7

1
.0

0
2

1
.8

3
3

0
.0

0
0

1
6
1
7

7
7
1
.2

0
3
0

1
.0

0
3

1
.6

6
2

0
.0

0
0

1
3
2
9

5
8
.7

9
1
.0

0
4

2
.6

7
1

2
.2

9
5

7
9
3
1

–
–

–
–

–
–

3
0

2
3

1
.0

0
2

1
.5

6
3

0
.0

0
0

2
1
0
9

1
1
9
3
.3

2
3
0

1
.0

0
2

1
.3

2
3

0
.0

0
0

5
0
0

3
8
5
.0

8
1
.0

0
2

1
.9

6
4

1
.6

1
1

4
4
6
6

–
–

–
–

–
–

3
5

1
6

1
.0

0
1

1
.2

7
2

0
.0

0
0

2
2
3
8

1
9
1
3
.1

6
2
3

1
.0

0
3

1
.3

4
6

0
.0

0
0

1
6
9
1

8
4
3
.7

6
1
.0

0
4

1
.5

7
9

1
.3

0
2

7
9
0
3

–
1
.0

0
0

1
.6

0
9

1
.5

9
8

6
5
8
0

–

4
0

1
1

1
.0

0
2

1
.2

0
1

0
.0

0
0

1
9
9
9

1
3
9
6
.0

1
1
3

1
.0

0
2

1
.3

0
0

0
.0

0
0

1
9
4
1

7
6
5
.6

5
1
.0

0
1

1
.9

5
5

1
.7

6
6

8
6
4
1

–
1
.0

0
1

1
.7

3
4

1
.6

2
1

6
4
2
9

–

4
5

1
1

1
.0

0
2

1
.0

4
3

0
.0

0
0

8
0
8

9
7
1
.5

6
1
4

1
.0

0
2

1
.4

7
6

0
.0

0
0

2
8
0
0

8
6
4
.5

4
1
.0

0
1

1
.7

3
2

1
.5

7
0

8
0
2
1

–
1
.0

0
2

1
.7

1
7

1
.4

9
9

5
2
4
7

–

5
0

6
1
.0

0
3

0
.9

2
7

0
.0

0
0

1
3
7
7

7
3
3
.6

7
9

1
.0

0
2

1
.6

7
5

0
.0

0
0

2
9
8
0

1
6
2
3
.4

0
1
.0

0
0

2
.0

2
9

1
.8

7
7

7
9
3
7

–
1
.0

0
1

2
.2

6
7

2
.1

0
9

7
5
9
4

–
A
V
G

3
3
7

1
.0

0
5

2
.9

1
0

0
.0

0
0

1
8
1
6

7
5
4
.9

1
4
1
8

1
.0

0
5

3
.1

2
7

0
.0

0
0

8
9
4

4
6
1
.0

5

23

T
a
b

le
2
:

P
a
tt

er
n

B

A
r
ig

li
a
n
o

e
t

a
l.

(
2
0
1
8
)

b
r
a
n
c
h
-a

n
d
-b

o
u
n
d

w
it
h

A
d
a
m

o
e
t

a
l.

(
2
0
2
0
)

L
B

A
r
ig

li
a
n
o

e
t

a
l.

(
2
0
1
8
)

b
r
a
n
c
h
-a

n
d
-b

o
u
n
d

w
it
h

t
h
e

n
e
w

L
B

∆
|V
|

O
P
T

U
B
I
/
L
B
F

G
A
P
I

G
A
P
F

N
O
D
E
S

T
I
M
E

O
P
T

U
B
I
/
L
B
F

G
A
P
I

G
A
P
F

N
O
D
E
S

T
I
M
E

0
.7

0

1
5

2
8

1
.0

1
1

5
.5

5
0

0
.0

0
0

5
0
7
4

6
4
3
.1

5
3
0

1
.0

1
0

9
.1

5
8

0
.0

0
0

4
4
1

1
1
.7

2
1
.0

0
0

2
1
.5

7
9

9
.3

2
7

6
6
0
5
9

–
–

–
–

–
–

2
0

1
4

1
.0

0
7

4
.5

0
8

0
.0

0
0

6
3
6
2

1
3
4
8
.9

8
3
0

1
.0

0
8

6
.8

4
4

0
.0

0
0

1
1
9
9

4
3
.0

3
1
.0

0
4

1
5
.8

5
6

5
.4

6
8

5
1
3
4
6

–
–

–
–

–
–

2
5

4
1
.0

1
6

3
.2

4
3

0
.0

0
0

8
4
7

5
2
6
.5

8
2
9

1
.0

1
1

5
.1

2
2

0
.0

0
0

5
5
2
3

4
5
6
.1

7
1
.0

0
7

1
1
.1

5
2

4
.5

8
1

3
5
8
1
0

–
1
.0

0
0

6
.1

1
4

5
.9

8
9

4
9
8
1
3

–

3
0

2
1
.0

0
3

0
.3

1
7

0
.0

0
0

4
8

1
4
.0

3
2
3

1
.0

1
2

4
.6

7
3

0
.0

0
0

3
5
8
2

7
1
5
.4

8
1
.0

0
7

9
.4

5
4

4
.6

8
8

4
1
3
3
5

–
1
.0

1
4

6
.0

8
1

4
.7

0
5

2
4
9
5
3

–

3
5

2
1
.0

0
0

0
.0

0
0

0
.0

0
0

7
1
4
.1

8
1
0

1
.0

1
6

5
.5

9
3

0
.0

0
0

2
7
5
8
7

2
0
3
7
.0

9
1
.0

0
8

7
.5

8
3

5
.0

8
3

3
9
2
2
8

–
1
.0

1
1

4
.8

9
9

3
.8

7
4

3
3
2
7
4

–

4
0

0
–

–
–

–
–

3
1
.0

0
3

3
.6

8
4

0
.0

0
0

3
1
6
6
0

2
1
8
2
.2

9
1
.0

0
2

7
.9

1
0

4
.8

5
6

2
8
0
3
2

–
1
.0

0
5

5
.1

3
9

4
.7

7
1

5
5
9
4
9

–

4
5

1
1
.0

0
3

0
.3

4
3

0
.0

0
0

2
8
3

3
8
0
.0

0
2

1
.0

1
2

4
.0

8
3

0
.0

0
0

1
1
0
0
0

2
4
3
9
.7

6
1
.0

0
2

8
.8

0
6

5
.7

9
3

1
5
9
4
3

–
1
.0

0
5

6
.0

6
0

5
.8

1
1

6
5
6
7
4

–

5
0

2
1
.0

0
0

0
.0

0
0

0
.0

0
0

0
5
.1

6
2

1
.0

1
3

2
.8

9
2

0
.0

0
0

1
5
3
2

9
1
1
.5

4
1
.0

0
2

7
.5

8
1

5
.4

9
2

1
4
3
1
0

–
1
.0

0
6

6
.7

0
7

6
.2

7
4

8
8
7
1

–

0
.8

0

1
5

3
0

1
.0

0
7

4
.1

4
5

0
.0

0
0

4
1
7
2

2
8
7
.6

0
3
0

1
.0

0
9

6
.4

3
5

0
.0

0
0

1
6
7

4
.5

9
–

–
–

–
–

–
–

–
–

–

2
0

1
9

1
.0

0
8

3
.9

5
0

0
.0

0
0

6
2
3
2

1
0
3
3
.3

2
3
0

1
.0

0
7

4
.9

3
6

0
.0

0
0

1
0
1
6

3
3
.5

5
1
.0

0
1

3
.8

3
6

3
.7

5
5

5
5
0
1
9

–
–

–
–

–
–

2
5

7
1
.0

0
7

2
.4

4
6

0
.0

0
0

6
2
5
3

1
2
6
5
.3

3
3
0

1
.0

0
6

3
.4

9
8

0
.0

0
0

4
6
1
9

2
6
8
.1

0
1
.0

0
4

5
.9

2
0

3
.2

1
2

2
8
4
2
0

–
–

–
–

–
–

3
0

4
1
.0

0
1

1
.2

6
4

0
.0

0
0

8
6
7

7
6
3
.5

8
2
6

1
.0

0
8

3
.1

4
1

0
.0

0
0

1
4
3
8

3
7
4
.7

1
1
.0

0
3

4
.9

0
5

3
.2

0
2

2
0
0
6
0

–
1
.0

0
7

3
.6

0
3

2
.8

8
9

3
5
3
8
2

–

3
5

2
1
.0

0
0

0
.0

0
0

0
.0

0
0

1
0

1
3
.4

3
2
1

1
.0

0
8

2
.9

8
7

0
.0

0
0

1
0
1
2

9
9
7
.2

8
1
.0

0
2

4
.5

1
7

3
.6

9
6

2
1
2
6
0

–
1
.0

0
4

3
.2

9
0

2
.9

6
4

2
3
6
5
4

–

4
0

0
–

–
–

–
–

1
3

1
.0

0
7

2
.7

0
4

0
.0

0
0

1
8
2
3

1
2
7
8
.2

5
1
.0

0
2

5
.1

3
6

3
.6

3
3

1
7
4
6
7

1
.0

0
3

3
.0

7
1

2
.8

0
0

4
1
3
4
1

–

4
5

1
1
.0

0
3

0
.3

3
9

0
.0

0
0

1
8
6

1
8
7
.2

9
9

1
.0

1
9

3
.7

5
9

0
.0

0
0

7
7
6
4

1
0
4
7
.8

2
1
.0

0
1

5
.7

4
0

4
.0

7
4

1
4
1
0
9

–
1
.0

0
5

3
.4

7
5

3
.0

8
5

2
6
6
1
1

–

5
0

2
1
.0

0
0

0
.0

0
0

0
.0

0
0

0
5
.5

9
7

1
.0

1
1

2
.8

0
3

0
.0

0
0

5
9
0
6

1
3
1
6
.8

0
1
.0

0
1

4
.7

9
2

3
.7

4
2

9
6
4
0

–
1
.0

0
6

4
.0

0
3

3
.4

5
0

4
4
4
1
4

–

0
.9

0

1
5

3
0

1
.0

0
3

1
.8

9
8

0
.0

0
0

3
5
8

2
9
.5

8
3
0

1
.0

0
4

3
.0

9
9

0
.0

0
0

3
0
6

1
.0

5

2
0

3
0

1
.0

0
3

1
.9

0
4

0
.0

0
0

3
2
7
1

3
5
1
.5

3
3
0

1
.0

0
3

2
.5

2
6

0
.0

0
0

1
0
3

3
.9

3
–

–
–

–
–

–
–

–
–

–

2
5

2
2

1
.0

0
2

1
.3

5
9

0
.0

0
0

4
4
0
6

1
1
0
8
.1

6
3
0

1
.0

0
3

1
.8

7
0

0
.0

0
0

4
0
0

2
8
.1

9
1
.0

0
2

2
.6

9
8

1
.8

5
7

2
1
9
8
9

–
–

–
–

–
–

3
0

1
5

1
.0

0
3

1
.3

4
5

0
.0

0
0

3
6
6
8

1
6
6
0
.6

9
3
0

1
.0

0
3

1
.5

8
7

0
.0

0
0

7
9
3

1
7
4
.5

8
1
.0

0
1

2
.0

7
7

1
.5

3
1

2
2
6
4
3

–
–

–
–

–
–

3
5

9
1
.0

0
2

0
.8

7
8

0
.0

0
0

1
6
0
8

1
4
4
0
.5

2
2
8

1
.0

0
3

1
.4

0
4

0
.0

0
0

3
6
8
4

4
0
2
.0

4
1
.0

0
0

2
.0

9
1

1
.6

3
3

1
5
2
9
6

–
1
.0

0
1

1
.8

0
2

1
.8

0
1

1
6
2
4
2

–

4
0

1
1
.0

0
0

1
.6

8
0

0
.0

0
0

1
7
6
8

2
4
7
3
.6

1
2
5

1
.0

0
2

1
.2

7
6

0
.0

0
0

6
1
3
0

6
3
3
.3

4
1
.0

0
1

2
.1

4
8

1
.5

6
5

1
2
0
8
8

–
1
.0

0
0

1
.7

9
2

1
.7

8
3

2
7
4
5
2

–

4
5

2
1
.0

0
1

0
.0

8
8

0
.0

0
0

4
5

1
6
2
.1

7
2
0

1
.0

0
6

1
.7

0
9

0
.0

0
0

5
9
1
4

9
9
4
.0

4
1
.0

0
1

2
.3

5
7

1
.8

1
0

9
4
9
4

–
1
.0

0
3

1
.6

3
9

1
.4

0
8

2
0
0
9
1

–

5
0

2
1
.0

0
0

0
.0

0
0

0
.0

0
0

0
4
.9

9
1
7

1
.0

0
4

1
.7

5
3

0
.0

0
0

8
4
3
7

1
0
7
2
.5

0
1
.0

0
1

2
.1

3
8

1
.7

0
6

6
7
6
6

–
1
.0

0
2

1
.7

7
4

1
.5

7
7

3
0
2
7
6

–

A
V
G

2
2
9

1
.0

0
5

2
.7

9
2

0
.0

0
0

3
5
6
1

6
6
5
.3

6
5
0
5

1
.0

0
7

3
.7

7
0

0
.0

0
0

3
2
1
0

4
1
8
.8

6

24

7.2 Results on the TDRPP

Calogiuri et al. (2019) devised lower and upper bounds for the TDRPP. The proposed bounds were
embedded in a branch-and-bound algorithm. In particular, they enhanced the branching scheme
of the algorithm by Arigliano et al. (2018) in order to deal with quickest paths linking distinct
required arcs.
We embedded our bounds in such optimal solution algorithm. Both procedures are implemented in
C++ and run on MacBook Pro-with a 2.33-GHz Intel Core 2 Duo processor and 4 GB of memory.
Linear programs are solved with Cplex 12.9. In particular the algorithm by Ávila et al. (2015) was
used to solve the time-invariant routing problem at the second step of the proposed lower bounding
procedure.
We consider the instances that Calogiuri et al. (2019) generated in two phases. First, a complete
graph G = (V,A, τ) was generated where the |V | locations are randomly generated as reported in
Cordeau et al. (2014). For each possible value of |V | in the set {20, 40, 60}. The set of arcs A
was determined by selecting |V | + α × |V | arcs from A as follows. The set A was first initialized
with the |V | arcs of an Hamiltonian tour on G . Then a number of arcs α × |V | are added, where
α ∈ {0.2; 0.6; 1}. The required arcs set R was generated by randomly selecting a percentage β
of arcs in A, with β ∈ {0.3; 0.5; 0.7}. By combining 30 instances for each value of |V |, three
values of |V |, three values of α and three values of β, Calogiuri et al. (2019) obtained 810 different
combinations of (G,R). For each combination (G,R), they generated 3 different traffic patterns,
characterized by three different values of traffic congestion, i.e. ∆ = {0.7, 0.8, 0.9}. Results are
reported in Tables 3,4 and 5 with the same column headings of TDTSP results. Computational
results show that our algorithm is capable of solving 1772 instances out of 2430 instances while the
procedure by Calogiuri et al. (2019) solved only 1618 problems. The improvement is remarkable for
computational time, which was on average equal to 98 seconds for our procedure and 189 seconds
for Calogiuri et al. (2019). This can be explained by the quality of the new lower bound as well as
by the low computational effort spent to solve the linear program (23)-(30), which was formulated
by including in the set B only 75 time instants. Indeed, the new lower bound reduces the overall
number of visited branch-and-bound nodes: on average our procedure processes about 4394 nodes
(i.e. RPP instances) less than Calogiuri et al. (2019).

8 Conclusion

This paper has introduced a key property of time-dependent graphs that we have called ”path
ranking invariance”. We have shown that this property can be exploited in order to solve a large class
of time-dependent routing problems, including the Time-Dependent Travelling Salesman Problem
and the Time-Dependent Rural Postman Problem. We have also proved that the path ranking
invariance can be checked by solving a decision problem, named Constant Traversal Cost Problem.
When such check fails, we have defined a new family of parameterized lower and upper bounds,
whose parameters can be chosen by solving a linear program. Computational results show that, used
in a branch-and-bound algorithm, this mechanism outperforms state-of-the-arts optimal algorithms.
Future work will focus on adapting the new ideas to other time-dependent routing problems.

25

9 Acknowledgments

This research was partly supported by the Ministero delI’Istruzione, dell’Università e della Ricerca
(MIUR) of Italy (PRIN project 2015JJLC3E 005 “Transportation and Logistics Optimization in
the Era of Big and Open Data”). This support is gratefully acknowledged.

References

Adamo, T., G. Ghiani, and E. Guerriero (2020). An enhanced lower bound for the time-dependent
travelling salesman problem. Computers & Operations Research 113, 104795.

Albiach, J., J. Sanchis, and D. Soler (2008). An asymmetric TSP with time windows and with time-
dependent travel times and costs: An exact solution through a graph transformation. European
Journal of Operational Research 189, 789–802.

Arigliano, A., T. Calogiuri, G. Ghiani, and E. Guerriero (2018). A branch-and-bound algorithm
for the time-dependent travelling salesman problem. Networks 72 (3), 382–392.

Arigliano, A., G. Ghiani, A. Grieco, E. Guerriero, and I. Plana (2018). Time-dependent asymmetric
traveling salesman problem with time windows: Properties and an exact algorithm. Discrete
Applied Mathematics.

Arora, S. and B. Barak (2009). Computational complexity: a modern approach. Cambridge Uni-
versity Press.

Ávila, T., Á. Corberán, and J. M. Plana, I.and Sanchis (2015). A new branch-and-cut algorithm
for the generalized directed rural postman problem. Transportation Science 50 (2), 750–761.

Calogiuri, T., G. Ghiani, E. Guerriero, and R. Mansini (2019). A branch-and-bound algorithm for
the time-dependent rural postman problem. Computers & Operations Research 102, 150–157.

Carpaneto, G. and P. Toth (1980). Some new branching and bounding criteria for the asymmetric
travelling salesman problem. Management Science 26 (7), 736–743.

Cordeau, J.-F., G. Ghiani, and E. Guerriero (2014). Analysis and Branch-and-Cut Algorithm for
the Time-Dependent Travelling Salesman Problem. Transportation Science.

Fox, K., B. Gavish, and S. Graves (1980). An n-constraint formulation of the (time-dependent)
traveling salesman problem. Operations Research 28, 1018–1021.

Gendreau, M., G. Ghiani, and E. Guerriero (2015). Time-dependent routing problems: A review.
Computers & Operations Research 64, 189–197.

Godinho, M. T., L. Gouveia, and P. Pesneau (2014). Natural and extended formulations for the
time-dependent traveling salesman problem. Discrete Applied Mathematics 164, 138–153.

Gouveia, L. and S. Voß (1995). A classification of formulations for the (time-dependent) traveling
salesman problem. European Journal of Operational Research 83, 69–82.

26

Harwood, K., C. Mumford, and R. Eglese (2013, 01). Investigating the use of metaheuristics for
solving single vehicle routing problems with time-varying traversal costs. J Oper Res Soc 64 (1),
34–47.

Helvig, C., G. Robins, and A. Zelikovsky (2003). The moving-target traveling salesman problem.
Journal of Algorithms 49, 153–174.

Ichoua, S., M. Gendreau, and J. Y. Potvin (2003a). Vehicle dispatching with time-dependent travel
times. European Journal of Operational Research 144 (2), 379–396.

Ichoua, S., M. Gendreau, and J.-Y. Potvin (2003b). Vehicle dispatching with time-dependent travel
times. European Journal of Operational Research 144, 379–396.

Li, F., B. Golden, and E. Wasil (2005). Solving the time dependent traveling salesman problem. In
R. Sharda, S. Voß, B. Golden, S. Raghavan, and E. Wasil (Eds.), The Next Wave in Computing,
Optimization, and Decision Technologies, Volume 29 of Operations Research/Computer Science
Interfaces Series, pp. 163–182. Springer.

Malandraki, C. and M. S. Daskin (1992). Time Dependent Vehicle Routing Problems: Formulations,
Properties and Heuristic Algorithms.

Malandraki, C. and R. Dial (1996). A restricted dynamic programming heuristic algorithm for
the time dependent traveling salesman problem. European Journal of Operational Research 90,
45–55.

Melgarejo, P. A., P. Laborie, and C. Solnon (2015). A time-dependent no-overlap constraint:
Application to urban delivery problems. In International Conference on AI and OR Techniques
in Constriant Programming for Combinatorial Optimization Problems, pp. 1–17. Springer.

Miranda-Bront, J., I. Méndez-Dı́az, and P. Zabala (2010). An integer programming approach for
the time-dependent TSP. Electronic Notes in Discrete Mathematics 36, 351–358.

Montemanni, R., J. Barta, M. Mastrolilli, and L. Gambardella (2007). The robust traveling salesman
problem with interval data. Transportation Science 41, 366–381.

Montero, A., I. Méndez-Dı́az, and J. J. Miranda-Bront (2017). An integer programming approach
for the time-dependent traveling salesman problem with time windows. Computers & Operations
Research 88, 280–289.

Picard, J. and M. Queyranne (1978). The time-dependent traveling salesman problem and its
application to the tardiness problem in one-machine scheduling. Operations Research 26, 86–110.

Schneider, J. (2002). The time-dependent traveling salesman problem. Physica A: Statistical Me-
chanics and its Applications 314, 151–155.

Stecco, G., J. Cordeau, and E. Moretti (2008). A branch-and-cut algorithm for a production
scheduling problem with sequence-dependent and time-dependent setup times. Computers &
Operations Research 35 (8), 2635–2655.

Sun, J., Y. Meng, and G. Tan (2015). An integer programming approach for the chinese postman
problem with time-dependent travel time. Journal of Combinatorial Optimization 29 (3), 565–
588.

27

Sun, J., G. Tan, and G. Hou (2011). A new integer programming formulation for the chinese
postman problem with time dependent travel times. World Acad Sci Eng Technol Int J Comput
Inf Eng 5 (4), 410–414.

Sun, J., G. Tan, and H. Qu (2011). Dynamic programming algorithm for the time dependent chinese
postman problem. Journal of Information and Computational Science 8, 833–841.

Tan, G. and J. Sun (2011). An Integer Programming Approach for the Rural Postman Problem
with Time Dependent Travel Times, Computing and Combinatorics: 17th Annual International
Conference, COCOON 2011, Dallas, TX, USA, August 14-16, 2011. Proceedings, pp. 414–431.
Berlin: Springer Verlag.

Toth, P. and D. Vigo (2014). Vehicle routing: problems, methods, and applications, Volume 18.
Siam.

Vander Wiel, R. and N. Sahinidis (1996). An exact solution approach for the time-dependent
traveling-salesman problem. Naval Research Logistics 43, 797–820.

Vu, D. M., M. Hewitt, N. Boland, and M. Savelsbergh (2020). Dynamic discretization discovery
for solving the time-dependent traveling salesman problem with time windows. Transportation
Science 54 (3), 703–720.

28

T
a
b

le
3
:

P
a
tt

er
n

B
.
β

=
0.

3

C
a
lo
g
iu
ri

e
t
a
l.

(2
0
1
9
)
b
ra

n
ch

-a
n
d
-b

o
u
n
d

C
a
lo
g
iu
ri

e
t
a
l.

(2
0
1
9
)
b
ra

n
ch

-a
n
d
-b

o
u
n
d

w
it
h

th
e
n
e
w

L
B

D
e
lt
a
|V
|
|A
|

O
P
T

U
B
I
/
L
B
F

G
A
P
I
G
A
P
F

N
O
D
E
S

T
I
M
E

O
P
T

U
B
I
/
L
B
F

G
A
P
I
G
A
P
F

N
O
D
E
S

T
I
M
E

0
.9

2
0

2
4

3
0

1
.0
0
1

4
.3
7

0
.0
0

1
1

0
.4
0

3
0

1
.0
0
0

0
.5
2

0
.0
0

9
0
.3
8

3
2

3
0

1
.0
0
0

4
.8
3

0
.0
0

1
1
7
3

3
0
.5
7

3
0

1
.0
0
0

0
.4
8

0
.0
0

8
0

3
.1
7

4
0

2
9

1
.0
0
0

4
.2
6

0
.0
0

8
3
5

2
2
.8
1

2
9

1
.0
0
0

0
.4
5

0
.0
0

7
6
3

2
1
.7
9

1
.0
0
0

5
.1
9

0
.3
0

-
-

1
.0
0
0

0
.1
4

0
.1
4

-
-

4
0

4
8

3
0

1
.0
0
0

4
.3
9

0
.0
0

1
2
7

3
.8
0

3
0

1
.0
0
1

0
.4
6

0
.0
0

6
5

2
.1
8

6
4

2
7

1
.0
0
0

4
.4
9

0
.0
0

5
2
1
2

1
4
8
.0
0

2
7

1
.0
0
0

0
.4
5

0
.0
0

2
2
9
4

8
3
.6
6

1
.0
0
0

5
.4
7

0
.5
7

-
-

1
.0
0
0

1
.0
6

1
.0
4

-
-

8
0

2
6

0
.0
1

4
.2
5

0
.0
0

8
4
1
5

2
1
6
.7
5

2
7

1
.0
0
0

0
.4
8

0
.0
0

0
0
.1
1

1
.0
0
0

5
.4
2

0
.5
4

-
-

1
.0
0
0

0
.2
5

0
.2
4

-
-

6
0

7
2

3
0

1
.0
0
1

4
.7
3

0
.0
0

1
0
2
9

2
9
.0
5

3
0

1
.0
0
0

0
.3
8

0
.0
0

9
9
3

3
1
.8
0

9
6

2
4

1
.0
0
0

4
.6
1

0
.0
0

1
9
2
7

5
7
.8
7

2
5

1
.0
0
0

0
.0
9

0
.0
0

2
0
.1
8

1
.0
0
0

5
.7
8

0
.5
1

-
-

1
.0
0
0

0
.6
5

0
.6
5

-
-

1
2
0

2
8

1
.0
0
0

4
.8
1

0
.0
0

2
5
1
3

8
2
.4
7

3
0

1
.0
0
0

0
.2
7

0
.0
0

6
0
.4
7

1
.0
0
0

5
.5
7

0
.4
3

-
-

0
.8

2
0

2
4

3
0

1
.0
0
0

7
.9
4

0
.0
0

1
0

0
.3
8

3
0

1
.0
0
0

1
.2
2

0
.0
0

1
0

0
.3
7

3
2

3
0

1
.0
0
0

8
.0
7

0
.0
0

1
5
1

3
.7
9

3
0

1
.0
0
1

1
.1
6

0
.0
0

7
9

3
.4
0

4
0

3
0

1
.0
0
0

7
.5
8

0
.0
0

3
6
2
6

8
6
.9
0

3
0

1
.0
0
0

1
.2
6

0
.0
0

8
7
5

3
4
.7
8

4
0

4
8

3
0

1
.0
0
0

8
.2
9

0
.0
0

7
1

1
.9
5

3
0

1
.0
0
0

1
.2
2

0
.0
0

4
6

2
.0
1

6
4

2
7

1
.0
0
1

7
.6
3

0
.0
0

9
4
5
1

2
6
9
.2
7

2
7

1
.0
0
0

0
.7
6

0
.0
0

5
1
2
4

2
1
1
.6
2

1
.0
0
2

8
.8
6

1
.7
5

-
-

1
.0
0
0

1
.8
8

1
.7
1

-
-

8
0

2
6

1
.0
0
0

7
.7
3

0
.0
0

8
6
1
8

1
8
3
.0
8

2
7

1
.0
0
0

0
.6
9

0
.0
0

7
0
.3
5

1
.0
0
0

8
.3
8

0
.8
4

-
-

1
.0
0
0

0
.9
0

0
.8
0

-
-

6
0

7
2

3
0

1
.0
0
0

8
.8
4

0
.0
0

2
6
0

8
.2
1

3
0

1
.0
0
1

0
.9
0

0
.0
0

1
6
2

5
.5
8

9
6

2
2

1
.0
0
0

7
.8
1

0
.0
0

5
3
7
2

1
4
6
.2
7

2
5

1
.0
0
0

0
.6
6

0
.0
0

6
0
.4
8

1
.0
0
0

8
.9
0

1
.3
3

-
-

1
.0
0
0

1
.0
2

1
.0
0

-
-

1
2
0

2
5

1
.0
0
0

7
.0
6

0
.0
0

4
8
7
2

1
2
4
.9
2

2
7

1
.0
0
0

1
.0
1

0
.0
0

2
0
.3
2

1
.0
0
0

9
.2
9

0
.8
6

-
-

1
.0
0
0

2
.0
1

2
.0
0

-
-

0
.7

2
0

2
4

3
0

1
.0
0
1

1
0
.5
1

0
.0
0

9
0
.3
8

3
0

1
.0
0
0

2
.2
5

0
.0
0

7
0
.3
6

3
2

3
0

1
.0
0
0

1
0
.8
8

0
.0
0

3
8
5

1
1
.6
9

3
0

1
.0
0
1

2
.0
9

0
.0
0

3
1
8

1
1
.0
3

4
0

2
9

1
.0
0
0

1
2
.4
8

0
.0
0

4
9
1
8

1
4
5
.2
7

3
0

1
.0
0
0

1
.0
1

0
.0
0

3
3
3
2

1
2
7
.0
9

1
.0
0
0

1
4
.8
9

2
.4
7

-
-

4
0

4
8

3
0

1
.0
0
2

1
1
.0
2

0
.0
0

3
7

1
.3
7

3
0

1
.0
0
1

1
.6
4

0
.0
0

3
1

1
.2
3

6
4

2
5

1
.0
0
0

1
2
.6
2

0
.0
0

1
3
6
8
5

4
4
1
.9
8

2
7

1
.0
0
0

2
.5
5

0
.0
0

4
8
1
6

1
8
9
.4
7

1
.0
0
1

1
5
.8
6

2
.9
6

-
-

1
.0
0
2

1
.2
0

0
.9
6

-
-

8
0

2
4

1
.0
0
0

1
1
.2
7

0
.0
0

2
1
5
5
1

4
8
1
.2
2

2
6

1
.0
0
0

1
.7
9

0
.0
0

1
8
1
8

7
4
.1
4

1
.0
0
1

1
3
.8
5

1
.1
3

-
-

1
.0
0
0

0
.5
5

0
.5
2

-
-

6
0

7
2

3
0

1
.0
0
1

1
0
.4
9

0
.0
0

4
9
9

1
4
.3
8

3
0

1
.0
0
1

1
.4
5

0
.0
0

3
5
2

1
3
.3
7

9
6

2
0

1
.0
0
0

1
2
.5
8

0
.0
0

2
1
6
7
3

7
2
0
.3
0

2
6

1
.0
0
0

1
.4
3

0
.0
0

2
6
7
6

1
2
0
.6
8

1
.0
0
3

1
4
.3
6

1
.7
0

-
-

1
.0
0
1

0
.8
8

0
.7
9

-
-

1
2
0

2
4

1
.0
0
0

1
2
.0
8

0
.0
0

2
5
2
3
5

6
0
0
.5
3

3
0

1
.0
0
0

1
.1
7

0
.0
0

1
9
8

1
2
.4
4

1
.0
0
0

1
3
.5
2

1
.0
4

-
-

A
V
G

7
4
6

1
.0
0
0

8
.1
1

1
.2
3

4
6
6
8

1
2
5
.7
1

7
7
3

1
.0
0
0

1
.0
3

0
.0
4

8
6
2

3
4
.0
4

29

T
a
b

le
4
:

P
a
tt

er
n

B
.
β

=
0.

5

C
a
lo
g
iu
ri

e
t
a
l.

(2
0
1
9
)
b
ra

n
ch

-a
n
d
-b

o
u
n
d

C
a
lo
g
iu
ri

e
t
a
l.

(2
0
1
9
)
b
ra

n
ch

-a
n
d
-b

o
u
n
d

w
it
h

th
e
n
e
w

L
B

D
e
lt
a
|V
|
|A
|

O
P
T

U
B
I
/
L
B
F

G
A
P
I
G
A
P
F

N
O
D
E
S

T
I
M
E

O
P
T

U
B
I
/
L
B
F

G
A
P
I
G
A
P
F

N
O
D
E
S

T
I
M
E

0
.9

2
0

2
4

3
0

1
.0
0
0

3
.4
3

0
.0
0

3
4

0
.9
8

3
0

0
.9
8

0
.0
0

1
.0
0
2

2
8

0
.8
7

3
2

3
0

1
.0
0
1

4
.1
7

0
.0
0

2
7
2
1

6
7
.7
2

3
0

0
.7
5

0
.0
0

1
.0
0
1

1
0
8
3

3
5
.8
0

4
0

2
2

1
.0
0
0

3
.8
1

0
.0
0

2
2
7
4
3

6
1
4
.2
0

2
2

0
.5
5

0
.0
0

1
.0
0
0

1
3
6
7
5

5
0
4
.6
9

1
.0
0
1

4
.2
1

0
.7
8

-
-

0
.9
7

0
.7
6

1
.0
0
2

-
-

4
0

4
8

3
0

1
.0
0
1

3
.5
4

0
.0
0

4
0
2

1
0
.3
4

3
0

0
.7
6

0
.0
0

1
.0
0
1

2
6
5

7
.8
0

6
4

1
2

1
.0
0
1

2
.9
7

0
.0
0

1
6
7
2
9

4
5
3
.0
1

1
7

0
.4
3

0
.0
0

1
.0
4
6

4
5
8
8

2
4
5
.9
0

1
.0
0
1

3
.8
5

0
.7
5

-
-

0
.9
2

0
.7
3

1
.0
0
2

-
-

8
0

9
1
.0
0
0

2
.8
9

0
.0
0

1
0
1
5
8

2
6
0
.8
5

1
6

0
.2
6

0
.0
0

1
.0
0
0

4
2
3

6
3
.7
4

1
.0
0
1

3
.6
8

0
.6
2

-
-

0
.8
2

0
.7
3

1
.0
0
1

-
-

6
0

7
2

3
0

1
.0
0
1

3
.6
9

0
.0
0

4
0
5
0

1
1
6
.0
1

3
0

0
.6
9

0
.0
0

1
.0
0
1

1
7
7
4

6
8
.7
8

9
6

9
1
.0
0
0

3
.2
7

0
.0
0

3
0
8
1
5

8
1
0
.2
2

1
7

0
.2
5

0
.0
0

1
.0
0
0

2
1

0
.4
3

1
.0
0
1

3
.7
8

0
.5
4

-
-

0
.7
2

0
.6
6

1
.0
0
1

-
-

1
2
0

6
1
.0
0
0

3
.2
3

0
.0
0

8
9
2
6

2
9
3
.9
7

1
7

0
.2
6

0
.0
0

1
.0
0
0

1
4

0
.3
7

1
.0
0
1

3
.7
7

0
.5
3

-
-

0
.6
9

0
.6
2

1
.0
0
1

-
-

0
.8

2
0

2
4

3
0

1
.0
0
1

6
.8
7

0
.0
0

2
9

0
.9
5

3
0

1
.7
1

0
.0
0

1
.0
0
2

2
8

0
.8
8

3
2

3
0

1
.0
0
2

7
.1
5

0
.0
0

5
5
8
2

1
6
1
.3
0

3
0

1
.3
4

0
.0
0

1
.0
0
1

4
5
2
7

1
4
0
.4
8

4
0

2
2

1
.0
0
1

5
.9
6

0
.0
0

2
4
2
3
7

6
9
0
.2
9

2
2

1
.3
9

0
.0
0

1
.0
0
1

8
3
2
7

2
7
5
.9
2

1
.0
0
3

7
.3
6

2
.0
4

-
-

1
.2
8

1
.1
6

1
.0
0
1

-
-

4
0

4
8

3
0

1
.0
0
2

7
.3
2

0
.0
0

3
8
8

1
1
.2
8

3
0

1
.8
5

0
.0
0

1
.0
0
2

2
7
7

8
.8
4

6
4

1
1

1
.0
0
1

5
.7
8

0
.0
0

8
1
9
1

2
3
9
.9
3

1
1

1
.2
6

0
.0
0

1
.0
0
1

3
4
6

4
8
.7
0

1
.0
0
2

7
.2
4

1
.6
1

-
-

1
.6
8

1
.2
8

1
.0
0
4

-
-

8
0

7
1
.0
0
0

5
.9
5

0
.0
0

2
1
8
3
4

6
2
5
.6
3

9
0
.6
8

0
.0
0

1
.0
0
0

1
8
2

4
.9
0

1
.0
0
1

7
.3
1

1
.2
1

-
-

1
.1
9

1
.0
9

1
.0
0
1

-
-

6
0

7
2

3
0

1
.0
0
3

7
.5
1

0
.0
0

6
4
2
2

1
8
2
.7
9

3
0

1
.4
0

0
.0
0

1
.0
0
2

3
1
0
5

1
4
9
.9
2

9
6

3
1
.0
0
0

5
.0
8

0
.0
0

5
3
3
5
8

1
7
4
0
.7
4

1
1

0
.1
1

0
.0
0

1
.0
0
0

2
3

0
.4
9

1
.0
0
1

7
.4
3

1
.1
8

-
-

1
.3
0

1
.2
2

1
.0
0
1

-
-

1
2
0

3
1
.0
0
2

5
.1
9

0
.0
0

4
5
7
6
1

1
5
6
3
.1
3

1
3

1
.4
9

0
.0
0

1
.0
0
1

1
0
0

5
.1
8

1
.0
0
0

7
.4
2

1
.0
2

-
-

1
.1
9

1
.1
0

1
.0
0
1

-
-

0
.7

2
0

2
4

3
0

1
.0
0
1

9
.6
6

0
.0
0

2
6

0
.9
1

3
0

2
.7
5

0
.0
0

1
.0
0
3

2
2

0
.8
4

3
2

3
0

1
.0
0
3

1
0
.5
4

0
.0
0

2
3
8
0

6
5
.9
9

3
0

1
.9
5

0
.0
0

1
.0
0
2

9
5
8

5
8
.2
5

4
0

1
7

1
.0
0
1

1
0
.2
7

0
.0
0

1
5
1
6
7

4
1
1
.9
4

1
9

1
.2
9

0
.0
0

1
.0
0
1

8
7
8
5

3
0
8
.1
2

1
.0
0
2

1
2
.7
0

2
.2
3

-
-

2
.0
1

1
.7
5

1
.0
0
2

-
-

4
0

4
8

3
0

1
.0
0
2

1
0
.2
8

0
.0
0

6
6
9

1
9
.0
7

3
0

1
.7
3

0
.0
0

1
.0
0
4

3
7
4

1
7
.7
2

6
4

1
0

1
.0
0
1

9
.9
8

0
.0
0

9
4
6
9

2
7
6
.8
9

1
2

1
.3
2

0
.0
0

1
.0
0
1

5
1
5
1

1
7
4
.5
2

1
.0
0
1

1
0
.7
9

2
.1
5

-
-

2
.4
7

2
.2
4

1
.0
0
2

-
-

8
0

4
1
.0
0
0

9
.5
6

0
.0
0

9
8
3
9

2
5
2
.5
8

1
1

1
.3
1

0
.0
0

1
.0
0
0

1
7
5
7

8
0
.3
7

1
.0
0
1

1
0
.3
8

1
.1
3

-
-

1
.3
9

1
.2
9

1
.0
0
1

-
-

6
0

7
2

3
0

1
.0
0
4

9
.5
8

0
.0
0

7
9
0
0

2
2
4
.5
2

3
0

1
.9
5

0
.0
0

1
.0
0
4

4
7
7
6

1
9
7
.4
3

9
6

3
1
.0
0
2

9
.5
7

0
.0
0

1
2
4
5
6

3
1
3
.7
5

1
0

1
.2
3

0
.0
0

1
.0
0
1

1
8
8
7

7
6
.5
0

1
.0
0
1

1
0
.9
4

1
.5
2

-
-

1
.8
2

1
.6
4

1
.0
0
2

-
-

1
2
0

1
1
.0
0
0

1
0
.4
5

0
.0
0

1
4
8
2
7

5
0
0
.3
8

3
1
.6
8

0
.0
0

1
.0
0
0

9
2
.0
9

1
.0
0
1

1
1
.6
2

0
.9
1

-
-

1
.3
9

1
.2
9

1
.0
0
1

-
-

A
V
G

4
9
9

1
.0
0
1

7
.0
7

1
.1
6

7
1
3
2

2
0
1
.5
0

5
7
0

1
.2
8

0
.3
6

1
.0
0
2

2
3
8
6

9
3
.4
6

30

T
a
b

le
5
:

P
a
tt

er
n

B
.
β

=
0.

7

C
a
lo
g
iu
ri

e
t
a
l.

(2
0
1
9
)
b
ra

n
ch

-a
n
d
-b

o
u
n
d

C
a
lo
g
iu
ri

e
t
a
l.

(2
0
1
9
)
b
ra

n
ch

-a
n
d
-b

o
u
n
d

w
it
h

th
e
n
e
w

L
B

D
e
lt
a
|V
|
|A
|

O
P
T

U
B
I
/
L
B
F

G
A
P
I
G
A
P
F

N
O
D
E
S

T
I
M
E

O
P
T

U
B
I
/
L
B
F

G
A
P
I
G
A
P
F

N
O
D
E
S

T
I
M
E

0
.9

2
0

2
4

3
0

1
.0
0
2

2
.8
0

0
.0
0

4
6

1
.4
1

3
0

1
.0
0
2

1
.1
6

0
.0
0

3
8

1
.1
9

3
2

3
0

1
.0
0
2

3
.1
0

0
.0
0

1
1
4
2
0

2
8
7
.0
6

3
0

1
.0
0
3

0
.9
2

0
.0
0

5
1
5
6

2
3
6
.8
0

4
0

5
1
.0
0
2

2
.2
6

0
.0
0

1
5
2
8
5

4
2
6
.9
2

9
1
.0
0
2

0
.5
0

0
.0
0

1
7
6
7

1
5
3
.8
1

1
.0
0
2

2
.9
4

1
.0
0

-
-

1
.0
0
2

0
.8
7

0
.6
4

-
-

4
0

4
8

3
0

1
.0
0
2

2
.6
3

0
.0
0

8
8
9

2
2
.7
2

3
0

1
.0
0
1

0
.9
7

0
.0
0

6
2
2

2
0
.6
7

6
4

2
1
.0
0
3

2
.5
2

0
.0
0

1
7
5
1
6

4
8
1
.3
4

6
1
.0
0
2

0
.4
3

0
.0
0

7
1
3

1
2
2
.1
8

1
.0
0
3

3
.2
2

0
.8
8

-
-

1
.0
0
2

0
.8
7

0
.6
7

-
-

8
0

2
1
.0
0
1

2
.5
7

0
.0
0

1
0
6
4
1

2
5
8
.9
6

1
0

1
.0
8
5

0
.3
6

0
.0
0

2
1
6
3

7
8
.8
7

1
.0
0
1

2
.9
9

0
.7
7

-
-

1
.0
0
1

0
.7
9

0
.7
2

-
-

6
0

7
2

2
7

1
.0
0
3

2
.8
8

0
.0
0

2
1
5
5
4

5
4
4
.0
5

2
7

1
.0
0
3

0
.9
3

0
.0
0

1
0
4
8
0

3
7
7
.7
6

1
.0
0
2

3
.1
7

0
.1
3

-
-

1
.0
0
2

1
.1
1

0
.8
7

-
-

9
6

1
1
.0
0
1

2
.6
3

0
.0
0

4
3
8
1
7

1
0
2
9
.5
0

9
1
.0
0
1

0
.4
0

0
.0
0

9
4
2

5
3
.0
2

1
.0
0
2

2
.9
9

0
.8
0

-
-

1
.0
0
1

0
.8
5

0
.7
4

-
-

1
2
0

1
1
.0
0
1

1
.9
4

0
.0
0

5
1
6
9
1

1
2
8
3
.0
4

9
1
.0
0
0

0
.3
4

0
.0
0

5
6

1
5
8
.4
0

1
.0
0
1

3
.0
5

0
.8
1

-
-

1
.0
0
1

0
.8
7

0
.8
1

-
-

0
.8

2
0

2
4

3
0

1
.0
0
3

5
.9
4

0
.0
0

5
1

1
.7
7

3
0

1
.0
0
2

2
.0
4

0
.0
0

4
6

1
.6
3

3
2

2
9

1
.0
0
3

6
.0
9

0
.0
0

1
4
2
9
5

4
1
7
.4
8

2
9

1
.0
0
4

1
.6
0

0
.0
0

9
4
1
6

3
9
1
.9
5

1
.0
0
2

6
.3
5

1
.9
2

-
-

1
.0
0
1

1
.8
0

1
.7
2

-
-

4
0

4
1
.0
0
2

5
.4
6

0
.0
0

7
4
7
5

2
0
7
.7
9

9
1
.0
0
4

0
.6
6

0
.0
0

2
7
6
3

1
1
0
.5
6

1
.0
0
5

6
.2
5

2
.0
7

-
-

1
.0
0
3

1
.7
4

1
.4
0

-
-

4
0

4
8

3
0

1
.0
0
3

6
.1
0

0
.0
0

1
1
0
8

2
8
.2
8

3
0

1
.0
0
4

2
.0
7

0
.0
0

6
5
4

2
4
.8
9

6
4

1
1
.0
0
2

3
.9
6

0
.0
0

9
4
2
5

3
5
3
.7
1

2
1
.8
0
3

1
.4
1

0
.0
0

5
7
4
0

2
6
2
.6
3

1
.0
0
4

6
.1
8

1
.7
9

-
-

1
.0
0
2

1
.6
1

1
.4
2

-
-

8
0

1
1
.0
0
2

4
.7
1

0
.0
0

6
7
6

2
4
.3
1

4
1
.0
0
1

0
.4
1

0
.0
0

9
5

2
.4
0

1
.0
0
1

6
.1
4

1
.6
5

-
-

1
.0
0
1

1
.6
2

1
.5
0

-
-

6
0

7
2

2
8

1
.0
0
5

6
.2
7

0
.0
0

1
7
5
1
0

4
6
4
.7
0

2
8

1
.0
0
6

1
.9
3

0
.0
0

1
0
6
9
4

4
3
9
.2
9

1
.0
0
2

7
.8
1

1
.9
1

-
-

1
.0
0
3

2
.1
3

1
.8
8

-
-

9
6

1
1
.0
0
1

3
.8
2

0
.0
0

4
4
6
7
2

1
3
5
4
.9
5

2
1
.0
0
1

0
.2
3

0
.0
0

1
4
0
4
1

4
5
0
.0
8

1
.0
0
1

6
.2
2

1
.6
1

-
-

1
.0
0
3

1
.5
7

1
.3
0

-
-

1
2
0

1
1
.0
0
1

4
.7
2

0
.0
0

9
4
6
6
6

3
4
8
0
.0
3

5
1
.0
0
0

0
.2
7

0
.0
0

5
0
.0
6

1
.0
0
1

6
.7
9

1
.6
7

-
-

1
.0
0
1

1
.5
3

1
.4
3

-
-

0
.7

2
0

2
4

3
0

1
.0
0
4

8
.8
3

0
.0
0

4
3

1
.2
7

3
0

1
.0
0
4

3
.0
1

0
.0
0

3
8

1
.1
9

3
2

2
9

1
.0
0
5

9
.6
2

0
.0
0

8
8
5
9
.7
9

2
4
8
.3
5

2
9

1
.0
0
5

2
.1
9

0
.0
0

4
8
0
0

2
0
6
.4
0

1
.0
0
0

1
2
.7
3

9
.3
4

-
-

1
.0
0
0

1
.6
5

1
.6
5

-
-

4
0

3
1
.0
0
1

8
.9
4

0
.0
0

2
9
6
5
2

8
1
0
.9
8

6
1
.0
0
3

0
.4
2

0
.0
0

7
0
.0
9

1
.0
0
5

9
.5
5

2
.9
8

-
-

1
.0
0
3

2
.0
8

1
.8
0

-
-

4
0

4
8

3
0

1
.0
0
8

9
.3
5

0
.0
0

1
2
9
4

3
2
.8
9

3
0

1
.0
0
5

2
.2
1

0
.0
0

5
7
9

2
6
.8
7

6
4

1
1
.0
0
2

6
.1
7

0
.0
0

1
5
6
7
3

6
0
4
.5
8

2
1
.0
0
0

0
.1
0

0
.0
0

3
0
.2
5

1
.0
0
2

9
.1
7

3
.0
0

-
-

1
.0
0
3

2
.3
1

1
.9
6

-
-

8
0

1
1
.0
0
7

9
.5
3

0
.0
0

1
7
9
3
9

6
6
2
.7
4

2
1
.0
0
1

0
.2
0

0
.0
0

2
5

1
.2
7

1
.0
0
1

9
.9
1

2
.0
1

-
-

1
.0
0
1

1
.7
2

1
.5
4

-
-

6
0

7
2

2
6

1
.0
0
8

8
.7
2

0
.0
0

1
8
5
8
2

5
9
7
.4
3

2
6

1
.0
1
0

2
.6
3

0
.0
0

1
2
5
7
0

5
3
9
.0
2

1
.0
0
6

1
0
.6
4

4
.3
9

-
-

1
.0
0
2

1
.7
3

1
.4
9

-
-

9
6

0
-

-
-

-
-

3
1
.0
0
2

0
.2
8

0
.0
0

1
5
5
9
3

6
7
0
.1
8

1
.0
0
2

9
.4
1

2
.4
9

-
-

1
.0
0
2

1
.9
4

1
.7
8

-
-

1
2
0

0
-

-
-

-
-

2
1
.0
0
1

0
.5
0

0
.0
0

3
1

0
.5
6

1
.0
0
1

9
.5
3

1
.7
4

-
-

1
.0
0
1

1
.7
9

1
.6
3

-
-

A
V
G

3
7
3

1
.0
0
3

6
.1
6

1
.7
2

8
5
8
6

2
3
9
.8
9

4
2
9

1
.0
0
6

1
.5
4

0
.6
3

3
9
5
8

1
6
9
.0
4

31

	1 Introduction
	2 State of the art
	2.1 Time-Dependent Travelling Salesman Problem
	2.2 Time-Dependent Rural Postman Problem

	3 The path ranking invariance property
	4 A family of travel cost functions
	4.1 The model
	4.2 Properties of travel cost functions

	5 The Constant Traversal Cost Problem
	5.1 Definition of the characteristic function
	5.2 Decidability of the CTCP

	6 A lower bounding procedure
	7 Computational Results
	7.1 Results on the TDTSP
	7.2 Results on the TDRPP

	8 Conclusion
	9 Acknowledgments

