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Abstract

This paper deals with a multi-period extension of the p-center
problem, in which arc traversal times vary over time, and facilities are
mobile units that can be relocated multiple times during the planning
horizon. The problem arises in several applications, such as emer-
gency services, in which vehicles can be relocated in anticipation of
traffic congestion. First, we analyze the problem structure and its re-
lationship with its single-period counterpart, including a special case.
Then, the insight gained with this analysis is used to devise a decom-
position heuristic. Computational results on instances based on the
Paris (France) road graph indicate that the algorithm is capable of
determining good-quality solutions in a reasonable execution time.

1 Introduction

Travel times constitute a key factor when locating service units. The recent
availability of detailed traffic data (e.g., Google Traffic) makes it possible to
extract historical traffic patterns over various time intervals. Such informa-
tion can be used to adapt location decisions to the varying traffic conditions
in order to improve performance measures. One application that can benefit
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of such innovations is the location of emergency units, such as ambulances
or fire stations (Bélanger et al., 2019). This paper deals with a multi-period
location problem, termed multi-period p-center problem with time-dependent
travel time (MpCP-TD), in which arc traversal times vary over time, and
facilities are mobile units that can be relocated multiple times during the
planning horizon. The problem is deterministic in nature since we assume
that travel time functions are known as well as the location of users. We ne-
glect service dynamics, i.e., we do not take into account the (possible) fleet
reduction occurring when some vehicles are responding to demands. More-
over, since users and facilities are located in the same urban area, we also
neglect the relocation dynamics (see, eg. (Schmid and Doerner, 2010)).

In order to highlight the peculiarities of this problem we present an ex-
ample inspired by the seminal paper of Berman and Odoni (1982). An urban
area is served by four emergency vehicles. The service territory is divided into
two areas (named A and B) connected by a limited number of streets. During
off-peak hours, the mobile units are uniformly located (see Figure 1a). During
peak hours the streets connecting the two zones become heavily congested.
As a result, it is wiser to relocate one unit in zone B and redistribute the
remaining units uniformly in zone A (see Figure 1b). It is worth noting that,
unlike Berman and Odoni (1982), in our problem travel times change accord-
ing to historical traffic patterns. Indeed, as stated by Malandraki and Daskin
(1992), variability in travel times has two main components. The first derives
from hourly, daily, weekly and seasonal effects. These traffic factors, modeled
by deterministic time-dependent functions, are taken into account in this pa-
per. The second component of variations which covers random events (such
as accidents and weather conditions) is not included in our model.

The single-period counterpart of our problem is the p-center problem
(pCP) which requires to locate a set of p facilities and serve a set of de-
mand sites from the selected locations, with the objective of minimizing the
maximum service time between a customer and its assigned facility (see,
e.g., Hakimi, 1964; Minieka, 1970). The optimal value is called the radius.
Contributions in literature usually deal with two main variants: the vertex
pCP, considered here, where the facilities can be located only on the vertices
(Kariv and Hakimi, 1979), and the absolute pCP, in which the facilities can
be located on the vertices or on the edges of a graph (Callaghan et al., 2017).
Since the pCP is NP-hard (Kariv and Hakimi, 1979), extensive literature ex-
ists proposing heuristic methods based on several paradigms such as tabu
search (Mladenović et al., 2003), variable neighborhood search (Irawan et al.,
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(b) Locations during peak hours

Figure 1: An example inspired by the seminal paper of Berman and Odoni
(1982)

2016), and other techniques (Tansel, 2011). As far as exact pCP methods
are concerned, the most successful approaches are built on the solution of a
series of covering subproblems with the help of reduction and preprocessing
techniques (see, e.g., Daskin, 2000; Chen and Chen, 2009; Calik and Tansel,
2013). To the best of our knowledge, the most recent exact approach for solv-
ing the vertex pCP is presented in Contardo et al. (2019), where the authors
introduce a scalable relaxation-based iterative algorithm. For a comprehen-
sive review, the interested reader can refer to Calik et al. (2015).

Regarding multi-period location problems, the corresponding planning
problems are referred to as implicit if all facilities are opened once at the
beginning of the planning horizon. In this case, a plan is devised for real-
locating demand sites to the selected facilities at specific time instants in
response to changes in parameters over time. If facilities are opened and/or
closed throughout the planning horizon, then the corresponding planning
problems are referred to as explicit. In this case a plan is devised for both re-
locating facilities and reallocating demand sites to the relocated facilities. Re-
cent contributions on multi-period location problems are Castro et al. (2017),
Escudero et al. (2018), Raghavan et al. (2019), and Güden and Süral (2019).
In the application context of emergency services, there exists a number of con-
tributions on multi-period covering location problems, taking into account
the time-dependent variations in travel times and the resulting changes with
respect to the corresponding coverage (see, e.g. van den Berg and Aardal
(2015); Schmid and Doerner (2010); Degel et al. (2015); Repede and Bernardo
(1994); Rajagopalan et al. (2008). As stated in Bélanger et al. (2019), it has
become of the highest importance for location analysis to provide approaches
seeking equity/fairness as an objective when providing social aid/services.
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From this point of view, pCP aligns social aid/service to the Rawlsian ap-
proach, named after the philosopher John Rawls, which aims to minimize
the worst-off served point. In a time-dependent setting, just using a classi-
cal (single-period) p-center model with maximum (fixed) travel times is no
longer suitable to model changes of worst-off served points occurring during
the planning horizon. The MpCP-TD aims to smooth this loss of geograph-
ical equity, trying to keep the centers close to the time-dependent worst-off
served points during the planning horizon. The planning horizon is divided
into several time periods each of which defining specific moments for making
adjustments in the system. The goal of the problem is to locate facilities in
such a way that the sum of the largest service times associated with all the
time periods is minimized.

To the best of our knowledge, this is the first contribution on multi-period
pCP with time-dependent travel times (MpCP-TD). For a comprehensive re-
view, the interested reader can refer to Nickel and Saldanha da Gama (2015).

The remainder of the paper is organized as follows. In Section 2 we
describe the MpCP-TD in detail and formulate it. Section 3 presents a
property of time-dependent graphs that we call arc ranking invariance, which
can be exploited to solve the MpCP-TD. In Section 4, we present a heuristic
solution method and discuss about optimality conditions. Computational
tests are reported in Section 5. The paper ends with an overview of the work
done and some conclusions in Section 6.

2 Problem statement

Let G = (F,C,E) be a directed graph, where F and C are the sets of
candidate locations of facilities and customer nodes, respectively, and E =
{(i, j) : i ∈ F, j ∈ C} is the set of arcs. Let τij(t) be the travel duration of arc
(i, j) ∈ E when demand site j is served from facility i at time t of the planning
horizon [0, T ]. We suppose that the traversal times are continuous piecewise
linear functions satisfying the first-in-first-out (FIFO) property, i.e., leaving
the facility i later implies arriving later at demand site j. According to a
multi-period modeling approach, we suppose that T represents the set of M
time instants during which a relocation of p facilities might be planned, that
is:

T = {t1, . . . , tM−1, tM},
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where t0 = 0 < t1 < · · · < tM−1 < tM < tM+1 = T .
In a time-dependent setting, we need to characterize how the worst-case ser-
vice time varies over time. In particular, we model the time variability of the
worst-case service time of each arc as a constant stepwise function, whose
pieces are the maximum service times between two consecutive possible relo-
cation time instants of T . For this purpose, we denote with dij(I) the worst
service time of arc (i, j) ∈ E as:

dij(I) = max
t∈I

τij(t),

where I is a time interval.
Given p facilities, a number of M potential time periods, and a value

K ≤ M , the aim of the MpCP-TD is to determine a sequence of K location-
allocation decisions such that the facilities are relocated K times and the
sum of the maximum (worst) service times associated with each period is
minimized.

Let (Oℓ, Sℓ, Iℓ) denote location-allocation decisions taken at the beginning
of the time period Iℓ = [tℓ, tℓ+1], with tℓ and tℓ+1 being two consecutive time
instants of T and ℓ = 0, . . . ,M . The location component is the subset
Oℓ modeling the p open facilities, that is Oℓ ⊆ F and |Oℓ| = p, with ℓ =
0, . . . ,M . The allocation component is encoded as a vector Sℓ, where the i-th
element Sℓ[i] is the subset of the demand sites served from the open facility
i ∈ Oℓ, with ℓ = 0, . . . ,M . We suppose that, given a time interval Iℓ and a
set of open facilities Oℓ, the corresponding vector of allocation decisions Sℓ

is univocally determined by assigning each costumer j ∈ C to exactly one of
the closest open facilities i ∈ Oℓ, that is:

i ∈ argmin(dsj(Iℓ)|s ∈ Oℓ) ⇒ j ∈ Sℓ[i], (1)

with ℓ = 0, . . . ,M . We synthetically refer to such univocal relationship by
asserting that, during time period Iℓ, Oℓ is the seed location decision of Sℓ,
with ℓ = 0, . . . ,M . The maximum service time of (Oℓ, Sℓ, Iℓ) is denoted with
r(O, S, Iℓ), where:

r(Oℓ, Sℓ, Iℓ) = max(dij(Iℓ)|i ∈ Oℓ ∧ j ∈ Sℓ[i]), (2)

with ℓ = 0, . . . ,M . For the sake of simplicity, from now on, when it is clear
we are referring to the time period Iℓ, we denote the corresponding location-
allocation decisions as (Oℓ, Sℓ), with ℓ = 0, . . . ,M .
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In the MpCP-TD, the decision maker is interested in determining a se-
quence of location-allocation decisions, one for each time period Iℓ, with
ℓ = 0, . . . ,M . We encode such sequence as a pair of vectors (O,S) where:

O = [O0, . . . , OM ], S = [S0, . . . , SM ].

The criterion for evaluating each solution (O,S) is the sum of the maximum
service times R(O,S), defined as:

R(O,S) =
M
∑

ℓ=0

r(Oℓ, Sℓ).

We say that (O,S) prescribes relocations over T , if there exist at least two
distinct seed location decisions, that is if there exists ℓ such that Oℓ−1 6= Oℓ,
with ℓ = 1, . . . ,M . Let us denote with n(O,S) the total number of reloca-
tions prescribed by (O,S). We suppose that the decision maker requires that
n(O,S) is limited to K, with 0 ≤ K ≤ M . Given the former parameters and
notation, the MpCP-TD can be expressed synthetically as:

Φ(T , K) = min
(O,S)

(R(O,S)|n(O,S) ≤ K) . (3)

In the following sections, we illustrate a decomposition algorithm for solv-
ing the optimization problem (3). The main underlying idea of the proposed
heuristic is that each feasible solution of (3) models a set of location-allocation
decisions taken according to a two-stage nested approach. At the first stage
a subset of K time instants TR ⊆ T is selected. At the second stage, a set of
K implicit multi-period location problems is solved in order to determine one
seed location decision for each time instant in TR. To ease the description
of the proposed heuristic algorithm, we provide an alternative formulation of
the MpCP-TD as a sequential (nested) decision-making process. In the fol-
lowing, such formulation is illustrated by distinguishing two cases referred to
as implicit multi-period formulation and explicit multi-period formulation,
respectively.

2.1 The implicit multi-period formulation

As stated in the literature, the implicit multi-period formulation of a location
problem implies that no relocations are allowed during the planning horizon,
that is K = 0. In this case the first stage decision can be skipped and the
second stage decision requires the solution of the location problem Φ(T , 0).
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Definition 1. A solution (O,S) is feasible for Φ(T , 0) if it is characterized by
a single seed location decision O0 to be taken at the beginning of the planning
horizon, that is Oℓ = O0 with ℓ = 1, . . . ,M .

To ease the discussion, we reformulate Φ(T , 0) making use of the decision
variables of the classic p-center formulation (see, Daskin, 1995) in order to
model a solution (O,S). Let yi be a binary variable modeling the seed loca-
tion decision i ∈ O0, that is yi takes value 1 if, during the planning horizon
[0, T ], facility i ∈ F is open and 0 otherwise. The binary variable xijℓ states
whether or not customer j ∈ C is assigned to facility i ∈ F during time
interval Iℓ, that is j ∈ Sℓ[i], with ℓ = 0, . . . ,M . The continuous variable
rℓ represents the maximum service time (2), with respect to period Iℓ, with
ℓ = 0, . . . ,M . Then, the problem can be formulated as:

Φ(T , 0) := min
M
∑

ℓ=0

rℓ (4)

s.t.

∑

i∈F

xijℓ = 1 j ∈ C, ℓ = 0, . . . ,M (5)

yi ≥ xijℓ i ∈ F, j ∈ C, ℓ = 0, . . . ,M (6)
∑

i∈F

yi = p (7)

rℓ ≥
∑

i∈F

dij(Iℓ)xijℓ j ∈ C, ℓ = 0, . . . ,M (8)

xijℓ ∈ {0, 1} i ∈ F, j ∈ C, ℓ = 0, . . . ,M (9)

yi ∈ {0, 1} i ∈ F (10)

rℓ ≥ 0 ℓ = 0, . . . ,M. (11)

Objective function (4) models the sum of maximum service times R(O,S).
Constraints (5) ensure that each customer is assigned to one facility. Con-
straints (6) state that a facility is open when at least one customer is allocated
to it. Constraint (7) states that the total number of facilities to be opened
is p. Constraints (8) force rℓ to be greater than or equal to the service time
from any customer to its assigned facility. Constraints (9)-(11) provide the
binary and non-negative conditions on decision variables.
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2.2 The explicit multi-period formulation

IfK > 0, then facilities can be opened and/or closed throughout the planning
horizon. As discussed in Section 1, in the literature this case is referred
to as explicit multi-period modeling approach. In particular, each feasible
solution of Φ(T , K) is associated with a subset TR = {tσ(1), . . . , tσ(K)} ⊆ T
of K relocation time instants, with t0 = tσ(0) < tσ(1) < tσ(2) · · · < tσ(K). We
observe that TR induces a partition of the planning horizon into K macro
periods, where each macro-period Ik

R starts and ends at two consecutive time
instants in TR. We also observe that TR induces a partition of T in K + 1
subsets T k

R , each consisting of Mk time instants, with
∑K

k=0Mk = M . In
words, location-allocation decisions at time istant tσ(k) remain fixed for all
time instants belonging to T k

R , with k = 0, . . . , K. We synthetically express
the explicit multi-period formulation of MpCP-TD as:

Φ(T , K) = min
TR





|TR|
∑

k=0

Φ(T k
R , 0)|TR ⊆ T : |TR| = K



 , (12)

where each Φ(T k
R , 0) can be formulated according to model (4)-(11) by sub-

stituting the role of the set of time instants T and the planning horizon [0, T ],
respectively, with the subset T k

R and the macro-period Ik
R, with k = 0, . . . , K.

We observe that, given a subset TR, the inner optimization problem of (12)
can be decomposed in K+1 independent subproblems. Let (O(TR),S(TR))k
denote a feasible solution of Φ(T k

R , 0), with k = 0, . . . ,M . Quite naturally,
we can extend Definition 1 as follows.

Definition 2. Let (O(TR),S(TR))k denote a feasible solution of Φ(T k
R , 0),

stating that one single seed location decision Oσ(k) must be taken at the begin-
ning of the macro-period Ik

R, i.e., Oℓ = Oσ(k) with Iℓ ⊆ Ik
R and k = 0, . . . , K.

According to (12) a feasible solution (O(TR),S(TR)) of Φ(T , K) can be mod-
eled as a sequence of feasible solutions of the inner optimization subproblems,
that is:

(O(TR),S(TR)) = [(O(TR),S(TR))0, . . . , (O(TR),S(TR))K ], (13)

We observe that each feasible solution ofΦ(T , K) is also feasible forΦ(T ,M),
with 0 ≤ K ≤ M . Indeed, according to formulation (3), we have that:

n(O,S) ≤ K ≤ M.

This implies that Φ(T ,M) is a relaxation of Φ(T , K).
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Remark 1. If an optimal solution for Φ(T ,M) prescribes K relocations,
then such solution is also optimal for Φ(T , K),Φ(T , K+1), . . . ,Φ(T ,M−1).

Given a reference time interval I, let us denote with φ(I) the (classical)
single-period p-center problem defined on G with the service time of arc
(i, j) ∈ E equal to dij(I), that is:

φ(I) = min
(O,S)

r(O, S, I).

Remark 2. When K = M the unique solution of the outer optimization
problem of (12) is TR = T , with Mk = 1 and k = 0, . . . , K. This implies
that the optimal solution of Φ(T ,M) can be determined by solving M + 1
independent single-period (classical) p-center problems, that is:

Φ(T ,M) =
M
∑

ℓ=0

φ(Iℓ).

In the following sections, we exploit Remarks 1 and 2 to devise a set of
sufficient optimality conditions.

3 The arc ranking invariance property

In this section we investigate a property of time-dependent graphs that we
call arc ranking invariance, which can be exploited to solve the MpCP-TD. As
demonstrated in the following sections, when arc ranking invariance holds,
even if the radius of the graph G is time dependent, the worst-off served
demand site does not change during the planning horizon. In this case, there
is no need to relocate facilities, i.e., it is suitable an implicit multi-period
modeling approach (Nickel and Saldanha da Gama, 2015).

Let us denote with B(T ) the partition of the planning horizon in M + 1
time periods Iℓ = [tℓ, tℓ+1], with tℓ ∈ T and ℓ = 0, . . . ,M .

Definition 3. Arc dominance rule over B(T ). Given two arcs (i, j) and
(r, s) of G and their travel time functions, τij(t) and τrs(t) respectively, we
say that τij(t) dominates τrs(t) over B(T ) iff for any time interval Iℓ ∈ B(T ):

drs(Iℓ) ≤ dij(Iℓ),

with ℓ = 0, . . . ,M .
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Definition 4. Arc ranking invariance over B(T ). The time-dependent
graph G is ranking invariant over B(T ), if the arc dominance rule over B(T )
holds for any pair of arcs (i, j) ∈ E and (r, s) ∈ E.

In order to define sufficient conditions for the arc ranking invariance
over B(T ), we exploit results provided in Ghiani and Guerriero (2014) and
Cordeau et al. (2014). In particular, Ghiani and Guerriero (2014) proved
that any continuous piecewise linear FIFO travel time function can be gen-
erated from the model proposed by Ichoua et al. (2003) (IGP model, for
short). The authors also proposed an iterative method to determine the IGP
parameters of τij(t) on a reference time interval I, that is a constant (dummy
length) Lij and a constant stepwise (dummy speed) function vij(t) ≥ 0, such
that:

Lij =

∫ t+τij (t)

t

vij(µ)dµ, (14)

where t ∈ I. Let us suppose that the IGP parameters have been determined
by applying the method proposed in Ghiani and Guerriero (2014) with the
planning horizon [0, T ] as reference time interval. Without loss of generality,
we suppose that all breakpoints of vij(t) belong to the set of time instants
T , that is

vij(t) = vijℓ,

with t ∈ Iℓ, (i, j) ∈ E, ℓ = 0, . . . ,M . Then, we can determine the factoriza-
tion of the IGP speeds proposed by Cordeau et al. (2014), that is :

vijℓ = uijbℓδijℓ, (i, j) ∈ E, ℓ = 0, . . . ,M, (15)

where:

• uij is the maximum travel speed across arc (i, j) ∈ E during the plan-
ning horizon [0, T ], i.e., uij = maxℓ=0,...,M vijℓ;

• bℓ ∈ [0, 1] is the best (i.e., lightest) congestion factor during interval Iℓ

on the whole graph, i.e., bℓ = max(i,j)∈A vijℓ/uij;

• δijℓ =
vijℓ/uij

bℓ
varies in [0, 1] and represents the degradation of the con-

gestion factor of arc (i, j) in interval Iℓ with respect to the less con-
gested arc.
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Let us denote with ∆ = mini,j,ℓ δijℓ the heaviest degradation of the congestion
factor of any arc (i, j) ∈ E during the planning horizon. The following
theorem states a sufficient condition for the arc ranking invariance property
over B(T ).

Theorem 1. Given a time-dependent graph G, if ∆ = 1, then the arc ranking
invariance property holds over B(T ).

Proof. Since ∆ = 1, then in speed variation law (15) we have that δijℓ = 1.
This implies that for any given pair of arcs (i, j) ∈ E and (r, s) ∈ E and for
any start time t ∈ [0, T ], the relationship (14) can be rewritten as:

Lij

uij

=

∫ t+τij(t)

t

b(µ)dµ,

Lrs

urs
=

∫ t+τrs(t)

t

b(µ)dµ,

where b(t) = bℓ with t ∈ Iℓ, ℓ = 0, . . . ,M . We observe that:

Lij

uij

=

∫ t+τij(t)

t

b(µ)dµ ≤

∫ t+τrs(t)

t

b(µ)dµ =
Lrs

urs

⇔ τij(t) ≤ τrs(t). (16)

Since (16) holds for any start travel time t ∈ [0, T ], then the thesis is proved.

In a typical time-dependent setting, the facility location/allocation decisions
must take into account that the underlying graph G might satisfy the hy-
pothesis of Theorem 1 only during portions of the planning horizon. In order
to overcome this issue we allow facilities to be relocated K times throughout
the planning horizon, in an anticipatory manner. Therefore, given a set of
K time instants TR, we can extend, in a quite natural way, the notation of
Ichoua et al. (2003) to the K + 1 macro periods Ik

R, with k = 0, . . . , K.
In the following, we suppose to apply the iterative method proposed in
Ghiani and Guerriero (2014) to each arc (i, j) ∈ E, by considering the macro
period Ik

R as reference time interval, with k = 0, . . . , K. In this way, for each
arc (i, j) ∈ E, we obtain K+1 distinct speed factorizations (15), one for each
macro-period. Then, we compute ∆k(TR), that is the heaviest degradation
of the congestion factor of any arc (i, j) ∈ E during macro-period Ik

R, with
k = 0, . . . , K. Finally, we compute ∆(TR) = mink ∆k(TR). Corollary 1 states
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a sufficient condition for arc ranking invariance. For the sake of notational
convenience, as we did for T , we denote with B(T k

R ) the subset of time-
periods in B(T ) belonging to the macro-period Ik

R, with k = 0, . . . , K. In
words, B(T k

R ) is the subset of time periods during which location-allocation
decisions at time instant tσ(k) remain fixed, with k = 0, . . . , K.

Corollary 1. Given a time-dependent graph G, and a subset of time instants
TR, if ∆(TR) = 1, then the arc ranking invariance property holds over each
B(T k

R ), with k = 0, . . .K.

Proof. Since each ∆k(TR) ∈ [0, 1], by the hypothesis we have that ∆k(TR) = 1
for all k = 0, . . . , K. Then, from Theorem 1, the thesis is proved.

In the following, we propose a heuristic solution method that aims to deter-
mine a subset TR such that ∆(TR) ≃ 1. We also prove that when ∆(TR) = 1,
then the proposed solution approach is optimal.

4 Solution approach

According to (13), in order to outline a heuristic algorithm, we need to de-
vise two hierarchical nested phases. During the first phase the algorithm
determines a subset TR. During the second phase, we determine a sequence
of K + 1 seed location decisions [Oσ(0), . . . , Oσ(K)], one for each time instant
included in TR. The two phases are described in the following.

Phase I. Choose a subset of time instant TR ⊆ T . This step aims to de-
termine a solution for the outer optimization problem (12), which could be
modeled as a set partitioning problem on T . The main issue is how to de-
termine a cost partitioning function approximating the sum of the optimal
values Φ(T k

R , 0), with k = 0, . . . , K. To overcome this drawback, we ex-
ploit a set of optimality conditions stating that if a subset TR satisfies the
hypothesis of Corollary 1, then the second phase of our heuristic method
determines the optimal solution. For this reason, during Phase I, we solve a
binary program aiming to determine the subset TR maximizing a proxy value
of ∆(TR). Finally, we observe that this phase can be skipped for the spe-
cial cases Φ(T ,M) and Φ(T , 0), where there exists a single solution to the
outer optimization problem of (12), that is, TR = T and TR = ∅, respectively.
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Phase II. Choose one seed selection decision for each Φ(T k
R , 0), with k =

0, . . . , K. Given the subset TR selected during Phase I, this step aims to
determine one feasible solution (Ō(TR), S̄(TR))k for each inner optimization
independent sub-problem of (12). Let Ōk denote the location decision pre-
scribed by the optimal solution of the classical p-center problem φ(Ik

R), with
k = 0, . . . , K. The seed location decision of (Ō(TR), S̄(TR))k is set equal to
Ōk.

Finally, the set of K + 1 solutions determined during Phase II are converted
in a complete solution (Ō(TR), S̄(TR)) according to (13).

4.1 Linking arc ranking invariance and optimality

If during Phase I, the subset TR is empty, then (Ō(∅), S̄(∅)) prescribes no
relocation, that is n(Ō(∅), S̄(∅)) = 0. In the following, we prove a sufficient
optimality condition for this special case.

Proposition 1. Given a set of time instants T , if the time-dependent graph
G is ranking invariant over B(T ), then any feasible solution of Φ(T , 0) pre-
scribes the same location-allocation decision for each time period, that is:

(Oℓ, Sℓ) = (O0, S0),

with ℓ = 1, . . . ,M .

Proof. From the hypothesis on the ranking invariance over B(T ) and the seed
location definition (1), it descends that, given two distinct time periods Iℓ

and I ′
ℓ:

Oℓ = Oℓ′ ⇒ Sℓ = Sℓ′ ,

with ℓ 6= ℓ′ and ℓ, ℓ′ = 0, . . . ,M . According to (??), each feasible solution
of Φ(T , 0) can be denoted as (O(∅),S(∅)). From Definition 1 it follows
that a feasible solution of Φ(T , 0) is characterized by a unique seed location
decision, that is:

(O(∅),S(∅)) ⇔ Oℓ = O0 ℓ = 1, . . . ,M.

Then, the thesis is proved.

Let us denote with Ôℓ the location decision prescribed by the optimal
solution of the single-period p-center problem φ(Iℓ), with ℓ = 0, . . . ,M .
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Proposition 2. Given a set of time instants T , if the time-dependent graph
G is ranking invariant over B(T ), then the location-allocation decision (Ô0, Ŝ0)
is also optimal for any single-period (classical) p-center problem φ(Iℓ), with
ℓ = 1, . . . ,M .

Proof. From the hypothesis on the ranking invariance over B(T ) and Propo-
sition 1, it descends that the worst service time of a generic single-period
decision (O, S) is associated with the same arc for every pair of time periods
Iℓ and Iℓ′ , that is:

arg max
(i,j)∈E

(dij(Iℓ) | i ∈ O, j ∈ S[i]) =

= arg max
(i,j)∈E

(dij(Iℓ′) | i ∈ O, j ∈ S[i]),

where ℓ 6= ℓ′ and ℓ, ℓ′ = 0, . . . ,M . This means that the arc ranking invariance
implies a worst service time ranking invariance that is:

r(Ô0, Ŝ0, Iℓ) ≤ r(O, S, Iℓ) ⇔ r(Ô0, Ŝ0, Iℓ′) ≤ r(O, S, Iℓ′),

where ℓ 6= ℓ′, (Ô0, Ŝ0) 6= (O, S) and ℓ, ℓ′ = 0, . . . ,M . Since a single-period p-
center problem aims to determine a solution with the minimum worst service
time, then the thesis is proved.

Under the same hypothesis of Proposition 2 it is possible to demonstrate
also the optimality of (Ō(∅), S̄(∅)).

Proposition 3. Given a set of time instants T , if the time-dependent graph
G is ranking invariant over B(T ), then the solution (Ō(∅), S̄(∅)) is optimal
for any Φ(T , K), with k = 0, . . . ,M .

Proof. From Remark 1 it follows that the thesis is proved if we demonstrate
that (Ō(∅), S̄(∅)) is optimal for Φ(T ,M). Let us denote with (Ô(∅), Ŝ(∅)) a
feasible solution of Φ(T , 0) having as (unique) seed location Ô0. From Re-
mark 2 and Proposition 2, it results that (Ô(∅), Ŝ(∅)) is optimal forΦ(T ,M).
Therefore, the thesis is proved if we demonstrate that:

(Ō0, S̄0) = (Ô0, Ŝ0). (17)

We prove (17) by contradiction. Therefore, by assuming that (Ō0, S̄0) 6=
(Ô0, Ŝ0), we have that (Ô0, Ŝ0) is not optimal for φ([0, T ]), that is:

r(Ō0, S̄0, [0, T ]) < r(Ô0, Ŝ0, [0, T ]). (18)
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Let ℓ′ denote the time interval in B(T ) associated to the worst service time
of (Ô0, Ŝ0), that is:

r(Ô0, Ŝ0, [0, T ]) = r(Ô0, Ŝ0, Iℓ′)

Since Iℓ′ ⊆ [0, T ], then we have that:

r(Ō0, S̄0, Iℓ′) ≤ r(Ō0, S̄0, [0, T ]). (19)

From (18) and (19), it follows that:

r(Ō0, S̄0, Iℓ′) < r(Ô0, Ŝ0, Iℓ′),

which implies that (Ô0, Ŝ0) is not optimal for φ(Iℓ′). This contradicts the
thesis of Proposition 2 and, therefore, the corresponding hypothesis, which
are the same we are making.

Given a subset TR 6= ∅, from Propositions 2 and 3 it follows that, if the
arc ranking invariance property holds over B(T k

R ), then the subsequence
(Ō(TR), S̄(TR))k is optimal for Φ(T k

R , 0), with k = 0, . . . , K. From (12) it
descends that we can generalize the sufficient optimality condition to the
complete solution (Ō(TR), S̄(TR)) as follows.

Proposition 4. Given a subset of K time instants TR ⊂ T , if the arc
ranking invariance property holds over each B(T k

R ), with k = 0, . . . , K, then
(Ō(TR), S̄(TR)) is optimal for all location problems Φ(T , K), . . . ,Φ(T ,M).

Proof. Propositions (2) and (3) can be generalized by asserting that (Ôσ(k),

Ŝσ(k)) and(Ōσ(k), S̄σ(k)) are both optimal for each single-period p-center prob-
lem φ(Iℓ), where Iℓ ∈ B(T k

R ) and k = 0, . . . , K. Therefore, according to Re-
mark 2, it descends that (Ō(TR), S̄(TR)) is an optimal solution of Φ(T ,M).
From Remark 1, the thesis is proved.

From Theorem 1 and Proposition 4, it descends the following Corollary.

Corollary 2. Given a subset of K time instants TR ⊂ T , if ∆(TR) = 1, then
(Ō(TR), S̄(TR)) is optimal for Φ(T , K).

In the following, we propose an optimization model that aims to determine
a subset TR such that ∆(TR) ≃ 1.
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4.2 Selection of relocation time instants

Given a subset TR ⊆ T , evaluating the corresponding ∆(TR) requires deter-
mining each ∆k(TR) according to the following two steps, with k = 0, . . . , K.
First, we should run the procedure proposed in Ghiani and Guerriero (2014)
for each arc (i, j) ∈ E taking as reference time interval the macro period Ik

R

with k = 0, . . . , K. Then, the speed decomposition (15) and the correspond-
ing ∆k(TR) should be determined.

We approximate such computing procedure according to the following
two-steps procedure.

STEP 1. We run the procedure proposed in Ghiani and Guerriero (2014)
for each arc (i, j) ∈ E taking as reference time period the overall planning
horizon [0, T ]. To ease the discussion, we rewrite the corresponding speed
decomposition (15) with overlined symbols, that is:

v̄ijℓ = b̄ℓδ̄ijℓūij,

with (i, j) ∈ E and ℓ = 0, . . . ,M .

STEP 2. We evaluate the given subset TR = {tσ(1), . . . , tσ(K)} ⊆ T according
to the parameter z(TR) ≤ 1, which is a proxy value of ∆(TR) defined as
follows:

z(TR) = min
k=0,...,K

cσ(k)σ(k+1),

with
cσ(k)σ(k+1) = min(δ̄ijℓ|Iℓ ⊆ [tσ(k), tσ(k+1)] ∧ (i, j) ∈ E), (20)

where we recall that the interval [tσ(k), tσ(k+1)] is the k-th macro period Ik
R,

with k = 0, . . . , K.

The main issue of such approach is that for any subset of time instants
TR, it results that:

z(TR) = ∆(∅).

Nevertheless, we observe that the optimality condition on ∆(TR) can be
reformulated as follows:

∆(TR) = 1 ⇐⇒
K
∑

k=0

∆(T k
R ) = K + 1.
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Therefore, during Phase I, we select the subset TR having the maximum value
of

K
∑

k=0

z(T k
R ). (21)

We model such selection decision as the Resource Constrained Maximum
Path Problem (22)-(27).

Let G = (V,A) denote an acyclic directed graph, where V = {0, 1, . . . ,M}
is the set of nodes and A denote the set of

(

M
2

)

pairs of nodes (h, ℓ),

A = {(h, ℓ) | h, ℓ ∈ V ∧ h < ℓ}.

In the proposed model, a subset TR is modeled as the simple path {0, σ(1),
. . . , σ(K),M}, i.e., a path starting at node 0, ending at node M and con-
sisting of K + 1 arcs. In particular, for each arc (h, ℓ) ∈ A we compute the
gain coefficient chℓ according to (20) and define the binary decision variable
yhℓ, taking value 1 if the arc (h, ℓ) belongs to the path.

Maximize
∑

(h,ℓ)∈A

chℓyhℓ (22)

s.t.
∑

(h,ℓ)∈A

yhℓ −
∑

(ℓ,h)∈A

yℓh = 0 ℓ ∈ {1, . . . ,M} (23)

∑

(0,ℓ)∈A

y0ℓ = 1 (24)

∑

(h,M)∈A

yhM = 1 (25)

∑

(h,ℓ)∈A

yhℓ = K + 1 (26)

yhℓ ∈ {0, 1} (h, ℓ) ∈ A (27)

The objective function (22) models (21) as the cost of a path on G. Con-
straints (23)–(25) are flow conservation constraints, while constraint (26) is
the resource constraint stating that a feasible path consists of K + 1 arcs.
Constraints (27) provide the binary condition on decision variables.
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5 Computational results

The proposed heuristic algorithm was coded in Java and run on a MacBook
Pro with an Intel Core 2 Duo processor clocked at 2.33 GHz and 4 GB of
memory. The K + 1 time-invariant p-center problems φ(Ik

R) of Phase II
were modeled as in Daskin (1995). The optimization models of Phases I
and II were solved by Cplex 12.6.0 with a time limit of 900 seconds. Our
approach was tested on a set of instances derived from the road network of
the urban area of Paris (France) covering 2531.4 km2. Spatial data were ex-
tracted from OpenStreetMap (www.openstreetmap.org). The road-network
graph consisted of 307, 998 arcs: 151, 353 streets were characterized by time-
dependent travel times, whilst the remaining 156, 645 streets had constant
travel times. Using such realistic traffic data, we generated 240 instances.
Following the literature, in all the test sets each vertex was both a customer
and a candidate location for a facility (i.e., C ≡ F ). For each possible value of
|C| in the set {50, 100}, we generated 10 time-dependent graphs. As far as the
multi-period setting was concerned, the set T consisted of 120 time instants.
For each time-dependent graph, we generated 12 MpCP-TD instances, one
for each possible pair (p,K), with p ∈ {5, 10} and K ∈ {0, 2, 4, 6, 8, 10}.

In Tables 1 and 2 we report our computational results for |C| = 50
and |C| = 100, respectively. In both tables, the first two columns are self-
explanatory. The remaining column headings are as follows:

• GAP : the percentage optimality gap;

• PHASE I: time (in seconds) spent to determine the subset TR;

• PHASE II: time (in seconds) spent to determine the K + 1 seed deci-
sions, one for each macro-period Ik

R, with k = 0, . . . , K;

• TIME: overall time (in seconds) spent by the proposed algorithm to
determine the heuristic solution (Ō(TR), S̄(TR)).

• GAIN: improvement of the objective function value with respect to
Φ(T , 0). The value has been normalized with respect to the maximum
value, i.e. :

Φ(T , 0)− R(Ō(TR), S̄(TR))

Φ(T , 0)−Φ(T ,M)
.
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Table 1: Computational results of the instances with |C| = 50

p K GAP PHASE I PHASE II TIME GAIN

5

0 8.57 0.00 0.92 0.92 0.0
2 4.70 14.59 1.85 16.44 0.38
4 4.18 35.60 4.62 40.22 0.45
6 3.41 112.33 6.48 118.81 0.55
8 3.30 170.91 8.33 179.24 0.58
10 2.65 237.79 10.18 247.97 0.65
120 0.00 0.00 111.20 111.20 1.0

10

0 8.64 0.00 0.74 0.74 0.0
2 5.72 13.44 2.23 15.67 0.27
4 4.36 35.66 3.71 39.32 0.42
6 3.25 112.70 5.20 117.90 0.60
8 3.35 170.60 6.70 177.26 0.60
10 3.30 238.49 8.17 246.66 0.60
120 0.00 0.00 89.11 89.11 1.0

Average 3.96 81.58 18.53 100.11 0.49

The columns reporting the optimality gap, the execution times and gains are
averaged across all instances.

The average gap value was 3.96% and 5.44% for |C| = 50 and |C| = 100,
respectively.

If K = M , facility relocations are allowed at each variation of the worst
case service time. As stated in the previous sections, in this case the optimal
solution can be determined by solving M independent single-period p-center
problems. Moreover, Φ(T ,M) represents a lower bound for the MpCP-TD
with 0 ≤ K < M . For these reasons, the optimality gaps are computed as:

R(Ō(TR), S̄(TR))−Φ(T ,M)

Φ(T ,M)
.

If the number of relocations K = 0, the MpCP-TD is solved as a single-
period p-center problem. As demonstrated in the previous sections, such an
approach is optimal if arc ranking invariance holds. In our instances, such
an optimality condition was never satisfied, resulting in an average gap equal
to 8.60% and 11.30% for Tables 1 and 2, respectively.

For K = 6, the average gap was consistently lower than 3.50% in Table
1 and 5.50% in Table 2. For K = 8 and K = 10, slight improvements (lower
than 1% in both tables) were observed.
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Table 2: Computational results of the instances with |C| = 100

p K GAP PHASE I PHASE II TIME GAIN

5

0 10.39 0.00 7.75 7.75 0.00
2 7.62 81.31 23.25 104.56 0.19
4 5.51 104.76 38.75 143.51 0.41
6 4.50 145.47 54.26 199.73 0.52
8 4.19 297.61 69.76 367.37 0.54
10 3.80 370.17 85.26 455.43 0.57
120 0.00 0.00 930.10 930.10 1.00

10

0 12.22 0.00 7.23 7.23 0.00
2 8.55 82.06 21.71 103.77 0.29
4 5.54 105.52 36.18 141.71 0.53
6 5.10 147.78 50.66 198.43 0.57
8 4.52 293.18 65.13 358.05 0.62
10 4.25 371.35 79.60 450.95 0.64
120 0.00 0.00 868.39 868.39 1.00

Average 5.44 142.79 167.00 309.79 0.51

The results show that for K = 6 relocations in the planning horizon
(which is reasonable in most applications) our approach allowed to achieve
more than 50% of the GAIN obtainable in an “ideal” situation in which a
relocation is made possible at each period. A larger number of relocations
provides only a negligible improvement.

As far as the execution times are concerned, we observe that the first
phase was always skipped for both K = 0 and K = 120. Indeed, in these
cases the optimization model (22)-(27) had a unique solution, that is TR =
T and TR = ∅, respectively. In all the other cases the heuristic solution
(Ō(TR), S̄(TR)) was determined in 100.11 and 309.79 seconds on average for
Tables 1 and 2. For |C| = 50, the majority of the execution time was spent
during Phase I (81.58 seconds on the average). On the other hand, for
|C| = 100 the computing times for the two phases were comparable (142.79
versus 167.00 seconds on the average).

6 Conclusions

This paper studied a time-dependent p-center problem in which facilities are
mobile units that can be relocated multiple times. We proposed a multi-
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period formulation that accounts for the influence of traffic variability. We
assumed that the facilities can be relocated several times. In particular,
we supposed that the service time from facilities to demand site are con-
tinuous piecewise linear function satisfying the FIFO property. The time
variability of the worst case service time of each arc is modeled as con-
stant stepwise function, whose pieces are the maximum service time between
two consecutive possible relocation time instants. We proposed a heuristic
algorithm consisting of two phases. During the first phase an ILP prob-
lem is solved in order to determine relocations times. During the second
phase, a classical p-center problems is solved in order to determine the lo-
cations of the facilities between two consecutive relocation times. We finally
devised sufficient optimality conditions for an optimal solution. Computa-
tional experiments have been carried out on instances based on the Paris
(France) road graph. The results indicated that the algorithm can consis-
tently generate solutions with a limited number of relocations that improve
on the corresponding time-invariant optimal solutions. Future work will fo-
cus on adapting the ideas introduced in this paper to other variant of the p-
center problem, such as, among others, the capacitated p-CP (Kramer et al.,
2020), the weighted pCP (Chen and Handler, 1993), the conditional pCP
(Berman and Drezner, 2008), the α-neighbor pCP (Chen and Chen, 2013).
Another future research direction we propose is to consider the extension
of our results to the more complex multi-period location-routing problem
(Albareda-Sambola et al., 2012).
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