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Abstract

In this paper, we investigate vehicle routing problems with third-party transshipment facilities that arise in
the context of city logistics. Contrary to classical vehicle routing problems, where each customer request is
delivered directly to its destination, the problems considered in this paper feature the alternative possibility of
delivering customer requests to third-party transshipment facilities, such as urban consolidation centers, for
a fee. We present an adaptive large neighborhood search with an embedded random variable neighborhood
descent as a local search component and a set-partitioning problem for the recombination of routes to
solve various versions of the problem. Thereby, we consider location-dependent time windows as well as
heterogeneous fleets and propose several new procedures that consider transshipment facilities within the
components of our adaptive large neighborhood search. The proposed method is tested on benchmark
instances from the literature as well as newly created benchmark instances. It shows promising results,
leading to multiple improvements over existing algorithms from the literature. Moreover, a real-world study
is presented to gain managerial insights on the impact of transshipment fees, order size, and heterogeneous
fleets on the transshipment decisions.

Keywords: Vehicle routing, Urban consolidation centers, Urban freight transport, City logistics,
Heterogeneous fleet

1. Introduction

City logistics and last-mile deliveries give rise to numerous challenges for logistics service providers
(LSPs), such as increased public attention to sustainability (Savelsbergh and van Woensel, 2016), urban
access restrictions (Ville et al. (2013), Elbert and Friedrich (2018)), and growing delivery volumes (European
Commission, Directorate General for Mobility and Transport, 2019). A common approach to address these
challenges is the consolidation of shipments at transshipment facilities to increase the efficiency of urban
freight transport. In this context, Urban Consolidation Centers (UCCs) are a widely studied concept in
city logistics (Björklund and Johansson (2018), Lagorio et al. (2016)). UCCs can be defined as logistics
transshipment facilities in the proximity of an urban area that consolidate urban freight transport across
companies (Allen et al., 2012). Although numerous studies have been published on UCCs and several UCCs
have been implemented in cities across the world, except for a few cases (e.g. Baldacci et al. (2017)), the
decision on whether to outsource individual shipments to third-party transshipment facilities, such as UCCs,
has rarely been included in vehicle routing problems.

Motivated by this lack of research, and to bridge the gap towards this real-world problem in city lo-
gistics, in this paper we expand the research on the vehicle routing problem with transshipment facilities
(VRPTF)(Baldacci et al., 2017) by including location-dependent time windows and heterogeneous fleets. As
a generalization, this problem can be described as a vehicle routing problem that includes selecting delivery
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locations for customer requests from among multiple possible delivery locations, each with the possibility
of different transshipment costs and time windows. These transshipment facilities could be, for example,
UCCs serving an urban area, or regular third-party logistics service provider facilities.Aligning with problem
notations from the literature, we refer to our new problem variants of the VRPTF as the vehicle routing
problem with time windows and transshipment facilities (VRPTWTF) and the fleet size and mix vehicle
routing problem with time windows and transshipment facilities (FSMTWTF).

The purpose of this paper is twofold. First, it contributes to filling the literature gap in that it extends
the body of literature on vehicle routing problems with transshipment facilities by adding time windows and
heterogeneous fleets as additional attributes. Second, it presents an efficient meta-heuristic to solve these
problems, which is also tested on related problems. Additionally, our computational results show that the
solutions of existing VRPTF instances from literature can be improved by 0.68 % on average.

The outline of this paper is as follows: Section 2 gives an overview of the related literature. In Section 3
the problem is described. Section 4 presents the details of our adaptive large neighborhood search (ALNS).
Section 5 describes how we tuned our algorithm and reports computational results on different sets of
problems. Finally, Section 6 provides concluding remarks and pointers for further research.

2. Related Literature

Considering the selection of delivery locations such as transshipment facilities in vehicle routing is a
generalization of the classical capacitated vehicle routing problem. To the best of our knowledge, only a few
papers consider the selection of delivery locations or third-party transshipment facilities in vehicle routing.
Most notably, Baldacci et al. (2017) formulate the vehicle routing problem with transshipment facilities
(VRPTF) where customers can either be served directly from a central depot or by using a transshipment
facility for a fee. In their paper, they describe various valid inequalities for the VRPTF and provide a
mathematical formulation of the problem. Furthermore, they derive lower bounds from a set-partitioning
(SP) based formulation of the VRPTF.

Alcaraz et al. (2019) also address the topic of using transshipment facilities for last-mile deliveries. Similar
to the problem studied by Baldacci et al. (2017), they assume that some customer requests can be delivered
directly or to a transshipment facility, from where a third-party subcontractor will perform the final last-mile
deliveries for a fee. They study a rich vehicle routing problem that focuses on long-haul transport between
regions and features several additional characteristics, such as driving hour regulations, incompatibility
among goods, heterogeneous vehicles, and time windows. They present a construction heuristic method
that incorporates these characteristics and adapt various classical improvement heuristics from literature to
solve their problem.

Similarly, Sitek and Wikarek (2019) study a so-called capacitated vehicle routing problem with pick-up
and alternative delivery (CVRPPAD). They assume that customer requests can have alternative delivery
locations such as a parcel locker or postal outlets and consider time windows and heterogeneous fleets. To
solve their problem they propose an exact solution based on mathematical programming and a heuristics
solution for larger problem instances. In their heuristics solution method, customer requests are assigned
to routes based on a set of rules, and subsequently, a traveling salesman problem is solved for each of these
routes.

Dumez et al. (2021a) also focus on different delivery locations for customers and recently introduced the
vehicle routing problem with delivery options (VRPDO). In this problem, each customer can specify a number
of delivery options along with a preference value. Furthermore, each delivery option can have a time window
and capacity. Contrary to the VRPTF, no additional costs are associated with the shared delivery options
and the focus is placed on satisfying the customer preference levels and shared location capacity constraints.
In order to solve the problem, the authors present a large neighborhood search (LNS). Extending their work
on the VRPDO, Dumez et al. (2021b) introduce an adapted Balas-Simonetti neighborhood to their LNS to
further improve the solution quality. Moreover, Tilk et al. (2020), also address the VRPDO and present a
branch-price-and-cut algorithm that solves instances with up to 50 customers and 100 options to optimality.

Focusing on a problem with home deliveries and shared delivery options, Mancini and Gansterer (2021)
propose two matheuristic-based solution methods. Similar to the VRPTF, and in contrast to the VRPDO,
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their problem variant introduces a fee that has to be paid for each delivery assigned to a shared delivery
location.

Zhou et al. (2018) consider a two-echelon vehicle routing problem (2E-VRP), where deliveries are routed
through an intermediate capacitated satellite depot. Similar to Dumez et al. (2021a) and Sitek and Wikarek
(2019), they assume that customers can provide different delivery options, such as receiving their parcels at
their home or picking them up at an intermediate pick up facility. To solve this problem, Zhou et al. (2018)
propose a hybrid multi-population genetic algorithm that is tested on real-world and artificial instances.
Although the 2E-VRP is generally similar to the VRPTF, Baldacci et al. (2017) point out two significant
differences between the two problems. First of all, the facilities and satellites in the 2E-VRP are assumed
to be owned and operated by the same LSPs as the main depot. In the VRPTF, the facilities are operated
by third-party providers that charge the LSP using its service a fee for conducting the last-mile deliveries
to the customers. As a consequence, the vehicle routing from the transshipment facility to the customers
is not part of the VRPTF. Second, in the 2E-VRP each customer request is generally routed through an
intermediate facility, while in the VRPTF the customer requests can be either transshipped at a facility or
delivered directly.

Two other closely related problems to the VRPTF that also include multiple delivery locations are the
vehicle routing problem with roaming delivery locations (VRPRDL) and the very similar vehicle routing
problem with home and roaming delivery locations (VRPHRDL). Reyes et al. (2017) define the VRPRDL
as a routing problem where customer shipments are delivered to the trunk of their cars. Thereby, the cars
are parked in different locations at different times, based on a known schedule. However, contrary to the
VRPTF, no additional costs are associated with the different delivery locations and customers do not share
common locations, such as a transshipment facility. Reyes et al. (2017) present a construction heuristic and
an LNS-based improvement heuristic for solving this problem. The VRPHRDL introduced by Ozbaygin
et al. (2017) extends the VRPRDL to allow shipments to be delivered to customers’ homes during the entire
planning period or, based on a predefined schedule, to the trunk of their cars. In order to solve both the
VRPRDL and VRPHRDL, Ozbaygin et al. (2017) developed a branch-and-price algorithm. Later, Dumez
et al. (2021a), Dumez et al. (2021b), as well as Tilk et al. (2020) also study both problems to validate their
algorithms for the VRPDO, leading to new best solutions and large time improvements on the instances of
Ozbaygin et al. (2017) and Reyes et al. (2017).

Although transshipment facilities such as UCCs have been a topic in city logistics for a long time, dating
back to as early as the 1970s (Allen et al., 2012), only a few studies focus on whether to transship goods
at a third-party transshipment facility. To the best of our knowledge, the studies on UCCs usually assume
that only a single transshipment facility (UCC) exists, and that either all or no deliveries for a city are
transshipped at the UCC. In reality, however, more than one transshipment facility can exist. Besides, as
indicated in a survey among LSPs by Stathopoulos et al. (2012), it might be preferable to transship only
some customer requests (e.g. requests with narrow time windows), while other customer requests are served
directly. Moreover, the transshipment decision is often modeled to be periodical, depending on either the
past performance or cost estimates (e.g. Firdausiyah et al. (2019), van Heeswijk et al. (2019), van Duin
et al. (2012)).

The literature review underlines that the literature on selecting delivery locations in the context of vehicle
routing is still scarce. Especially third-party transshipment facilities in connection with heterogeneous
vehicles have been little studied so far. Hence we aim to expand the literature in this regard.

3. Problem Description

In our paper, we consider different problem variants of the vehicle routing problem with transshipment
facilities (VRPTF). Table 1 gives an overview of the considered problem variants and their properties. The
VRPTWTF extends the VRPTF by including time window constraints, while the FSMTWTF is based
on the fleet size and mix vehicle routing problem with time windows (FSMTW) (Liu and Shen, 1999) and
extends the VRPTWTF by adding fleet size and mix decisions. For both problem variants, we distinguish
between two cost functions consisting of different vehicle cost components. In the following, we describe
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the variant of the FSMTWTF with a rich cost function, abbreviated FSMTWTF-R, which encompasses the
properties of the other problem variants studied.

Table 1: Overview of considered problem variants and their aspects.

Problem variant
Time
windows

Fleet Vehicle cost

homogeneous heterogeneous fixed distance duration

VRPTF X X
VRPTWTF X X X
FSMTWTF X X X X
VRPTWTF-R X X X X X
FSMTWTF-R X X X X X

Expanding the notation of the VRPTF from Baldacci et al. (2017), the FSMTWTF-R considered in this
paper can be described as follows. Let G = (V,A) be a complete directed graph, where V = {v0} ∪ V ′ is
the set of vertices and A the set of arcs. The set of vertices V ′ is partitioned into V ′ = {VC , VF }, where
VC = {v1, . . . , vnC} is the set of customer locations and VF = {vnC+1, . . . , vnC+nF } the set of transshipment
facilities. Vertex v0 represents the depot, where goods to be delivered are stored and vehicle routes originate.

Each customer location vi ∈ VC is associated with a single customer request cri. These requests are
characterized by a non-negative demand of qi units to be delivered from the depot v0 and a non-negative
service time tsi . Each customer request can be delivered directly to the associated customer vi or, if applicable,
to a transshipment facility selected from its set Fi ⊆ VF of possible transshipment facilities. Figure 1 gives
an example of a vehicle routing problem with four transshipment facilities, where customer requests can be
assigned to a single facility, multiple facilities, or no transshipment facility at all.

Depot

Transshipment Facility

Customer

(vf ∈ VF )

(vi ∈ VC)

(v0)

Figure 1: Example of a VRPTF instance with four transshipment facilities. Each transshipment facility (triangles) has a number
of customer locations that it can serve, indicated by the grey scale of each locations’ circle and the surrounding polygon. Some
customer requests, denoted as white circles, can only be served directly and may not be transshipped.

The selected delivery location of a customer request cri is denoted as crli ∈ Fi∪{vi}. Each location from
V ′ can have a delivery time window specified by the earliest and latest time twSi and twEi (0 ≤ twSi < twEi <
∞) to be visited. In order to account for possible time savings when customer requests are consolidated
and transshipped at a transshipment facility, a preparation time tpi is assigned to each location similar to
the approach of Dumez et al. (2021a). This preparation time represents, for example, the time needed for
parking and administrative tasks (e.g. handling delivery documents) at the locations that occur regardless of
the quantity being unloaded. In contrast to this, the service time tsi is location independent and represents
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the time needed for unloading the goods of a customer request cri. The arc set A represents the links
between the vertices, where dij is the distance between location vi and vj and tij the transport time. For
distinct locations the transport time tij includes the location-dependent preparation tpi .

The fleet originating from the depot is composed of nV ehicles different vehicle types, with M = {1, . . . ,
nV ehicles}. For each type k ∈ M , there are mk available vehicles, each with a capacity Qk. Additionally,

fixed costs cfk as well as distance-dependent cdk and time-dependent costs ctk can be assigned to each vehicle
type.

We define a route rk as a vehicle of type k starting from and ending at the depot v0 and visiting some
locations to fulfill customer requests. Each solution s to our problem consists of a set of routes R. A route
is feasible if the total load of the route, computed as the sum of demand of all customer requests assigned
to it, does not exceed the vehicle capacity of the vehicle. Furthermore, for each visited location, and the
customer requests assigned to it, the time window constraints must be fulfilled.

The costs cr of a route rk consist of four vehicle-dependent cost components. First, the distance-based
costs equal the total distance traveled multiplied with the distance-based cost factor cdk of the vehicle type.
Second, the duration-based costs equal the total operation time to perform the route, including times for
traveling, unloading goods at the locations, and possible waiting times due to time windows, multiplied with
the duration-dependent cost factor ctk of the vehicle type. To minimize the waiting times, the departure time

of each vehicle from the depot can be scheduled any time during the work day. Third, the fixed cost cfk of
the selected vehicle type is incurred when the vehicle is assigned to a tour. Fourth, the sum of transshipment
costs for transshipping customer requests at the third-party transshipment facilities. Different transshipment
cost functions can be selected for this and included in the objective function. For example, following Baldacci
et al. (2017), the cost of transshipping customer requests can be based on the distance between the location
of the customer and the selected transshipment facility. Alternatively, the cost for assigning a transshipment
facility, such as a UCC, can also be based on the quantity qi of the customer request cri. This is in line
with several real-world UCCs, where the prices usually solely depend on the number of pallets and parcels
to be transshipped (Janjevic and Ndiaye, 2017). In practice, however, in order to be cost-efficient UCCs
usually have a predefined service area, such as a city center, in which they operate (similar to the example
in Figure 1).

In summary, the objective of the vehicle routing problem with transshipment facilities is to determine
the assignment of customer requests to transshipment facilities and vehicles as well as a set of routes that
minimizes the sum of route costs and does not violate the constraints of the vehicles, customer requests,
and locations.

4. Adaptive Large Neighborhood Search for Vehicle Routing Problems with Transshipment
Facilities

This section describes our adaptive large neighborhood search (ALNS) with an embedded local search
for solving the VRPTF and its extensions. ALNS is a common meta-heuristics for solving vehicle routing
problems and has been introduced by Ropke and Pisinger (2006b), who initially applied it to the pickup and
delivery problem with time windows. In contrast to classical neighborhoods for VRP, it is characterized by
large moves that are performed by removal and insertion procedures. This underlying principle of removing
and inserting customer requests, also called ruin and create, has been present in previous research articles.
Shaw (1998) presented the large neighborhood search (LNS), where routes are ruined and subsequently
repaired by inserting the unassigned customer requests. Later, Schrimpf et al. (2000) used the term ruin
and create for a similar concept to solve several routing problems.

4.1. Algorithm Outline

The overall framework of our algorithm to solve the different variants of the VRPTF is reported in
Algorithm 1. First, we initialize the parameters for the ALNS, such as the stop-criterion, initial weights of the
removal and insertion operators, and the conditions for executing the embedded local search procedure and
set-partitioning problem (SPP). Second, we create an initial solution by using a regret-2 insertion procedure
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(see 4.3.2). After creating an initial solution, in each iteration of our ALNS, a copy s′ of the incumbent
solution st is destroyed using a removal procedure and subsequently repaired using an insertion procedure
(lines 10 and 12). Both removal and insertion procedures are selected randomly based on a roulette wheel
selection. Following these two steps, a local search procedure that includes new neighborhoods to modify the
locations of customer requests can be invoked with probability pLS to improve the current solution s′ (lines
13-15). After the solution improvement phase, we check whether to store the feasible routes of the newly
generated solution into the set of routes Rpool (line 16). If we find a route that serves the same customers as
an existing route in Rpool using the same vehicle type with lower costs, we replace the corresponding route.

Following this, the new solution s′ is accepted as the current solution depending on an acceptance
criterion (lines 17-18). In case a new best solution has been found, the best solution sbest is updated as
well (lines 19-20). Every ηSP iteration of the algorithm the routes of the pool Rpool are used to solve a
set-partitioning problem and the incumbent solution st is updated. After each call to the SPP, Rpool is
emptied to avoid it becoming too large (lines 24-25). Furthermore, for every ηupdate iteration we update
the weights (selection probabilities) of the removal and insertion procedures (lines 27-28). Following Ropke
and Pisinger (2006a), we use an adaptive weight adjustment for the removal and insertion procedures that
updates the weight of each procedure after ηupdate consecutive iterations (segment). The weights of each
procedure wij are calculated by using the weights of the previous segment and scores obtained during the
previous segment as shown in Equation 1. The weight wi,j+1 of an procedure i in segment j+1 is calculated
by

wi,j+1 = wij(1− λ) + λ
πi
θi

(1)

where πi is the current score of procedure i and θi the number of times that the procedure i has been
invoked during the last segment. The factor λ controls how strongly the procedure’s historical performance
from previous segments is considered during the calculation. To update the score πi each time an insertion or
removal procedure has been applied, the reward parameters ν1, ν2, and ν3 are used to update the procedure’s
score, as shown in Equation 2.

πk+1
i = πki +


ν1 if a new best solution has been found

ν2 if the found solution is better than the incumbent solution

ν3 if the found solution is accepted but worse than the incumbent solution

(2)

By using an adaptive weight adjustment, the selection probabilities of the removal and insertion proce-
dures that previously led to promising solutions are increased, while the selection probabilities of unpromising
procedures are reduced.

Lastly, our algorithm stops when either a maximum number of overall iterations ηmax or a maximum
number of iterations without improvement ηmaxnoi has been reached.

4.2. Search Space and Objective Function

In order to allow for infeasible solutions regarding time window constraints during the search, both the
removal and insertion procedures, as well as the embedded local search procedure, use the return in time
relaxation scheme from Nagata et al. (2010). In this relaxation scheme, each time a vehicle would arrive
late at a location (after the end of the location’s time window) it is assumed that the vehicle can travel
back in time to arrive at the end of the time window. The amount of time traveled back in time is thereby
denoted as time warp (Vidal et al., 2015) and used to penalize the objective function. Hence, similar to the
approaches of Olivera and Viera (2007) and François et al. (2016), we use an augmented objective function
for evaluating a solution s′:

fmod(s′) = f(s′) + αp · TW (s′) (3)
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Algorithm 1 Overview of the ALNS algorithm.

1: function ALNS
2: initializeParameters()
3: st ← generateInitialSolution()
4: sbest ← st
5: k ← 0
6: while k < ηmax and k − kimp < ηmaxnoi do
7: s′ ← st
8: Randomly select a removal operator. Draw δ customers to remove from s′.
9: s′ ← applyRemoval(s′, δ)

10: Randomly select an insertion operator to reinsert customers.
11: s′ ← applyInsertion(s′)
12: if random() < pLS then
13: s′ ← LS(s′)
14: end if
15: store the routes of s′ in Rpool

16: if acceptanceCriteria(s′,st, sbest) then
17: st ← s′

18: if f(s′) < f(sbest) then
19: sbest ← s′

20: end if
21: end if
22: if modulo(k, ηSP )= 0 then
23: st ← callSetPartitioningProblem(Rpool)
24: Rpool ← ∅
25: end if
26: if modulo(k, ηupdate)= 0 then
27: setNewSelectionScores()
28: end if
29: k ← k + 1
30: end while
31: end function

where f(s′) is the total operating cost of the solution including fixed and variable costs, TW (s′) denotes
the sum of the time warp associated with solution s′. The Parameter αp is an adaptive penalization
parameter that self-adjusts during the ALNS search process. During the ALNS, we initialize αp to αpmin and
limit it to the interval [αpmin, α

p
max]. At the end of each iteration, αp is updated based on the feasibility of

the incumbent solution st. If the incumbent solution st contains no time warp, αp is set to max{αp/ρ, αpmin}
to encourage our ALNS to find infeasible solutions to reduce the probability of becoming trapped in a local
optimum. Otherwise, if the incumbent solution is infeasible α is set to min{αp ·ρ, αpmax} to guide the search
to more feasible solutions. In this process, the parameter ρ ≥ 1 controls to what extent αp is adjusted. After
every ηReset iteration, αp is set back to αpmin so that it does not get stuck at αpmax.

4.3. Removal and Insertion Operators

4.3.1. Removal Procedures

During each of the following removal procedures, we remove δ customer requests, where δ is drawn from
the interval [ωmin, ωmax] ·min(|Vc|, 100). The parameters ωmin and ωmax denote thereby the minimum and
maximum share of customer requests to be removed. All removed customer requests are placed in the set
of absent customer requests B. The following removal procedures can be used in our ALNS:

Random Removal: a removal heuristic that randomly removes δ customer requests from a given
solution s′ using a uniform probability distribution.

Route Removal: a removal heuristic where a random route is selected and up to δ customer requests
of the route are randomly removed, using a uniform probability distribution. This is repeated until δ
customers are removed in total (Nagata and Bräysy, 2009).
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Worst Removal: a removal heuristic introduced by Ropke and Pisinger (2006a) that removes cus-
tomer requests with high costs that strongly contribute to the objective function of the current solution.
To do so, we calculate for each customer request cri the savings of removing it from s′ and sort the
customer requests in descending order. Subsequently, we use a randomized removal controlled by a
parameter pworst, as proposed in Ropke and Pisinger (2006a) to remove the customer requests. This
is done repeatedly until δ requests have been removed from s′.

Historical Knowledge Node Removal: removal heuristic that saves the lowest costs associated
with each customer request and removes the δ customer requests with the highest difference between
their current costs and saved historical lowest cost (Demir et al., 2012). We adapted the procedure to
include the transshipment costs of customer requests.

Shaw Removal: a removal heuristic that is also called related removal and was introduced by Shaw
(1997), Shaw (1998). We define the similarity S(i, j) between two customer requests cri and crj based
on four customer request characteristics. First, their difference in demand |qi − qj | divided by the
maximum difference in demand maxi∈VC (qi) −mini∈VC (qi). Second, the distance dij divided by the
maximum distance between all customer requests maxi,j∈VC (dij). Third, their absolute difference
of time window centers |twSi + (twSi − twEi )/2 − twSj + (twSj − twEj )/2| divided by the maximum
absolute difference between all time window centers. Fourth, the difference in the number of shared
transshipment facilities |Fi ∩ Fj | divided by the maximum number of maxi,j∈VC (|Fi ∩ Fj |). The last
term, however, only makes a difference in instances where the possible transshipment facilities differ
between customer requests. Each term is weighted by a weight factor χq, χd, χTW and χl respectively.

Cluster Removal: introduced by Ropke and Pisinger (2006b), aims to remove an entire cluster of
customer requests. Taking a given route, the customer requests in that route are partitioned into two
clusters. Subsequently, one of these clusters is selected, and up to δ customer requests are removed.
If the number of customer requests removed is smaller than δ, a random customer request from the
removed customer requests is selected. For this customer request, the current nearest customer request
that is not in the same route is chosen. The route of the chosen customer request is again partitioned
into two clusters and the procedure continues until δ customer requests have been removed from the
solution.

Distance-related Removal: also called radial removal (Schrimpf et al., 2000), is a special case of
our Shaw Removal procedure, where only the distances between the currently assigned locations of
the customer requests are used. The underlying idea of the removal procedure is to remove customer
requests that are close to each other based on the distance between them. We implemented this
procedure by randomly selecting a customer request and deleting it and its δ − 1-closest neighbors
from the solution.

Time-related Removal: a removal heuristic that removes customer requests that are related in
terms of the time at which they are served (Pisinger and Ropke, 2007).

Adjacent String Removal: introduced by Christiaens and Vanden Berghe (2020) and showing
promising results on classical vehicle routing benchmarks. String removal is based on the premise that
removing only adjacent customers (e.g. as in distance-related removal) may lead to detours still being
present in the destroyed route. Instead, removing adjacent strings of customer requests might be more
efficient. During the procedure, either many strings with small cardinality or a few strings with a
high cardinality can be removed. The upper limit of the string cardinality is thereby controlled by the
parameter Lmax. As described in Christiaens and Vanden Berghe (2020), the strings can be removed
using either the string procedure or split string procedure. Contrary to the basic string procedure, the
split string procedure preserves a random substring of customer requests from the string of customer
requests to be removed. To control the number of customer requests to be preserved, the split depth
parameter βString is used. The probability to select the split string procedure instead of the string
procedure is controlled by the parameter αString.
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4.3.2. Insertion Procedures

During the insertion phase of our algorithm, all locations per customer request are generally evaluated.
To evaluate the insertions in constant time O(1), we store partial route information which depends on the
type of problem considered. For our problem variants that do not include duration-based costs, we use
the propositions from Schneider et al. (2013) to evaluate the corresponding time window violations of the
insertions. For the problem variants with duration-based costs and flexible vehicle departure times, we use
the concatenation formulas described in Section 4.4 to determine the earliest and latest departures from
the depot that lead to a schedule with minimum duration and time warp. Whenever a customer request is
inserted into a route, the route information is updated in linear time, in relation to the number of customer
requests in the route. This includes the time window violations up to and from each customer request within
the route. The capacity usage is updated in constant time. Furthermore, in the case of heterogeneous fleets
we use two ideas from Koç et al. (2014). First, before starting an insertion procedure, we check whether the
destroyed routes can be served by smaller vehicles with lower fixed costs. Second, when inserting a customer
request in a route would exceed the available vehicle capacity, we consider using a larger vehicle for the
route and account for the difference in fixed costs.

In the following, we briefly describe the implemented insertion procedures:

Random Order Best Insertions: all absent customer requests are sequentially inserted at their
best insertion position in random order (Christiaens and Vanden Berghe, 2020).

Demand Order Best Insertions: inserts the absent customer requests sequentially at their best
insertion position ordered by decreasing demand (Christiaens and Vanden Berghe, 2020).

Farthest First Best Insertions: inserts the absent customer requests sequentially at their best
insertion position ordered by decreasing distance to the depot (Christiaens and Vanden Berghe, 2020).

Closest First Best Insertions: inserts the absent customer requests sequentially at their best
insertion position ordered by increasing distance to the depot (Christiaens and Vanden Berghe, 2020).

Regret-2 Insertion: the regret-2 insertion was introduced by (Ropke and Pisinger, 2006b) in the
context of ALNS. To determine the insertion position of a customer request, a regret-2-value is calcu-
lated which is defined as the difference between its second-best and best insertion position. At each
step of the insertion procedure, the regret-2-values are updated and the customer request with the
highest difference is inserted at its best insertion position.

4.3.3. Removal and Insertion Diversification

In order to randomize the removal and insertion procedures, we implement removal and insertion di-
versification strategies from the literature that can be used during the removal and insertion phases of our
ALNS. First, we utilize the concept of adding a noise term to the objective function value during insertion
(Ropke and Pisinger, 2006b). Each time an insertion position is evaluated, the insertion cost ∆C is modified
with a probability pnoise. To do so, we draw a random factor ξ from the interval [ξmin, ξmax] and calculate
the modified insertion costs ∆C ′ = max{0,∆C(1 + ξ)}.

Second, inspired by the algorithm of Christiaens and Vanden Berghe (2020), we implement the concept
of blinks as an insertion diversification strategy. Following Dumez et al. (2021a), we also extend the concept
to the removal phase. The underlying idea of the concept is to skip possible removals and insertions with
a defined probability. However, contrary to the insertion blinking procedure of Christiaens and Vanden
Berghe (2020), where insertion positions within a tour can be skipped, we skip the evaluation of the possible
location of a customer request when checking an insertion position within a route. Based on preliminary
tests, we distinguish between the original customer location and the transshipment facilities and assign a
blink probability pBlinks−vi for the original customer locations and a blink probability pBlinks−vi for the
transshipment facilities.

for each a blink probability pBlinks−vi and pBlinks−VF . Furthermore, we test if it is advantageous to
avoid blinking on transshipment facilities when the previous or next customer request within the route is
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assigned to the transshipment facility to be evaluated. For the blinking of removal positions, we define
pBlinks−Removal as the probability to skip a customer request during a removal procedure. To sum up, we
implemented the following three blinking procedures for our problem:

Blinks-R: Blinking on customer requests to be removed.

Blinks-I (I): Blinking for original customer locations.

Blinks-I (II): Blinking for transshipment facilities.

Blinks-I (III): Blinking for transshipment facilities unless they equal the previous or next customer’s
location within the route.

It should be noted that the methods not only serve for diversification but can also have a considerable
effect on the computing time. In particular, increasing pBlinks−VF can significantly reduce the computation
time on problem instances with many possible transshipment facilities per customer request.

4.4. Local Search Procedure

In order to intensify the search, the approach described in this paper combines the ALNS general search
methodology with a local search method. During each iteration of our ALNS, a local search procedure can
be run with a probability pLS to improve the current solution s′. The local search during the ALNS is
performed by a randomized variable neighborhood descent (RVND) (Mladenović and Hansen, 1997) which
has been applied for many routing problems, especially in the context of heterogeneous fleets (see e.g. Penna
et al. (2019), Subramanian et al. (2010)).

The underlying idea of the RVND can be described as follows: Let N = {N1, ..., Nr} be the set of
neighborhood structures. Each time a selected neighborhood of the set of neighborhoods N fails to improve
the incumbent solution, the RVND randomly chooses another neighborhood from the same set to continue
the search throughout the solution space. Algorithm 2 gives an overview of the RVND procedure. During the
first step of the algorithm, the list of inter-route neighborhoods NInter is initialized (line 2). After the initial
setup, for each iteration a random neighborhood N (i) ∈ NInter is selected and evaluated. Thereby, either
a first- or best-improvement strategy can be utilized (line 5). If an improvement of the incumbent solution
s is found, s is updated and an IntraRouteSearch (here also a RVND) is initiated (line 6-8). Subsequently,
the list of inter-route neighborhoods NInter is refilled with all possible inter-route neighborhoods (line 9),
and in the case of problems with varying fleet size and mix the available empty vehicles are updated (line
10). In contrast, if no improvement is found, N (i) is removed from NInter.

Algorithm 2 RVND

1: function RVND(s)
2: Initialize the inter-route neighborhood List (NInter)
3: while NInter 6= ∅ do
4: N(i) ← Choose a random neighborhood N(i) ∈ NInter
5: s′ ← Find the best- or first-improving neighbor s′ of ∈ N(i)

6: if f(s′) < f(s) then
7: s← s′

8: s← IntraRouteSearch(s)
9: Update NInter

10: Update Fleets . only for fleet-size-and-mix instances
11: else
12: Remove N(i) from NInter
13: end if
14: end while
15: end function

To evaluate the moves of the RVND efficiently, we use the concatenation strategies of Vidal et al. (2014)
and Vidal et al. (2015). These strategies are based on the idea that any route generated from a classical
move applied on an incumbent solution s′ corresponds to a recombination of a bounded number of depot
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and customer request sequences of s′. As such, every new route can be expressed as a concatenation of
sequences σ1⊕ · · · ⊕ σb. Each sequence σ can be described by six values: distance DIST (σ), demand Q(σ),
duration D(σ), time warp TW (σ), and the earliest visit E(σ) and latest visit L(σ) to the first vertex of σ
that lead to a schedule with minimum duration and time warp. Let σ1 and σ2 be two sequences. Using the
equations of Vidal et al. (2014) and Vidal et al. (2015), the concatenation of σ1 ⊕ σ2 can be formulated as:

DIST (σ1 ⊕ σ2) = DIST (σ1) + dσ1(|σ1|)σ2(1) +DIST (σ2) (4)

Q(σ1 ⊕ σ2) = Q(σ1) +Q(σ2) (5)

D(σ1 ⊕ σ2) = D(σ1) + tσ1(|σ1|)σ2(1) +D(σ2) + ∆WT (6)

E(σ1 ⊕ σ2) = max{E(σ2)−∆, E(σ1)} −∆WT (7)

L(σ1 ⊕ σ2) = min{L(σ2)−∆, L(σ1))}+ ∆TW (8)

TW (σ1 ⊕ σ2) = TW (σ1) + TW (σ2) + ∆TW (9)

where ∆ = D(σ1)− TW (σ1) + tσ1(|σ1|)σ2(1) (10)

∆WT = max{E(σ2)−∆− L(σ1), 0} (11)

∆TW = max{E(σ1) + ∆− L(σ2), 0}. (12)

4.4.1. Inter- and Intra-Route Neighborhood Structures

The definition of neighborhood structures is one of the main aspects in the design of local search algo-
rithms. In order to achieve better local optima, we use both inter-route and intra-route neighborhoods in
our search. To reduce the computational effort of our inter-route swap neighborhoods, we apply the prun-
ing mechanism for vehicle routing problems with time windows from Vidal et al. (2013). The correlation
between two locations is, thereby, calculated by the weighted sum of the distance, minimum waiting time,
and minimum penalty between the two locations, using the same weights as in Vidal et al. (2013). Subse-
quently, for each location l ∈ V ′ we store the ε = 30 highest-correlated locations in an immutable neighbor
list. Furthermore, for each move, the capacity feasibility is evaluated first and the move is discarded if it is
infeasible.

We employ the following seven inter-route neighborhoods in our local search procedure:

• Shift(1,0) transfers a customer request from one route to another.

• Shift(2,0) transfers two adjacent customer requests from one route to another.

• 2-Opt* inter-route version of the classical 2-Opt move (Potvin and Rousseau, 1995).

• Swap(1,1) permutation between two customer requests from different routes.

• Swap(2,1) permutation of two adjacent customer requests from one route by one customer request
from another route.

• Swap(2,2) permutation of two adjacent customer requests from one route by two customer requests
from another route.

• K-Shift transfers K adjacent customer requests from one route to the end of another route or a new
route of a vehicle with lower fixed costs (Penna et al., 2013). In the case of unlimited fleets, we ensure
that there is at least one empty vehicle of each type.

Regarding the intra-route neighborhoods, we implement the well-known 2-Opt neighborhood (Lin, 1965),
Reinsertion, Or-opt-2, and Or-opt-3 (Or, 1976) neighborhoods, as well as an intra-route version of
Swap(1,1). In addition to these well-known general neighborhoods, we implement new specific neighbor-
hoods for vehicle routing problems with transshipment facilities. These intra-route neighborhoods aim to
modify the assignment of transshipment facilities to customer requests within a route. The underlying idea
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of these operators is similar to the delivery option moves of Zhou et al. (2018), where the assignment of
customer requests to intermediate pickup facilities is modified with three move types. However, unlike Zhou
et al. (2018), where the current position of customers within the routes is not considered, and either a single
customer request or the requests of the n-closest customers to a transshipment facility are transshipped,
our intra-route neighborhoods focus on the modification of the locations of successive visits within a single
route.

The first three neighborhoods, named ChangeLocation(m), aim for small changes and are based on
the idea of changing the location of m consecutive customer requests, which share at least one common
transshipment facility in their set of possible transshipment facilities F , to one of the common transshipment
facilities or to the respective customer locations. We thereby implemented versions for m = 1, 2, and 3
customer requests to be changed simultaneously. Due to our observation that the decision for or against
transshipping goods at a transshipment facility often depends on a critical number of customer requests per
tour being assigned to the same transshipment facility, we implemented two additional moves to change the
locations of more customer requests within a route r. This modification of customer locations is an important
mechanism, as depending on the problem instance, the solution can become stuck in local optima, where
all or most customer requests of a tour are allocated to the same transshipment facility and the previous
local search moves are not large enough to leave the local optima. Likewise, it is also possible that using
a transshipment facility is only cost-effective if a large portion or all customer requests in an area are
assigned to it. Thus, the two moves aim to change the assigned locations of longer sequences of suitable
customer requests within a tour (see Figure 2). The first neighborhood, Undo-Transshipment, filters for
sequences of adjacent customer requests being assigned to the same transshipment facility and assigns each
customer request to its respective customer location. The second neighborhood, Try-Transshipment, is
its counterpart and identifies sequences of adjacent customer requests that share a common transshipment
facility vf ∈ VF and assigns the customer request to the facility. In the case of problem instances where
each customer request can be assigned to every transshipment facility, the sequence of customer requests
changed equals the entire route. As a consequence, it is possible to limit the maximum sequence length for
routes that include many customers (e.g. maximum 10 customer requests) and evaluate every substring.
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Figure 2: Example of the two moves for changing the location of larger parts of routes. The customer requests of the sequence
cr6 . . . cr2 share at least one possible transshipment facility vf ∈ VF that is neither shared by the upstream nor downstream
customer requests cr13 and cr8 of the tour (vf /∈ F13 ∪ F8).

With the aim to explore the location assignment of customer requests more thoroughly during the local
search, we also propose combined neighborhoods that jointly change the assigned location as well as the visit
sequence of customer requests. We thereby consider combined versions of the Shift(1,0) Reinsertion,
and inter-route and intra-route Swap(1,1) neighborhoods. The combined Reinsertion neighborhood is
very similar to the remove a CP service neighborhood of Zhou et al. (2018), with the exception that in the
latter only customers which are currently assigned to a transshipment facility are considered. Whereas our
preliminary results have shown that the addition of combined neighborhoods can lead to slight improvements
in solution quality in some cases, it also significantly increases the computation times. This applies especially
to instances where the customer requests have many possible transshipment locations, such as the VRPTF
benchmark instances from Baldacci et al. (2017). For this reason, combined neighborhoods are not considered
further in this paper.

12



4.5. Set-Partitioning Problem

Every ηSP iteration, the pool of stored routes Rpool is used to build a restricted set-partitioning (SP)
model to be solved by a mixed integer programming (MIP) solver (see Equations (13)-(16)). Based on the

notation of Subramanian et al. (2012), Rpooli ⊆ Rpool denotes the subset of routes that contain customer

request cri and Rpoolk ⊆ Rpool the subset of routes that use vehicle type mk. The binary variable zr indicates
whether a route is included in the solution or not.

min
∑

r∈Rpool
crzr (13)

s.t.
∑

r∈Rpooli

zr = 1 ∀cri ∈ CR (14)

∑
r∈Rpoolk

zr ≤ mk ∀cri ∈ CR (15)

zr ∈ {0, 1} ∀r ∈ Rpool. (16)

The objective of the SP model (13) is to minimize the sum of the route costs. Constraint (14) ensures that
each customer request is contained exactly once in the solution. Constraint (15) states the constraint for the
number of available vehicles per type. However, for the fleet size and mix problem variants, constraint (15)
is left out because the number of vehicles per type is not restricted. Furthermore, as Dumez et al. (2021b)
point out, the set-partitioning constraint (14) can be modified to an easier to solve set-covering constraint
(≥ 1 instead of = 1) if the triangle inequality holds true for the problem instance that is considered. If
the resulting solution of the set-covering problem contains a customer request in more than one route, we
remove the redundant occurrences based on a simple greedy procedure.

To reduce the computational effort and time, the solver is initialized with Sbest, and the maximum
computation time is limited to 30 seconds.

4.6. Solution Acceptance

Solution acceptance criteria decide whether a new solution s′ is accepted to replace the incumbent
solution st. There is a broad variety of acceptance criteria that have been tested with the ALNS framework
(Santini et al., 2018). In the following, we describe two implemented acceptance criteria in our ALNS:

Threshold Acceptance: Threshold acceptance (TA) was introduced by Dueck and Scheuer (1990).
As the name indicates, each new solution s′ is accepted if the difference in solution quality f(s′) −
f(st)/f(s′) is smaller than a defined threshold ζ. With each iteration, the threshold is reduced until
it reaches an end value. To determine the decrease in each iteration, either linear or exponential
schemes, as shown in Schrimpf et al. (2000), can be used. The linear threshold is thereby calculated
as ζ = ζ0(1− k

ηmax ), where ζ0 is the initial threshold and k
ηmax the percentage of maximum iterations

finished. The exponential threshold is calculated as ζ = ζ0 exp(−ln(2) k
ηmaxtaα

), with taα being a
factor controlling the half-lives. The initial threshold ζ0 is a parameter that has to be specified.

Record-to-Record Acceptance: Record-to-record acceptance (RRA) was introduced by Dueck
(1993) and is based on a similar idea to TA. However, instead of comparing the current solution s′

against the incumbent solution st, RRA compares the difference in solution values between the current
solution s′ and best solution sbest. If (f(s′)− f(sbest))/f(s′) is smaller than the current threshold, the
solution is accepted. As with TA, the threshold can be decreased linearly or exponentially.

5. Computational Results

In this section, we present the computational results for our ALNS and analyze its performance compared
to other approaches in the literature. We coded our ALNS as a single-threaded code in Java 11. To solve
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the SPP, we used IBM Ilog CPLEX 12.10.0 as the MIP solver. All experiments were performed on an Intel
Core i5-6200U CPU at 2.3 GHz with 8 GB RAM on a Windows 10 operating system.

Section 5.1 presents the process of selecting the parameters of the ALNS, including the decision of which
algorithmic components to use. Following this, in Section 5.2 we derive and describe benchmark instances
from the literature and compare the results where applicable. Finally, in Section 5.3 we introduce a real-world
instance and analyze the impact of transshipment fees, time windows, heterogeneous fleets, and demand size
on the transshipment decisions.

5.1. Parameter Selection

To tune the parameters of our algorithm, we used the automatic algorithm configuration tool irace
(version 3.3) (López-Ibáñez et al., 2016). The irace tool implements an iterated racing procedure that
provides a set of parameter configurations, so-called elite configurations, which statistically prove to be
suitable. To configure our ALNS with irace, the parameters to be tuned, and their types and value ranges
must be defined. Additionally, a set of training instances and the tuning budget (total number of runs to
be performed) must be specified. We set the tuning budget for our algorithm to 20 000 runs with 5000
to 40 000 maximum iterations per run, depending on the problem. Each run corresponds to the execution
of one sampled parameter configuration, given a random seed and a randomly selected training instance.
For the training instances, we select instances of varying sizes, including instances with homogeneous and
heterogeneous fleets, as well as time windows. Due to the heterogeneity of our training instances, we set
irace to use an F -test with a confidence level of 0.95 as the statistical test to analyze the differences between
the algorithm configurations. Table 2 shows the parameter types as well as their possible ranges and best-
found values in irace. Thereby, we distinguish between the VRPTF and its extensions with time windows.
Furthermore, we not only determined the parameters of our ALNS but also evaluated the suitability of our
two acceptance criteria (see Section 4.6). In addition, we also let irace decide which removal and insertion
diversification procedures to include in our ALNS. This is in line with the studies of François et al. (2019)
and François et al. (2016), who argue that an a priori selection of algorithmic components is important when
designing a ALNS.

The results of the final configurations in Table 3 indicate that most of the implemented removal proce-
dures, except the route removal procedure, are beneficial for the ALNS. However, some procedures, such as
the cluster and time-related removal, were selected only in the configuration for instances with time windows.
Looking at the diversification mechanisms from Section 4.3.3, it can be observed that blinking during the
ruin step (Blinks-R) seems to be advantageous for instances with time windows as well as instances without
time windows. The addition of noise, however, is only selected in the configuration for VRPTF instances.
Blinking on customer requests locations (Blinks (I) and Blinks (II)) is chosen in both configurations. How-
ever, the variant Blinks (III) for insertion does not appear in any elite configuration for instances with time
windows. Regarding the acceptance criteria, it can be seen that TA performed better on instances without
time windows, whereas RRA did better on instances with time windows.

In contrast to the previous parameters tuned by irace, the probability pLS of the embedded local search
was selected manually using a maximum CPU time per Instance. In this connection, on the one hand,
the possible benefits of high selection probabilities and on the other hand, the additional computing effort
should be weighed up. Our tests showed that values of 0.125 resulted in promising results for pLS , while
larger values did not improve the solution quality within the same computation time.

5.2. Problem Instances from the Literature

To compare our metaheuristic with existing approaches from the literature, we consider several instances
for the VRPTF and similar problems, such as the VRPRDL and VRPHRDL, from the literature. As there
are no instances available for variants of the VRPTF with time windows and heterogeneous fleets, we propose
new instances based on classical instances for the vehicle routing problem with time windows (VRPTW) from
the literature.

The instances for the VRPTF and its variants vary by the number of customers VC and the number of
transshipment facilities VF . For each of these instances, every customer request can be assigned to every
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Table 2: Parameters in the ALNS configuration.

Category Parameter Type Authorized Range ¬ TW TW

General ALNS

ηupdate Integer, Step 100 [100, 10 000] 600 3500
λ Rea1 [0.1, 1] 0.49 0.73
αpmin Integer, Step 5 [5, 500] – 30
αpmax Integer, Step 10 [αpmin, 1000] – 900
ρ Real, Step 0.1 [1, 2] – 1.5
ηReset Integer, Step 100 [100, 5000] – 800
ηSP Integer, Step 5000 [5000, 20 000] 5000 15 000

Removal

ωmin Rea1 [0.05,0.25] 0.11 0.07
ωmax Rea1 [0.25, 0.6] 0.42 0.31
pworst Integer [1, 6] 3 3
Lmax Integer [2, 25] 19 15
αString Real, Step 0.1 [0.2, 0.8] 0.40 0.45
βString Real [0.01, 0.1] 0.03 0.03
χq Real [0, 1] 0.42 0.39
χd Real [0, 1] 0.25 0.11
χl Real [0, 1] 0.33 0.17
χTW Real [0, 1] – 0.33
pBlinks−Removal Rea1 [0, 0.5] 0.12 0.24

Insertion

pnoise Rea1 [0, 0.3] 0.05 0.00
ξmax Rea1 [0, 0.3] 0.15 0.00
pBlinks−vi Rea1 [0, 0.2] 0.02 0.01
pBlinks−VF Rea1 [0, 0.9] 0.10 0.13

Acceptance

Criterion Categorical {TA, RRA} TA RRA
Threshold-Type Categorical {linear, exponential} exponential linear
taα Rea1 [0.05, 0.3] 0.12 –
ζ0 Rea1 [0.01, 0.1] 0.02 0.07

transshipment facility (i.e. Fi = VF , ∀i ∈ VC). The cost of assigning a customer request to a transshipment
facility is thereby calculated as the Euclidean distance dif between the customer’s location vi ∈ VC and the
selected transshipment facility vf ∈ VF . For each instance, our ALNS is run with ten different random seeds
until a maximum number of iterations is reached.

5.2.1. VRPTF

In this section, we give an overview of our results on benchmark instances for the VRPTF and compare
these to the results of Baldacci et al. (2017). Thereby, we focus on three sets of problem instances for the
VRPTF that have been modified by Baldacci et al. (2017) from classical instances for the location routing
problem (LRP). These 65 instances vary between 12 to 150 customer requests and feature between 2 to 20
transshipment facilities. Instance set (I) has been derived from Akca et al. (2009) and includes 12 instances
with either 30 or 40 customer requests and 12 transshipment facilities. Instance set (II) is based on the
instances of Prins et al. (2004) and features instances with 20 to 100 customer requests and either 5 or
10 transshipment facilities. Finally, instance set (III) involves various instances from LRP literature with
instances varying between 12 to 150 customer requests and 2 to 20 transshipment facilities. As in Baldacci
et al. (2017), the distances between locations are computed as Euclidean distances following the TSPLIB
EUC 2D standard.

For our analysis, the number of iterations per instance is set to ηmax = 5000 iterations. However, for
many smaller instances, optimal solutions can be found in less than 1000 iterations. Table 4 summarizes the
results obtained on the three sets and compares them to the results of Baldacci et al. (2017). In the table,
column #Opt. reports the number of instances on which the optimal solutions, as reported in Baldacci
et al. (2017), were found. Column #Imp. reports the number of instances per set where improvement was
found and column #Eq. states the number of instances where the same non-optimally proven results were
obtained. Column Avg. Imp. states the average improvement in %. Lastly, column Avg. T Red. % reports
the average time reduction, based on the average run time from 10 runs each. The detailed results on each
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Table 3: ALNS Configurations.

Category Component
Configurations

¬ TW TW

Removal Procedures

Random Removal X X
Route Removal
Worst Removal X X
Shaw Removal X X
Cluster Removal X
Historical Knowledge Node Removal X X
Distance-related Removal X X
Time-related Removal X
Adjacent String Removal X X

Insertion Procedures

Random Order X X
Demand Order X X
Farthest Order X
Closest Order X
Regret-2 X X

Diversification

Noise X
Blinks (I) X X
Blinks (II) X X
Blinks (III) X
Blinks-R X X

Acceptance criteria
TA X
RRA X

instance, including the best solution values z∗, average solution values z, and times T out of 10 runs can be
found in Appendix A.1.

Considering the reported solutions from Baldacci et al. (2017) and their stated lower bounds, it can
be seen that our ALNS heuristic can find new best solutions for 38 problem instances while only taking a
fraction of the computational times. For the remaining 27 problem instances, solutions identical to those
reported by Baldacci et al. (2017) have been found. Of these, 23 have been proven to be optimal by Baldacci
et al. (2017).

Table 4: Summary of the tested data sets from Baldacci et al. (2017).

Instance set # #Opt. #Imp. #Eq. Avg. Imp. % Avg. T Red. %

(I) Akca et al. (2009) 12 10 0 2 0.00 85.16
(II) Prins et al. (2004) 14 3 9 2 0.81 94.73
(III) Different authors 39 10 29 0 0.85 94.66

5.2.2. VRPRDL and VRPHRDL

In order to validate our algorithm’s performance on problem instances with time windows, we utilize
the 120 instances from the VRPRDL and VRPHRDL of Reyes et al. (2017) and Ozbaygin et al. (2017)
and compare our algorithm with recent studies. To be precise, we compare the results of our ALNS on the
instances to those reported by Ozbaygin et al. (2017), Dumez et al. (2021a), and Tilk et al. (2020). To
compare our results to those reported by Ozbaygin et al. (2017), we set the maximum number of vehicles
to the number reported by Ozbaygin et al. (2017), as done in Dumez et al. (2021a), and Tilk et al. (2020).
In summary, as shown in Tables 5 and 6, we can observe that the best-known values, as reported in the
literature, are found for all 120 instances. Furthermore, with respect to the average solution quality and
computing time T, only very small differences to the current state-of-the-art algorithm from Dumez et al.
(2021a) can be observed.
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Table 5: Summary of the tested data sets for the VRPRDL.

Instance set |VC | Ozbaygin et al. (2017) Dumez et al. (2021a) Tilk et al. (2020) ALNS

Best 1 Best 5 Avg. 5 Best 1 Best 5 Avg. 5

1-5 15 6072.0 6072.0 6072.0 6072.0 6072.0 6072.0
6-10 20 6848.0 6848.0 6848.0 6848.0 6848.0 6848.0
11-20 30 18 595.0 18 595.0 18 595.0 18 595.0 18 595.0 18 595.0
21-30 60 37 213.0 37 213.0 37 213.0 37 213.0 37 213.0 37 213.0
31-40 120 53 881.0 53 738.0 53 738.4 53 738.0 53 738.0 53 738.8
41-50-v1 40 29 842.0 29 838.0 29 838.0 29 838.0 29 838.0 29 838.0
41-50-v2 40 21 863.0 21 863.0 21 863.4 21 863.0 21 863.0 21 864.9

Sum 174 314.0 174 167.0 174 167.8 174 167.0 174167.0 174 169.7

T[s] 2961.0 17.3 148.5 16.9
Processor Xe-2.3G Xe-2.57G i7-3.5G i5-2.3G

Table 6: Summary of the tested data sets for the VRPHRDL.

Instance set |VC | Ozbaygin et al. (2017) Dumez et al. (2021a) Tilk et al. (2020) ALNS

Best 1 Best 5 Avg. 5 Best 1 Best 5 Avg. 5

1-5 15 5450.0 5450.0 5450.0 5450.0 5450.0 5450.0
6-10 20 5604.0 5604.0 5604.0 5604.0 5604.0 5604.0
11-20 30 15 128.0 15 128.0 15 128.0 15 128.0 15 128.0 15 128.0
21-30 60 26 829.0 26 800.0 26 800.0 26 800.0 26 800.0 26 800.0
31-40 120 38 610.0 37 252.0 37 310.4 37 583.0 37 252.0 37 303.6
41-50-v1 40 27 997.0 27 996.0 27 996.0 27 996.0 27 996.0 27 996.0
41-50-v2 40 20 977.0 20 958.0 20 958.0 20 958.0 20 958.0 20 958.0

Sum 142 595.0 139 188.0 139 246.4 139 519.0 139 188.0 139 239.6

T[s] 6587.1* 17.3 2924.1 17.0
Processor Xe-2.3G Xe-2.57G i7-3.5G i5-2.3G

* Ozbaygin et al. (2017) did not report solution times for the instances with |VC | = 40.

5.2.3. New Instances for the VRPTWTF and FSMTWTF

We propose new instances based on modifications of the classical instances for the VRPTW from Solomon
(1987) to analyze our performance with respect to the VRPTWTF and FSMTWTF. These instances are
separated into three sets, that are clustered, random, and semi-clustered, and denoted as C, R, and RC.
To use these classical instances for our problem with transshipment facilities, we choose a similar approach
as Baldacci et al. (2017) and derive our instances from the LRP literature. More specifically, for the
transshipment facilities, we use the depots 2-6 from the LRPTW benchmark instances of Koç et al. (2016),
who used a discrete uniform distribution to draw additional depot locations for each of the instance sets from
Solomon (1987). The central depot coordinates remain unchanged from the original Solomon instances.

With regard to the time windows and service times, the instances are adjusted as follows:

• The customer location time windows are shifted forward in time by adding the service times from the
Solomon instances to the start and end times of the time windows of the VRPTW instances. This
way we can model the original service times as location preparation times so that the time spent at a
transshipment facility is independent of the number of customer requests. Furthermore, transshipment
facilities have the same location-dependent preparation times tpi as the customer locations.

• Transshipment facilities can only be visited early during the routes so that the latest possible arrival
time of all transshipment facilities equals the rounded maximum travel time between the depot v0 and
any transshipment facility (twSi = 0 and twEi = dmaxi=v0,j∈VF (tij)e).

Although the VRPTW typically has a hierarchical objective function of reducing the number of vehicles
first and the distance second, we refrain from doing so for the VRPTWTF, as the fleet minimization
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objective favors the transshipment facilities too strongly, so that the routes consist almost exclusively of
visiting transshipment facilities. Instead, for each instance of the VRPTWTF, we limit the number of
available vehicles to the minimum number of vehicles reported for the original instances of the VRPTW
in the literature. This also gives us information on the best solution values without using any of the
transshipment facilities for each instance and allows us to assess how the addition of transshipment facilities
can impact costs.

The instances for the FSMTWTF are also based on the Solomon instances and use the same modifications
regarding the time windows and service times. For the vehicles and their corresponding costs and capacities,
we use the vehicles and cost structure A from the FSMTW instances of Liu and Shen (1999). Regarding
the maximum number of iterations, we set ηmax = 35 000 because it proved to be a good trade-off between
run time and solution quality.

In order to validate our Algorithm’s performance on the new FSMTWTF instances, we also tested our
algorithm on instances for the FSMTW that have been studied by several authors from literature. The
results, summarized in Table 7, show that our ALNS is very competitive for the FSMTW, finding new best
solutions for four instances (see Appendix A.3).

Table 7: Summary of the tested data sets for the FSMTW.

Instance set # |VC | Vidal et al. (2014) Koç et al. (2015) Penna et al. (2019) ALNS

Best 5 Best 5 Best 10 Best 10 Avg. 10

C1 9 100 63 746.78 63 746.78 63 746.78 63 746.78 63 746.78
R1 12 100 48 375.38 48 497.56 48 385.69 48 377.28 48 507.54
RC1 8 100 39 129.97 39 331.28 39 108.26 39 099.14 39 180.60
C2 8 100 45 494.00 45 494.00 45 494.00 45 494.00 45 494.2
R2 11 100 34 671.5 34 653.26 34 672.03 34 676.70 34 779.66
RC2 8 100 33 680.83 33 681.82 33 680.83 33 687.66 33 792.85

Sum 265 098.46 265 404.69 265 087.59 265 081.53 207 155.09

T 305.24 283.60 193.26 252.88
Processor Opt-2.2G Xe-2.6G i7-2.93G i5-2.3G

Table 8 and 9 give a summary of the results obtained for the VRPTWTF and FSMTWTF, highlighting
the usage of the transshipment facilities, and comparing the results with the best-known solution values
of the VRPTW and FSMTW. Furthermore, Tables A.15 and A.18 in Appendix A.2 and Appendix A.4
provide detailed results. The results show that for many of the instances, the number of vehicles, as well
as the objective value, can be reduced, compared to the results of the VRPTW without transshipment
facilities (column Avg. Gap. %). On average, the usage of transshipment facilities leads to a cost reduction
of 4.08 % for the VRPTWTF. However, the potential for cost reductions seems to depend strongly on
the instances. For example, for the clustered instances (C) of the VRPTWTF no improvements are found
by adding transshipment facilities. Furthermore, the results show that fewer transshipment facilities are
used for the FSMTWTF than the VRPTWTF, and smaller cost improvements compared to the FSMTW
are observed. Especially for the instances with longer planning horizons (C2, R2, and RC2), only a few
improvements over the best solutions without transshipment facilities are found for the FSMTWTF. The
relatively small cost savings on the FSMTWTF instances can be explained by the fact that the instances
have, in contrast to the VRPTW, no fleet size restrictions and as such make it easier to find good solutions
without using transshipment facilities.

5.3. Real-World Instances

In this section, we give an overview of the real-world instances newly created and the computational
results obtained. First, we describe how the real-world instances were created and give an overview of the
attributes and data sources. Second, we report our computational results on these instances and conduct a
sensitivity analysis on the impact of the transshipment costs, demand size, time windows, and vehicle fleet
on the transshipment decisions. All of the newly created instances are available upon request.
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Table 8: Summary of the tested data sets for the VRPTWTF.

Instance set # #r #f #c z* T[s] Avg. Gap. %

C1 9 10.00 0.00 0.00 828.38 84.69 0.00
R1 12 10.92 2.83 15.50 1080.62 173.88 -10.14
RC1 8 10.88 3.38 14.88 1271.40 122.03 -7.39
C2 0 3.00 0.00 0.00 589.86 132.04 0.00
R2 0 2.73 0.82 4.36 929.49 312.52 -2.15
RC2 0 3.25 1.50 9.38 1081.76 247.3 -2.99

Table 9: Summary of the tested data sets for the FSMTWTF.

Instance set # #r #f #c z* T[s] Avg. Gap. %

C1 9 19.00 1.00 1.00 7079.06 265.08 -0.06
R1 12 19.08 2.83 8.67 4013.05 313.97 -0.42
RC1 8 15.25 2.00 7.75 4859.92 400.23 -0.54
C2 8 5.00 0.00 0.00 5686.75 396.01 0.00
R2 11 5.00 0.55 2.09 3147.23 427.94 -1.94
RC2 8 11.30 0.13 1.30 4213.26 430.28 0.08

5.3.1. Description

The instances are based on the Frankfurt-Rhine-Main metropolitan area in Germany and feature either
50 or 100 customers, eight transshipment facilities, and one central depot. The customer locations for both
instance sizes are based on the real geographic coordinates of retail stores. The central depot, as well as
the transshipment facilities, are based on the geographic coordinates of real facilities from LSPs and are the
same for both instances. To obtain a realistic mix of customer locations within urban and non-urban areas,
we retrieved the retail locations from 13 retail chains within a 30 km radius of the central depot and selected
two subsets of these locations. These retail chains operate between 4 to 20 stores within the area of which
10 % to 100 % are located in urban centers. For the transshipment of goods at transshipment facilities,
we assume that only the customer requests of customers located in one of the seven largest cities of the
Frankfurt-Rhine-Main metropolitan area can be transshipped. For this purpose, we include eight potential
transshipment facilities. Each urban area has either one or two transshipment facilities and, except for one
transshipment facility, all serve only one urban area. For both instances, 60 % of the customers can be
transshipped at a transshipment facility. Figure 3 gives an overview of the geographic distribution of all the
locations.

For the distances and travel times between locations, we retrieved the distances and travel times for each
pair of locations both ways, using the HERE Routing API v7, with the mode specified as truck and fastest
and truckType=truck. In this context, it is worth noting that due to the presence of truck transit bans in the
region, some triangle inequality violations occur. This means that visiting a sequence of customer locations
{v1, v2, v3}, with v2 being in a transit ban zone, might be shorter than the sequence {v1, v3}, as vehicles
with at least one delivery within the transit ban zone are exempt from the ban.

While we keep the subset of locations constant for the two instance sizes, we vary the time window
lengths, customer demands, transshipment costs, and vehicle fleet during our experiments to analyze how
they affect the transshipment decisions. Table 10 gives an overview of the key characteristics of the instances
created for our experiments, which we will describe in the following.

The time windows of the customer locations are set according to the following rules:

• Customers in urban areas have to be visited in the morning due to access restrictions in the pedestrian
zones so that [twSi , tw

E
i ] such that 30 + tpi ≤ twSi ≤ 90 + tpi and twEi = twSi + κ.

• Transshipment facilities should be visited in the morning, so that twSi = 0 and twEi = 120.

• For other customers that cannot be served by a transshipment facility, the time windows [twSi , tw
E
i ]

are set randomly, so that tpi ≤ twSi ≤ 450 and twEi = twSi + κ.
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Figure 3: Map of the Frankfurt Rhine-Main area with the central depot (orange arrow), transshipment facilities (purple
squares), and customer locations (black dots) (Map data copyrighted OpenStreetMap Contributors).

Table 10: Real-world instance and experiment summary.

Factor Values

|VC | {50, 100}
|VF | 8
q̄ [1, 5]
tpi 15
tsi q̄
κ {60, 120, 180}
ctf [1, 10]
Fleet {homogeneous, heterogeneous}

Depending on the instance, we assume for the time window length κ values of 60, 120, and 180. To analyze
the impact of demand size qi on the transshipment facility usage, we systematically vary the demand for all
customers in the range of 1 to 5 pallets. We modify the demand equally for each customer (qi = q̄), so that
the impact of demand can be analyzed more easily. In this context, we assume that the service times of
customer requests correspond to the demand quantity (tsi = qi) while the demand independent preparation
times tp are assumed to be 15 minutes for all locations.

Following the literature on UCCs (see e.g. Firdausiyah et al. (2019)) and the reported real-world UCCs
(Janjevic and Ndiaye, 2017), we assume that the transshipment costs are based on the quantity transshipped
and thus model a price per pallet cost scheme for the transshipment facilities. Subsequently, we calculate the
costs for transshipping a customer request cri at a transshipment facility by multiplying the cost factor per
unit ctf with the quantity qi of cri. For our sensitivity analysis, we vary the transshipment costs per unit ctf
in the range of [1, 10]. Regarding the vehicle fleets, we test both a homogeneous fleet and a heterogeneous
fleet consisting of three vehicle types. For the homogeneous fleet, we assume a single medium-sized vehicle
type with a capacity of 18 demand units. For the heterogeneous fleet, we add two additional vehicle types
– one smaller and one larger – with capacities of 12 and 34 demand units, respectively. Each of the three
vehicle types has its distance-based and fixed usage cost, while the duration-based costs are assumed to be
independent of the vehicle type. Table 11 summarizes the three vehicle types.
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Table 11: Vehicle properties for the real-world instance.

Vehicle property Small Truck (k = 1) Medium Truck (k = 2) Large Truck (k = 3)

Distance-based cost cdk [per km] 0.33 0.46 0.61
Duration-based cost ctk [per h] 21 21 21

Fixed cost cfk [per tour] 55.35 72.01 118.33
Capacity Qk 12 18 34

5.3.2. Results and Managerial Insights

In this section, we present the results of our experiments to quantify the impact of transshipment costs,
demand size, time windows, number of customers, and vehicle fleet on the transshipment decisions, cost,
and fleet mix. Figure 4 provides the percentage of transshipment facility usage for the experiments with the
heterogeneous fleet, and Figure 5 the results for the experiments with the homogeneous fleet. AS expected,
the results show that, in general, the use of the transshipment facilities declines as the usage costs per unit
ctf increase. Moreover, the results indicate that the demand q̄ has a strong impact on the transshipment
facility use. With increasing demand per customer request, the percentage of customer requests transshipped
rapidly decreases. This relationship can be explained by the quantity-based pricing of the transshipment
facilities, which reduces the potential cost savings (e.g., time and distance savings) at higher transshipment
quantities per stop. It is also in line with previous research from Janjevic and Ndiaye (2017), who showed
that the cost-attractiveness for using a UCC strongly decreases as the number of pallets per stop increases.

As both figures show, the length of the time windows is another important influencing factor. With
smaller time window lengths κ, the use of the transshipment facilities becomes cost-attractive and increases.
In particular, for a homogeneous fleet with a narrow time window length of κ = 60, the percentage of
customer requests transshipped remains consistently high across the studied transshipment cost levels. Wider
time windows, on the other hand, show a stronger price sensitivity so that the fraction of customer requests
transshipped decreases more as transshipment costs increase.

When comparing the transshipment facility usage between the homogeneous and heterogeneous fleet, it
can be observed that for customer demands of q̄ = 1 the percentage of customer requests transshipped seems
to be higher for the homogeneous fleet than for the heterogeneous fleet. However, at larger demand sizes
(q̄ >= 2), the fraction of customer requests transshipped is overall slightly higher for the heterogeneous fleet
than the homogeneous fleet. This could be explained by the fact that in the heterogeneous case, the large
trucks (k = 3) can load more customer requests to be delivered to the transshipment facilities, making the
deliveries to the transshipment facilities more efficient and allowing for larger cost savings.

The comparison of the two instance sizes does not show a clear relationship. For runs with narrow time
windows, a homogeneous fleet, and customer demand q̄ ≤ 3, the fraction of orders transshipped is higher for
the instance with 50 customers than for the instance with 100 customers. However, this relationship between
the number of customers and the fraction of orders transshipped seems to be weaker when a heterogeneous
fleet is employed and the time window length is longer.

The analysis of the resulting fleet mix for the instance with |VC | = 50, presented in Figure 6, and for
|VC | = 100 in Figure A.9 in Appendix A.5, shows how the vehicle types deployed depend on the demand
per customer, time windows, and transshipment cost. First, it can be observed that the demand sizes seem
to have a strong impact. With low demand per customer (q̄ ∈ {1, 2}), the small and medium-sized trucks
are preferred, while for higher values of q̄ the large-sized trucks are used. Second, the figures show that
with narrow time windows, smaller vehicles are selected more frequently. Third, with lower transshipment
cost, and a consequently higher fraction of customer requests transshipped, the use of medium and large-
sized vehicles increases for the demand sizes q̄ ≤ 4. Finally, the comparison between instances for 50 and
100 customers shows that with the larger number of customers, not only more but also larger vehicles are
employed. This may be related to the fact that the higher number of customers is also accompanied by a
higher customer density and thus multiple customer requests can be more easily combined into one route.

Lastly, we study how the overall solution costs are impacted by the factors studied. Figure 7, as well as
Figure A.8 in Appendix A.5, provide an overview, of how the transshipment costs per unit ctf and customer
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Figure 4: Analysis of the impact of time window length κ (columns), number of customers |VC |, demand q̄, and transshipment
costs per unit ctf on the percentage of transshipment facility usage when using a heterogeneous fleet.
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Figure 5: Analysis of the impact of time window length κ (columns), number of customers |VC |, demand q̄, and transshipment
costs per unit ctf on the percentage of transshipment facility usage when using a homogeneous fleet consisting only of medium-
sized trucks.

demand impact the overall solution cost, separated by the two instance sizes and three time window lengths.
As the transshipment costs per unit increase and thus the transshipment facility usage decreases, the overall
costs per factor level combination increase, up to the point where no transshipment facility is used.

From the results of our analysis, we conclude that the decision of whether to transship customer requests
at a transshipment facility depends largely on the price and demand per customer request. In addition, it
becomes apparent that due to the quantity-based pricing of transshipment facilities, LSPs with low demand
per customer or stop would be the primary target group for transshipment facilities. Indeed, this group
of LSPs has also been previously identified by Browne et al. (2005) as the potential beneficiaries of UCCs.
As a consequence, initiatives a using quantity-based scheme should focus on attracting LSPs with low drop
sizes per stop. Alternatively, different pricing models to attract LSPs with larger demands per stop should
be developed.
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Figure 6: Analysis of the impact of time window length κ (rows), demand q, and transshipment costs per unit ctf on the fleet
mix for |VC | = 50.
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Figure 7: Analysis of the impact of time window length κ (columns), number of customers |VC |, demand q, and transshipment
costs per unit ctf on the costs when using a heterogeneous fleet.

Time windows, especially at the narrow time window width κ = 60 min, can increase the potential cost-
benefits of using a transshipment facility. This is also consistent with other studies from the literature, which
have shown that time windows must be particularly narrow to influence the decision to use transshipment
facilities, such as UCCs (Elbert and Friedrich (2018), van Heeswijk et al. (2020)). Consequently, local
governments could support the use of transshipment facilities through narrow time windows. Moreover, the
comparison of the two instance sizes shows that the time window widths seem to have a stronger influence
when the number of customers to be visited is lower.

Concerning the fleet mix, it can be seen that depending on the demand and usage costs, but also on
the time window length, the composition of the fleet changes. Especially, in the case of medium demand
per customer, the share of medium and large vehicles increases when transshipment facilities become more
cost-attractive. This suggests that LSPs that want to regularly use transshipment facilities for a portion of
their customer requests should ideally adjust their fleet accordingly. At the same time, however, this also
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means that the benefits of transshipment facilities can vary greatly depending on the LSP’s fleet already in
place.

6. Conclusion and Further Research

In this article, we presented an ALNS with an embedded local search for different vehicle routing problems
with transshipment facilities. The VRPTF and its variants describe an extension to the VRP where, for a fee,
some customer requests can be delivered to third-party transshipment facilities, such as urban consolidation
centers, instead of being delivered directly. Thereby, we extended the existing approaches on vehicle routing
problems with transshipment facilities to include both time windows and heterogeneous fleets. Furthermore,
we introduced new operators for removal, as well as local search moves, and insertion diversification methods
that consider transshipment facilities.

To test our algorithm on various problem instances and assess the importance of different algorithmic
components, we tuned the parameter of our ALNS using the irace package. Subsequently, we tested our
algorithm on several instances from the literature as well as new instances derived from classical VRPTW
instances and real-world data. We also used related problems, such as the VRPRDL, VRPHRDL, and
FSMTW to validate the performance of our algorithm. Furthermore, we introduced new instances for the
VRPTWTF and FSMTWTF, and provided solutions for these, and compared the results to the normal
versions without transshipment facilities.

In comparison to the results from the literature, our algorithm seems to be very competitive. For the
VRPTF our ALNS outperforms the existing exact algorithm, requiring only a fraction of the computational
time. As a result, we were able to find new best solutions for 38 out of 65 VRPTF instances from the
literature. For the VRPRDL and VRPHRDL, the best-known solutions reported in the literature were also
found. Likewise, our algorithm also shows promising results on the well-studied FSMTW instances from the
literature, obtaining new best results for four instances.

The computational results on our real-world instance, using a mixed cost function that considers distance-
dependent and time-dependent costs, as well as fixed costs, show that many factors influence the decision of
whether to transship customer requests at a third-party transshipment facility. In particular, the demand
per customer, and the transshipment fees charged by the third-party subcontractor, but also the length of
the customer time windows have a large impact on the transshipment decisions.

For future research, more factors influencing the transshipment decisions, such as the customer structure
and density could be investigated using simulation. Moreover, the ALNS could be extended by considering
additional real-world characteristics, such as vehicle-dependent toll schemes and travel times, incompatibility
among goods, and driving and working hour regulations.

CRediT authorship contribution statement

Christian Friedrich: Conceptualization, Methodology, Software, Validation, Investigation, Data cu-
ration, Formal analysis, Writing – original draft, Writing – review & editing, Visualization. Ralf Elbert:
Conceptualization, Supervision, Project Administration, Writing – Review & Editing.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.

References

Akca, Z., Berger, R.T., Ralphs, T.K., 2009. A branch-and-price algorithm for combined location and routing problems
under capacity restrictions, in: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (Eds.), Operations Research and Cyber-
Infrastructure, Springer US. pp. 309–330. doi:10.1007/978-0-387-88843-9_16.

24

http://dx.doi.org/10.1007/978-0-387-88843-9_16


Alcaraz, J.J., Caballero-Arnaldos, L., Vales-Alonso, J., 2019. Rich vehicle routing problem with last-mile outsourcing decisions.
Transportation Research Part E: Logistics and Transportation Review 129, 263–286. doi:10.1016/j.tre.2019.08.004.

Allen, J., Browne, M., Woodburn, A., Leonardi, J., 2012. The role of urban consolidation centres in sustainable freight
transport. Transport Reviews 32, 473–490. doi:10.1080/01441647.2012.688074.

Baldacci, R., Ngueveu, S.U., Calvo, R.W., 2017. The vehicle routing problem with transhipment facilities. Transportation
Science 51, 592–606. doi:10.1287/trsc.2016.0711.

Björklund, M., Johansson, H., 2018. Urban consolidation centre – a literature review, categorisation, and a future re-
search agenda. International Journal of Physical Distribution & Logistics Management 48, 745–764. doi:10.1108/
IJPDLM-01-2017-0050.

Browne, M., Sweet, M., Woodburn, A., Allen, J., 2005. Urban freight consolidation centres.
Christiaens, J., Vanden Berghe, G., 2020. Slack induction by string removals for vehicle routing problems. Transportation

Science 54, 417–433. doi:10.1287/trsc.2019.0914.
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contraintes de capacité, in: Dolgui A, D.P.S. (Ed.), MOSIM’04, pp. 1115–1122.
Reyes, D., Savelsbergh, M., Toriello, A., 2017. Vehicle routing with roaming delivery locations. Transportation Research Part

C: Emerging Technologies 80, 71–91. doi:10.1016/j.trc.2017.04.003.
Ropke, S., Pisinger, D., 2006a. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time

windows. Transportation Science 40, 455–472. doi:10.1287/trsc.1050.0135.
Ropke, S., Pisinger, D., 2006b. A unified heuristic for a large class of vehicle routing problems with backhauls. European

Journal of Operational Research 171, 750–775. doi:10.1016/j.ejor.2004.09.004.
Santini, A., Ropke, S., Hvattum, L.M., 2018. A comparison of acceptance criteria for the adaptive large neighbourhood search

metaheuristic. Journal of Heuristics 24, 783–815. doi:10.1007/s10732-018-9377-x.
Savelsbergh, M., van Woensel, T., 2016. 50th anniversary invited article—city logistics: Challenges and opportunities. Trans-

portation Science 50, 579–590. doi:10.1287/trsc.2016.0675.
Schneider, M., Sand, B., Stenger, A., 2013. A note on the time travel approach for handling time windows in vehicle routing

problems. Computers & Operations Research 40, 2564–2568. doi:10.1016/j.cor.2013.02.002.
Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G., 2000. Record breaking optimization results using the ruin and

recreate principle. Journal of Computational Physics 159, 139–171. doi:10.1006/jcph.1999.6413.
Shaw, P., 1997. A new local search algorithm providing high quality solutions to vehicle routing problems. Technical Report.

Department of Computer Science, University of Strathclyde.
Shaw, P., 1998. Using constraint programming and local search methods to solve vehicle routing problems, in: Maher, M.,

Puget, J.F. (Eds.), Principles and Practice of Constraint Programming — CP98, Springer Berlin Heidelberg. pp. 417–431.
Sitek, P., Wikarek, J., 2019. Capacitated vehicle routing problem with pick-up and alternative delivery (cvrppad): model and

implementation using hybrid approach. Annals of Operations Research 273, 257–277. doi:10.1007/s10479-017-2722-x.
Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations

Research 35, 254–265. doi:10.1287/opre.35.2.254.
Stathopoulos, A., Valeri, E., Marcucci, E., 2012. Stakeholder reactions to urban freight policy innovation. Journal of Transport

Geography 22, 34–45. doi:10.1016/j.jtrangeo.2011.11.017.
Subramanian, A., Drummond, L., Bentes, C., Ochi, L.S., Farias, R., 2010. A parallel heuristic for the vehicle routing problem

with simultaneous pickup and delivery. Computers & Operations Research 37, 1899–1911. doi:10.1016/j.cor.2009.10.011.
Subramanian, A., Penna, P.H.V., Uchoa, E., Ochi, L.S., 2012. A hybrid algorithm for the heterogeneous fleet vehicle routing

problem. European Journal of Operational Research 221, 285–295. doi:10.1016/j.ejor.2012.03.016.
Tilk, C., Olkis, K., Irnich, S., 2020. The Last-mile Vehicle Routing Problem with Delivery Options: Discussion paper number

2017. Technical Report 2017. Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz.
Mainz.

van Duin, J., van Kolck, A., Anand, N., Tavasszy, L.A., Taniguchi, E., 2012. Towards an agent-based modelling approach
for the evaluation of dynamic usage of urban distribution centres. Procedia - Social and Behavioral Sciences 39, 333–348.
doi:10.1016/j.sbspro.2012.03.112.

van Heeswijk, W.J.A., Larsen, R., Larsen, A., 2019. An urban consolidation center in the city of Copenhagen: A simulation
study. International Journal of Sustainable Transportation 13, 675–691. doi:10.1080/15568318.2018.1503380.

van Heeswijk, W.J.A., Mes, M.R.K., Schutten, J.M.J., Zijm, W.H.M., 2020. Evaluating urban logistics schemes using agent-
based simulation. Transportation Science 54, 651–675. doi:10.1287/trsc.2019.0971.

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2013. A hybrid genetic algorithm with adaptive diversity management for
a large class of vehicle routing problems with time-windows. Computers & Operations Research 40, 475–489. doi:10.1016/
j.cor.2012.07.018.

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2014. A unified solution framework for multi-attribute vehicle routing
problems. European Journal of Operational Research 234, 658–673. doi:10.1016/j.ejor.2013.09.045.

Vidal, T., Crainic, T.G., Gendreau, M., Prins, C., 2015. Time-window relaxations in vehicle routing heuristics. Journal of
Heuristics 21, 329–358. doi:10.1007/s10732-014-9273-y.

Ville, S., Gonzalez-Feliu, J., Dablanc, L., 2013. The limits of public policy intervention in urban logistics: Lessons from Vicenza
(Italy). European Planning Studies 21, 1528–1541. doi:10.1080/09654313.2012.722954.

Zhou, L., Baldacci, R., Vigo, D., Wang, X., 2018. A multi-depot two-echelon vehicle routing problem with delivery options
arising in the last mile distribution. European Journal of Operational Research 265, 765–778. doi:10.1016/j.ejor.2017.
08.011.

26

http://dx.doi.org/10.1016/j.trb.2017.02.003
http://dx.doi.org/10.1016/j.trb.2017.02.003
http://dx.doi.org/10.1007/s10732-011-9186-y
http://dx.doi.org/10.1007/s10479-017-2642-9
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.2307/2584063
http://dx.doi.org/10.1016/j.trc.2017.04.003
http://dx.doi.org/10.1287/trsc.1050.0135
http://dx.doi.org/10.1016/j.ejor.2004.09.004
http://dx.doi.org/10.1007/s10732-018-9377-x
http://dx.doi.org/10.1287/trsc.2016.0675
http://dx.doi.org/10.1016/j.cor.2013.02.002
http://dx.doi.org/10.1006/jcph.1999.6413
http://dx.doi.org/10.1007/s10479-017-2722-x
http://dx.doi.org/10.1287/opre.35.2.254
http://dx.doi.org/10.1016/j.jtrangeo.2011.11.017
http://dx.doi.org/10.1016/j.cor.2009.10.011
http://dx.doi.org/10.1016/j.ejor.2012.03.016
http://dx.doi.org/10.1016/j.sbspro.2012.03.112
http://dx.doi.org/10.1080/15568318.2018.1503380
http://dx.doi.org/10.1287/trsc.2019.0971
http://dx.doi.org/10.1016/j.cor.2012.07.018
http://dx.doi.org/10.1016/j.cor.2012.07.018
http://dx.doi.org/10.1016/j.ejor.2013.09.045
http://dx.doi.org/10.1007/s10732-014-9273-y
http://dx.doi.org/10.1080/09654313.2012.722954
http://dx.doi.org/10.1016/j.ejor.2017.08.011
http://dx.doi.org/10.1016/j.ejor.2017.08.011


Appendix A. Detailed Results

Appendix A.1. VRPTF Instances

Table A.12: Detailed results on set (I), based on Akca et al. (2009).

Instance |VC | |VF |
Baldacci et al. (2017) ALNS

z∗ T z∗ z T #r #f #c Gap[%]

cr30x5a-1 30 5 621.00 8.0 621.00 621.00 3.9 5 0 0 0.00*
cr30x5a-2 30 5 665.00 20.0 665.00 665.00 4.8 5 1 2 0.00*
cr30x5a-3 30 5 575.00 29.0 575.00 575.00 4.5 5 1 2 0.00*
cr30x5b-1 30 5 727.00 10.0 727.00 727.00 4.4 5 1 1 0.00*
cr30x5b-2 30 5 826.00 79.0 826.00 826.00 4.1 6 0 0 0.00*
cr30x5b-3 30 5 788.00 1061.0 788.00 788.00 4.5 7 1 1 0.00*
cr40x5a-1 40 5 738.00 82.0 738.00 738.00 5.1 7 3 8 0.00*
cr40x5a-2 40 5 786.00 3615.0 786.00 787.20 5.7 6 4 4 0.00
cr40x5a-3 40 5 807.00 3631.0 807.00 810.20 5.1 6 1 1 0.00
cr40x5b-1 40 5 964.00 49.0 964.00 964.0 5.5 8 0 0 0.00*
cr40x5b-2 40 5 901.00 34.0 901.00 901.00 5.4 8 2 3 0.00*
cr40x5b-3 40 5 887.00 81.0 887.00 887.00 5.3 8 2 5 0.00*

* Optimality proven by Baldacci et al. (2017).

Table A.13: Detailed results on set (II), based on Prins et al. (2004).

Instance |VC | |VF |
Baldacci et al. (2017) ALNS

z∗ T z∗ z T #r #f #c Gap[%]

ppw-20-5-2-a 20 5 247.00 14.0 247.00 247.00 1.9 5 1 3 0.00*
ppw-20-5-2-b 20 5 189.00 5.0 189.00 189.00 2.1 3 1 2 0.00*
ppw-50-5-2-a 50 5 587.00 126.0 587.00 587.00 7.2 12 1 2 0.00*
ppw-50-5-2-b 50 5 357.00 3625.0 357.00 357.00 8.6 6 0 0 0.00
ppw-50-5-3-a 50 5 586.00 3630.0 583.00 583.20 8.3 12 1 3 -0.51
ppw-50-5-3-b 50 5 381.00 3644.0 381.00 381.00 9.8 6 0 0 0.00
ppw-100-5-2-a 100 5 1010.00 3735.0 996.00 997.80 39.8 23 1 3 -1.41
ppw-100-5-2-b 100 5 569.00 3783.0 558.00 560.30 41.7 11 0 0 -1.97
ppw-100-5-3-a 100 5 1068.00 3686.0 1065.00 1066.80 36.6 23 2 3 -0.28
ppw-100-5-3-b 100 5 612.00 3733.0 607.00 608.30 38.3 11 0 0 -0.82
ppw-100-10-2-a 100 10 1030.00 3853.0 1012.00 1018.30 41.6 24 2 5 -1.78
ppw-100-10-2-b 100 10 582.00 3809.0 574.00 577.10 70.7 11 0 0 -1.39
ppw-100-10-3-a 100 10 1055.00 424.0 1038.00 1039.50 40.6 24 3 5 -1.54†
ppw-100-10-3-b 100 10 608.00 3773.0 599.00 600.20 80.1 11 2 3 -1.50

* Optimality proven by Baldacci et al. (2017).
† Baldacci et al. (2017) report their value of 1055 to be optimal. We assume this to be an error.
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Table A.14: Detailed results on instance set (III), based on different authors.

Instance |VC | |VF |
Baldacci et al. (2017) ALNS

z∗ T z∗ z T #r #f #c Gap[%]

Christ-50x5 50 5 514.00 130.0 514.00 519.90 7.0 5 2 2 0.00*
Christ-50x5B 50 5 533.00 3698.0 530.00 531.00 7.2 5 2 3 -0.57
Christ-75x10 75 10 783.00 3676.0 771.00 776.80 19.3 9 3 3 -1.56
Christ-75x10B 75 10 814.00 3750.0 812.00 813.00 18.3 9 4 6 -0.25
Christ-100x10 100 10 831.00 3987.0 821.00 823.20 100.0 8 0 0 -1.22
Gaskell-21x5 21 5 371.00 5.0 371.00 371.00 2.1 4 1 2 0.00*
Gaskell-22x5 21 5 554.00 145.0 554.00 550.40 2.1 3 3 4 0.00*
Gaskell-29x5 29 5 503.00 683.0 503.00 503.00 4.9 4 1 1 0.00*
Gaskell-32x5 32 5 479.00 280.0 479.00 479.00 5.3 4 1 1 0.00*
Gaskell-32x5-2 32 5 427.00 567.0 427.00 427.70 4.9 3 0 0 0.00*
Gaskell-36x5 36 5 411.00 17.0 411.00 411.40 5.6 4 1 1 0.00*
Min-27x5 27 5 3083.00 24.0 3083.00 3083.00 4.5 4 1 1 0.00*
Perl83-12x2 12 2 100.00 2.0 100.00 100.00 1.0 8 0 0 0.00*
Perl83-55x15 55 15 453.00 278.0 453.00 453.40 12.3 10 3 3 0.00*
Perl83-85x7 85 7 618.00 3736.0 617.00 617.20 20.5 11 0 0 -0.16
P111112-100x10 100 10 1346.00 3846.0 1315.00 1337.80 66.1 11 0 0 -2.36
P111122-100x20 100 20 1252.00 4138.0 1242.00 1255.40 64.0 11 1 1 -0.81
P111212-100x10 100 10 1266.00 3718.0 1256.00 1259.80 41.0 10 0 0 -0.80
P111222-100x20 100 20 1338.00 4053.0 1310.00 1316.60 60.0 11 3 3 -2.14
P112112-100x10 100 10 1236.00 3889.0 1229.00 1230.8 75.5 11 3 3 -0.57
P112122-100x20 100 20 1047.00 4177.0 1018.00 1025.40 87.4 10 3 3 -2.85
P112212-100x10 100 10 892.00 3918.0 877.00 877.00 69.10 11 1 1 -1.71
P112222-100x20 100 20 1006.00 3747.0 1000.00 1002.00 77.2 10 2 2 -0.60
P113112-100x10 100 10 1158.00 4007.0 1149.00 1157.60 68.1 10 0 0 -0.78
P113122-100x20 100 20 1190.00 3914.0 1175.00 1184.40 75.8 11 4 7 -1.28
P113212-100x10 100 10 1154.00 3717.0 1149.00 1150.00 64.0 10 1 1 -0.44
P113222-100x20 100 20 1078.00 3748.0 1071.00 1071.00 79.0 11 0 0 -0.65
P131112-150x10 100 10 1833.00 3946.0 1795.00 1807.80 53.6 16 0 0 -2.12
P131122-150x20 150 20 1769.00 4411.0 1756.00 1756.00 79.6 16 2 2 -0.74
P131212-150x10 150 10 1802.00 4147.0 1786.00 1790.20 51.7 16 2 3 -0.90
P131222-150x20 150 20 1802.00 4371.0 1775.00 1783.40 78.7 16 2 3 -1.52
P132112-150x10 150 10 1783.00 4815.0 1759.00 1780.20 97.1 16 2 2 -1.36
P132122-150x20 150 20 1541.00 4508.0 1519.00 1526.60 114.1 16 1 1 -1.45
P132212-150x10 150 10 1251.00 4073.0 1242.00 1243.40 81.3 16 0 0 -0.72
P132222-150x20 150 20 1184.00 4368.0 1171.00 1174.00 97.2 16 0 0 -1.11
P133112-150x10 150 10 1899.00 4434.0 1892.00 1900.60 83.6 16 1 1 -0.37
P133122-150x20 150 20 1498.00 4908.0 1489.00 1499.40 111.2 16 1 1 -0.60
P133212-150x10 150 10 1245.00 4510.0 1236.00 1236.80 84.8 16 0 0 -0.73
P133222-150x20 150 20 1551.00 4688.0 1509.00 1529.20 104.5 15 0 0 -2.78

* Optimality proven by Baldacci et al. (2017).
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Appendix A.2. VRPTWTF Instances

Table A.15: Detailed results on the VRPTWTF instance set based on Solomon (1987).

Instance |VC | |VF |
ALNS VRPTW- VRPTW-

z∗ z T #r #f #c BKS* Gap [%]

C101 100 5 828.94 828.94 86.4 10 0 0 828.94 0.00
C102 100 5 828.94 828.94 89.8 10 0 0 828.94 0.00
C103 100 5 828.06 828.06 90.1 10 0 0 828.06 0.00
C104 100 5 824.78 824.78 84.2 10 0 0 824.78 0.00
C105 100 5 828.94 828.94 81.3 10 0 0 828.94 0.00
C106 100 5 828.94 828.94 78.4 10 0 0 828.94 0.00
C107 100 5 828.94 828.94 81.4 10 0 0 828.94 0.00
C108 100 5 828.94 828.94 82.3 10 0 0 828.94 0.00
C109 100 5 828.94 828.94 88.3 10 0 0 828.94 0.00

R101 100 5 1400.90 1401.65 174.3 15 4 26 1650.8 -15.14
R102 100 5 1242.24 1243.05 183.1 13 3 21 1486.12 -16.41
R103 100 5 1094.32 1095.87 176.2 12 3 17 1292.68 -15.34
R104 100 5 958.28 961.43 171.8 9 2 9 1007.31 -4.87
R105 100 5 1215.11 1217.03 170.2 12 4 24 1377.11 -11.76
R106 100 5 1130.07 1133.63 177.7 11 2 17 1252.03 -9.74
R107 100 5 1008.94 1011.08 169.5 10 2 11 1104.66 -8.67
R108 100 5 920.21 922.69 164.2 9 2 9 960.88 -4.23
R109 100 5 1071.95 1073.19 180.9 11 3 16 1194.73 -10.28
R110 100 5 1005.22 1006.60 174.8 10 4 14 1118.84 -10.16
R111 100 5 996.55 1001.73 173.7 10 2 11 1096.72 -9.13
R112 100 5 923.64 927.09 170.1 9 3 11 982.14 -5.96

RC101 100 5 1502.96 1508.34 119.9 12 4 21 1696.95 -11.43
RC102 100 5 1346.32 1352.55 122.5 11 4 22 1554.75 -13.41
RC103 100 5 1221.27 1227.73 118.0 10 2 9 1261.67 -3.20
RC104 100 5 1121.73 1124.88 116.4 10 3 6 1135.48 -1.21
RC105 100 5 1368.01 1378.28 123.9 12 4 22 1629.44 -16.04
RC106 100 5 1303.20 1311.40 127.4 11 4 18 1424.73 -8.53
RC107 100 5 1195.13 1199.27 126.3 11 3 11 1230.48 -2.87
RC108 100 5 1112.55 1118.33 121.9 10 3 10 1139.82 -2.39

C201 100 5 591.56 591.56 122.4 3 0 0 591.56 0.00
C202 100 5 591.56 591.56 133.5 3 0 0 591.56 0.00
C203 100 5 591.17 591.17 134.6 3 0 0 591.17 0.00
C204 100 5 590.60 590.60 128.4 3 0 0 590.60 0.00
C205 100 5 588.88 588.88 145.3 3 0 0 588.88 0.00
C206 100 5 588.49 588.49 130.9 3 0 0 588.49 0.00
C207 100 5 588.29 588.29 132.5 3 0 0 588.29 0.00
C208 100 5 588.32 588.32 128.7 3 0 0 588.32 0.00

R201 100 10 1197.53 1198.25 303.1 4 2 10 1252.37 -4.38
R202 100 10 1139.98 1147.61 318.1 3 1 9 1191.70 0.00
R203 100 10 900.56 904.61 310.8 3 1 6 939.50 -4.14
R204 100 10 779.21 788.99 321.0 2 1 5 825.52 -5.61
R205 100 10 994.43 998.21 294.6 3 0 0 994.43 0.00
R206 100 10 900.59 903.79 300.6 3 1 3 906.14 -0.61
R207 100 10 874.28 876.23 318.9 2 1 5 890.61 -1.83
R208 100 10 725.42 729.94 309.8 2 1 4 726.82 -0.19
R209 100 10 909.16 915.05 333.0 3 0 0 909.16 0.00
R210 100 10 929.70 932.77 314.8 3 1 3 939.37 -1.03
R211 100 10 885.71 886.33 313.0 2 0 0 885.71 0.00

RC201 100 10 1333.35 1338.71 234.3 4 3 22 1406.94 -5.23
RC202 100 10 1284.22 1294.07 242.4 3 2 15 1365.65 -5.96
RC203 100 10 1033.27 1041.34 238.5 3 1 7 1049.62 -1.56
RC204 100 10 798.46 801.95 240.6 3 0 0 798.46 0.00
RC205 100 10 1232.56 1244.68 227.3 4 2 10 1297.65 -5.02
RC206 100 10 1129.83 1142.32 249.5 3 1 10 1146.32 -1.44
RC207 100 10 1024.08 1028.93 256.2 3 2 10 1061.14 -3.49
RC208 100 10 818.27 828.63 289.6 3 1 4 828.14 -1.19

* Values taken from Nagata et al. (2010).
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Appendix A.3. FSMTW Instances
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ç

et
a
l.

(2
0
1
5
)

P
en

n
a

et
a
l.

(2
0
1
9
)

A
L

N
S

z
∗

z
T

z
∗

z
T

z
∗

z
T

z
∗

z
T

G
a
p

[%
]

R
1
0
1

1
0
0

4
3
1
4
.3

6
4
3
1
4
.3

6
4
3
2
2
.0

4
2
7
6
.6

0
4
3
1
7
.5

2
–

2
4
8
.4

0
4
3
1
4
.3

6
4
3
2
5
.7

6
1
2
0
.5

6
4
3
1
4
.3

6
4
3
1
6
.1

0
1
6
7
.9

0
.0

0
R

1
0
2

1
0
0

4
1
6
6
.2

8
4
1
6
6
.2

8
4
1
7
5
.0

5
3
6
1
.8

0
4
1
7
3
.8

4
–

3
5
8
.8

0
4
1
6
6
.2

8
4
1
8
1
.2

5
1
2
4
.4

5
4
1
6
6
.2

8
4
1
8
6
.7

8
1
1
1
.3

0
.0

0
R

1
0
3

1
0
0

4
0
2
4
.1

4
4
0
2
7
.3

6
4
0
3
4
.8

8
3
2
1
.0

0
4
0
3
1
.4

0
–

3
1
2
.6

0
4
0
2
4
.1

4
4
0
3
8
.8

5
1
3
4
.7

9
4
0
2
6
.2

3
4
0
3
6
.9

7
1
7
9
.4

0
.0

5
R

1
0
4

1
0
0

3
9
3
6
.4

0
3
9
3
6
.4

0
3
9
3
8
.9

2
2
8
8
.6

0
3
9
4
6
.4

4
–

2
4
7
.2

0
3
9
3
6
.5

5
3
9
4
8
.0

0
1
1
3
.8

3
3
9
3
6
.5

1
3
9
4
0
.4

1
2
2
5
.5

0
.0

1
R

1
0
5

1
0
0

4
1
2
2
.5

0
4
1
2
2
.5

0
4
1
3
0
.7

1
3
8
9
.4

0
4
1
3
4
.0

6
–

3
6
0
.6

0
4
1
2
2
.5

0
4
1
3
3
.0

6
1
3
1
.6

1
4
1
2
2
.5

0
4
1
2
7
.6

9
2
1
0
.5

0
.0

0
R

1
0
6

1
0
0

4
0
4
8
.5

9
4
0
4
8
.5

9
4
0
5
8
.9

5
3
3
4
.2

0
4
0
6
0
.0

5
–

3
0
7
.2

0
4
0
5
0
.1

7
4
0
5
9
.0

7
1
2
7
.4

7
4
0
4
7
.3

4
4
0
7
1
.3

7
2
1
5
.1

-0
.0

3
R

1
0
7

1
0
0

3
9
7
0
.5

1
3
9
7
0
.5

1
3
9
7
9
.1

8
3
3
3
.6

0
3
9
8
5
.1

2
–

2
8
6
.8

0
3
9
7
6
.4

0
3
9
8
8
.7

3
1
2
6
.1

6
3
9
7
3
.6

8
3
9
8
3
.7

2
2
5
5
.4

0
.0

8
R

1
0
8

1
0
0

3
9
2
8
.1

2
3
9
2
8
.1

2
3
9
3
2
.4

6
2
8
0
.8

0
3
9
3
2
.6

0
–

3
9
2
.4

0
3
9
2
8
.1

2
3
9
3
5
.4

5
1
0
8
.2

8
3
9
3
0
.1

7
3
9
4
5
.0

0
2
5
0
.4

0
.0

5
R

1
0
9

1
0
0

4
0
1
5
.7

1
4
0
1
5
.7

1
4
0
2
0
.9

3
2
8
8
.0

0
4
0
2
4
.8

3
–

3
6
7
.2

0
4
0
1
5
.7

1
4
0
2
3
.3

4
1
2
8
.2

1
4
0
1
1
.9

7
4
0
2
1
.1

9
2
0
5
.9

-0
.0

9
R

1
1
0

1
0
0

3
9
6
1
.6

8
3
9
6
1
.6

8
3
9
6
6
.4

7
2
8
8
.0

0
3
9
7
3
.5

1
–

3
6
7
.2

0
3
9
6
1
.6

8
4
0
2
3
.3

4
1
1
4
.6

5
3
9
6
0
.5

5
3
9
6
7
.0

5
2
3
6
.7

-0
.0

3
R

1
1
1

1
0
0

3
9
6
4
.9

9
3
9
6
4
.9

9
3
9
7
3
.4

9
3
1
6
.8

0
3
9
8
8
.0

0
–

3
0
7
.2

0
3
9
7
1
.9

0
3
9
8
9
.8

4
1
2
7
.5

8
3
9
6
8
.8

1
3
9
8
5
.8

1
1
5
5
.9

0
.1

0
R

1
1
2

1
0
0

3
9
1
7
.8

8
3
9
1
8
.8

8
3
9
2
6
.3

2
2
9
5
.2

0
3
9
3
0
.1

9
–

2
8
2
.6

0
3
9
1
7
.8

8
3
9
2
7
.2

0
1
0
5
.9

6
3
9
1
8
.8

8
3
9
2
9
.2

9
1
8
2
.9

0
.0

3

C
1
0
1

1
0
0

7
0
9
3
.4

5
7
0
9
3
.4

5
7
0
9
3
.4

5
1
7
7
.6

0
7
0
9
3
.4

5
–

1
4
8
.2

0
7
0
9
3
.4

5
7
0
9
3
.5

9
1
6
7
.5

6
7
0
9
3
.4

5
7
0
9
3
.4

5
1
2
4
.1

0
.0

0
C

1
0
2

1
0
0

7
0
8
0
.1

7
7
0
8
0
.1

7
7
0
8
0
.1

7
1
2
8
.4

0
7
0
8
0
.1

7
–

1
5
9
.0

0
7
0
8
0
.1

7
7
0
8
0
.1

7
1
3
4
.6

8
7
0
8
0
.1

7
7
0
8
0
.1

7
1
3
6
.3

0
.0

0
C

1
0
3

1
0
0

7
0
7
9
.2

1
7
0
7
9
.2

1
7
0
7
9
.2

1
1
2
5
.4

0
7
0
7
9
.2

1
–

1
2
0
.6

0
7
0
7
9
.2

1
7
0
7
9
.2

1
1
1
9
.0

0
7
0
7
9
.2

1
7
0
7
9
.2

1
1
6
4
.2

0
.0

0
C

1
0
4

1
0
0

7
0
7
5
.0

6
7
0
7
5
.0

6
7
0
7
5
.0

6
1
3
1
.4

0
7
0
7
5
.0

6
–

1
1
8
.2

0
7
0
7
5
.0

6
7
0
7
5
.0

6
1
0
1
.3

6
7
0
7
5
.0

6
7
0
7
5
.0

6
1
6
5
.1

0
.0

0
C

1
0
5

1
0
0

7
0
9
3
.4

5
7
0
9
3
.4

5
7
0
9
3
.4

5
1
9
9
.8

0
7
0
9
3
.4

5
–

1
5
9
.0

0
7
0
9
3
.4

5
7
0
9
3
.6

0
1
5
4
.4

7
7
0
9
3
.4

5
7
0
9
3
.4

5
1
1
1
.0

0
.0

0
C

1
0
6

1
0
0

7
0
8
3
.8

7
7
0
8
3
.8

7
7
0
8
3
.8

7
1
3
6
.8

0
7
0
8
3
.8

7
–

1
3
0
.2

0
7
0
8
3
.8

7
7
0
8
3
.8

7
1
4
0
.2

5
7
0
8
3
.8

7
7
0
8
3
.8

7
1
5
1
.6

0
.0

0
C

1
0
7

1
0
0

7
0
8
4
.6

1
7
0
8
4
.6

1
7
0
8
4
.6

1
1
3
3
.8

0
7
0
8
4
.6

1
–

1
4
3
.4

0
7
0
8
4
.6

1
7
0
8
4
.6

1
1
4
2
.9

4
7
0
8
4
.6

1
7
0
8
4
.6

1
1
5
4
.1

0
.0

0
C

1
0
8

1
0
0

7
0
7
9
.6

6
7
0
7
9
.6

6
7
0
7
9
.6

6
1
3
1
.4

0
7
0
7
9
.6

6
–

1
1
8
.2

0
7
0
7
9
.6

6
7
0
7
9
.6

6
1
2
4
.3

5
7
0
7
9
.6

6
7
0
7
9
.6

6
1
7
9
.9

0
.0

0
C

1
0
9

1
0
0

7
0
7
7
.3

0
7
0
7
7
.3

0
7
0
7
7
.3

0
1
2
2
.4

0
7
0
7
7
.3

0
–

1
3
1
.4

0
7
0
7
7
.3

0
7
0
7
7
.3

0
1
0
7
.9

8
7
0
7
7
.3

0
7
0
7
7
.3

0
1
7
0
.5

0
.0

0

R
C

1
0
1

1
0
0

5
1
5
0
.8

6
5
1
5
0
.8

6
5
1
5
4
.9

5
3
1
2
.6

0
5
1
7
3
.4

7
–

3
0
8
.4

0
5
1
5
0
.8

6
5
1
6
0
.0

3
1
2
1
.2

1
5
1
5
0
.8

6
5
1
5
1
.7

8
2
2
5
.3

0
.0

0
R

C
1
0
2

1
0
0

4
9
7
4
.8

2
4
9
8
7
.2

4
5
0
0
0
.2

8
2
8
8
.6

0
5
0
1
8
.8

3
–

2
5
5
.6

0
4
9
7
4
.8

2
4
9
9
9
.6

4
1
2
2
.1

0
4
9
7
4
.8

2
4
9
8
8
.6

6
2
1
5
.7

0
.0

0
R

C
1
0
3

1
0
0

4
8
0
4
.6

1
4
8
0
4
.6

1
4
8
2
1
.6

1
4
2
4
.8

0
4
8
5
0
.2

0
–

3
8
8
.2

0
4
8
0
4
.6

1
4
8
3
7
.4

0
1
2
2
.7

5
4
8
0
4
.6

1
4
8
2
1
.5

6
1
5
5
.8

0
.0

0
R

C
1
0
4

1
0
0

4
7
1
7
.6

3
4
7
1
7
.6

3
4
7
2
4
.1

0
3
1
8
.0

0
4
7
2
5
.4

0
–

3
1
7
.4

0
4
7
2
1
.4

4
4
7
3
4
.7

7
9
4
.7

4
4
7
1
7
.6

3
4
7
2
5
.9

7
2
2
3
.2

0
.0

0
R

C
1
0
5

1
0
0

5
0
3
5
.3

5
5
0
3
5
.3

5
5
0
3
5
.7

6
3
3
4
.2

0
5
0
4
8
.8

6
–

2
8
6
.8

0
5
0
3
6
.5

0
5
0
4
7
.7

2
1
1
9
.7

3
5
0
3
5
.3

5
5
0
4
1
.0

5
1
7
0
.5

0
.0

0
R

C
1
0
6

1
0
0

4
9
2
1
.1

3
4
9
3
6
.7

4
4
9
4
4
.7

4
3
3
7
.8

0
4
9
6
4
.1

3
–

3
1
7
.4

0
4
9
2
1
.1

3
4
9
4
1
.2

7
1
1
8
.4

8
4
9
1
9
.4

3
4
9
3
2
.8

2
1
7
3
.9

-0
.0

4
R

C
1
0
7

1
0
0

4
7
8
7
.5

9
4
7
8
8
.6

9
4
7
9
5
.3

5
3
0
4
.8

0
4
8
2
5
.6

0
–

2
5
0
.2

0
4
7
8
7
.5

9
4
8
0
7
.6

5
1
0
7
.4

9
4
7
8
7
.5

9
4
7
9
7
.2

7
1
6
5
.0

0
.0

0
R

C
1
0
8

1
0
0

4
7
0
8
.8

5
4
7
0
8
.8

5
4
7
0
9
.0

9
2
8
6
.8

0
4
7
2
4
.7

9
–

2
7
7
.8

0
4
7
1
1
.3

1
4
7
2
6
.0

2
8
6
.5

0
4
7
0
8
.8

5
4
7
2
1
.4

9
1
5
8
.3

0
.0

0

30



T
a
b

le
A

.1
7
:

D
et

a
il
ed

re
su

lt
s

o
n

th
e

F
S

M
T

W
in

st
a
n

ce
s

(fl
ee

t
A

)
II

.

In
st

a
n

ce
|V
C
|

B
K

S
V

id
a
l

et
a
l.

(2
0
1
4
)

K
o
ç
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Appendix A.4. FSMTWTF Instances

Table A.18: Detailed results on the FSMTWTF instances (fleet A).

Instance |VC | |VF | ALNS FSMTW

z∗ z T #r #f #c BKS Gap[%]

C101 100 10 7085.43 7086.00 301.2 19 1 1 7093.45 -0.11
C102 100 10 7076.65 7076.96 270.5 19 1 1 7080.17 -0.05
C103 100 10 7075.66 7076.23 295.1 19 1 1 7079.21 -0.05
C104 100 10 7071.20 7073.33 276.4 19 1 1 7075.06 -0.05
C105 100 10 7085.43 7085.78 253.2 19 1 1 7093.45 -0.11
C106 100 10 7081.30 7081.51 233.6 19 1 1 7083.87 -0.04
C107 100 10 7082.95 7083.25 224.2 19 1 1 7084.61 -0.02
C108 100 10 7077.39 7077.80 286.6 19 1 1 7079.66 -0.03
C109 100 10 7075.03 7076.00 244.9 19 1 1 7077.30 -0.03

R101 100 10 4230.29 4244.20 310.6 19 4 20 4314.36 -1.95
R102 100 10 4142.25 4160.42 336.7 19 3 14 4166.28 -0.58
R103 100 10 3994.49 4008.85 324.6 19 4 9 4024.14 -0.74
R104 100 10 3936.00 3945.02 281.3 19 1 1 3936.40 -0.01
R105 100 10 4096.17 4112.08 290.5 20 4 11 4122.50 -0.64
R106 100 10 4026.28 4039.20 322.6 19 4 14 4047.34 -0.52
R107 100 10 3964.29 3980.89 304.9 19 3 7 3970.51 -0.16
R108 100 10 3926.31 3940.01 319.2 19 2 3 3928.12 -0.05
R109 100 10 3996.48 4015.36 304.0 19 3 11 4011.97 -0.39
R110 100 10 3959.76 3968.13 314.9 19 2 5 3960.55 -0.02
R111 100 10 3963.68 3979.37 333.1 19 3 8 3964.99 -0.03
R112 100 10 3920.55 3933.73 325.3 19 1 1 3917.88 0.07

RC101 100 10 5076.28 5089.05 340.7 17 4 19 5150.86 -1.45
RC102 100 10 4929.53 4944.06 406.8 16 3 13 4974.82 -0.91
RC103 100 10 4799.78 4815.85 403.9 14 2 5 4804.61 -0.10
RC104 100 10 4718.12 4728.29 399.4 12 0 0 4717.63 0.01
RC105 100 10 4961.39 4974.60 389.4 16 2 10 5035.35 -1.47
RC106 100 10 4901.37 4910.90 414.5 16 3 9 4919.43 -0.37
RC107 100 10 4784.00 4797.72 432.7 16 2 6 4787.59 -0.07
RC108 100 10 4708.85 4716.94 414.4 15 0 0 4708.85 0.00

C201 100 10 5695.02 5695.02 427.2 5 0 0 5695.02 0.00
C202 100 10 5685.24 5685.24 345.5 5 0 0 5685.24 0.00
C203 100 10 5681.55 5698.11 378.5 5 0 0 5681.55 0.00
C204 100 10 5677.66 5677.66 372.8 5 0 0 5677.66 0.00
C205 100 10 5691.36 5703.20 415.9 5 0 0 5691.36 0.00
C206 100 10 5689.32 5689.71 414.3 5 0 0 5689.32 0.00
C207 100 10 5687.35 5693.33 422.1 5 0 0 5687.35 0.00
C208 100 10 5686.50 5695.73 391.8 5 0 0 5686.50 0.00

R201 100 10 3426.73 3454.40 427.8 5 1 4 3446.78 -0.58
R202 100 10 3295.10 3301.80 430.4 5 1 3 3297.42 -0.07
R203 100 10 3128.06 3130.58 426.1 5 1 5 3141.09 -0.41
R204 100 10 3014.24 3054.73 386.1 5 1 4 3018.14 -0.13
R205 100 10 3220.81 3227.40 443.4 5 0 0 3218.97 0.06
R206 100 10 3146.34 3152.83 437.6 5 0 0 3146.34 0.00
R207 100 10 3074.01 3078.19 410.9 5 1 4 3077.36 -0.11
R208 100 10 2998.70 3001.31 420.8 5 0 0 2997.24 0.05
R209 100 10 3122.42 3124.04 428.9 5 0 0 3119.56 0.09
R210 100 10 3173.14 3178.09 442.4 5 1 3 3170.41 0.09
R211 100 10 3019.93 3023.70 452.9 5 0 0 3019.93 0.00

RC201 100 10 4377.28 4384.76 414.6 12 1 10 4374.09 0.07
RC202 100 10 4249.62 4265.53 432.6 13 0 0 4244.63 0.12
RC203 100 10 4174.00 4178.18 453.6 11 0 0 4170.17 0.09
RC204 100 10 4087.11 4093.10 438.5 9 0 0 4087.11 0.00
RC205 100 10 4294.15 4305.14 419.3 12 0 0 4291.93 0.05
RC206 100 10 4261.20 4274.22 446.4 11 0 0 4251.88 0.22
RC207 100 10 4185.98 4208.76 415.3 12 0 0 4182.44 0.08
RC208 100 10 4076.74 4079.49 421.9 9 0 0 4075.04 0.04
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Appendix A.5. Additional Real-World-Instance Results
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Figure A.8: Analysis of the impact of time window length κ (columns), number of customers |VC |, demand q̄, and transshipment
costs per unit ctf on the costs when using a homogeneous fleet.
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Figure A.9: Analysis of the impact of time window length κ (rows), demand q̄, and transshipment costs per unit ctf on the
fleet mix for |VC | = 100.
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