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Abstract

The German Armed Forces provide an operation contingent to support the North
Atlantic Treaty Organization (NATO) Response Force (NRF). For this purpose, a
“warehouse” containing accommodations, food supplies, medical supplies, and spare
parts for the systems has to be available. Such a warehouse is restricted in weight,
in order to be quickly movable in an upcoming deployment situation. It should be
able to supply the NRF troops for a certain amount of time (e.g., one month) without
re-supply from the outside. To ensure optimal use of such a restricted warehouse,
we developed the computer program “The OPtimization of a Spare Parts INventory”
(TOPSPIN) to find an optimal mix of spare parts to restore a set of systems to
functionality. Each system is composed of several parts, and it can only be used again
in the mission if all broken parts are replaced. The failure rate of the individual
parts follows a given random distribution, and during deployment it is expected to be
higher than in the homeland. Due to the stochastic nature of the problem, we generate
scenarios that simulate the actual failure of the parts. The backbone of TOPSPIN
is a mixed-integer linear program that determines an optimal, scenario-robust mix
of spare parts and is solved using standard state-of-the-art numerical solvers. Using
input data provided by the Logistikzentrum, we analyze how many scenarios need
to be generated in order to determine reliable solutions. Moreover, we analyze the
composition of the warehouse over a variety of different weight restrictions, and we
calculate the number of repairable systems as a function of this bound.

Keywords: Logistics, Warehouse Management, Uncertainty, Scenario Generation,
Mixed-Integer Programming, Two-Stage Stochastic Optimization, Operations Re-
search.

1 Introduction

In 2002, the North Atlantic Treaty Organization (NATO) launched the NATO Response
Force (NRF) as a highly ready and technologically advanced, multinational force made up
of land, air, maritime, and special operations forces (SOF) components that the Alliance
can deploy quickly, wherever needed. The NRF is able to react in a very short time to the
full range of security challenges from crisis management to collective defense [NATO, 2017].

The Federal Republic of Germany takes part in the NRF with their forces since 2006.
Thus, the German Armed Forces stands by for upcoming deployments with their expertise,
technology, and manpower.

To provide a German operation contingent, many things have to be considered and
planned to ensure a quick reaction in case of a deployment. The base of every deployment
is an operation camp for living accommodations, food supply, medical care, and mission
planning. To ensure a quick reaction, the equipment necessary to provide these capabilities
is highly limited in weight. Nevertheless, every part has to work smoothly and correctly to
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ensure successful participation in the NRF. After the supply of all essential requirements,
any remaining weight capacity is used for spare parts to be able to repair the camp’s
systems (which are mostly vehicles). A similar problem in a maritime context is the
selection of a vessel’s board inventory, since ships only have a very limited storage space
to carry spare and exchange parts.

In our research we consider the problem of optimally filling a “warehouse” with spare
parts to be used in case of a deployment. By using the methods of Operations Research and
the programming tool AIMMS, we develop the software package TOPSPIN to support
the planning and preparation of the German Armed Forces’ participation to the NRF or
further deployments. TOPSPIN is based on a two-stage stochastic programming model
to optimally assign parts to the warehouse. The first stage is the decision of which parts to
include in the warehouse, and in the second stage the parts are assigned to failed systems
in order to repair them.

The remainder of this article is organized as follows. In Section 2 we survey relevant
literature. The mathematical model behind TOPSPIN is given in Section 3. The input
data generation is presented in Section 4. Computational results are discussed in Section 5.
In Section 6 we present our conclusions and thoughts on future research.

2 Survey of the Literature

Inventory optimization problems have appeared in practical applications for decades. Al-
though analytical solutions often exist for problems involving a single item, the problem
becomes more complicated when multiple items share a single budget. Dynamic program-
ming has been applied with some success, but the “curse of dimensionality” prevents its
widespread application in problems of practical scale [Bertsimas and Thiele, 2006]. Most
inventory optimization models seek to optimize aggregate, long-term figures of merit such
as the fill rate (i.e., the probability that an item will be available when a demand arrives
and will not need to be backordered). In contrast, we seek to select a set of spare parts
that will perform well over the relatively short time window of a single mission. Thus, we
adopt a two-stage robust optimization approach and focus the remainder of our literature
review on that area.

[Ahmed, 2010] provides a brief overview of two-stage stochastic integer programs,
highlighting opportunities for efficient solution using decomposition methods and cuts.
[Küçükyavuz and Sen, 2017] provides a broader overview the discusses the implications
of uncertainty in various problem parameters, as well as the stage in which the discrete
decision variables occur (first or second).

In the field of inventory optimization and logistics, various researchers have proposed
robust models to solve particular problems. For instance, [Yu and Li, 2000] considers a
general production planning problem, while [Santoso et al., 2005] utilizes stochastic pro-
gramming to design a supply chain network. The work most closely related to ours is that
of [Kemper, 2014], which develops an integer programming model to choose the quan-
tity of spare parts to keep on hand for repairable components in a multi-echelon system.
Although the integer linear program in [Kemper, 2014] successfully models part failure un-
certainty, repair lead times, and a multi-echelon supply structure, its computation times
are too long for practical use.

Two-stage stochastic optimization models have also found application in areas other
than inventory optimization. A prime example is disaster planning, in which the first
stage decisions often involve procurement or prepositioning of assets, and the second
stage involves deployment and utilization of these assets once the disaster has occurred.
Works in this area include [Rawls and Turnquist, 2010], [Salmerón and Apte, 2010],
[Bayram and Yaman, 2017], and [Hoyos et al., 2015].
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Energy systems represent another common application area for two-stage stochas-
tic models. Demand for energy is notoriously uncertain, and with the growing utiliza-
tion of renewable sources, supply is becoming increasingly uncertain. The two-stage
unit commitment problem and its variants have been addressed by [Schwarz et al., 2018],
[Carøe and Schultz, 1999], and [Craparo et al., 2017], while [Baker et al., 2014] considers
optimal storage sizing. Using a longer planning horizon, [Ulmer, 2014] considers a first-
stage capital planning model in which microgrid components are purchased in the first
stage and utilized in the second stage.

3 A Two-Stage Mixed-Integer Optimization Model

Our goal is to optimally fill a capacity-limited warehouse with spare parts in such a way as
to maximize the overall availability of systems during a mission. Our model is a two-stage
stochastic mixed-integer optimization problem. In the first stage it is decided which parts
to include in the warehouse, given a probability distribution for the (independent) failure
of each part. We represent these stochastic part failures by a finite collection of possible
failure scenarios, generated with respect to the individual parts’ probability distributions.
Due to the short duration of the mission, we assume that each individual part may fail
at most once. In the second stage the actual failure scenario is revealed and the model
optimally allocates the spare parts it chose in stage one. We do not consider the possibility
of repairing broken parts, only replacing them with functional parts from the warehouse.

We now present our mathematical formulation and the scenario generation process. A
survey of all symbols used for sets, indices, parameters, and variables is given in Tables 1-3.

index ∈ set set of . . .

s ∈ S systems
e ∈ E parts
c ∈ C scenarios
z ∈ Z states (of a system)

Table 1: Sets and indices.

parameter description

ps,z priority of system s for being in state z
Le lower bound of triangular failure probability for part e
Ue upper bound of triangular failure probability for part e
αe skewness of triangular failure probability factor for part e
rc,s,e failure probability for part e in system s in scenario c
kc,s,e is part e in system s broken in scenario c ?
we weight of part e
W warehouse weight capacity
oc probability that scenario c occurs

Table 2: Parameters.

variable description

xc,s,z indicates whether system s is in state state z in scenario c after repairs
yc,s,e indicates whether part e is used to repair system s in scenario c
ne quantity of part e in storage

Table 3: Decision variables.
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3.1 Sets and Indices

The following sets and indices define an instance of the problem (c.f. Table 1 for a survey):
Given is a set of systems S, where the term “system” stands for a vehicle, weapon, or any
other technical object. Each system s ∈ S is composed of various parts e ∈ E that can fail
and be replaced individually.

The set of potential states of a system is denoted by Z. In our experimental studies we
assume that Z = {0, 1} is a binary set; that is, a system is either fully functional (working,
0) or in a fail state (broken, 1). Our constraints (see below) state that a system is working
if and only if all its parts are working. However, a more general model formulation could
also cover the case of partly functional systems and partly working parts. Due to a lack
of real-world data, this feature is not further described here.

3.2 Parameters

The parameters that are used to describe an instance are surveyed in Table 2. Some
parameters are directly used as input to the optimization model, while others are used to
generate part failure scenarios via simulation; these scenarios then serve as input to the
optimization model.

Every system s has a different priority for the mission in which it is deployed. The
priority (reward) of system s in state z is stored in the parameter ps,z ∈ R+. The higher
the value, the more important it is to have system s in state z.

The simulation of failed parts is based on a triangular probability distribution. For
this the parameters Le ∈ [0, 1] and Ue ∈ [0, 1] with Le ≤ He contain a lower and an upper
bound on the failure probability for part e ∈ E . Furthermore, the parameter αe ∈ [0, 1]
describes the skewness of the triangle. A family of random values rc,s,e ∈ [0, 1] is computed
according to this distribution for each scenario c, system s, and part e (in case part e is
built in system s). This value represents the actual failure probability. Then a Bernoulli
(binomial) trial determines whether the part fails for each system in each scenario. This
results in a binary value which is stored in kc,s,e ∈ {0, 1}, where kc,s,e = 1 represents a
failure.

The parameter we ∈ R+ contains the weight of any part e. The weight capacity of the
entire warehouse is stored in the parameters W .

Finally, the parameter oc gives an overall probability of occurrence for each scenario c.

3.3 Decision Variables

The total number of part e in the warehouse is given by the variable ne ∈ Z+. Note that
this is a stage 1 decision, hence it is independent of the scenarios.

The end state of a system in a given scenario is described in the binary variable
xc,s,z ∈ {0, 1}, where xc,s,z = 1 if and only if system s in scenario c has state z after
repairs are completed, i.e., at the end of stage 2.

The binary variable yc,s,e ∈ {0, 1} represents the assignment of parts to systems per
scenario, and we have that yc,s,e = 1 if part e is used for the repair of system s in scenario
c.

3.4 Constraints

The following constraints appear in our model:
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3.4.1 System Status

Each system s ∈ S has exactly one current state for every scenario c ∈ C (after a potential
repair): ∑

z∈Z
xc,s,z = 1, ∀s ∈ S, c ∈ C. (1)

If part e ∈ E is broken in scenario c ∈ C in system s ∈ S, then system s cannot be repaired
to full functionality unless part e is in the storage and assigned to system s during scenario
c (recall that state z = 0 denotes a working system):

xc,s,0 ≤ yc,s,e, ∀s ∈ S, c ∈ C, e ∈ E : kc,s,e = 1. (2)

3.4.2 Demand

The total number of part e ∈ E used for repairs in any scenario c ∈ C cannot exceed the
number of part e that was included in the warehouse in the first stage.∑

s∈S
yc,s,e ≤ ne, ∀c ∈ C, e ∈ E . (3)

3.4.3 Capacity

The total weight of the spare parts must not exceed the warehouse’s weight capacity W :∑
e∈E

we · ne ≤W. (4)

3.5 Objective

The primary goal of the objective function is to maximize the number of high-priority
operational systems. A subordinate goal is to fill the residual warehouse capacity with
other spare parts that can replace broken parts in some systems, but cannot repair the
whole system. Although these parts do not increase the number of operational systems
in the given set of scenarios, they might become helpful in other scenarios outside the
optimization run. Finally, we subtract a small term to express our preference of a lighter-
weight package of parts:

max
∑

s∈S,z∈Z,c∈C
oc · ps,z · xc,s,z +

∑
s∈S,e∈E,c∈C

ε1 · yc,s,e −
∑
e∈E

ε2 · ne. (5)

Here ε1, ε2 are parameters that reflect a lexicographical ordering among the three terms
in the objective function. Maximizing the total priority of the fully operational systems
is the most important goal. If there are multiple optimal solutions with respect to this
goal, then additional spare parts are added to the warehouse that can fix some broken
parts (but not entire systems). If there are also multiple optimal solutions with respect
to this goal, then we wish to choose the solution with the lightest weight. To accomplish
this lexicographical ordering, we set ε1 := 10−4 and ε2 := 10−6 in our experiments.

4 Input Data

We utilize three data sets: RawData, RealData, and SimData. The RawData set is based on
records of past orders and inventory transfers for the Logistikzentrum (Logistic Center) of
the German Armed Forces in Wilhelmshaven, Germany. From this we derive the RealData
set, which corrects errors and missing entries in the RawData set. Finally, the SimData set
mimics the properties of the RealData set, but is of larger size and thus provides a greater
challenge to the numerical solver.
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4.1 The RawData Set

The RawData set contains 2,643 systems and 18,062 parts with weights up to 17,600 kg.
The set consists of all fulfilled orders in 2016 and 2017. An order for a part also includes
the system it is used for, and hence the assignment of parts to systems is known. However,
not all systems needed parts replaced in 2016 and 2017, and not all parts needed to be
replaced within a given system. Thus, our data does not describe the total collection of
parts that are contained in each system; this is a limitation of our study. According to the
RawData, each system thus consists of 0 to 36 parts. Additionally, the RawData contains
no weight information for 8,322 out of the 18,062 parts. Among the remaining 9,740 parts
with weight information, 87 % of the parts weigh less than 3.8 kg (see Figure 1).

Due to the omissions and discrepancies present in RawData, we perform a data cleanup
step to obtain the RealData set.

Figure 1: Weight distribution in RawData. Parts with no weight information are set to
0 kg.

4.2 The RealData Set

We now construct the RealData set by cleaning and condensing the RawData set. A typical
NRF utilizes about 100 main systems; thus, we consider the 108 systems with the most
replaced parts in the RawData set. Each of these systems contains 7 to 36 parts, and a
total of 708 different types of parts are used. About 77.5 % (549) of the parts are used in
exactly one system, 12.6 % (89) in two systems, and 4.4% (31) in three, and 5.5 % (39) in
four or more systems (see Figure 2). The binary parameter bs,e reflects parts contained in
every system, where bs,e = 1 if system s contains part e, and bs,e = 0 otherwise.

We fill in missing weight data with random picks from the list of parts with weight
data. Hence, RealData has (in expectation) the same weight distribution as RawData.
Figure 3 shows the weight distribution resulting from a particular random draw of weight
data. A typical weight capacity W for a possible deployment is approximately 100,000 kg,
but we vary this capacity limit in order to demonstrate the dependency of the solution on
this parameter.
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Figure 2: Number of parts that are used in one or more systems in RealData and SimData.

The top 108 systems have different priorities in a deployment and are separated into
combat and support vehicles. This information is stored in the parameter ps,z and takes
values from 4 (highest priority) to 1 (lowest priority) for z = 0, i.e., for functional systems.
The priority for a broken system (z = 1) is 0 for all systems s. Here the priority values
4 and 2 are for combat vehicles, and the priority values 3 and 1 are for support vehicles.
If multiple systems of the same type are on deployment, half of the group gets a higher
priority to incentivize the repair of at least 50 % of the systems of any type.

We use simulation to generate part failure scenarios based on a triangular probability
distribution. The parameters of the triangular function Le, Ue, and αe are based on the
orders of parts in RawData for the top 108 systems. If parts were ordered more frequently
(hence they break down more often), the lower and upper bounds of the failure probability
in the triangular function Le and Ue have higher values than the bounds for parts were
seldom ordered. The relative frequency of the ordering of a part is taken as the the lower
bound Le of the triangular function. This value is in the range of 8.3 % to 36.7 %. The
upper bound is set to 20 percentage points more than the value of Le, in order to simulate
scenarios with even more broken parts: Ue := Le + 0.2. The displacement factor is set to
αe = 0.5 for all parts e ∈ E , and generates a balanced distribution between the lower and
the upper bound. Hence the expected value is 1

2(Le + Ue). A comparison of the number
of failed parts in a scenario with that in RawData shows that these settings for Le, Ue, and
αe lead to an average failure rate of 6.83 % more failed parts on average, with a standard
deviation of 3.15 % over all scenarios. Hence, our scenarios are slightly more pessimistic
than the original data.

The parameter oc gives a probability of occurrence for every scenario. It is set to
oc := 1

|C| for every scenario c, so that all scenarios have an equal probability.

4.3 The SimData Set

In order to have another test case with more controllable properties, we generate the
SimData set. This data set is inspired by RawData and RealData but is not directly based
on either.

SimData contains a total of 100 systems and 700 parts. The 100 systems are split
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Figure 3: Weight distribution in RealData.

into 20 equal groups (e.g., trucks, tanks, or helicopters) of 5 systems each. Every system
contains 53 parts. Compared to the RealData set, the parts are more interchangeable:
about 60.4 % (422) of the parts are used in 5-9 systems, 29.2 % (204) in 10-14 systems,
8.9 % (62) in 15-19 systems, and 1.6 % (11) in 20 or more systems (see Figure 2). The
weight distribution of the parts is similar to that of RealData, with more low-weight parts
and a few heavy parts. The heaviest part has a weight of 5000 kg, compared to 3,600 kg
in RealData (see Figure 4).

Because the systems in the SimData set contain more parts than those in the RealData
set, the matrix representation of the parameter bs,e is denser, resulting in a more difficult
optimization problem. The 20 groups of systems are equally divided into 10 combat and
10 support systems. The parameter ps,z has the same possible values for the priority: 4
(highest priority) to 1 (lowest priority). The first three vehicles of each group receive a
higher priority, and the remaining two vehicles receive a lower priority.

The parameters of the triangular function Le, Ue, and αe are selected so that all parts
have the same failure probability. We set Le := 0.3, Ue := 0.7, and αe := 0.5. Hence, the
failure rate in SimData is significantly higher than that in RealData.

Again, the probability of each generated scenario is equal, and thus we set oc := 1
|C| .

5 Computational Results

We now exercise our model on the RealData and SimData sets to investigate the behav-
ior of an optimal selection of parts in a warehouse. Our results give an assessment of
the importance of certain parameters that influence both the optimal solution and the
computation time required to achieve such a solution.
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Figure 4: Weight distribution of SimData.

5.1 Computation Time

We implemented the model using the modeling language and graphical user interface
framework AIMMS Version 4.31(64-bit). Our computing hardware was a standard laptop
with Windows 10, an Intel Core i5-7200U CPU running at 2.50 GHz clock speed, and
8 GByte RAM. The mixed-integer linear optimization problems were solved to a 0.01 %
optimality gap with IBM ILOG CPLEX Version 12.7, using the default settings of the
solver.

Figure 5 shows the solution time for different numbers of generated scenarios using
each of the two data sets. The weight capacity limit W is set to 10 % of the total weight of
the available parts in each data set, which corresponds to W = 11, 300 kg for RealData and
W = 14, 500 kg for SimData. Depending on the number of scenarios in C, the solution time
rises from a few seconds for |C| = 10 up to approximately 250 seconds for |C| = 200 using
RealData and approximately 1000 seconds for |C| = 200 using SimData. The instances
using SimData are more difficult to solve compared to those using RealData because the
parts are used in more systems, hence more combinatorial possibilities need to be evaluated
during the solution process. Overall, however, the problem remains tractable for both data
sets even for a large number of scenarios. Section 5.3 investigates the impact of the number
of scenarios on the solution quality.

5.2 Service Level

As the “service level” (or “level of service”) for a solution we calculate the expected
percentage of working systems after repairs, averaged over all scenarios. Figure 6 shows
the service level for different weight capacities based on the data set RealData. Here, a
service level of 1 (100 %) corresponds to a warehouse that contains every broken part for
every system in every generated scenario. With W = 112, 950 kg, it is possible to include
every component of every system in the warehouse, clearly achieving a service level of
100 %. As W decreases, we expect the service level to decrease. However, even with a
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Figure 5: Solving time for RealData and SimData with a weight capacity of 10 % over
different numbers of scenarios.

weight capacity of 2,825 kg (2.5 % of the total weight of all parts), it is still possible to
repair up to 71 % of the broken systems with an optimal selection of parts. A possible
reason for this might be the high number of lightweight parts. For example, 71 % of all
parts in the RealData set have a weight of less than 5 kg, therefore one can store a lot of
these parts even in a warehouse with only a low weight capacity W .

Figure 6: Service level for an optimal part selection using RealData for various weight
capacities W .

Figure 7 shows the same results for the SimData set. Although we observe the same
dependency of the service level on W , the service level now decreases more quickly with
decreasing W . Here the total weight of all parts included in systems is 142,720 kg. With
a weight capacity limit of 3500 kg, i.e., 2.5 % of the total weight, only up to 30 % of the
broken systems can be repaired on average. To have a service level close to the lowest
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service level achieved with the RealData set, one needs at least a weight capacity of 10 %
of the total weight. This effect is due to the higher number of parts per system.

Figure 7: Service level for an optimal part selection using SimData for various weight
capacities W .

5.3 Number of Scenarios

We now consider the following question: how many scenarios in C are necessary to obtain
a representative solution that will perform well outside the considered scenarios? In order
to answer this question, we generate one additional scenario and use it to test how well
the optimal solution performs. Ideally, the new scenario has a service level that is similar
to that of the other scenarios; if so, we consider the solution to be “representative”. The
outcome of this analysis for RealData is shown in Figure 8. Here we vary the number
of scenarios |C| between 5 and 100, and the weight capacity limit W between 2.5 % and
50 % of the total weight of all parts (i.e., between 2,825 kg and 56,500 kg). We repeat each
run 10 times (generating a different “new scenario” each time) and calculate the average
number of repaired systems. Our results indicate that the number of scenarios required to
generate a representative solution depends on the weight capacity W . For W = 2, 825 kg,
one needs as least 50 scenarios in the optimization run in order for the new scenario to
achieve a similar service level as those in the optimization run. If the weight capacity limit
is higher, fewer scenarios are necessary to get a similar representative result. For example,
if W = 56, 500 kg (50 % of the total weight), only 15 scenarios are needed to get a solution
that performs well in a new scenario. With a higher weight capacity limit the warehouse
stores more and more parts, and thus it become more and more likely to have the “right”
parts also for a new unknown scenario.

Figure 9 shows the same results for the SimData set. These two data sets, RealData
and SimData, mainly differ in the number of parts per system and their distribution. Our
results indicate that these differences do impact the number of scenarios required. For
a weight capacity limit of W = 3, 500 kg (which corresponds to 2.5 % of the total weight
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Figure 8: Analysis of the impact of number of scenarios on solution quality for the
RealData set. For each number of scenarios |C|, we first run our optimization model
to obtain an optimal set of spare parts ne. We then examine the ability of those parts to
repair vehicles in a new scenario that was not included in the original |C| scenarios. Each
data point above represents the average number of vehicles repaired in ten new scenarios.
Note that the number of scenarios necessary to achieve top performance decreases as the
weight capacity of the warehouse increases.

of all parts in SimData), we only need |C| = 15 scenarios to get a representative result.
This is significantly less than the 50 scenarios to obtain a similar result for RealData.
For a 50 % weight capacity limit, only 5 scenarios are necessary to obtain a representative
selection of parts.

5.4 Home Case vs. Mission Case

We now compare the spare parts’ weight distribution in an optimal solution under two
different operational conditions: a “home case” and a “mission case”. The “home case”
settings represent normal operational conditions. These conditions are predictable and
well-known on the basis of long-term available data, and as a result, vehicle maintenance
schedules are well-calibrated. The national territory and military bases have good infras-
tructure (e.g., decent roads, shelters for vehicle parking) and gentle weather conditions
(moderate winters and summers). Consequently, all parts have a moderate failure rate.
We represent this failure rate is represented using the parameter αe, which describes the
displacement factor between the lowest and highest value of the triangular function. A
value of αe = 0.01 skews the overall distribution toward the lower value of the failure
probability function and leads to lower failure probabilities in the simulated scenarios. In
contrast, the “mission case” settings mimic the conditions in an active deployment with
bad infrastructure, extreme weather conditions, and hostile attacks on the systems. A
value of αe = 0.99 skews the triangular distribution toward its upper bound to produce
more failed parts in the simulation.

Figure 10 shows the average number of failed systems in each scenario and the number
of functional systems following repairs, for W = 11, 300, αe = 0.01, and |C| = 50. Between
70 and 90 systems (out of 108) are broken in each scenario. On average, an optimal
allocation of parts is capable of repairing 80 % of the systems with these settings.
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Figure 9: Analysis of the impact of number of scenarios on solution quality for the SimData
set. For each number of scenarios |C|, we first run our optimization model to obtain an
optimal set of spare parts ne. We then examine the ability of those parts to repair vehicles
in a new scenario that was not included in the original |C| scenarios. Each data point
above represents the average number of vehicles repaired in ten new scenarios. Note that
the number of scenarios necessary to achieve top performance decreases as the weight
capacity of the warehouse increases.

Figure 11 shows corresponding results for the “mission case”. Here a higher number
of system break; around 85 to 100 systems per scenario. On average, the optimization can
fully repair around 70 % of the systems.

5.5 A Simple Rule-Based Doctrine

When writing a military doctrine, one is in general interested in clear and simple rules
that can be used as good guidelines for the practitioner. From this perspective it could be
tempting to formulate a simple rule to decide which parts to include into the warehouse,
and how many of each to include. We now formulate such a rule and, using our optimiza-
tion model, demonstrate its effect. We express our simple rule as: “For each item weighing
at most m kg, pack n of that item. If an item weighs more than m kg, do not pack the
item.” We choose this rule for two reasons. First, we observe in our optimal solutions
that most of the selected items have low weight. Second, this rule is unambiguous, and
a warehouse configuration is easily specified simply by providing two numbers. For given
values of m and n, we denote the resulting package of parts as an (m,n)-storage. Using
our optimization model, we can easily show how much optimization potential is sacrificed
for the sake of having a fool-proof rule. We perform this analysis now, for a warehouse
with a weight limit of W = 10, 000 kg and two settings for m and n.

We first set n = 3 units for every part up to m = 20 kg. The total weight of the selected
parts is 9,210 kg for the RealData set. The total number of parts selected is 600, or 85 %
of all parts. Figure 12a shows the resulting number of operational systems, compared
to that of an optimal selection of parts. Up to 99 systems are broken in each scenario
considered. Only 50 % to 70 % of the broken systems can be repaired with the parts from
the (20, 3)-storage. With an optimal selection of parts 80 % to 90 % of the broken systems
can be repaired. On average 15 more systems are repaired per scenario using an optimal
selection of parts.
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Figure 10: Optimal solution of RealData with W = 11, 300, αe = 0.01, and |C| = 50.
Shown are the initial number of down systems and the number of repaired systems for
each case.

Figure 12b shows the same results for a (10, 5)-storage, which has a total weight of
10,052 kg. An optimal selection of parts with W = 10, 052 kg can repair 80 % to 90 %
of the systems, while on average, the (10, 5)-storage can repair 20 systems less than the
optimal selection. Thus, the performance of the (10, 5)-storage is somewhat inferior to
that of the (20, 3)-storage.

For the SimData set, we first consider n = 6 units for every part up to m = 20 kg,
resulting in a total weight of 9,210 kg. 96 % of all parts have a weight less than 20 kg in this
data set. Figure 13s shows that on average, 90 of 100 systems are broken in each scenario.
An optimal selection of parts can repair 75 % to 85 % of them, while (20, 6)-storage only
repairs 40 % to 50 % of the systems. That corresponds to 29 less repaired systems on
average.

The second run of the analysis for SimData we consider n = 10 units per part up to
m = 10 kg, for a total weight of 13,280 kg. These results appear in Figure 13b. Although
the (10, 10)-storage also repairs fewer systems compared to the optimal part selection,
the deviation is smaller than that of the (20, 6)-storage. On average, 17 fewer systems
were repaired compared to the optimal solution. However, the service level of the (10, 10)-
storage is still lower, with 63 % to 74 % of repaired systems compared to a service level
80 % to 90 % repaired systems for an optimal part selection. Overall, our simple rule-based
selection of parts is able to reach service levels up to 74 %. Of course, this result varies
depending on the settings of m and n and the underlying set of data.

6 Conclusions and Future Work

We developed TOPSPIN, an optimization tool based on a two-stage stochastic mixed-
integer linear program. TOPSPIN computes an optimal selection of spare parts for a
warehouse, given a finite set of part failure scenarios. We have applied to real-world and
simulated data sets. Our results show that a relatively high service level is possible with
even a small weight capacity. This is a positive message for a light-weight NRF that has
a short readiness due date and therefore must be highly mobile. From a computational
perspective it was rather surprising that a moderate number of scenarios leads to stable
solutions that also perform well in a failure scenario that was not included in the opti-
mization. Rule-based selection of parts is a possible alternative, with the advantage of
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Figure 11: Optimal solution of RealData with W = 11, 300, αe = 0.99, and |C| = 50.
Shown are the initial number of down systems and the number of repaired systems for
each case.

avoiding the collection of data for all parts, but it results in a significantly lower service
level. Hence, in the future, relevant data should be assessed with a high degree of accuracy.
Future work may consider other stochastic models for the simulation of part and system
failures, for example, the Weibull distribution. Another possible direction for the model
would be an inclusion of “cannibalism”, meaning that functional parts can be extracted
from systems in order to repair other (more valuable) systems.
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