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Abstract

The deterministic Asset Protection Problem (APP) involves deploying firefighting re-
sources of various capabilities to service as many community assets as possible within
time windows determined by an advancing wildfire. A common situation arising during
these situations is a wind change. Forecasts of changes in wind velocity (i.e. direction
and speed) are reasonably accurate but there is some uncertainty around the time of
a wind change. The timing has implications for which areas, and hence which assets,
will be impacted by the wildfire. This presents a difficult problem for an Incident
Management Team (IMT) operating under severe time pressure as the wildfire sweeps
across the landscape. In this study, we extend the spatial decomposition-based math-
heuristic originally developed for the deterministic APP to handle large real life sized
stochastic APPs in operational time. This is achieved by regarding the deterministic
and stochastic components as a coupled system. A two-stage stochastic programming
(TSSP) model is thus only used for a smaller sub-problem around the uncertainty. We
found this approach outperformed other methods when tested on a new set of bench-
marks. More importantly, the accuracy and solution times make the method suitable
for operational purposes.

Keywords: Wildfires, Asset protection problem, Team orienteering problem,
Two-stage stochastic programming, Math-heuristic, Spatial Decomposition

1. Introduction

Wildfires can be catastrophic natural events leading to individual, community, eco-
nomic, and environmental impacts. Australia is one of many countries vulnerable to
wildfires. In the recent 2019-2020 bushfire season, for example, fires burnt an estimated
286000 km2, destroyed nearly 6000 buildings, and killed at least 34 people. Under cer-
tain conditions a large wildfire can become so large that there is no reasonable prospect

∗Corresponding author
Email addresses: dian.nuraiman@rmit.edu.au (Dian Nuraiman), melih.ozlen@rmit.edu.au

(Melih Ozlen), john.hearne@rmit.edu.au (John Hearne)

Preprint submitted to Journal of LATEX Templates October 6, 2021



of bringing it under control. Under such circumstances it is prudent to deploy firefight-
ing resources to service as many critical assets as possible. This might involve hosing
down a structure and clearing debris in its vicinity to reduce the risk of destruction by
the wildfire. Such activities must be done within a time window associated with each
asset. This time window is determined by the progress of the wildfire as it spreads
across the landscape. Servicing an asset too early might mean, for example, that more
debris is blown into the vicinity of the asset before the wildfire passes through. At
the other end of the time window it is obvious that teams must be well clear of the
fire before it arrives. The tasks required at some assets require a synchronous visit by
more than one team. The Incident Management Team (IMT) must consider the values
and requirements of each critical asset. Each resource (e.g. trucks, tankers, pumpers)
is deployed along a particular route to arrive at various assets within their time win-
dows. Moreover, this must be done to maximise the total value of assets serviced. This
problem is known as the Asset Protection Problem (APP).

IMT’s may face a wind change during escaped wildfires. It is a real phenomenon such
as in the 2009 ’Black Saturday’ bushfires where the wind direction suddenly changed
around 90 degrees from north-westerly to south-westerly. This meant that the flank of
this long, narrow fire became the new and very broad fire-front. This had a significant
impact on the path of the fire and the area burnt (Cruz et al., 2012). Such wind
changes are included in the weather forecast in Australia by the Bureau of Meteorology.
Wind velocity (i.e. speed and direction) and the expected time of change are provided
(Bureau of Meteorology, 2020). The exact time of the wind change, however, is subject
to some uncertainty. The timing of the wind change may affect time windows but more
importantly it will affect which areas and assets will be in the path of the advancing
fire.

The studies in the literature dealing with stochastic events for the APP are limited.
First is the work by van der Merwe et al. (2017). Their re-routing approach utilised a
Mixed Integer Programming model to amend routes and schedules in response to disrup-
tions during the deployment to the original optimal plan. Second was the work done by
Roozbeh et al. (2018a). They developed a two-stage stochastic program (TSSP) for the
stochastic APP with uncertainty around the timing of a wind change. They proposed a
dynamic rerouting approach with a large neighbourhood search (LNS) heuristic. This
enabled approximate solutions to be obtained for large problems where CPLEX failed.
No information on the quality of these solutions, however, could be provided.

Despite the developed dynamic rerouting approach, finding an efficient solution
approach for realistically large-scale stochastic APPs in operational time is still chal-
lenging. Grass & Fischer (2016) highlighted that solving large-scale problems in the
humanitarian context is still an issue for those who use commercial solvers. Heuristics
provide an alternative to commercial solvers. In practice, however, they are not easy
to implement especially for practitioners, such as humanitarian aid organizations, as
the heuristics require a special kind of coding effort. Furthermore, a heuristic is often
specific to a particular model and not generally applicable to other models. Hence find-
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ing computationally tractable solution techniques for the stochastic APP is still a big
challenge. Although humanitarian practitioners may find it difficult to apply heuristics,
we propose a heuristic approach that is easy to understand and use for existing solver
users. We use the spatial decomposition based math-heuristic (SDM) approach as the
best current solution technique for the deterministic version of the APP and extend
it to solve large-scale stochastic APPs. We do this by decomposing the problem into
several smaller sub-problems based on spatial considerations, and separating the deter-
ministic and stochastic models. The stochastic model is only used for an area impacted
by uncertainty, while the rest of the sub-problems are deterministic. The sub-problems
of the decomposed problem are then solved using a commercial solver. We carry out
experimental results of the proposed solution approach compared to other solution tech-
niques that are applicable using commercial solvers. Note that the commercial solvers
can easily be replaced with open-source solvers that are freely available if required.

The contributions of this paper against similar work in the literature include two as-
pects. First, we refine the existing model developed by Roozbeh et al. (2018a) which will
be explained in Section 3. Second, we propose a new efficient solution method based on
the SDM approach by Nuraiman et al. (2020). We extend the SDM method to solve the
stochastic APP by a coupling strategy of the deterministic and stochastic models. We
evaluate the performance of each solution approach with extensive experiments using
new benchmark instances involving randomised, clustered, and randomised-clustered
instances.

The rest of this paper is organised as follows. Section 2 reveals the position of this
work in the related literature. In Section 3, the problem definition and the two-stage
stochastic programming model are presented. Section 4 is focused on solution tech-
niques comprising a dynamic rerouting approach, a two-phase decomposition approach,
a deterministic SDM approach and the proposed SDM approach. Computational ex-
periments are given in Section 5, followed by the Conclusion.

2. Literature review

The APP is an emergency resource routing and scheduling (ERRS) problem with
the goal of finding the routes of vehicles and the visit times of assets. ERRS refers
to a dispatching problem of critical resources to the community without delay with
fast response time and restricted time windows. The resources include vehicles (e.g.,
ambulances (Talarico et al., 2015), evacuation vehicles (Zhao et al., 2020), fire trucks
(Usanov et al., 2020)), manpower (e.g., nurses, firefighters), relief commodities (Bodaghi
et al., 2018) and medical services (Aringhieri et al., 2017). While most studies focus
on reducing the loss of human life or are human oriented, the APP concentrates on
servicing community assets or properties. Such assets may take weeks or even months
to be restored if they are not protected during wildfires.

Furthermore, the APP has similar characteristics to the team orienteering problem
with time windows (TOPTW). The team must cooperate to maximise the total collected
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score or profit by servicing a given number of nodes within their pre-defined time
windows. While the team in the classical TOPTW is homogeneous (Gunawan et al.,
2016), the APP considers a fleet of heterogeneous vehicles where each vehicle type has
different capability. This is a special characteristic of the APP that each asset may
require a mix of services from different types of vehicles at the same time. A number
of variants for TOPTW with heterogeneous vehicles exists in the literature. Saeedvand
et al. (2020) studied rescue operations by allocating a team of varied humanoid robots.
Each robot can accomplish any task but the energy consumption for each robot in each
task may be different. Hanafi et al. (2020) studied the TOPTW with heterogeneous
vehicles in a furniture company. Each customer is allowed to be visited more than once
by a team of different qualified technicians based on a predetermined order to complete
a set of assembly tasks. In the APP, each asset can only be visited once and hence
the team of different vehicles required must synchronise their visits to complete the
services. This synchronisation requirement with the TOPTW makes the APP a rare
problem.

In the context of routing problems, the APP is similar to the vehicle routing problem
(VRP). The main difference is that in the VRP vehicles must service all customers, while
in the APP the available vehicles may not cover all assets due to time constraints and
limited resources. Furthermore, the main objective of the VRP is the minimisation of
total traveling cost, while the APP aims to maximise the total collected rewards. A
variant of the VRP that is relevant to the APP is the VRP with profits. In logistics
operations, for instance, frequent customers can be set as mandatory visits with fixed
profits while visits to non-frequent customers with known profits are optional as studied
in (Stavropoulou et al., 2019). This setting leads to a combination of a vehicle routing
problem and an orienteering problem with the goal of maximising the total net profit
collected while minimising the total traveling distance. This problem is closely related
to a variant of TOPTW with mandatory visits (Lin & Yu, 2017). In the APP, there is
no asset that must be visited, but the more valuable the asset, the higher the priority
it should receive to be serviced.

In the VRP, synchronisation constraints have been widely used in various real-life
applications (Drexl, 2012). For instance, in the home health care staff scheduling and
routing problem, an elderly patient may require service from two different skilled care-
givers at the same time (Bredström & Rönnqvist, 2008; Afifi et al., 2016; Liu et al.,
2021). A similar problem addressed by Lianes et al. (2021) is a vessel routing problem.
A fish farm may require more than one vessel with distinct capabilities to perform ser-
vice simultaneously such as net installation. In terms of synchronisation requirements,
the APP is similar to the mentioned studies in the VRP.

The deterministic model of the APP was first formulated by van der Merwe et al.
(2015) as a mixed integer programming problem. They used a commercial solver to
solve the model for small-size instances. The solver was not able to solve large prob-
lems within operational time. Subsequently an adaptive large neighborhood search
(ALNS) was developed by Roozbeh et al. (2018b) to handle large-scale instances con-
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sisting of 100 and 200 nodes within times suitable for operational purposes. A recent
endeavor to find more efficient solution methods led to a spatial decomposition based
math-heuristic (SDM) by Nuraiman et al. (2020). This approach yielded better quality
solutions compared with the ALNS against the same machine specifications and bench-
mark instances. The SDM exploits the nature of the APP, where time windows are
geographically correlated, by decomposing a large APP into tractable sub-problems in
line with the solver’s ability to solve such smaller problems.

The ubiquity of uncertainty has led to the use of stochastic programming in many
real-world applications. In the context of disaster management, the two-stage stochastic
programming (TSSP) framework is often used to measure the expected natural hazard
especially to the community. In fact, the magnitude, location, and timing of natural
disasters are often unpredictable. While most studies in humanitarian operations as-
sume complete information is known beforehand with certainty (Farahani et al., 2020),
involving uncertain parameters can lead to a more realistic and meaningful approach.

In humanitarian logistics, travel times and demands are often uncertain in post-
disaster relief operations (Li & Chung, 2019; Garrido et al., 2015). In addition, supply
and network availability can be subject to uncertainty in the aftermath of an earthquake
(Tofighi et al., 2016). Logistics providers may also face uncertain levels of patient
severity as recently studied by Jamali et al. (2021). They consider three different injury
severity degrees consisting of minor, moderate and serious conditions, where the number
of victims in each severity level is uncertain. Medical supplies should be delivered
to beneficiaries in a timely manner to minimise the deprivation cost. Thus decision
makers should develop a distribution plan of essential supplies involving the flexibility
and adaptability of vehicle routes in response to any sudden changes considered.

In the context of bushfire emergency management, a few routing problems under
uncertainties have been addressed in the literature. Shahparvari et al. (2019) studied
a bushfire evacuation routing problem under a short-notice condition with uncertainty
due to road network and shelter disruption. Bodaghi et al. (2020) addressed emergency
relief operations with both expandable and non-expandable resources under 1000 plau-
sible scenarios in the severity level and needs at each bushfire affected demand point.
Stochastic APP, the focus of this study, considers uncertain timing of a wind change
during wildfires that requires consideration of multiple scenarios. This leads to uncer-
tainty in two aspects; assets impacted and their time windows. While this is not the
first study of the stochastic APP, we develop a new solution approach that is capable
of handling large-scale stochastic APPs.

3. Problem definition and formulation

This section presents the two-stage stochastic programming (TSSP) model devel-
oped by Roozbeh et al. (2018a) to solve the stochastic APP. We refined their model to
make it more accurate based on practical requirements. First, we removed all big M
values from the constraints in the existing model and replaced them with the most ap-
propriate values to provide tighter constraints. Second, to be more realistic, we dropped
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the service duration from Constraints (6) and (7) in their model. This aims to ensure
that stage two decision variables can only have an impact after the actual staging time,
i.e., the vehicles cannot start travel to their stage 2 destinations before the staging time.

The model presented is capable of considering multiple scenarios where the wind
change can occur at several possible times with a single staging time denoted by ST .
The staging time refers to the earliest possible time of the wind change. We use this
based on the assumption that the planning is made several hours before the wind change
based on the forecast at that time with some uncertainty around the precise time. As
time progresses, the forecast is updated. When it is close to the staging time, the
forecast can give us an update on when the wind will change with high accuracy. This
update then informs the IMT’s of which scenario should be chosen at the staging time.

The wind change will affect the direction of fire propagation. Hence, this and the
time of the change will determine the region impacted. As a consequence of multiple
scenarios, several assets may be impacted by only one scenario or more. If an asset is
at risk by three scenarios, for instance, then the asset may have three different time
windows. The TSSP determines the optimal set of stage 1 assets to service with a view
to maximising the total expected asset values serviced in stage 2. An asset is a stage
1 asset if it is serviced before the staging time, otherwise it is a stage 2 asset. If the
time window of an asset is around the staging time, this asset can be serviced in either
stage 1 or stage 2.

Figure 1: Problem illustration

Figure 1 illustrates an estimate of fire affected regions before and after a wind change
based on a forecast of wind velocity and fire propagation speed. A number of assets
marked with blue circles are at risk. The fires initially propagate from the lower left
domain in an elliptical shape and then turn dramatically by 90 degrees in a vertical
direction. For illustrative purposes, the figure shows that the wind direction can change
in three possible times with three scenarios. First, scenario a refers to a change at time
t with a probability of P (a) where the fire front is indicated in blue lines. Second,

6



scenario b reflects a possible delay of the change at time t + ∆t with a probability of
P (b) where the fire front is indicated in red lines. Third, the last scenario is a change at
time t+ 2∆t with a probability of P (c) where the fire front is indicated in green lines.
Here ∆t is the delay time between two scenarios and the probabilities are one in total.
As the wind change in scenario b and c occurs at the later times, fires still spread in
the initial direction and only change direction later. The fire spread is observed over a
time horizon of T .

A set of assets C = {1, 2, ..., |C|} is given with a starting depot 0 and a final
depot |C| + 1, which may be at the same location as the start. A set of vehicle types
V = {1, 2, . . . , k, . . . , |V |} comprising Qk vehicles for each vehicle of type k is available
at the starting depot to service the given set of assets. Each asset i may require a mix
of vehicle types denoted by (ri1, ri2, . . . , rik, . . . , ri|V |) where rik refers to the number of
vehicles of type k required at asset i. This means that at asset i, all required vehicles
must synchronise their visits and start service at time si within a given time window
[oi, ci] for a duration of di. Furthermore, each asset i has an associated value ϑi to the
community. This will affect its chance of being serviced as the objective function seeks
to maximise the total value of assets serviced.

In order to reduce the model size, a set of accessible assets for vehicles of type k
going out from, and coming into, each asset i are introduced and denoted by Nk

i+ and
Nk
i−, respectively. Vehicles of type k can go to asset j after servicing asset i if they

meet time and vehicle type constraints. The first constraint requires the vehicles must
be able to complete the service at i and travel to arrive at j by the closing time cj
for starting the service at j. The second constraint represents that both asset i and j
require the same type k of vehicles.

The following is a list of the main notation used in the model.
Sets
C : set of asset nodes, where C = {1, 2, . . . , |C|}
N : set of nodes, where N = {0, 1, 2, . . . , |C|+ 1}
S : set of scenarios in stage 2 indexed by g, where S = {1, 2, ..., |S|}
V : set of vehicle types indexed by k, where V = {1, 2, . . . , |V |}
Nk
i+ : set of accessible assets from asset i by vehicles of type k in stage 1

Nk
i− : set of accessible assets to asset i by vehicles of type k in stage 1

Nk,g
i+ : set of accessible assets from asset i by vehicles of type k in stage 2g

Nk,g
i− : set of accessible assets to asset i by vehicles of type k in stage 2g

Parameters
ϑi : value of asset i
di : service duration at asset i
rik : number of vehicles of type k required at asset i
tijk : travel time from asset i to j by vehicles of type k
Qk : number of vehicles of type k available at depot
oi : opening service time at asset i in stage 1
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ci : closing service time at asset i in stage 1
ogi : opening service time at asset i in stage 2g
cgi : closing service time at asset i in stage 2g
Pg : probability of scenario g
ST : staging time

Decision variables

zijk =

{
1, if vehicles of type k travelling from asset i to j in stage 1

0, otherwise

zgijk =

{
1, if vehicles of type k travelling from asset i to j in stage 2g

0, otherwise

yi =

{
1, if asset i is serviced in stage 1

0, otherwise

ygi =

{
1, if asset i is serviced in stage 2g

0, otherwise

wi =

{
1, if asset i is serviced just before the staging time

0, otherwise

xijk : number of vehicles of type k travelling from asset i to j in stage 1
xgijk : number of vehicles of type k travelling from asset i to j in stage 2g
si : service starting time of asset i in stage 1
sgi : service starting time of asset i in stage 2g

The objective function can be written as follows

max
∑
i∈C

ϑiyi +
∑
g∈S

∑
i∈C

Pgϑiy
g
i (1)

subject to:

yi + ygi ≤ 1, ∀i ∈ C, g ∈ S (2)∑
j∈Nk

0+

x0jk +
∑
j∈Nk,g

0+

xg0jk ≤ Qk, ∀k ∈ V, g ∈ S (3)

∑
i∈Nk

h−

xihk +
∑
i∈Nk,g

h−

xgihk =
∑
j∈Nk

h+

xhjk +
∑
j∈Nk,g

h+

xghjk, ∀h ∈ C, k ∈ V, g ∈ S (4)
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∑
i∈Nk

h−

xihk = rhkyh, ∀h ∈ C, k ∈ V (5)

∑
i∈Nk,g

h−

xgihk = rhky
g
h, ∀h ∈ C, k ∈ V, g ∈ S (6)

t0jkz0jk ≤ sj, ∀j ∈ Nk
0+, k ∈ V (7)

t0jkz
g
0jk ≤ sgj , ∀j ∈ N

k,g
0+ , k ∈ V, g ∈ S (8)

si − ci + (ci + di + tijk)zijk ≤ sj, ∀i ∈ C, j ∈ Nk
i+, k ∈ V (9)

sgi − c
g
i + (cgi + di + tijk)z

g
ijk ≤ sgj , ∀i ∈ C, j ∈ N

k,g
i+ , k ∈ V, g ∈ S (10)∑

k∈V

∑
i∈Nk

h−

xihk −
∑
k∈V

∑
j∈Nk

h+

xhjk ≤
∑
k∈V

rhkwh, ∀h ∈ C (11)

∑
k∈V

∑
i∈Nk

h−

xihk −
∑
k∈V

∑
j∈Nk

h+

xhjk ≥ wh, ∀h ∈ C (12)

si − ci + ciwi ≤ sgi , ∀i ∈ C, g ∈ S (13)

si ≥ sgi − c
g
i + cgiwi, ∀i ∈ C, g ∈ S (14)

sj − cj + cjzijk < ST, ∀i ∈ C, i ∈ Nk
j−, k ∈ V (15)

sgj ≥ STzgijk, ∀i ∈ C, i ∈ N
k
j−, k ∈ V, g ∈ S (16)

zijk + zgijk ≤ 1, ∀i ∈ C, i ∈ Nk
j−, k ∈ V, g ∈ S (17)

xijk ≤ rjkzijk, ∀i ∈ N, j ∈ Nk
i+, k ∈ V (18)

xgijk ≤ rjkz
g
ijk, ∀i ∈ N, j ∈ N

k
i+, k ∈ V, g ∈ S (19)

oi ≤ si ≤ ci, ∀i ∈ C (20)

ogi ≤ sgi ≤ cgi , ∀i ∈ C, g ∈ S (21)

wi, yi, y
g
i ∈ {0, 1}, ∀i ∈ C, ∀g ∈ S (22)

zijk, z
g
ijk ∈ {0, 1}, ∀i ∈ N, j ∈ N

k
i+, k ∈ V, g ∈ S (23)

The objective (1) aims to maximise the total expected asset values serviced before
and after a wind change. Each asset can be serviced only once in either stage 1 or stage
2 as written in constraint (2). Constraint (3) expresses that the number of vehicles of
type k available at the initial depot is the upper limit of the total number of vehicles
of type k going out from the depot. Constraint (4) guarantees the flow conservation
of vehicles of type k at each asset. Constraints (5) and (6) enforce vehicles of type k
required at each asset in both stages to synchronise their visits. The service starting
times at the first assets serviced by vehicles of type k must be greater than or equal
to the travel times from the initial depot. This is expressed in constraint (7) for stage
1 and constraint (8) for each scenario in stage 2. The service starting times of two
sequentially serviced assets must fulfill constraint (9) for stage 1 and constraint (10) for
each scenario in stage 2. A stage 1 asset is called a staging node if there is any vehicle
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going out from the node to stage 2 assets as expressed in constraints (11) and (12).
Constraints (13) and (14) indicate that the service starting time of a staging node is
copied from stage 1 to stage 2 variables. Constraints (15) and (16) ensure that stage
1 assets are serviced before the staging time and stage 2 assets are serviced after the
staging time. Constraint (17) defines that if there is a flow of vehicles of type k from
node i to j in stage 1, there must be no flow in stage 2 between the two nodes. On
the contrary, if there is no flow from i to j in stage 1, there may be a flow in stage
2. Constraints (18) and (19) define that the number of vehicles of type k traveling
from node i to j is limited by the number of vehicles of type k required at node j.
Constraints (20) and (21) define the time windows of each asset in stage 1 and 2,
respectively.

4. Solution techniques

This section presents the dynamic rerouting (DR) approach and three new proposed
solution techniques, i.e. two-phase decomposition (TPD), deterministic SDM (D-SDM),
and deterministic-stochastic SDM (DS-SDM). All solution techniques decompose the
given set of assets C into |S|+1 smaller subsets of assets at the beginning of the process
where |S| refers to the number of scenarios. C is decomposed into C1 and C2g for each
g ∈ S. C1 refers to a set of stage 1 assets that are potentially serviced before the staging
time ST , while C2g are stage 2 assets that are at risk after the staging time in scenario
g ∈ S. An asset i is included in C1 if the closing time window ci < ST and is included
in C2g if the closing time window cgi ≥ ST . If ST occurs during the time window of an
asset i, i.e. oi < ST < ci, the asset is included in both C1 and C2g. This means that
the asset can be serviced either in stage 1 or stage 2 and should be considered in both
stages. All such overlapping assets are then denoted as the assets in a buffer zone.

The DR, TPD and D-SDM utilise the solution of deterministic models while the
DS-SDM utilise the solution of both deterministic and TSSP models. However, the
deterministic model has no constraints related to overlapping assets in Constraint (2)
and the imposed staging time in Constraints (15) and (16). Hence for any solution
technique utilising a fully deterministic model must be consistent with the TSSP. This
can be achieved in two ways. First the time window of each asset in the buffer zone can
be split into two smaller time windows, i.e. before and after the staging time. The time
window before the staging time is only utilised in stage 1 decisions, and stage 2 time
windows are only utilised in stage 2. Second if an overlapping asset has been serviced
in stage 1, this asset must be removed from stage 2 consideration.

4.1. Dynamic rerouting approach

The dynamic rerouting approach used in this paper was developed by Roozbeh et al.
(2018a) for the stochastic APP. It is a solution technique where the event that is most
likely to occur is chosen as the initial plan and a response to a disruption is applied
only after the disruption. Given |S| scenarios, this approach decomposes the problem
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into |S| sub-problems. The first sub-problem involves stage 1 assets C1 and the most
likely scenario in stage 2, denoted as C2G. Other sub-problems involve only the assets
impacted by each scenario g ∈ S in stage 2, denoted as C2g, where g 6= G. Each
sub-problem is solved using the deterministic model of the APP.

Algorithm 1 presents the DR approach. After decomposing the assets into smaller
subsets of assets in step 2, the first sub-problem, as the most likely scenario of a wind
change, is first solved as written in step 4. The last assets serviced before the staging
time, referred to as staging locations, need to be extracted from the solution of the first
sub-problem, as written in step 5. They are used as the initial locations of vehicles
for the rest of sub-problems in stage 2 denoted as a set of depots D2. The rest of the
algorithm is dedicated to solve the rest of the scenarios independently as written in
step 6-12.

Algorithm 1: Dynamic rerouting approach algorithm
Input: all sets and parameters listed in Section 2
Output: xijk, zijk, yi, si

1 D1 ← {0}
2 Decompose C into C1 and C2g for each g ∈ S
3 Find a scenario G in stage 2 which has the highest probability
4 Solve the deterministic model for C1 ∪ C2G with depot D1 and objective

max
∑

i∈C1
ϑiyi +

∑
i∈C2G

PGϑiyi
5 Extract staging locations from the solution and assign them as depots D2

6 g ← 1
7 while g ≤ |S| do
8 if g 6= G then
9 Solve the deterministic model for C2g with depots D2 and objective

max
∑

i∈C2g
Pgϑiyi

10 g ← g + 1

11 end

12 end

4.2. Two-phase decomposition approach

A TSSP model basically considers uncertainty taking place within a planning hori-
zon and introduces a two-stage problem as illustrated in Figure 2. This can lead to
a basic decomposition approach called a two-phase decomposition (TPD) approach by
splitting the planning horizon into two phases on a stage basis, i.e., pre- and post-
an uncertain event. The first phase is the stage before the realisation of the random
event, while the second phase is for after the realisation. The second phase consists
of a number of scenarios where each scenario has a given probability. Both phases are
solved using the deterministic model.

The full algorithm of the TPD approach is listed in Algorithm 2. To deal with
the uncertainty of which scenario will occur, the objective function of the first phase

11



Figure 2: TSSP framework

Algorithm 2: Two-phase decomposition approach algorithm
Input: all sets and parameters listed in Section 2
Output: xijk, zijk, yi, si

1 D1 ← {0}
2 Decompose C into C1 and C2g for each g ∈ S

3 Calculate a direction angle θ̄ =
∑

g∈S
Pg

∑
i∈C2g

wiθi∑
i∈C2g

wi

4 Solve the deterministic model for C1 with depot D1 and objective

max

(∑
i∈C1

(
ϑi − α|θi − θ̄|

)
yi −

∑
i∈C1

si/
∑

i∈C1
ci

)
5 Extract the last serviced nodes from the solution and assign them as depots D2

6 g ← 1
7 while g ≤ |S| do
8 Solve the deterministic model for C2g with depots D2 and objective

max
∑

i∈C2g
Pgϑiyi

9 g ← g + 1

10 end

is directed towards a direction angle. This draws on the decomposition procedure
by Nuraiman et al. (2020) who used a direction angle from the subsequent stage to
influence the solution in the current stage. Before solving the first phase in step 4, a
target direction θ̄ is first calculated in step 3 as a probability-weighted direction angle
from each scenario in the second phase. It is written as

θ̄ =
∑
g∈S

Pg
∑

i∈C2g
wiθi∑

i∈C2g
wi

(24)
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where θi is an angle of node i and wi is the weight which can be calculated by

wi = ϑi/
∑
k∈V

rik
Qk

(25)

The weighting constant includes the asset value as well as the ratio between the require-
ments of the node and the availability of vehicles. This target direction is then used
for a secondary objective to minimise the angle of deviation from each asset serviced.

In addition to aligning the solution between two phases using a target direction, the
protective services at each asset in the first phase should start as early as possible within
a given time window to give more flexibility for vehicles in the next phase. Minimising
start servicing times is another important secondary objective for a decomposition
approach (Nuraiman et al., 2020). Hence the complete objective of the first phase is
written as

max

(∑
i∈C1

(
ϑi − α|θi − θ̄|

)
yi −

∑
i∈C1

si/
∑
i∈C1

ci

)
(26)

where α ∈ (0, 1] is a constant to reduce the magnitude of angle deviation against asset
value ϑ.

The solution of the first phase becomes an input for the second phase as written in
step 5. The assets serviced last in the first phase are the starting locations for vehicles
in the next phase denoted as a set of depots D2. Steps 6-10 of the algorithm solve
the sub-problem of each scenario in the second phase. As the second phase is the last
one, the two secondary objectives of minimising the start times and angle deviation are
removed from the objective function. Hence the objective in the second phase is only
maximising the asset values weighted by its scenario probability as written in step 8.

4.3. Spatial decomposition based math-heuristic approach

The spatial decomposition based math-heuristic (SDM) approach was first proposed
by Nuraiman et al. (2020) for the deterministic APP. It takes advantage of the nature
of problems where the time windows are pre-defined and spatially correlated as in the
APP. The time window of an asset is generated based on the expected time the fire will
reach the location. We introduce two different implementations of the SDM approach
for the stochastic APP as explained below.

4.3.1. Deterministic SDM approach

The deterministic SDM (D-SDM) approach uses the deterministic model to solve
the stochastic APP. This approach is basically similar to the TPD approach where
stage 1 is first solved then the solution is used as an input for stage 2. However, the
TPD approach may have difficulty when the sub-problem in both stages is still large for
solvers. Hence the D-SDM approach decomposes each stage into equally tractable sub-
problems as illustrated in Figure 3. Given |S| scenarios, assets impacted in stage 1 and
each scenario g ∈ S in stage 2 are split into λ1 and λ2g parts, respectively. The number
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Algorithm 3: D-SDM approach algorithm
Input: all sets and parameters listed in Section 2,α, λ1, λ2g
Output: xijk, zijk, yi, si

1 D1 ← {0}
2 Decompose C into C1 and C2g for each g ∈ S
3 Sort C1 and each C2g based on their opening time windows in an ascending order
4 Decompose C1 into λ1 parts and C2g into λ2g parts for each g ∈ S where set of assets in

stage st part h denoted as Cst,h
5 Deterministic (1, D1, C1,h, λ1,0)
6 g ← 1
7 while g ≤ |S| do
8 Deterministic (2, Dλ1+1, C2g,h, λ2g,g)
9 g ← g + 1

10 end
11

12 Function Deterministic(st,D,Cst,h, λ,g):
13 h← 1
14 Dh ← D
15 while h ≤ λ do
16 Calculate node angle θi for each node i in Cst,h
17 if st = 1 & h = λ then

18 Calculate a direction angle θ̄h =
∑
g∈S

Pg
∑

i∈C2g,1
wiθi∑

i∈C2g,1
wi

19 else if h < λ then

20 Calculate a direction angle θ̄h =

∑
i∈Cst,h+1

wiθi∑
i∈Cst,h+1

wi

21 end
22 if st = 1 then
23 Solve the deterministic model for Cst,h with depots Dh and objective

max

(∑
i∈Cst,h

(
ϑi − α|θi − θ̄h|

)
yi −

∑
i∈Cst,h

si/
∑
i∈Cst,h

ci

)
24 else if st = 2 & h < λ then
25 Solve the deterministic model for Cst,h with depots Dh and objective

max

(∑
i∈Cst,h

(
Pgϑi − α|θi − θ̄h|

)
yi −

∑
i∈Cst,h

si/
∑
i∈Cst,h

ci

)
26 else if st = 2 & h = λ then
27 Solve the deterministic model for Cst,h with depots Dh and objective

max
∑
i∈Cst,h

Pgϑiyi

28 end
29 Extract the last serviced nodes and assign them as depots Dh+1

30 Involve vehicles that are not in service and their locations into Dh+1

31 h← h+ 1

32 end

33 End Function

of partitions either in stage 1 or each scenario in stage 2 can be different depending on
the number of nodes impacted.

Algorithm 3 provides a complete procedure of the D-SDM approach. Before splitting
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Figure 3: D-SDM approach for the stochastic APP

each stage into several parts in step 4, the assets impacted in each stage need to be
sorted based on the opening time windows as written in step 3. The next step is solving
each part in stage 1 by calling a function called Deterministic as written in step 5. This
function is then called to solve each part of each scenario in stage 2 as written in steps
6-10. The last serviced assets from the solution of the last part in stage 1 denoted as
Dλ1+1 are depots for the first part in each scenario in stage 2.

The function Deterministic first calculates node angle θi for each node i in the
current part that will be used in the objective function. A direction angle is then
calculated using step 18 or 20 depending on the stage and part considered. If the
current part is the last part in stage 1 (condition in line 17), the direction angle needs
to consider all first parts of each scenario in stage 2 (step 18). If the current part is not
the last part of any stage (condition in line 19), the direction angle is considered only
from the subsequent part (step 20). The current part is then solved with three possible
objectives. The objective in step 23 is used if the current part is in stage 1, while the
objective in step 25 is used if the current part is not the last part of any scenario in
stage 2. The main difference is that if an asset is serviced in stage 2 the asset value
is weighted by its probability. The last objective in step 27 is used only if the current
part is the last part of any scenario in stage 2. This part is not necessarily solved with
minimising the start times and aligning the solution to any direction. The last assets
serviced in each part are the starting locations of vehicles for the next part as written
in step 29. Any vehicles that are not in service in the current part are included for the
next part (step 30).

4.3.2. Deterministic-Stochastic SDM approach

Solving the TSSP model for a large problem in a single run is costly in computing
time. To overcome this, the deterministic-stochastic SDM (DS-SDM) approach is im-
plemented by decomposing the problem into pieces. This method then couples both
deterministic and stochastic models for the decomposed problem. A stochastic part is
composed in between the two stages. It involves the overlapping nodes in the buffer
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Figure 4: DS-SDM approach for the stochastic APP

zone and β additional nodes taken from each stage around the buffer zone. The rest
of parts is solved using the deterministic model. The main idea of this approach is
illustrated in Figure 4 and the algorithm is shown in Algorithm 4.

Algorithm 4: DS-SDM approach algorithm
Input: all sets and parameters listed in Section 2,α, β, λ1, λ2g
Output: all decision variables listed in Section 2

1 D1 ← {0}
2 Decompose C into C1 and C2g for each g ∈ S
3 Sort C1 and each C2g based on their opening time windows in an ascending order
4 Compose a stochastic part Cs with parameter β
5 Decompose C1 \ Cs into λ1 parts and C2g \ Cs into λ2g parts for each g ∈ S where set of

assets in stage st part h denoted as Cst,h
6 Deterministic (1, D1, C1,h, λ1,0)
7 Solve the TSSP model for the stochastic part Cs with depots Dλ1+1

8 Extract the last serviced nodes from each scenario g and assign them as D2g for each g ∈ S
9 Involve vehicles that are not in service in each scenario g and their locations into D2g for

each g ∈ S
10 g ← 1
11 while g ≤ |S| do
12 Deterministic (2, D2g, C2g,h, λ2g,g)
13 g ← g + 1

14 end

Algorithm 4 is generally the same as the D-SDM algorithm. The main difference is
the DS-SDM approach composes a stochastic part in step 4 and solves this part in the
middle of the two stages as written in step 7. After the stochastic part is composed, the
rest of assets in each stage is then split into λ1 parts for stage 1 and λ2g parts for stage
2 scenario g as written in step 5. The Deterministic function called in this algorithm is
the same as written in Algorithm 3 with a change in step 18. In this step the D-SDM
calculates a direction angle based on information from the first part of each scenario in
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stage 2. Meanwhile, the DS-SDM utilises information from the assets in the stochastic
part Cs.

5. Computational experiments

5.1. Fire spread model

In the APP, the time window of an asset is generated based on the estimated time
the fire front will reach that asset. If the wind is blowing during wildfires, the fires
propagate in an elliptical spread. The position of a fire front at time t with a constant
wind speed can be determined by

x = Ft cos γ +Gt (27)

y = Ht sin γ (28)

where F and H are fire speeds for the semi-major and semi-minor axis, respectively,
and G represents the moving speed of the centre of the ellipse in the x-direction, while
γ is an angular parameter. Eq. (28) can be written as

sin γ =
y

Ht
(29)

or

cos γ =
(Ht)2 − y2

Ht
(30)

Substituting Eq.(30) to Eq.(27) yields

x = F
(Ht)2 − y2

H
+Gt (31)

Solving Eq.(31) for t yields

t =
F
√
F 2y2 −G2y2 +H2x2 −GHx

H(F 2 −G2)
(32)

Given F,G, and H, Eq.(32) calculates the estimated time of the fire front will reach a
particular location (x, y). This arrival time is then used to generate the time window
of the asset. A time window [oi, ci] for an asset i can be defined as

ci = ti − di − 0.5 (33)

and
oi = ci − σ (34)

where di is a service duration required at asset i and σ is the time window length. A
constant of 0.5 in Eq. (33) represents that the crews require about half an hour to move
away from the fire if the asset is serviced at the latest start time.
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Table 1: Data for an illustrative example

i xi yi ϑi di oi ci oai cai obi cbi oci cci ri
0 150 150 0 0 - - - - - - - - (0,0)
1 162 107 30 1 4.19 5.19 - - - - - - (1,1)
2 199 213 20 1 - - 6.78 7.78 7.26 8.26 8.23 9.23 (1,1)
3 125 103 10 1 3.47 4.47 - - - - - - (1,0)
4 230 128 20 1 5.76 6.66 - - 5.66 6.66 5.76 6.76 (1,1)
5 55 68 10 1 0.92 1.92 - - - - - - (1,1)
6 186 26 20 1 2.77 3.77 - - - - - - (1,1)
7 231 243 30 1 - - 8.47 9.47 8.11 9.11 8.26 9.26 (1,0)
8 247 132 20 1 - - - - - - 6.08 7.08 (1,0)
9 89 61 30 1 1.19 2.19 - - - - - - (1,0)
10 234 146 20 1 - - - - 6.18 7.18 6.16 7.16 (1,1)
11 250 228 30 1 - - - - - - 8.19 9.19 (1,1)
12 159 89 10 1 3.44 4.44 - - - - - - (0,1)
13 105 81 40 1 2.22 3.22 - - - - - - (0,1)
14 149 183 20 1 - - 7.33 8.33 - - - - (0,1)
15 209 269 40 1 - - 8.16 9.16 8.39 9.39 - - (1,1)
16 212 26 10 1 3.39 4.39 - - - - - - (0,1)
17 152 241 30 1 - - 8.28 9.28 - - - - (1,0)
18 222 83 30 1 4.49 5.49 - - - - - - (0,1)
19 136 68 40 1 2.32 3.32 - - - - - - (0,1)
20 150 104 20 1 3.88 4.88 - - - - - - (1,1)
21 212 45 40 1 3.53 4.53 - - - - - - (0,1)
22 232 121 30 1 5.61 6.61 - - - - 5.61 6.61 (1,1)
23 255 132 10 1 - - - - - - 6.34 7.34 (1,1)
24 165 113 40 1 4.48 5.48 - - - - - - (1,1)
25 248 41 30 1 4.33 5.33 - - - - - - (1,1)
26 109 110 40 1 3.60 4.60 - - - - - - (1,0)
27 106 71 30 1 1.85 2.85 - - - - - - (1,0)
28 102 76 20 1 1.97 2.97 - - - - - - (1,0)
29 172 225 20 1 - - 7.20 8.20 8.38 9.38 - - (1,0)
30 52 63 10 1 0.65 1.65 - - - - - - (1,1)
31 175 281 20 1 - - 8.34 9.34 - - - - (1,1)
32 250 126 20 1 - - - - - - 6.04 7.04 (0,1)
33 188 142 10 1 - - 5.18 6.18 6.02 7.02 - - (1,1)
34 59 64 40 1 0.80 1.80 - - - - - - (1,1)
35 235 242 30 1 - - - - 8.20 9.20 8.25 9.25 (0,1)
36 140 214 30 1 - - 8.46 9.46 - - - - (1,0)
37 145 184 40 1 - - 7.59 8.59 - - - - (0,1)
38 184 277 40 1 - - 8.13 9.13 - - - - (1,1)
39 129 77 40 1 2.48 3.48 - - - - - - (1,1)

5.2. An illustrative example

We demonstrate an illustrative example showing the performance of each solution
technique presented above using a small-size instance. It consists of 39 assets that
are at risk during wildfires before and after a change in wind direction as shown in
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Table 1. There are three possible times for the wind change. Scenario a, b, and c
consider respectively a wind change at 6 (hours from now) with a probability of 0.5, 6.5
(hours from now) with a probability of 0.3, and 7 (hours from now) with a probability
of 0.2. As 6 is the earliest possible time for the wind change, it is referred to as the
staging time (ST). We use a time limit of 0.15 s in the experiment to see how each
algorithm works. The problem illustration for the example is the same as depicted in
Figure 1 where the blue, red and green lines refer to the fire front for scenarios a, b and
c, respectively.

There are three types of assets: (i) the assets that can only be serviced before ST in
stage 1 indicated if their closing time windows are less than ST, (ii) the assets that can
only be serviced after ST in stage 2 indicated if their opening time windows are greater
than ST, (iii) the assets that can be serviced either in stage 1 or stage 2 indicated if
their opening time windows are less than ST but their closing time windows are greater
than ST. In this example, there are 22 assets that potentially can be serviced before
ST in stage 1, 11 assets impacted by scenario a, 8 assets impacted by scenario b, and
10 assets impacted by scenario c. The example considers two different types of vehicles
with only one vehicle of each type available at a depot. The vehicles will be assigned
to service the assets with a total expected asset value of 827.

5.2.1. DR approach

By applying Algorithm 1, the solution represented by routes for each vehicle and
each scenario can be seen in Figure 5, while the protective service timeline is provided
in Table 2. Both vehicles start by going to service node 34 at 0.83, as this asset requires
both vehicles, and end up at the same location, i.e. node 24, in stage 1 with the start
time of 5.48. In stage 2 vehicle 1 has three options between servicing node 29 at 8.20 for
scenario a, node 10 at 6.99 for scenario b, and node 8 at 7.04 for scenario c depending
on the realisation of the wind change. Meanwhile, vehicle 2 can go to either node 14,
10, or 35 for scenario a, b or c, respectively.

Table 2: Service timeline given by the DR approach

Vehicle 1 Vehicle 2
Stage 1 Stage 2a Stage 2b Stage 2c Stage 1 Stage 2a Stage 2b Stage 2c
i si i si i si i si i si i si i si i si

34 0.83 29 8.20 10 6.99 8 7.04 34 0.83 14 8.33 10 6.99 35 9.25
9 2.19 36 9.46 7 9.11 7 9.26 19 2.35 35 9.20
1 4.19 1 4.19
24 5.48 24 5.48

Nodes 34, 9, 1, 19 and 24 are scheduled to be serviced in stage 1 with an expected
asset value of 180. In stage 2 expected asset values are 35 for scenario a, 24 for scenario
b and 16 for scenario c. Hence the expected value of serviced assets for both stages is
255 which corresponds to 30.83% of the total expected values of assets.
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(a) Routes for scenario a (b) Routes for scenario b

(c) Routes for scenario c

Figure 5: Routes of the DR approach

5.2.2. TPD approach

The solution of the first phase is directed towards a direction angle of 47.39◦, ob-
tained using Eq. (24). The angle reflects the most promising areas considering the
probability of each scenario in the second phase. The TPD approach gives the solution
as shown in Figure 6 with the service timeline presented in Table 3. Similar to the
DR approach, both vehicles start to service node 34 and end up at node 24 in stage
1. However, the start servicing time at node 24 is earlier than the DR as the TPD
minimises the start time. As a result, the feasibility of servicing assets in stage 2 is
improved.

If the wind changes at ST, vehicle 1 will visit node 2 by 6.78 and finish at node 7,
otherwise the vehicle will go to node 10 by 6.49 and finish at node 15 for scenario b or
go to node 8 by 6.54 and finish at 7 for scenario c. Meanwhile, vehicle 2 will service
nodes 2 and 37 for scenario a, nodes 10 and 15 for scenario b, or nodes 32 and 35 for
scenario c. The expected value of serviced assets is 35.31% of the total expected asset
values.
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(a) Routes for scenario a (b) Routes for scenario b

(c) Routes for scenario b

Figure 6: Routes of the TPD approach

Table 3: Service timeline given by the TPD approach

Vehicle 1 Vehicle 2
Stage 1 Stage 2a Stage 2b Stage 2c Stage 1 Stage 2a Stage 2b Stage 2c
i si i si i si i si i si i si i si i si

34 0.83 2 6.78 10 6.49 8 6.54 34 0.83 2 6.78 10 6.49 32 6.34
9 2.04 29 7.98 7 8.16 7 9.26 19 2.35 37 8.59 15 9.39 35 9.25
26 3.60 7 9.47 15 9.39 24 4.97
24 4.97

5.2.3. D-SDM approach

In this example, as the number of nodes in stage 1 is twice as large as the number
of assets in stage 2, stage 1 is split into two parts. The first part in stage 1 has a target
direction of 26.86◦ obtained from the assets in the second part. As the last part in stage
1, this second part is solved using a target direction considering the assets in the first
part of each scenario in stage 2 weighted by its probability. The target is 47.39◦ where
the direction angles of scenario a, b and c are 52.67◦, 45.40◦ and 37.16◦, respectively.
Routes for the D-SDM approach are depicted in Figure 7 with the schedule of services
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(a) Routes for scenario a (b) Routes for scenario b

(c) Routes for scenario c

Figure 7: Routes of the D-SDM approach

given in Table 4. For this example, the D-SDM gives 36.28% of total expected asset
values serviced.

Table 4: Service timeline given by the D-SDM approach

Vehicle 1 Vehicle 2
Stage 1 Stage 2a Stage 2b Stage 2c Stage 1 Stage 2a Stage 2b Stage 2c
i si i si i si i si i si i si i si i si

34 0.83 33 6.01 10 6.28 8 6.33 34 0.83 33 6.01 10 6.28 32 6.34
27 2.15 29 8.20 2 7.82 7 9.26 19 2.35 14 7.56 2 7.82 35 9.25
39 3.42 36 9.46 7 9.11 39 3.42 37 8.59 35 9.20
24 4.77 24 4.77

5.2.4. DS-SDM approach

This approach is implemented by setting one deterministic part in each stage with
a stochastic part in between. For this example, the stochastic part is composed by the
assets in the buffer zone with β = 2. When solving the deterministic part in stage 1,
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the target direction is 28.48◦ obtained from the assets in the stochastic part. When
solving the stochastic part, the objective for scenario a is directed towards a target
direction of 53.28◦ obtained from the assets in the last part of scenario a. Meanwhile,
for scenario b and c, the target direction is 48.49◦ and 43.30◦, respectively, obtained
from the assets in the last part of each scenario b and c. We can see that the target
direction for scenario a is steeper than scenario b, as scenario a occurs earlier than b.
Similarly, the target direction for scenario b is steeper than c. Routes for the DS-SDM
approach is illustrated in Figure 8 with the service timetable provided in Table 5. The
figure shows that the DS-SDM prefers to choose node 26 and 18 as the staging locations.
The DS-SDM can service 39.54% of the total expected asset values.

(a) Routes for scenario a (b) Routes for scenario b

(c) Routes for scenario c

Figure 8: Routes of the DS-SDM approach

5.2.5. Optimal solution

Routes for the optimal solution of the TSSP model obtained by CPLEX is shown
in Figure 9 with the service timeline is given in Table 6. It represents 39.78% of the
expected asset values serviced in total. The staging locations are 26 and 18 for vehicle
1 and 2, respectively.
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Table 5: Service timeline given by the DS-SDM approach

Vehicle 1 Vehicle 2
Stage 1 Stage 2a Stage 2b Stage 2c Stage 1 Stage 2a Stage 2b Stage 2c
i si i si i si i si i si i si i si i si

34 0.83 29 7.20 4 6.44 22 6.41 34 0.83 14 7.33 4 6.44 22 6.41
27 2.15 17 9.28 7 9.11 7 9.26 19 2.35 37 8.59 35 9.20 35 9.25
3 3.47 21 3.88
26 4.59 18 5.14

(a) Routes for scenario a (b) Routes for scenario b

(c) Routes for scenario c

Figure 9: Routes of the optimal solution

The complete comparison between the optimal solution and each solution technique
used in this paper is given in Table 7.

5.3. Benchmark instances

In the APP, the time window at each asset location is generated based on the
expected time of fires arriving at the asset. It is obtained by applying a fire spread
model to the assets that are at risk. The ideal benchmark instances have not only
various classes of point distribution, but also each instance in the same class has different
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Table 6: Service timeline given by the optimal solution

Vehicle 1 Vehicle 2
Stage 1 Stage 2a Stage 2b Stage 2c Stage 1 Stage 2a Stage 2b Stage 2c
i si i si i si i si i si i si i si i si

34 0.83 29 8.20 2 7.26 8 7.08 34 0.83 14 7.33 2 7.26 32 7.04
27 2.15 36 9.46 7 9.11 7 9.26 13 2.22 37 8.59 35 9.20 35 9.25
3 3.47 21 3.97
26 4.59 18 5.38

Table 7: Results for an illustrative example where P is the percentage of expected asset values protected

Solution
technique

Expected value of assets protected
P (%)

Stage 1 Stage 2a Stage 2b Stage 2c Total

DR 180 35 24 16 255 30.83
TPD 190 55 27 20 292 35.31

D-SDM 190 60 30 20 300 36.28
DS-SDM 230 55 24 18 327 39.54
Optimal 230 55 24 20 329 39.78

coordinates of assets. As there are no benchmark instances found in the literature
matching with this criteria, we generate new sets of benchmark instances. The time
windows of each asset are generated for three possible timings of a wind change.

Table 8: Operators for generating nine instances with different point coordinates from a master instance
using geometric transformations where Ω indicates the length of both axes

Instance New coordinates Operator

1 (x′, y′) = (x, y) Original point
2 (x′, y′) = (−x+ Ω, y) Reflection to y-axis
3 (x′, y′) = (x,−y + Ω) Reflection to x-axis
4 (x′, y′) = (−x+ Ω,−y + Ω) Rotation 180◦ clockwise
5 (x′, y′) = (y, x) Reflection to y = x
6 (x′, y′) = (−y + Ω, x) Rotation 270◦ clockwise
7 (x′, y′) = (y,−x+ Ω) Rotation 90◦ clockwise
8 (x′, y′) = (−y + Ω,−x+ Ω) Reflection to y = −x
9 (x′, y′) = (x+ Ω/2 mod Ω, y) Translation Ω/2 along x-axis
10 (x′, y′) = (x, y + Ω/2 mod Ω) Translation Ω/2 along y-axis

The instances are generated from the well-known Homberger and Gehring’s in-
stances for the VRP with time windows (Homberger & Gehring, 2005). We only took
the coordinates of each point and generated the time windows using our fire spread
model. Their instances consist of three different classes, i.e., randomised (R), clustered

25



(C), and randomised-clustered (RC) point distribution. We selected a problem size of
600 nodes where the points spread over a 300 x 300 Cartesian plane. To reflect a more
realistic landscape, the domain is scaled to represent a landscape of 100 x 100 km.

Each instance with the same class in the referred benchmark instances has the
same point distribution. Hence we only took an instance from each R, C and RC
classes and referred to them as the three master instances. As we need 10 instances
with different point coordinates in each class, we then generate other nine instances
using some geometric transformations applied to each master instance in each class.
This includes rotation, reflection and translation. Each point in the master instance is
transformed using operators listed in Table 8 where each operator produces an instance.
Hence we have a total of 30 instances.

We then applied our fire spread model to determine which assets are at risk of fire
and the time windows of each asset. The fire spreads from the bottom left side of
the domain with a speed of 10 km/h along the semi-major axis of an elliptical shape
both before and after a wind change. The wind change can happen in three potential
timings, i.e., 6.00, 6.30, and 7.00 hours from the time of planning within an 11-hour
planning horizon with probabilities of 50%, 30% and 20%, respectively. This yielded
280 out of 600 nodes on average in total impacted by three scenarios and denoted as set
2 instances. To obtain a lower problem size, set 1 instances are obtained by removing
the last 30% nodes from each set 2 instance obtaining 197 nodes on average. Hence
we have three sets of instances for each problem size. They are denoted as R1, C1 and
RC1 for set 1 instances, and R2, C2 and RC2 for set 2 instances.

Other attributes such as asset values and vehicle requirements associated with each
asset are randomly generated. Assets value of an asset is a random number in the
range of [1, 5] multiplied by 10, while vehicle requirements are randomly taken from a
set of {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}. For each problem
size, we use two sets of vehicles available at a depot with a uniform vehicle speed
of 50 km/h. They are (6, 6, 6) and (8, 8, 8) for the set 1 instances, and (9, 9, 9) and
(12, 12, 12) vehicles for the set 2 instances. Our benchmark instances can be accessed
through https://github.com/dn6514/Stochastic-APP.

5.4. Experimental setup

All experiments are performed on Australia’s computational infrastructure called
NCI using a single core and thread. We use a commercial solver CPLEX V12.10 for
all experiments. As we are working on an emergency problem, a time limit TL rep-
resenting operational time is needed especially for solving a large problem. We use a
time limit of 10 minutes as a reasonable computation time to test the solver’s ability in
solving the TSSP in a single run. All methods presented in this paper basically utilise
decomposition techniques. We determine a time limit for each sub-problem so that the
total elapsed time for each solution technique is comparable with around 10 minutes.

The DR approach decomposes the problem into |S| sub-problems where |S| refers to
the number of scenarios. As the first sub-problem is larger than other sub-problems, the
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time limit for the first sub-problem needs to be longer than others. The time limit for
the first sub-problem can be determined as 2(TL/(|S|+ 1)), while other sub-problems
can be set as TL/(|S|+ 1). In our experiments, we use a time limit of 300 seconds for
the first sub-problem, while for the rest of the sub-problems we use a time limit of 150
seconds.

Given |S| scenarios, the TPD approach decomposes the problem into |S| + 1 sub-
problems. The time limit for each sub-problem is then determined as TL/(|S|+ 1). As
we consider three scenarios, the time limit given for each sub-problem is 150 seconds.

The D-SDM and DS-SDM decompose the problem into relatively smaller sub-
problems. Solvers may solve some sub-problems to their optimality under a given
time limit to each sub-problem. Hence for the D-SDM and DS-SDM, the time limit
given to each sub-problem is found by trial and error. The time limit is adjusted so
that the total elapsed time is comparable with around 600 seconds. For the D-SDM,
we use a time limit of 300 seconds per sub-problem, while for the DS-SDM we use a
time limit of 150 seconds for each sub-problem. For some cases, the total elapsed time
can be over 600 seconds especially for larger problems.

5.4.1. D-SDM approach

We carried out experiments to find the best parameters of λ representing the number
of partitions in each stage. We took 10 instances from set 2 instances with three different
classes using (9,9,9) vehicles. They are three instances from each R2 and C2 and four
instances from RC2. The results is shown in Table 9. Based on a single factor ANOVA
test, the differences are statistically significant with a significance level of 0.05. The
table indicates that splitting the stage 1 and 2 assets into 3 and 2 partitions, respectively,
has improved the solution quality. This setting represents the characteristic of the

Table 9: Comparison of the percentage of expected asset values serviced using different values of λ per
stage for the D-SDM approach

Instance λ = (4, 3) λ = (3, 2) λ = (2, 2) λ = (2, 1)

r2-01 44.37 46.94 45.96 43.31
r2-02 44.45 49.33 49.33 46.02
r2-03 45.69 49.33 49.09 45.89
c2-01 40.35 42.41 42.41 38.92
c2-02 38.65 40.29 37.00 34.00
c2-03 43.60 46.33 48.97 46.69
rc2-01 44.30 45.66 45.00 42.71
rc2-02 40.40 42.60 40.75 36.63
rc2-03 45.45 50.19 48.66 45.18
rc2-04 43.81 46.17 46.79 42.08

Avg. 43.11 45.93 45.40 42.14

benchmark instances where the number of assets that are potentially impacted in stage
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1 is larger than those impacted in each scenario in stage 2.
Furthermore, the above results indicate that decomposing the problem into the right

sub-problem size is important. The more partitions we have, the worse solution quality
we get. In contrast, CPLEX may find it harder to solve within operational time if the
sub-problem size is still large. This is acceptable as the increasing number of partitions
can reduce the proximity to the optimal solution. We also found that the complexity
of a sub-problem is not only determined by the number of nodes, but also the length
of time windows and the number of vehicles. The longer the time windows and the
more vehicles considered, the more computational time is required. The time window
length determines the flexibility of start times, while the number of vehicles specify the
number of decision variables required. Therefore, there is no exact formula to determine
the sub-problem size.

5.4.2. DS-SDM approach

Similar to the D-SDM approach, decomposing the problem into appropriate sub-
problem size for the DS-SDM approach is a key. In addition to the size for deterministic
parts, the size for the stochastic part needs to be determined. We carried out exper-
iments using the same instances as in Table 9 for tuning the number of deterministic
parts λ and β additional nodes for the stochastic part. The results provide in Table 10
showing a comparison between λ = (2, 1) and λ = (3, 2) with various β.

Table 10: Comparison of the percentage of expected asset values serviced using different values of λ
and β for the DS-SDM approach

Instance
λ = (2, 1) λ = (3, 2)

β = 0 β = 10 β = 20 β = 0 β = 10 β = 20

r2-01 51.42 49.45 49.16 50.49 49.06 46.96
r2-02 53.07 51.63 51.39 50.48 45.95 46.20
r2-03 52.67 52.04 53.36 52.94 49.67 46.89
c2-01 44.87 45.40 44.26 44.97 43.06 42.61
c2-02 42.08 37.59 41.01 41.32 39.63 39.42
c2-03 54.00 53.81 52.89 50.46 48.39 47.63
rc2-01 49.36 48.54 47.94 46.83 46.64 46.56
rc2-02 45.12 45.88 45.40 45.30 43.52 43.43
rc2-03 54.81 56.18 52.53 49.53 50.49 47.21
rc2-04 49.40 51.60 50.53 51.02 48.22 44.30

Avg. 49.68 49.21 48.85 48.33 46.46 45.12

The results show that splitting the deterministic parts with λ = (2, 1) is better
than λ = (3, 2). This may be caused by the sub-problem size generated by λ = (3, 2)
is too small for solvers and hence it is further away from the best solution that can
be achieved. We then test the significance of results produced with various β and
λ = (2, 1). Based on a single factor ANOVA test, the differences are statistically not
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significant with a significance level of 0.05. This shows that considering the overlapping
assets in the buffer zone for the stochastic part with or without β additional assets
from each stage is not practically significant. This means that we can take any value of
β. Furthermore, the existence of a stochastic part has improved the solution produced
by the D-SDM approach provided in Table 9. This means that solving the TSSP
model around uncertainty plays a key role in handling the uncertainty. We then tried
to analyse the significance of means obtained by each problem class, i.e. clustered,
randomised, and randomised-clustered. A further single factor ANOVA test shows that
the means obtained by all problem characteristics are not statistically significant. This
means that the above analysis applies for all problem characteristics.

5.5. Numerical results

In this section we carry out experimental results comparing the performance of
each solution technique presented in this paper on our benchmark instances. First we
solve the TSSP model given in Section 3 using CPLEX to test the solver’s ability in
a single run with a given time limit of 10 minutes. The resulting lower bound (LB)
is the best solution achieved by the solver and is presented as LB (10m) in the result
tables. We then evaluate the performance of the proposed DS-SDM approach and
other solution techniques with comparable computation time. The performance of each
solution technique is indicated by the percentage of expected asset values serviced,
denoted as P(%). While the optimal solution of each instance is unknown, we run
CPLEX to solve the TSSP in a single run with a longer time limit of an hour to
improve the upper bound (UB) of feasible solution. This UB (1h) is used to measure
the solution quality obtained by each solution technique.

Table 11: Comparison of P(%) for set 1 instances with (6,6,6) vehicles

Instance
LB (10m)

P(%)
DR

P(%)
TPD
P(%)

D-SDM DS-SDM
UB (1h)

P (%) T (s) P (%) T (s)

R1 16.99 35.38 41.47 45.73 22.67 51.85 550.02 78.47
C1 9.90 33.43 36.79 41.76 67.17 47.72 510.94 75.05

RC1 13.16 33.97 38.59 43.42 43.70 49.66 529.06 75.49

Avg. 13.35 34.26 38.95 43.64 44.51 49.74 530.00 76.34

For the set 1 instances, the DS-SDM outperforms other solution techniques with
significant improvements as shown in Tables 11 and 12. The best solution achieved by
CPLEX under a time limit of 600 s, indicated by LB (10m), is around 13% of total
expected asset values either for (6,6,6) vehicles or for (8,8,8) vehicles. Compared with
LB (10m), the DR approach shows an increase of around 7% from 34.26% for (6,6,6)
vehicles to 41.64% for (8,8,8) vehicles. Furthermore, as the number of vehicles increases
from (6,6,6) to (8,8,8), the TPD approach shows a higher increase of more than 9%
from 38.95% to 48.57%. Meanwhile, the D-SDM and DS-SDM give more increases in
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Table 12: Comparison of P(%) for set 1 instances with (8,8,8) vehicles

Instance
LB (10m)

P(%)
DR

P(%)
TPD
P(%)

D-SDM DS-SDM
UB (1h)

P (%) T (s) P (%) T (s)

R1 18.51 44.11 50.08 57.89 76.54 65.26 579.54 90.48
C1 10.73 39.38 45.56 53.49 161.30 60.05 592.41 86.96

RC1 11.36 41.44 50.08 54.77 76.81 62.37 601.00 87.72

Avg. 13.54 41.64 48.57 55.39 104.88 62.56 590.98 88.39

solution quality by 11.75% and 12.82%, respectively, with additional two vehicles for
each type. This indicates that the DS-SDM is better at handling an increase in the
number of vehicles to improve the solution quality.

Furthermore, the DS-SDM produces higher quality solutions than other solution
techniques. This is indicated that the P(%) DS-SDM is closer to the UB (1h) than
other methods reflecting the proximity to the optimal solution. The DS-SDM obtains
a gap of around 26% for both (6,6,6) and (8,8,8) vehicles. The D-SDM is in second
place with a gap of around 33%. Third place is for the TPD with a gap of 37.39 for
(6,6,6) vehicles and 39.82% for (8,8,8) vehicles. The DR obtains a gap of 42.08% for
(6,6,6) vehicles and 46.75% for (8,8,8) vehicles. A huge gap is shown by the LB (10m)
compared to the UB (1h) with a gap of 63% and 74.85% for (6,6,6) and (8,8,8) vehicles,
respectively. Note that the increase in the number of vehicles leads to an increase in
feasible solutions. Hence the UB (1h) increases from Table 11 to Table 12.

Table 13: Comparison of P(%) for set 2 instances with (9,9,9) vehicles

Instance
LB (10m)

P(%)
DR

P(%)
TPD
P(%)

D-SDM DS-SDM
UB (1h)

P (%) T (s) P (%) T (s)

R2 1.86 33.65 37.72 48.97 568.09 53.10 647.64 93.26
C2 2.01 30.95 31.75 44.38 661.26 49.30 676.75 89.49

RC2 0.40 30.01 36.72 46.56 733.11 51.57 661.60 91.16

Avg. 1.43 31.53 35.40 46.64 654.15 51.32 662.00 91.31

Table 14: Comparison of P(%) for set 2 instances with (12,12,12) vehicles

Instance
LB (10m)

P(%)
DR

P(%)
TPD
P(%)

D-SDM DS-SDM
UB (1h)

P (%) T (s) P (%) T (s)

R2 0.95 39.33 47.46 62.24 767.55 66.06 675.02 98.10
C2 0.86 34.00 40.55 56.95 878.15 61.58 709.48 95.79

RC2 0.39 34.97 42.35 59.13 841.91 63.91 702.15 97.21

Avg. 0.73 36.10 43.45 59.44 829.20 63.85 695.55 97.03
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Tables 13 and 14 provide results on set 2 instances with two different number of
vehicles. Compared to set 1 instances, the problem size increases from 197 nodes on
average in set 1 instances to 280 nodes on average in set 2 instances. In addition to
the problem size, the number of vehicles also increases to handle the increase in the
number of nodes. While CPLEX with a single run suffers for this set 2 instances, the
proposed DS-SDM approach yields reasonable quality solutions and still outperforms
other methods especially the D-SDM approach. The gap between the P(%) DS-SDM
and the UB (1h) is 40% for (9,9,9) vehicles and 33.18% for (12,12,12) vehicles. As the
main competitor, the D-SDM resulted in gaps of 44.67% and 37.59% for (9,9,9) and
(12,12,12) vehicles, respectively. These huge gaps might be influenced by the quality of
upper bound obtained by CPLEX after an hour for these larger problems.

Looking at the results for each class of instances, the clustered distribution seems
to be the hardest class of problems to solve, while the randomised distribution gets
easier to solve. For instance, if we compare the performance of each solution technique
for each class in Table 11, C1 received the lowest P(%), followed by RC1 and R1. The
main factor influencing this difference is the density of points. The points in C1 are
denser than RC1, while RC1 as a combination of randomised and clustered distribution
is denser than R1. This density factor leads to an increase in feasible solutions. As the
points are close to one another in the clustered class, each vehicle visiting a particular
node will have more options to visit the subsequent node. Hence the denser the points
are, the harder the problem to solve.

In addition to the percentage of expected asset values serviced, the solution provides
the itinerary of each vehicle with the visit time at each location. This informs the
Incident Management Team (IMT) in response to wildfires on which assets should be
serviced and which scenario should be taken when the wind changes. The detailed
results can be seen at https://github.com/dn6514/Stochastic-APP.

6. Conclusion

During uncontrollable wildfires, an IMT is responsible for planning the optimal
deployment of resources to service various community assets, and thus reduce the risk
of their destruction. In this paper we have extended a method used for the solution of
the deterministic APP to handle a stochastic variant where a wind change is forecast
with uncertainty in the timing. The timing affects which assets are subject to the
wildfire hazard and hence the routing and scheduling of the resources under the control
of the IMT. A standard formulation and solution procedure cannot solve a realistic size
of this type of problem within the times and accuracy required for operational purposes.

In this work we have developed a method that is capable of solving this problem
with multiple scenarios of the timing of a wind change. Benchmark tests show that the
proposed method meets operational requirements. The method proposed is relatively
easy to implement. Once the problem has been divided into appropriate components, a
commercial solver can be used to solve each of these components. The main challenge
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lies in coupling the components appropriately. Moreover, larger scale problems simply
require division into further components each of which are chosen to be well within the
capabilities of the solver to solve within the times required. Thus, a change in scale is
much easier to accommodate than most heuristic methods for this type of problem.

The method proposed was shown to handle uncertainty in the timing of a wind
change. This is an important issue, and one of the most challenging, in south-eastern
Australia and elsewhere. The method, however, is capable of dealing with other un-
certainties that arise in the APP. For example, uncertainty associated with changes in
either or both wind speed and wind direction. Once the new time windows for each
asset have been determined for each scenario, the rest of the solution procedure remain
unchanged. Uncertainty in wind speed may lead to uncertain magnitude of impacted
areas. This will also affect the time windows of assets impacted. Furthermore, while
the proposed DS-SDM approach has shown to be efficient to handle large-scale prob-
lems, finding a more efficient approach is an interesting future research direction. A
stochastic version of ALNS, for instance, may be proposed to solve the stochastic APP
studied in this paper. A feasible solution for the stochastic ALNS can be produced
by constructing routes for each possible scenario considered, where the assets serviced
after the staging time are independent of the scenario chosen.
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Talarico, L., Meisel, F., & Sörensen, K. (2015). Ambulance routing for disaster response
with patient groups. Comput Operat Res , 56 , 120–133. doi:10.1016/j.cor.2014.
11.006.

Tofighi, S., Torabi, S., & Mansouri, S. (2016). Humanitarian logistics network design
under mixed uncertainty. Eur J Operat Res , 250 , 239–250. doi:10.1016/j.ejor.
2015.08.059.

Usanov, D., van de Ven, P., & van der Mei, R. (2020). Dispatching fire trucks under
stochastic driving times. Comput Operat Res , 114 , 104829. doi:10.1016/j.cor.
2019.104829.

Zhao, X., Ji, K., Xu, P., wen Qian, W., Ren, G., & nian Shan, X. (2020). A round-trip
bus evacuation model with scheduling and routing planning. Transp Res Part A:
Policy Pract , 137 , 285–300. doi:10.1016/j.tra.2020.05.008.

35

http://dx.doi.org/10.1016/j.cor.2014.11.006
http://dx.doi.org/10.1016/j.cor.2014.11.006
http://dx.doi.org/10.1016/j.ejor.2015.08.059
http://dx.doi.org/10.1016/j.ejor.2015.08.059
http://dx.doi.org/10.1016/j.cor.2019.104829
http://dx.doi.org/10.1016/j.cor.2019.104829
http://dx.doi.org/10.1016/j.tra.2020.05.008

	Introduction
	Literature review
	Problem definition and formulation
	Solution techniques
	Dynamic rerouting approach
	Two-phase decomposition approach
	Spatial decomposition based math-heuristic approach
	Deterministic SDM approach
	Deterministic-Stochastic SDM approach


	Computational experiments
	Fire spread model
	An illustrative example
	DR approach
	TPD approach
	D-SDM approach
	DS-SDM approach
	Optimal solution

	Benchmark instances
	Experimental setup
	D-SDM approach
	DS-SDM approach

	Numerical results

	Conclusion

