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Abstract

Metro timetables are usually planned with a top-down approach. After dividing the day into different
periods, the trains are scheduled between the terminals of the line with a fixed frequency per period. In this
paper we adopt an alternative paradigm where trains are scheduled individually. The schedule is developed
so as to best match the passenger demand, and trains may short-turn at intermediate stations, thus reversing
their direction before reaching the line terminal. This type of approach is particularly suited for automated
metro lines, since it has a limited impact on personnel management. Considering the objective of minimizing
the passenger waiting times on a two-directional metro corridor, we make two operating assumptions when
designing the train schedule. Specifically, we assume the presence of a root station, which cannot be
skipped by short-turning, and we assume that idling is only allowed immediately after a short-turn, and
for a maximum amount of time. We present a path-based formulation for the problem and develop an
efficient exact algorithm for it using a Benders-based branch-and-cut algorithm. We evaluate the proposed
formulation and algorithm on a number of test instances. Through our computational experiments, we
demonstrate the effectiveness of the developed formulation and algorithm.

Keywords: Metro scheduling, Short-turning, Demand-driven, Benders decomposition

1. Introduction

Tactical planning for metro lines is typically performed through a strictly hierarchical approach (see
Farahani et al. (2013), and Ceder (2016)). This planning is based on categorizing each day, e.g., winter-
workday, winter-festive. Each day is then further divided into several time periods, such as morning peak,
off-peak. Based on historical data, a timetable, predominately based on fixed frequencies for each time
period, is determined to guarantee a certain level of service while minimizing costs. Lastly, based on this
timetable, the operational planning phase establishes the train and crew schedules.

In practice, metro timetables are frequently constructed in a periodic manner, e.g., Liebchen (2008),
Kroon et al. (2009), Nachtigall & Voget (1996), Liebchen et al. (2010). Caprara et al. (2002) define the
train timetabling problem (TTP), which consists of determining a periodic timetable (i.e., a timetable that
repeats at every period) for a set of trains operating in a single one-way track, to minimize the deviations
from a given ideal timetable. The TTP has attracted much attention in the literature, e.g., Cacchiani et al.
(2008), Cacchiani et al. (2012).

More recently, a growing number of studies have started considering the train timetabling issue from a
passenger perspective. These optimize timetables by directly minimizing the passenger waiting times. Sun
et al. (2014) develop a demand-driven optimization model to determine the optimal headways of a one-
directional metro corridor. Canca et al. (2014) develop a non-linear integer programming model to optimize
demand-driven timetables for a one-directional metro corridor. Barrena et al. (2014a) and Barrena et al.
(2014b) investigate relaxing the periodic assumption in the timetable of a rail corridor under given passenger
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demands. Yin et al. (2017) develop two models for the joint minimization of the passenger waiting time and
the operating costs of the line in a bi-directional metro corridor.

Other recent research strands focused on the use of acceleration strategies in railway optimization, such
as stop skipping and short-turning. The latter entails that trains are not obliged to operate from terminal
to terminal, but may turn and reverse their direction in certain stations of a line. The use of acceleration
strategies has been extensively studied in transit networks, in particular in a bus context, e.g., Furth (1987),
Tirachini et al. (2011) and Cortés et al. (2011). Comparatively, their study in rail transit applications has
been rather limited.

Canca et al. (2012) discuss the introduction of additional shuttle services alongside the regular service
on overloaded segments of a railway line using short-turning, while allowing trains to run empty throughout
portions of the line. Canca et al. (2016) propose a model for handling disruptions in the demand of a transit
system through the optimization of short-turning services introduced alongside the pre-planned timetable.
To cope with overcrowding at stations of a metro line after a service disruption, Gao et al. (2016) propose
using stop-skipping patterns in the timetable of the trains. The objective of the model is minimizing the
delays with respect to the original timetable as well as the passengers’ waiting time, while guaranteeing
a minimum service level during the recovery period. Yang et al. (2020) propose a demand-driven train
timetabling model while employing a flexible short-turning strategy. The model is solved through the use
of a Lagrangian Relaxation. This was applied to a set of small artificially generated instances and on a
realistic testbed taken from the Beijing metro network.

Schettini et al. (2021b) optimize the schedule of a metro line during a large event, e.g., a football match or
a concert. This causes a surge of demand at a single station, where the event venue is located. The demand
not associated with the event is ignored. To better serve the line, each train is scheduled individually, and
trains are allowed to short-turn. The authors develop an iterated local search metaheursitic to optimize the
service. Four objective functions representing different service measures are evaluated.

Schettini et al. (2021a) define a demand-driven control paradigm on a discretized planning horizon
called direct timetabling. According to this paradigm, given the passenger demands over a fixed planning
horizon, trains are scheduled individually, with the possibility of short-turning, and with no predetermined
periodic structure on the train schedule. Moreover, trains are allowed to idle at any station. The resulting
optimization problem is called the direct timetabling problem (DTP), and is studied considering the objective
of minimizing passenger waiting times. The DTP allows a great deal of flexibility in the control decisions
of the line, which is used to adapt to variations in passenger demand. However, this flexibility results in
a complex problem setting, since each train is individually scheduled. Considering a bi-directional metro,
Schettini et al. (2021a) propose a cut generation algorithm developed for a flow-based formulation for the
DTP. Their procedure is capable of exactly solving medium sized instances.

In this paper, we consider a similar problem setting as the DTP proposed by Schettini et al. (2021a).
However, we impose the following two operating assumptions on the structure of the train schedule.

1) We assume the existence of a root station, which is a station that cannot be skipped by short-turning
(i.e., all trains are required to reach r before short-turning). This ensures the connectivity of the
line. Indeed, allowing trains to short-turn in a number of stations throughout the line may cause
the schedule to be disaggregated into several services. For example, considering a five-station line as
in Figure 1, there could be trains that loop predominately between stations one and two, and trains
that predominately loop between stations three and five. Such a situation is undesirable from an
operational perspective. Designating station three as the root station mitigates this behavior.

2) We impose that trains are only allowed to idle right after short-turning and for a maximum amount
time. As passengers will always alight before a train short-turns, this assumption entails that passen-
gers will not wait inside an idling train, which is desirable from a passenger perspective.

We refer to the DTP with the two above operating assumptions as the direct timetabling problem with a
root station (DTPR). We analyze the theoretical structure of DTPR solutions. Based on this analysis, we
define a path-based formulation to the DTPR. This is in contrast to the flow-based formulation defined in
Schettini et al. (2021a) for the DTP. We develop a Benders-based branch-and-cut algorithm for the DTPR
path-based formulation. We then demonstrate the effectiveness of this algorithm.
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(a) A schedule without the root assumption. (b) A schedule with the root assumption.

Figure 1: Comparison of possible train schedules with and without the root assumption.

The contributions of this paper are as follows:

1) defining the DTPR and proposing a path-based formulation for it.
2) developing an efficient exact Benders-based branch-and-cut algorithm for the DTPR.
3) demonstrating, through extensive experiments, the effectiveness of the developed algorithm.

The remainder of the paper is organized as follows: In Section 2, we describe the DTPR and provide a
path-based formulation for the problem, when short-turning is allowed in each station. Then, in Section 3,
we develop a Benders-based branch-and-cut algorithm for the DTPR, based on its path-based formulation.
In Section 4, we develop a compression approach to reduce the size of the problem when short-turning is
not allowed at all stations. In Section 5, we present our computational results. Lastly, our conclusions are
presented in Section 6. For the sake of conciseness, proofs are omitted from the main sections of the paper
and are presented in Appendix B.

2. The Direct Timetabling Problem with a Root Station

The DTPR consists of constructing the train schedule of a bi-directional metro over a given discretized
time horizon. Given the passenger demands over the time horizon, the objective of the DTPR is minimizing
the total passenger waiting time.

Let S = {1, ...,m} denote the ordered set of stations on the line, and Γ = {−1, 1} is the set of directions,
where 1 denotes the upstream direction, (i.e., 1, 2, . . . ,m), and −1 denotes the downstream direction, (i.e.,
m,m−1, . . . , 1). Let Fγ be the first station in direction γ ∈ Γ. We denote by Sγ,i the set of stations that lie
in direction γ relative to station i (See Fig. 2). Lastly, we use the short-hand υ(i, j) to denote the direction
implied by the pair of stations i and j (e.g., υ(4, 1) = −1).

Figure 2: Example of the stations on the line w.r.t. a given station i and a direction γ.

The planning horizon is divided in time-steps of length δ. Let T = {1, ..., h} be the set of time-steps.
Thus, time-step t ∈ T corresponds to the time interval (δ(t−1), δt]. The line is operated by Ψ identical trains.
We assume that the time to board at any station is fixed and constant for all stations. We denote by τi,j the
number of time-steps required for a train to go from station i to station j without short-turning, including
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dwelling time and time to board. For the sake of brevity, we will not make the distiction between a turning
operation performed at a terminal station and a short-turning operation performed at some other station
on the line. Therefore, in what follows we will use the term short-turn to refer to all turning operations
regardless of the station. We denote by ρ the number of time-steps required to perform a short-turn at
any station. Similar to Barrena et al. (2014a,b), the capacity of the trains is assumed to be sufficient to
accommodate all the passengers without overcrowding.

We denote by D the set of Origin-Destination pairs, i.e., D = {(i, j) : i, j ∈ S, i 6= j}. The number of
passengers that arrive at station i ∈ S with destination j ∈ S at time-step t ∈ T is denoted by ati,j . We
impose an upper bound g on the total number of time-steps that a passenger may wait. We note that the
parameter g is introduced for modeling purposes. In practice, g can be set to a rather high value, so that
a waiting time of g time-steps is not attained by any passenger. We have done so in the computational
experiments.

In the case of the DTP, no assumption is placed upon the schedule of the trains. As stated in the
introduction, in the DTPR we make the following two operating assumptions on the structure of the schedule.
Firstly, we assume the existence of a root station on the line. The root station is a designated station r,
which acts as the anchoring point of the line. All trains are required to reach r before short-turning. Thus,
a train going in direction γ ∈ Γ has to be moving away from r before short-turning, i.e., a short-turn can be
performed in station i if γ(i− r) ≥ 0. We refer to this assumption as the root assumption. The root station
is a parameter of the problem and should be selected by the line operator considering the distribution of
the passenger demand and exogenous factors, such as the position of relevant points of interest. We note
that the root station can conceivably be one of the terminal stations of the line, e.g., a metro line linking an
airport to the city. For the ease of notation, we use Sγ as a shorthand for Sγ,r. Secondly, we assume trains
are only permitted to idle right after having short-turned for a maximum of β time-steps. Since idling is only
permitted immediately after a short-turn, any idle time in the schedule is performed while no passengers are
on board the trains. Thus, the trains will dwell for the minimum required amount of time at each station.
We refer to this assumption as the no-idling assumption.

The solution to the DTPR consists of the sequence of actions performed by the trains over the planning
horizon, describing the schedule of the line that minimizes the total waiting time of the passengers. At any
given time-step, each train is either 1) moving to the next station in its current direction, or 2) performing
a short-turn at the current station, or 3) idling for one time-step.

We now develop a path-based formulation (PF0) for the DTPR. This formulation builds upon the basic
formulation of Schettini et al. (2021b) which was defined for a simpler problem setting. In the path-based
formulation, we represent the train movements using the paths they take relative to the root station. The
remainder of this section is organized as follows. In Subsection 2.1, we present a formal definition of a train
path, and discuss how paths can be used to represent a train schedule. In Subsection 2.2, we describe the
concept of equivalent time, which presents several modeling advantages in the formulation of the problem.
In Subsection 2.3, we present a partitioning of D which is used in the formulation of the problem. Lastly,
in Subsection 2.4, we present the PF0.

2.1. Train Paths

We define a path as the sequence of actions of a train between two consecutive visits of the root station.
Since the train only visits the root station at the start and the end of the path, a train will short-turn
exactly once while operating a path. Additionally, as for the no-idling assumption, the trains can only idle
immediately after short-turning. Therefore, all paths adhere the following structure: 1) the train departs
from the root station, 2) reaches a given destination station where it short-turns, 3) idles at the destination
station, and 4) returns to the root station.

Formally, a path is described by the tuple (t, γ, d, n), where t denotes the path starting time-step, γ
denotes the initial direction of the path, d is the destination station, and n is the path duration. As such,
path (t, γ, d, n) uniquely describes a train that departs from the root station in direction γ at time-step t,
then proceeds to its destination station d, arriving at d at time-step t + τd,r, short-turns at d, and finally
departs from d in direction −γ at time-step t+n− τd,r, arriving at r at time-step t+n, and thus effectively
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Figure 3: Example of path on a three-station line.

waiting n−ρ−τr,d−τd,r. Figure 3 shows an example of path on a five-station line. Since a train can idle for
at most β time-steps, a path with destination d has a maximum duration of β + τr,d + τd,r + ρ. We denote
by Qd = {τr,d + τd,r + ρ, . . . , β + τr,d + τd,r + ρ} the set of possible path durations in time-steps associated
with destination d.

A feasible train schedule to the DTPR can be fully represented through paths. To do so, we express the
schedule of each train as a sequence of paths in alternating directions. Furthermore, we are able to model
any possible starting position of the trains by artificially dispatching trains in time-steps preceding the start
of the planning horizon. Let Te = {−supi∈S(Qi), . . . , 0, . . . , h} be the set of possible starting times of the
paths. The value −supi∈S(Qi) is selected to allow for all possible initial positions of the trains on the line.
Ending conditions are directly implied by the paths starting near the end of the planning horizon.

In the path-based formulation we describe the train schedule using the binary path variable xtγ,d,n, which
takes the value of one if the path described by the tuple (t, γ, d, n) is used in the schedule, and zero otherwise.
We denote by x the path vector, which aggregates the path variables xtγ,d,n ∀γ ∈ Γ, d ∈ Sγ , n ∈ Qd, t ∈ T .

2.2. Equivalent Time

In this section, we discuss a remapping of the time axis, which presents several modeling advantages. In
principle, for each station, we will offset the time coordinate to account for the train travel time (Newell
(1993)). We refer to this local time coordinate as “Equivalent Time”. We note that Schettini et al. (2021b)
first applied this idea in the context of a two directional metro corridor. We further adapt this concept to
the DPTR problem setting.

The equivalent time relative to station i in direction γ at time t is defined with respect to the root station
r as:

f̄γ,i(t) =

{
t− τr,i if (i− r)γ ≥ 0

t+ τi,r if (i− r)γ < 0.
∀γ ∈ Γ, i ∈ S, t ∈ T (1)

The equivalent time at a station i corresponds to the time t scaled by the travel time between r and i, when
moving in direction γ. By definition, the equivalent time at the root station will apply no offset to the time
axis, i.e., f̄γ,r(t) = t ∀t ∈ T, γ ∈ Γ.

To demonstrate the value of this conversion, let us consider a train that departs from station i in direction
γ at time-step t, and reaches i + γ at time-step t + τi,i+γ . Converting those times to equivalent time, we
obtain f̄γ,i(t) = f̄γ,i+γ(t + τi,i+γ). Thus, a train serving the line from terminal to terminal without idling
would stop at all stations at the same equivalent time-step (relative to each station). See Fig. 4 for an
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example of the conversion to equivalent time. Note that the definition of equivalent time is also valid in the
case when the travel time between stations is a fractional number of time-steps.

(a) Moving away from the root station. (b) Approaching the root station.

Figure 4: Example of equivalent time on a three station line with non integer travel time between the stations. r = 1, τ1,2 = 2,
τ2,3 = 1.

For modeling convenience, we define T̄γ,i as the equivalent time set for station i in direction γ. The
elements of T̄γ,i correspond to the elements of T scaled according to f̄γ,i. As an example, consider the line
depicted in Figure 4, let T = {1, 2, . . . , 20}, then the equivalent time set at station 3 in the upstream direction
is T̄1,3 = {4, 5, . . . , 23}; and in the downstream direction, the equivalent time set is T̄−1,3 = {−1, 0, . . . , 18}.

We redefine the passenger demand accounting for the equivalent time. We denote by āt̄i,j the number of
passengers with origin i and destination j that enter the line at equivalent time t̄. Parameter ati,j relates to

the redefined passenger demand āt̄i,j as follows:

āt̄i,j = ati,j ∀(i, j) ∈ D, t ∈ T, t̄ ∈ T̄υ(i,j),i : t̄ = f̄υ(i,j),i(t).

For the sake of brevity, in what follows, we will use the tuple (i, j, t) to denote the passengers that arrives
at station i with destination j at equivalent time-step t relative to station i.

2.3. Partitioning of the OD pairs

We partition the set of OD pairs in D into three mutually exclusive sub-sets, depending on how they
relate to r. We refer to Fig. 5 for examples of the various OD pairs that belong to each partition.

The set Df is the set of OD pairs (i, j) in which i and j lie on the same side of the line, relative to the
root station, and i is closer to r than j, i.e., i, j ∈ Sγ and i is closer to r than j is. Formally:

Df = {i, j ∈ S : |i− r| < |j − r| ∧ (∃γ ∈ Γ : i, j ∈ Sγ)}. (2)

Similarly, Db is the set of OD pairs (i, j) in which i and j lie on the same side of the line, relative to the
root station, and i is farther from r than j, i.e., i, j ∈ Sγ and j is closer to r than i is. Formally:

Db = {i, j ∈ S : |i− r| > |j − r| ∧ (∃γ ∈ Γ : i, j ∈ Sγ)}. (3)

Lastly, Dc is the set of OD pairs that lie on opposite sides of the line, relative to the root station, thus
representing passengers that need to pass through the root station. Formally:

Dc = {i, j ∈ S : (∃γ ∈ Γ : i ∈ Sγ ∧ j 6∈ Sγ)}. (4)
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Figure 5: Examples of OD pairs belonging to Df , Db and Dc.

We define the trip of passengers (i, j, t) as the sequence of paths that the passengers take to reach their
destination. We note that a train operating a path in direction γ is not limited to serving passengers headed
in that direction. Passengers headed in direction −γ may also board the train while it is returning towards
the root station. Considering passengers (i, j, t), we now state the conditions under which they are able to
board a given train operating path (t′, γ, d, n). We distinguish three cases.

1) passengers (i, j, t) where (i, j) ∈ Df , are able to board a train operating path (t′, γ, d, n) if

γ = υ(i, j), d ∈ Si,γ , t′ ≥ t.

Additionally, if d ∈ Sj,γ , then path (t, γ, d, n) reaches station j before short-turning and the passengers
arrive at their destination at equivalent time-step t. Conversely, if path (t, γ, d, n) does not reach j before
short-turning, the passengers will need to alight at station d. After alighting, the passengers will have to
wait for a future train to reach their destination as if they just arrived at station d at equivalent time-step
t′.

2) passengers (i, j, t) where (i, j) ∈ Db, are able to board a train operating path (t′, γ, d, n) if

γ = −υ(i, j), d ∈ Sγ,i, t′ + n ≥ t.

We note that in this case, all paths that reach station i also pass by station j at equivalent time-step t′+n,
since j lies between i and r.

3) passengers (i, j, t) where (i, j) ∈ Dc. No single path is able to reach both stations i and j, since those
stations lie on opposite sides of r. In these cases, the trajectory of the passengers has to be split into two trip
legs: i to r and r to j. On the first leg, the passengers are able to board a train operating path (t′, γ, d, n) if

γ = −υ(i, j), d ∈ Sγ,i, t′ + n ≥ t.

We note that this is the same boarding condition for OD pairs (i, j) ∈ Db. If these conditions hold, the
passengers are able to reach r at time-step t′ + n. From r, they are then able to board a train that is
operating path (t′′, γ′, d′, n′) if

γ′ = −γ, t′′ ≥ t′ + n.
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If the passengers board the train, they depart from the root station at time-step t and, if d′ ∈ Sj,γ′ , arrive
at their destination at equivalent time-step t. If d′ 6∈ Sj,γ′ the same considerations we drew for case 1) may
be applied. We note that accounting for trip legs i to r and r to j in separation does not imply that the
passengers alight at the root station. Indeed, the same train may be operating the path that delivers the
passengers from i to r as well as the path that delivers the passengers from r to j.

The number of possible trips that passengers can take may grow exponentially with the number of
stations. Thus, in general, it is not possible to fully enumerate them. In what follows, we establish that only
a limited number of trips need to be considered. Specifically, we show that the trip with the least waiting
time for passengers (i, j, t) can be completed by boarding at most two properly selected trains. Lemmas 1
and 2, show that for (i, j) ∈ Df , (i, j) ∈ Db the trip with the least waiting time is established by boarding a
single train, whereas Lemma 3 shows that for (i, j) ∈ Dc the trip with the least waiting time is established
by boarding at most two trains.

Lemma 1. Given a feasible path vector x, the trip with the least waiting time for passengers (i, j, t) where
(i, j) ∈ Df is established by only boarding the train stating at time-step:

min
t′∈T

(
t′ :

∑
d∈Sυ(i,j),j

∑
n∈Qd

xt
′

υ(i,j),d,n = 1 ∧ t′ ≥ t
)
,

i.e., the first train passing by station i headed to station j seen by passengers (i, j, t).

Lemma 2. Given a feasible path vector x, the trip with the least waiting time for passengers (i, j, t) where
(i, j) ∈ Db is established by only boarding the train starting at time-step:

min
t′∈T

(
t′ :

∑
d∈S−υ(i,j),i

∑
n∈Qd

xt
′−n
−υ(i,j),d,n = 1 ∧ t′ ≥ t

)
,

i.e., the first train headed towards r seen by passengers (i, j, t).

Lemma 3. Given a feasible path vector x, the trip with the least waiting time for passengers (i, j, t) where
(i, j) ∈ Dc is established by boarding at most two trains, specifically boarding the first train passing by station
i headed towards r or j at time-step:

min
t′∈T

(
t′ :

∑
d∈S−υ(i,j),i

∑
n∈Qd

xt
′−n
−υ(i,j),d,n = 1 ∧ t′ ≥ t

)
,

then departing from the root station at time-step:

min
t′′∈T

(
t′′ :

∑
d∈Sυ(i,j),j

∑
n∈Qd

xt
′

υ(i,j),d,n = 1 ∧ t′′ ≥ t′
)
.

As a result of Lemmas 1–3, we conclude that the passengers can be assumed to never wait at any station
other than their origin station or the root station. Recalling that passengers may spend at most g total time-
steps waiting for trains to arrive, the number of possible trips of passengers (i, j, t) where (i, j) ∈ Df ∪Db

is at most g, since the passengers will board exactly one train to reach their destination and therefore may
only wait at their origin station. Similarly, the theoretical number of possible trips available to passengers

(i, j, t) where (i, j) ∈ Dc is at most
(
g+2

2

)
= (g+2)(g+1)

2 , accounting for the fact that the passengers can wait
for a train both at their origin station as well as at r, waiting at most g time-steps in total.

Given that g is at most equal to the length of the planning horizon, those trips can be enumerated and
explicitly addressed in the model. We denote by ∆ = {0, ..., g} the set of possible waiting times experienced
by the passengers at a station.
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We define the binary variable yt,δi,j , describing the trajectory of the passengers (i, j, t) where (i, j) ∈
Df ∪ Db. The variable yt,δi,j takes the value of one if passengers (i, j, t) board a train, headed to j after
having waited δ ∈ ∆ time-steps (i.e., the passengers board a train headed to their destination at equivalent

time-step t + δ), and zero otherwise. Similarly, the binary variable yt,δ,δ
′

i,j describes the trajectory on the

line of the passengers (i, j, t) where (i, j) ∈ Dc. The variable yt,δ,δ
′

i,j is one if passengers (i, j, t) board a train
headed to the root station after having waited δ ∈ ∆ time-steps, once at the root station the passengers
wait for δ′ − δ time-steps for the train that will bring them to their destination (with δ′ ∈ ∆), and zero
otherwise. Note that δ′ = δ implies that the passengers will not alight the first train they boarded and will
move directly from i to j.

2.4. Path-Based Formulation

Using the concepts and notation described thus far, the DTPR is formulated as follows.

[PF0] min
∑

(i,j)∈Df

∑
t∈T̄υ(i,j),i

∑
δ∈∆

(
δāti,jy

t,δ
i,j

)
+

∑
(i,j)∈Db

∑
t∈T̄υ(i,j),i

∑
δ∈∆

(
δāti,jy

t,δ
i,j

)
+

∑
(i,j)∈Dc

∑
t∈T̄υ(i,j),i

∑
δ∈∆

∑
δ′∈∆:δ′≥δ

(
δ′āti,jy

t,δ,δ′

i,j

)
(5)

∑
t∈Te\T

∑
γ∈Γ

∑
d∈Sγ

∑
n∈Qd

xtγ,d,n ≤ Ψ (6)

∑
d∈S−γ

∑
n∈Qd

xt−n−γ,d,n =
∑
d∈Sγ

∑
n∈Qd

xtγ,d,n ∀t ∈ T, γ ∈ Γ (7)

∑
d∈Sγ

∑
n∈Qd

xtγ,d,n ≤ 1 ∀t ∈ T, γ ∈ Γ (8)

xtγ,d,n +
∑

d′∈Sγ,d+γ

∑
n′∈Qd′

x
t′−τr,d−n′
γ,d′,n′ ≤ 1 ∀γ ∈ Γ, d ∈ Sγ , n ∈ Qd, t ∈ T, t′ ∈ Ttd,

Ttd = {t′ ∈ Te : τr,d + 1 + t ≤ t′ ≤ t+ n− τr,d} ∀γ ∈ Γ, t, t′ ∈ Te, d ∈ Sγ (9)∑
δ∈∆

yt,δi,j = 1 ∀(i, j) ∈ Df ∪Db, t ∈ T̄υ(i,j),i (10)∑
δ∈∆

∑
δ′∈∆:δ′≥δ

yt,δ,δ
′

i,j = 1 ∀(i, j) ∈ Dc, t ∈ T̄υ(i,j),i (11)

yt,δi,j ≤
∑

d∈S−υ(i,j),i

∑
n∈Qd

xt+δυ(i,j),d,n ∀(i, j) ∈ Df , t ∈ T̄υ(i,j),i, δ ∈ ∆ (12)

yt,δi,j ≤
∑

d∈Sυ(i,j),j

∑
n∈Qd

xt+δ−n−υ(i,j),d,n ∀(i, j) ∈ Db, t ∈ T̄υ(i,j),i, δ ∈ ∆ (13)

∑
δ′∈∆:δ′≥δ

yt,δ,δ
′

i,j ≤
∑

d∈S−υ(i,j),i

∑
n∈Qd

xt+δ−n−υ(i,j),d,n ∀δ ∈ ∆, (i, j) ∈ Dc, t ∈ T̄υ(i,j),i (14)

∑
δ∈∆:δ≤δ′

yt,δ,δ
′

i,j ≤
∑

d∈Sυ(i,j),j

∑
n∈Qd

xt+δ
′

υ(i,j),d,n ∀δ′ ∈ ∆, (i, j) ∈ Dc, t ∈ T̄υ(i,j),i (15)

xtγ,d,n ∈ {0, 1} ∀γ ∈ Γ, d ∈ Sγ , n ∈ Qd, t ∈ Te (16)

yt,δi,j ∈ {0, 1} ∀(i, j) ∈ Df ∪Db, t ∈ T̄υ(i,j),i, δ ∈ ∆ (17)

yt,δ,δ
′

i,j ∈ {0, 1} ∀(i, j) ∈ Dc, t ∈ T̄υ(i,j),i, δ, δ
′ ∈ ∆ : δ ≤ δ′ (18)
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Figure 6: An example of two unfeasible paths that occur when β > 0.

The objective function (5) minimizes the total waiting time experienced by the passengers. Constraint (6)
enforces the limit on the number of trains. It limits the number of paths that can be dispatched before the
start of the planning horizon, i.e., paths with starting time t ∈ Te\T . Constraints (7) balance the flow of
trains at the root station. At each time-step t ∈ T , a path can start in direction γ ∈ Γ if another path with
direction −γ ends at the same time. Constraints (8) prevent more than one path from starting at the same
time-step in the same direction. In combination with (7), the constraints also prevent more than one path
from ending at the same time-step. We note that this is not sufficient to fully prevent scheduling conflicts
on the line, as it fails to avoid conflicts that may occur when β > 0 (see Fig. 6 for an example). To cover
these cases, constraints (9) prevent the idle period of a path from overlapping with another one, at each
short-turning station, and at each time-step.

Constraints (10) and (11) ensure that all passengers select a trip to their destination. Constraints
(12) and (13) enforce the consistency of the selected trips with the selected paths for passengers with OD
(i, j) ∈ Df ∪Db. Similarly, constraints (14) and (15) enforce the consistency of the selected trips with the
selected paths for passengers with OD (i, j) ∈ Dc with the train paths, considering separately the two trip
legs (i, r) and (r, j). Lastly, constraints (16), (17), and (18) enforce the domain of the variables. We now
show that constraints (17)–(18) can be relaxed.

Lemma 4. Given a feasible path vector x̄, the constraint matrix of formulation PF0 is totally unimodular.

Assume that path vector x̄ satisfies (6)–(9), (16), i.e., yields a feasible schedule. Given that the path
vector x̄ is binary, the right-hand side of the constraints (10)–(15) is integer. Thus, as for Lemma 4, the
binary domain constraints (17)–(18) can be replaced with:

yt,δi,j ≥ 0 ∀(i, j) ∈ Df ∪Db, t ∈ T̄υ(i,j),i, δ ∈ ∆ (19)

yt,δi,j ≤ 1 ∀(i, j) ∈ Df ∪Db, t ∈ T̄υ(i,j),i, δ ∈ ∆ (20)

yt,δ,δ
′

i,j ≥ 0 ∀(i, j) ∈ Dc, t ∈ T̄υ(i,j),i, δ, δ
′ ∈ ∆ : δ ≤ δ′. (21)

yt,δ,δ
′

i,j ≤ 1 ∀(i, j) ∈ Dc, t ∈ T̄υ(i,j),i, δ, δ
′ ∈ ∆ : δ ≤ δ′. (22)

The upper bound constraints (20) and (22) are dominated by constraints (10) and (11) respectively, and
thus can be omitted from the formulation. Therefore, replacing constraints (17)–(18) with (19) and (21)
results in a formulation equivalent to PF0, we refer to this new formulation as PF.

3. A Benders-Based Branch-and-Cut Algorithm for the DTPR

In this section, we develop a Benders-based branch-and-cut algorithm (BD) based on formulation PF.
An overview of Benders decomposition for linear and integer programming is provided by Rahmaniani et al.
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(2017). The basic idea of the decomposition is to simplify the solution of a complex problem by isolating
its complicating variables, i.e., variables which, once fixed, make the resulting sub-problem significantly
easier to solve. Using Benders decomposition, problems are solved in an iterative way. At each iteration, a
relaxed version of the problem with only the complicating variables is solved, then its solution is linearized
and projected onto the space of the remaining variables. From the projection, valid inequalities on the
complicating variables are derived, and the process is iterated until converging to optimality.

In practice, it is convenient to implement the Benders decomposition in a branch-and-cut framework.
This approach is commonly referred to as Benders-based branch-and-cut (Naoum-Sawaya & Elhedhli, 2013;
Rahmaniani et al., 2017). In this framework, the separation of violated Benders cuts is performed within
the search through the use of solver callback functions. This has the advantage not having to solve a MILP
from scratch at every iteration, thus, considerably speeding up the solution. Therefore, we implement the
Benders decomposition through a Benders-based branch-and-cut framework.

Additionally, Benders based methods can be further accelerated through the use of tailored implementa-
tions that exploit the structure of the problem. Tailored methods have been successfully applied in several
fields such as production-inventory planning (Golari et al., 2017), layout planning (Sudermann-Merx et al.,
2021), and stochastic network design (Crainic et al., 2021). In our proposed algorithm, we derived closed-
form solutions for the Benders sub-problems. This allows us to solve the sub-problems analytically, without
solving the associated LP.

For presentation convenience, in Subsection 3.1, we first show the structure of the Benders sub-problems
utilized in the decomposition. In Subsection 3.2, we show the formulation of the master problem. In
Subsection 3.3, we discuss the properties of Benders cuts added to the master problem and derive closed-
form solutions for the Benders sub-problems. Lastly, in Subsection 3.4, we present an efficient procedure for
the separation of the Benders cuts, given an incumbent solution. We recall that formal proofs are presented
in Appendix B.

3.1. Benders Sub-Problems
We designate the path variables, i.e., xtγ,d,n ∀γ ∈ Γ, d ∈ Sγ , n ∈ Qd, t ∈ T , as the complicating variables.

By fixing the path vector x to x̄, constraints (6)–(9), (16) can be dropped from formulation PF0. There-
fore, PF reduces to constraints (10)–(15), (19), (21), and decomposes into several smaller sub-problems.
Specifically, one for each passenger tuple (i, j, t).

Each Benders sub-problem (i, j, t), addresses the minimization of the total waiting time experienced by
the corresponding passenger, denoted as ηti,j . The Benders sub-problems have different structures depending
on the partition of OD pairs defined in Section 2.3. We recall that υ(i, j) denotes the direction implied by
the pair of stations i and j. For the ease of notation, in the rest of this section, let υ = υ(i, j).

3.1.1. Case Df and Case Db

The sub-problem associated with passengers (i, j, t) where (i, j) ∈ Df is as follows.

[PDf ] min
∑
δ∈∆

(δāti,jy
t,δ
i,j ) (23)

∑
δ∈∆

yt,δi,j = 1 (24)

yt,δi,j ≤
∑
d∈Sγ,j

∑
n∈Qd

x̄t+δυ,d,n ∀δ ∈ ∆ (25)

yt,δi,j ≥ 0 ∀δ ∈ ∆ (26)

We write the dual of the sub-problem PDf using λti,j as the dual variable corresponding to constraint

(24), and πt,δi,j as the dual variables corresponding to constraints (25).

[BDf ] max ηti,j = λti,j −
∑
δ∈∆

(
πt,δi,j

∑
d∈Sγ,j

∑
n∈Qd

x̄t+δυ,d,n

)
(27)
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λti,j − π
t,δ
i,j ≤ δā

t
i,j ∀δ ∈ ∆ (28)

λti,j ≥ 0 (29)

πt,δi,j ≥ 0 ∀δ ∈ ∆ (30)

We derive the sub-problem associated with case Db and dualize it following the same procedure. The
formulation of sub-problem PDb and its dual BDb are reported in Appendix A.

3.1.2. Case Dc

The Benders sub-problem associated with passengers (i, j, t) where (i, j) ∈ Dc is as follows.

[PDc] min
∑
δ∈∆

∑
δ′∈∆:δ′≥δ

(
δ′āti,jy

t,δ,δ′

i,j

)
(31)

∑
δ∈∆

∑
δ′∈∆:δ′≥δ

yt,δ,δ
′

i,j = 1 (32)

∑
δ′∈∆:δ′≥δ

yt,δ,δ
′

i,j ≤
∑

d∈S−γ,i

∑
n∈Qd

x̄t+δ−nυ,d,n ∀δ ∈ ∆ (33)

∑
δ∈∆:δ≤δ′

yt,δ,δ
′

i,j ≤
∑
d∈Sγ,j

∑
n∈Qd

x̄t+δ
′

−υ,d,n ∀δ′ ∈ ∆ (34)

yt,δ,δ
′

i,j ≥ 0 ∀δ, δ′ ∈ ∆ : δ ≤ δ′ (35)

We use ξti,j as the dual variable corresponding to constraint (32), θt,δi,j as the dual variables corresponding

to constraints (33), and φt,δi,j as the dual variables corresponding to (34). We dualize the linear relaxation of
sub-problem PDc as follows.

[BDc] max ηti,j = ξti,j −
∑
δ∈∆

(
θt,δi,j

∑
d∈S−γ,i

∑
n∈Qd

xt+δ−nυ,d,n + φt,δi,j
∑
d∈Sγ,j

∑
n∈Qd

xt+δ−υ,d,n

)
(36)

ξti,j − θ
t,δ
i,j − φ

t,δ′

i,j ≤ δ
′āti,j ∀δ, δ′ ∈ ∆ : δ ≤ δ′ (37)

ξti,j ≥ 0 (38)

θt,δi,j ≥ 0 ∀δ ∈ ∆ (39)

φt,δi,j ≥ 0 ∀δ ∈ ∆ (40)

3.2. Benders Master Problem

In the Benders decomposition, we use variable ηti,j to denote the waiting time experienced by all pas-
sengers (i, j, t). We note that ηti,j corresponds to the objective value of the Benders sub-problem associated
with passengers (i, j, t). We denote by ω the iteration number of the Benders-based branch-and-cut. The

set K
(ω)
(i,j,t) denotes the set of Benders optimality cuts added to the sub-problem associated with passengers

(i, j, t) at iteration ω. For a given sub-problem (i, j, t) (where (i, j) ∈ Df ∪Db) and index k ∈ K(ω)
(i,j,t), the

parameters λ
t,(k)
i,j and π

t,δ,(k)
i,j store the values of the dual solution that was generated in the k-th optimality

cut for the sub-problem. The parameters ξ
t,(k)
i,j , θ

t,δ,(k)
i,j and φ

t,δ,(k)
i,j do the same in the case of (i, j) ∈ Dc.

We maintain cuts over the iterations. At iteration ω the Benders master problem is as follows.

[BMP]
(ω)

min
∑

(i,j)∈D

∑
t∈T̄υ(i,j),i

ηti,j (41)
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(6)–(9), (16)

ηti,j ≥ λ
t,(k)
i,j −

∑
δ∈∆

π
t,δ,(k)
i,j

∑
d∈Sυ(i,j),j

∑
n∈Qd

xt+δυ(i,j),d,n

∀(i, j) ∈ Df , t ∈ T̄υ(i,j),i, k ∈ K
(ω)
(i,j,t) (42)

ηti,j ≥ λ
t,(k)
i,j −

∑
δ∈∆

π
t,δ,(k)
i,j

∑
d∈S−υ(i,j),i

∑
n∈Qd

xt+δ−n−υ(i,j),d,n

∀(i, j) ∈ Db, t ∈ T̄υ(i,j),i, k ∈ K
(ω)
(i,j,t) (43)

ηti,j ≥ ξ
t,(k)
i,j −

∑
δ∈∆

(
θ
t,δ,(k)
i,j

∑
d∈S−υ(i,j),i

∑
n∈Qd

xt
′+δ−n
−υ(i,j),d,n + φ

t,δ,(k)
i,j

∑
d∈Sυ(i,j),j

∑
n∈Qd

xt
′+δ
υ(i,j),d,n

)
∀(i, j) ∈ Dc, t ∈ T̄υ(i,j),i, k ∈ K

(ω)
(i,j,t) (44)

The objective function (41) minimizes the total passenger waiting time. Constraints (42)–(44) impose the
optimality cuts generated by the Benders sub-problems. Note that, by construction, sub-problems BDf ,
BDb, and BDc are always feasible and bounded from above. Therefore, since the sub-problems cannot be
unbounded, no feasibility cuts are required.

As previously mentioned, PF is solved using a Benders-based branch-and-cut algorithm through the use
of solver callbacks which are called at integer nodes of the search tree. Additionally, in the implemented
algorithm, constraints (9) are treated as lazy cuts and verified when no violated Benders cuts are found. For
the sake of convenience, we refer to the relaxed master problem formulation, i.e., (41), (6)–(8), (16), as RMP,
which is solved using a state-of-the-art MILP solver. At integer nodes, the separation procedure is invoked.
If no violated cut is found, the current solution is feasible and can be accepted as the new incumbent. If a
cut is found, the node has to be solved again. Afterwards, the solver resumes the search. For simplicity, in
what follows, we will be using “cuts” to refer both to the solution of the dual sub-problem and to the actual
cut that is introduced in the master problem.

3.3. The Benders Cuts

In this section, we discuss several theoretical properties of the Benders cuts (42)–(44). Namely, we
develop parametric closed-form solutions for each of the dual sub-problems BDf , BDb, and BDc. We also
show the choices of the parameters that yield an optimal solution and prove them to be Pareto-optimal
according to Magnanti & Wong (1981). For the ease of notation, in the rest of this section, let υ = υ(i, j).

3.3.1. Case Df and Case Db

In the subsequent discussion, we focus only on case Df . We note that all the properties and Lemmas
described for case Df also hold for case Db with minimal adjustments.

For (i, j, t), where (i, j) ∈ Df , for a given σ ∈ N0, a special case of (42) is the following.

ηti,j ≥ āti,j
(
σ −

∑
δ∈∆:δ≤σ

(σ − δ)
∑
d∈Sυ,j

∑
n∈Qd

xt+δυ,d,n

)
(45)

Lemma 5. Cut (45) is valid for the DTPR, and dominates all other cuts (42) with λti,j = āti,jσ, ∀σ ∈ N0.

Lemma 6. Given a path vector x̄, for a given σ ∈ N0, Benders cut (45) is generated by an optimal solution
of the BDf sub-problem if exactly one train is available to serve the customers (i, j) in the equivalent time
interval [t, t+ σ], i.e., it holds:

σ ≥ 0 :
∑

δ∈∆:δ≤σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1 (46)

Proposition 1. Benders cuts of the form (45) are Pareto-optimal ∀σ ∈ N0.
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3.3.2. Case Dc

For (i, j, t), where (i, j) ∈ Dc, the optimality cut associated with sub-problem BDc is (44). Given
σ, µ ∈ N0 : µ ≤ σ, a special case of cut (44) is the following.

ηti,j ≥ āti,j
(
σ −

∑
δ∈∆:δ<µ

(σ − δ)
∑

d∈S−υ,i

∑
n∈Qd

xt+δ−n−υ,d,n −
∑

δ∈∆:µ≤δ<σ

(σ − δ)
∑
d∈Sυ,j

∑
n∈Qd

xt+δυ,d,n

)
(47)

Lemma 7. Let σ, µ ∈ N0 : µ ≤ σ, cut (47) is valid for DTPR.

Given a path vector x̄, let us consider the trajectory of passengers (i, j, t). As for Lemma 3, passengers always
reach their destination boarding at most two trains. Thus, we can distinguish two cases: 1) passengers
(i, j, t) board exactly one train to reach their destination, or 2) passengers (i, j, t) board two different trains,
alighting at station r.

We now show how x̄ relates to these two cases. Let us denote by t1 the earliest equivalent time-step
passengers (i, j, t) can depart from i to reach station r. Similarly, let t2 be the earliest equivalent time-step
passengers (i, j, t) can depart from r to reach station j. If t1 = t2 passengers (i, j, t) will board one train to
reach their destination, i.e., case 1). Conversely, if t1 < t2 they will instead board two trains, i.e., case 2).
Formally, case 1) implies the following.

∃p ≥ 0 :
∑

d∈S−υ,i

∑
n∈Qd

x̄t+p−n−υ,d,n = 1 ∧
∑

δ∈∆:δ≤p

∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 1

∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+pυ,d,n = 1 (48)

Case 2) implies the following.

∃p′ > p ≥ 0 :
∑

d∈S−υ,i

∑
n∈Qd

x̄t+p−n−υ,d,n = 1 ∧
∑

δ∈∆:δ<p

∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 0

∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+p
′

υ,d,n = 1 ∧
∑

δ∈∆:p<δ<p′

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 0. (49)

Lemma 8. Given a path vector x̄, if x̄ satisfies (48), there exist σ, µ ∈ N0 such that: 1) in the equivalent
time interval [t, t + µ] exactly one train is available to bring the passengers from station i to station j at
equivalent time-step t + k, with k ∈ [0, µ], 2) in the equivalent time interval [t, t + µ] no other trains are
available to bring the passengers at station i to r, and 3) in the equivalent time interval [t + µ, t + σ] no
trains depart from r headed to station j. Formally:

1) ∃k ∈ [0, µ] :
∑

d∈S−υ,i

∑
n∈Qd

x̄t+k−n−υ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1 (50)

2)
∑

δ∈∆:δ≤µ

∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 1 (51)

3)
∑

δ∈∆:δ>µ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 0 (52)

Then an optimal solution of BDc generates cut (47).

Lemma 9. Given a path vector x̄, if x̄ satisfies (49), there exist σ, µ ∈ N0 : σ ≥ µ such that: 1) in the
equivalent time interval [t+µ, t+σ] exactly one train departs from station r headed to station j, at equivalent
time-step t + k, with k ∈ [µ, σ], 2) in the equivalent time interval [t, t + µ) no train is available to bring

14



the passengers from station i to r, and 3) in the equivalent time interval [t + µ, t + k] at least one train is
available to bring the passengers from station i to station r. Formally:

1) ∃k ∈ [µ, σ] :
∑

δ∈∆:µ<h≤k

∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1 (53)

2)
∑

δ∈∆:δ<µ

∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 0 (54)

3)
∑

δ∈∆:µ<h≤σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1 (55)

Then an optimal solution of BDc generates cut (47).

Proposition 2. Benders cuts of the form (47), are Pareto-optimal ∀σ, µ ∈ N0 : µ ≤ σ.

3.4. Separation of the Benders Cut

The implemented separation procedure is invoked at integer nodes of the search tree. When invoked, the
incumbent solution is projected on all sub-problems, to search for violated Benders cuts. Sub-problems BDf ,
BDb, and BDc are always feasible and bounded from above. Therefore, for any sub-problem, substituting
the optimal dual values of the Benders sub-problem in constraints (42), (43) and (44) leads to a valid
optimality cut for the master problem. If no violated Benders cuts are found, we verify if constraints (9)
are satisfied; if not, then the violated constraint (9) is added to the master problem. To summarize, the
pseudo-code of the entire solution procedure is reported in Algorithm 1.

In the rest of this Section, we present the theoretical framework for separating the Benders cuts, given
an incumbent solution satisfying (6)–(8), (16). We specify the necessary and sufficient conditions to verify
if a cut needs to be added to the BMP and the rules for the selection of violated cuts given an incumbent
solution. These results allow us to separate Pareto optimal violated cuts for all Benders sub-problems in
polynomial time, without having to solve the dual problems.

3.4.1. Case Df and Case Db

We now discuss the separation of Benders cuts associated with sub-problems (i, j, t), where (i, j) ∈ Df .
Note that all presented results and Lemmas can be adapted to case Db with minimal adjustments.

Proposition 3. Given path vector x̄ associated with the current BMP solution, a cut associated with sub-
problem (i, j, t), where (i, j) ∈ Df , needs to be generated if and only if either of the following conditions
hold:

1) ζ =
ηti,j
āti,j

is not integer, (56)

2)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+ζυ,d,n = 0. (57)

Lemma 10. Given path vector x̄ associated with the current BMP solution, if all the Benders cuts associated
with sub-problem (i, j, t), where (i, j) ∈ Df , are of the form (45) with σ ∈ N0, the quantity ζ = ηti,j/ā

t
i,j is

integer.

Proposition 4. Given path vector x̄ associated with the current BMP solution, if all the Benders cuts
associated with sub-problem (i, j, t) where (i, j) ∈ Df are of the form (45) with σ ∈ N0, and a cut needs to
be generated for the sub-problem; a cut of the form (45) with σ = ζ + 1 where ζ = ηti,j/a

t
i,j, is violated by

the incumbent solution.
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Algorithm 1: The implemented Benders-based branch-and-cut.

Input: initial solution x̄0

1 UB ← the total passenger waiting time resulting from x̄0, LB ← 0;
2 initialize Branch-and-bound;
3 while UB + ε < LB ∧ elapsed time < time limit do
4 added← False, solve RMP;
5 x̄ ← the solution to RMP;
6 if x̄ is integer then
7 for (i, j) ∈ Df ∪Db do
8 for t ∈ T̄υ,i do
9 if (57) holds then add cut (45) with σ = ζ for (i, j, t) to RMP, added← True ;

10 for (i, j) ∈ Dc do
11 t← t̄1i,γ − 1, υ ← υ(i, j), k ← t;
12 while t ∈ T̄υ,i do
13 t← t+ 1;
14 if t > T then
15 k ← t;

16 while k ∈ T̄υ,i ∧
∑
d∈S−υ,i

∑
n∈Qd

x̄t
′
−υ,d,n = 0 do k ← k + 1 ;

17 ζ ← ηti,j
āti,j

;

18 if k > t+ ζ then
19 add cuts (47) with σ = ζ, ∀µ ∈ [0, σ] for (i, j, t) to RMP, added← True;

20 else if
∑
d∈Sυ,j

∑
n∈Qd

x̄t+ζυ,d,n = 0 then

21 add cuts (47) with σ = ζ, ∀µ ∈ [0, σ] for (i, j, t) to RMP, added← True;

22 if added = False then
23 for ∀γ ∈ Γ, d ∈ Sγ , n ∈ Qd, t ∈ T, t′ ∈ Ttd do
24 verify if (9) holds, if not add corresponding constraint to RMP, added ← True;

25 if added = True then goto line 4 ;

26 update bounds UB and LB;
27 branch;

To separate violated cuts, given x̄, for each sub-problem (i, j, t), where (i, j) ∈ Df , we verify condition
(57). If condition (57) holds, a cut needs to be generated. As for Proposition 3, a cut should be generated
if either (56) or (57) hold. However, in the algorithm, all Benders cuts associated with the sub-problem
follow the structure of (45) with σ ∈ N0. Therefore, as for Lemma 10, condition (56) is never verified. If
a cut needs to be generated, cut (45) with σ = ηti,j/a

t
i,j + 1 is violated by the incumbent solution, as for

Proposition 4. Cuts generated following this procedure are violated by exactly āti,j .
We note that |Sυ,j | ≤ |S|, ∀υ, j, and that |Qd| = 1 + β, ∀d. Therefore, in the worst case scenario,

verifying condition (57) involves checking (β+ 1)|S| path variables. By extension, the separation of violated
cuts associated with sub-problem (i, j, t) has a computational complexity O(β|S|).

3.4.2. Case Dc

We now discuss the separation of Benders cuts associated with sub-problems (i, j, t), where (i, j) ∈ Dc.

Proposition 5. Given path vector x̄ associated with the current BMP solution, a cut associated with sub-
problem (i, j, t) where (i, j) ∈ Df needs to be generated if and only if at least one the following conditions
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hold:

1) ζ =
ηti,j
āti,j

is not integer, (58)

2) ζ is integer ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+ζυ,d,n = 0 (59)

3) 6 ∃k′ : 0 ≤ k′ ≤ ζ ∧
∑

d∈S−υ,i

∑
n∈Qd

x̄t+k
′−n

−υ,d,n = 1 (60)

Lemma 11. Given path vector x̄ associated with the current BMP solution, if all the Benders cuts associated
with sub-problem (i, j, t), where (i, j) ∈ Dc, are of the form (47) with σ ≤ µ ∈ N0; the quantity ζ = ηti,j/ā

t
i,j

is integer.

Proposition 6. Given path vector x̄ associated with the current BMP solution, if all the Benders cuts
associated with sub-problem (i, j, t), where (i, j) ∈ Dc, are of the form (47) with σ ≤ µ ∈ N0, and a cut needs
to be generated for the sub-problem; there exists a cut of the form (47) with σ = ζ + 1 where ζ = ηti,j/a

t
i,j

that is violated by the incumbent solution.

To separate violated Benders cuts, given an incumbent solution, for each sub-problem (i, j, t), where (i, j) ∈
Dc, we verify conditions (59) and (60). If either condition holds, a cut needs to be generated. Similar to
case Df , Proposition 5 states that a cut needs to be generated if (58) or (59) or (60) hold. However, in the
algorithm, all Benders cuts associated with the sub-problem follow the structure of (47) with σ ≤ µ ∈ N0.
Therefore, as for Lemma 11, condition (58) is never verified. If a cut needs to be generated, given an
incumbent solution, Proposition 6 guarantees that there exists a cut (47) with σ = λti,j/a

t
i,j and µ ≤ σ that

is violated. All cuts with σ = λti,j/a
t
i,j are added simultaneously, i.e., when a cut needs to be generated, a

cut for each value of µ ∈ [0, σ] is added to the master problem.
To accelerate the separation, we aggregate sub-problems {(i, j, t) ∀t ∈ T̄υ,i}. Let us denote by P (t) the

first equivalent time-step after t at which a train is available to bring passengers waiting at station i to r,
i.e.,

P (t) = min
t′∈T

(
t′ : t′ ≥ t ∧

∑
d∈Sυ,j

∑
n∈Qd

x̄t
′

υ,d,n = 1
)
.

We use P (t) to rewrite (60) as follows:

P (t) > t+ ζ. (61)

Thus, it is possible to evaluate condition (60) in constant time, provided we are able to compute P (t). The
value of P (t) can be efficiently computed incrementally. Given P (t − 1), if t − 1 6= P (t − 1) the following
holds:

P (t) =

{
P (t) = P (t− 1) if t− 1 6= P (t− 1),

mint′∈T

(
t′ :

∑
d∈Sυ,j

∑
n∈Qd x̄

t′

υ,d,n = 1 ∧ t′ ≥ t
)

if t− 1 = P (t− 1).
(62)

Using this result, for a given (i, j) ∈ Dc, we perform the separation of violated cuts on all sub-problems
{(i, j, t) ∀t ∈ T̄υ,i} sequentially, iterating over the planning horizon (lines 10–21 in Algorithm1). Overall,
computing P (t) ∀t ∈ T̄υ,i has a complexity of O(β|S||T |). Therefore, separating violated cuts on sub-
problems {(i, j, t) ∀t ∈ T̄υ,i} has a complexity of O(β|S||T |). In total, the number of sub-problems is |S|2|T |.
Thus, the computational complexity associated with the separation of all sub-problems is O(β|S|3|T |).
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Figure 7: Example of the merging of the non-short-turning stations with the short-turning stations. Stations drawn as a gray
dot are short-turning stations, stations drawn as a white circle are non-short-turning.

4. Compression of the Line

In most real lines, short-turning can be performed at a few stations, rather than at all stations of the line,
as it was assumed in the model. The methods we presented thus far can be adapted to accommodate such
a case by fixing to zero any path variable whose destination is a non-short-turning station. In this section,
we present an alternative strategy for enforcing non-short-turning stations, which yields a more compact
model.

We denote by S̄ the set of stations where trains are allowed to short-turn, with S̄ ⊆ S When S̄ ⊂ S
we apply a compression to the line, to remove unnecessary non-short-turning stations. See Figure 7 for an
illustration of this concept. By definition, the destination of a feasible path is a short-turning station. We
enforce this by redefining the set Sγ,i to exclude any non-short-turning station. We denote by S̄γ,i the set
of short-turning stations that lie in direction γ relative to i. Formally:

S̄γ,i ≡ Sγ,i ∩ S̄ ∀i ∈ S, γ ∈ Γ

For a given station i, the set S̄υ(r,i),i denotes the set of possible destinations of a path that visits station i.
To reduce the size of the model, we merge various stations into station groups, ensuring that all non-short-
turning stations are combined with exactly one short-turning station. Specifically, each non-short-turning
station j ∈ S\S̄ is merged with its closest short-turning station in direction υ(r, j). We denote by hj the
short-turning station that is merged with station j. Formally:

hj = min
i∈S̄υ(r,j),j

|i− r| ∀j ∈ S

A station group is a set of stations that are merged with the same short-turning station. We denote by
Si the station group associated with i ∈ S̄. We note that the root station is never merged with any other
station, i.e., Sr ≡ {r}. We distinguish two categories of passengers: 1) passengers with (i, j) ∈ D such that
hi 6= hj , and 2) passengers with (i, j) ∈ D such that hi = hj .

Let us consider passengers (i, j, t) such that hi 6= hj , i.e., passengers whose origin and destination belong
to different station groups. From a modeling perspective, passengers (i, j, t) are equivalent to passengers
(hi, hj , t). Indeed, by the definition of hi, any train path that reaches station i also reaches station hi, at
the same equivalent time-step. Similarly, any train path that reaches station j also reaches station hj at the
same equivalent time-step. Thus, passengers (hi, hj , t) and (i, j, t), are served by the same train paths and
thus experience the same delay reaching their destination. We recall that the arrival time of the passengers
is expressed in equivalent time. Therefore, the actual arrival time of passengers (i, j, t), and passengers
(hi, hj , t) does not coincide if i 6= hi (see Section 2.2). Additionally, the travel time of the passengers is not
accounted for in the computation of the delay; therefore, the total trip duration of the passengers may differ
since passengers (hi, hj , t) and (i, j, t) may require different travel times on the line.

Since the passengers (hi, hj , t) and (i, j, t) can be modeled equivalently, we combine all passengers (i′, j′, t)
such that hi = hi′ , hj = hj′ , and treat them as a single set of passengers with (hi, hj), arriving at equivalent
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time-step t. Given station groups Si ∈ S̄ and Sj ∈ S̄, we denote by αti,j the total number of passengers
(i′, j′, t) such that hi = hi′ , hj = hj′ , i.e.,

αti,j =
∑
i′∈Si

∑
j′∈Sj

āti′,j′ .

We now consider the case of passengers (i, j, t) such that hi = hj , i.e., passengers whose origin and
destination belong to the same station group. In this context, we further distinguish two cases, either
(i, j) ∈ Df , or (i, j) ∈ Db. We note that the case where (i, j) ∈ Dc cannot occur since Sr ≡ {r}. Focusing on
the first case, (i, j) ∈ Df , let us consider two passengers (i, j, t) and (i′, j′, t), with hi = hj = hi′ = hj′ and
(i, j), (i′, j′) ∈ Df . From a modeling perspective, passengers (i, j, t) are equivalent to passengers (i′, j′, t).
Indeed, any path that serves station i in direction υ(i, j), also serves all stations in Si in direction υ(i, j)
at the same equivalent time-step. Thus, for a given time-step t and short-turning station i, all passengers
(i′, j′, t) such that (i′, j′) ∈ Df and hi′ = hj′ = hi can board the same trains and experience the same delay.
Similarly, for a given time-step t and short-turning station i, all passengers (i′, j′, t) such that (i′, j′) ∈ Db

and hi′ = hj′ = hi are also equivalent to one another. Thus, similar to the previously discussed case (i.e.,
hi 6= hj), those passengers can be merged and modeled as a group. We will call this portion of passenger
demand the self-demand of a station group.

We introduce some additional notation to allow us to distinguish the two cases (i, j) ∈ Df , and (i, j) ∈ Db.
We denote as (i, i+) a fictional OD pair that represents the self-demand of a short-turning station i associated
with passengers whose OD pairs belong to Df . Similarly, we denote as (i, i−) the fictional OD pair that
represents the self-demand of a short-turning station i associated with passengers whose OD pairs belong
to Db.

Given a station group Si ∈ S̄ we denote by αti,i+ the total number of passengers (i′, j′, t) such that

hi = hi′ = hj′ , (i, j) ∈ Df , and by αti,i− the total number of passengers (i′, j′, t) such that hi = hi′ =

hj′ , (i, j) ∈ Db. Formally:

αti,i− =
∑
i′∈Si

∑
j∈Si:(i′,j)∈Db

āti′,j

αti,i+ =
∑
i′∈Si

∑
j∈Si:(i′,j)∈Df

āti′,j

Finally, To solve the the problem, we use the same models and algorithms used to solve the DTPR, with
the following adjustments. The set of stations S is replaced by the set of short-turning stations S̄. The set
of OD pairs D is extended to include the fictional OD pairs (i, i+) and (i, i−) ∀i ∈ S̄. OD pairs (i, i+) and
(i, i−) are to be treated as any other OD pair, using i as both the origin and destination stations of the
passenger, and considering (i, i+) ∈ Df and (i, i−) ∈ Db. The demand ati,j is replaced by the parameter
αti,j .

5. Experimental Results

We carried out a series of computational tests to evaluate the effectiveness of the PF model and the
Benders-based branch-and-cut algorithm, as well as the effectiveness of the compression approach presented
in Section 4. In Subsection 5.1, we discuss the implementation details. Initially, we assume that trains can
short-turn at each station. In Subsection 5.2, we compare the computational performance of the PF, the
Benders-based branch-and-cut algorithm, and a naive implementation of the Benders decomposition. In
Subsection 5.3, we compare the DTPR solutions to the frequently used regular timetables. In Subsection
5.4, we consider that trains may short-turn in a subset of the stations; using these instances, we demonstrate
the effectiveness of the compression procedure presented in Section 4.
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5.1. Implementation

All experiments have been performed on a 3.20Ghz AMD Ryzen 5 1600, with 16 GB of RAM and 12 cores,
running Windows 10. We implemented formulation PF for the DTPR (Section 2), and the Benders-based
branch-and-cut algorithm (BD) for the DTPR (Section 3). Additionally, we consider a second implementa-
tion of the Benders decomposition algorithm which uses CPLEX’s built-in automated Benders decomposition
(Bonami et al., 2020), we denote this by BDA. In this case, the path variables xtγ,d,n are assigned to the

master problem, and the passenger variables yt,δi,j and yt,δ,δ
′

i,j are set to the Benders sub-problem. This allows
us to compare our BD to an efficient non-tailored implementation of a Benders decomposition.

PF, BDA, and BD are solved using the CPLEX solver version 12.10.0.0 and have been implemented
in Julia 1.4.2 using the JuMP modeling interface version 0.18.5 (Dunning et al., 2017). In the solution of
formulation PF, constraints (9) are added to the problem as lazy cuts. As previously stated, in the BD,
those cuts are evaluated in case no Benders cuts are found. Each experiment was run on a single thread,
the search is stopped when the optimality gap is smaller or equal to 10−5 or when the time limit of 3600
seconds is reached.

PF, BDA and BD are provided with an initial feasible solution computed through the construction of a
regular timetable for the line. The regular timetable is constructed scheduling trains from the root station
at regular intervals. Afterwards, the solution is completed by computing the passenger waiting time induced
by the regular timetable.

We adapted the instances of Schettini et al. (2021a) to the DTPR. Specifically, we considered a set of
artificial instances with |S| = {5, 10, 15, 20} stations, and planning horizons of h = {10, 20, . . . , 100} time-
steps. The maximum number of trains operating on the line is set to Ψ = |S| − 1. The maximum number
of time-steps passengers may wait g is set to 10, and the maximum number of time-steps a train may idle β
is set to 5. Additionally, the root station was set either to station 1 or to the centermost station of the line,
i.e., b|S|/2c. Overall, the number of instances considered was 80. The passenger demand was generated by
sampling a Poisson distribution at each time-step for each OD pair. Each station is assigned a popularity
score. The mean of the Poisson distribution for a given OD pair is computed as the product of the popularity
score of the origin and the popularity score of the destination station. The test instances are available at
Schettini (2020).

5.2. Algorithmic Comparison

In this section, we compare the performance of PF, BDA, and BD. Table 1 reports a summary of this
comparison. Detailed results are found in Tables 4 and 5 in Appendix C. Additionally, for each algorithm
(PF, BDA, BD) and root position (i.e., r = 1, r = b|S|/2c) we plotted the number of instances solved
to optimality as a function of the computational time. We report the plots in Figure 8. We observe that
BDA outperforms PF, when the root station is located in r = b|S|/2c. Conversely, PF outperforms BDA,
when the root station is located in r = 1. This may be explained by the fact that PF contains significantly
more variables when the root station is located in the middle of the line. Indeed, in this case, passengers
(i, j, t) with (i, j) 6∈ Dc require g variables to be modeled. Conversely, passengers (i, j, t) with (i, j) ∈ Dc

require (g+2)(g+1)
2 variables. In general, we note that the performance of both PF and BDA significantly

deteriorates on large instances. On some instances, CPLEX is not able to solve the linear relaxation of the
problem within the time limit, resulting in a 100% optimality gap.

Overall, the results show that on average our developed BD outperforms all other methods, solving more
instances to optimality, achieving the best optimality gaps, and requiring the lowest average computational
time. Using BD, we are able to solve all instances with up to 80 time-steps within an optimality gap of 2.2%
or less.

5.3. Comparison with Regular Timetables

In this section, we compare the DTPR solutions to the regular timetables to evaluate the benefits of the
optimization. In the analysis, horizons of 10 and 20 time-steps are ignored as they would bias the results in
favor of the DTPR.
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Figure 8: Number of instances solved (out of 40) for the various solution algorithms as a function of computational time. On
the right side, instances with r = 1 are reported, on the left side, instances with r = b|S|/2c. Reported algorithms are BD
(Benders Decomposition), PF (Path Formulation), and BDA (Automated Benders Decomposition).

Table 1: Results for PF, BDA, and BD, average on 10 instances.

PF BDA BD

|S| r #s t(s) TWT gap(%) #s t(s) TWT gap(%) #s t(s) TWT gap(%)

5 1 10 160 2111 0.01 10 137 2111 0.00 10 45 2111 0.00
10 1 8 969 3054 0.28 7 1329 3169 2.63 10 384 3050 0.01
15 1 5 1982 4229 1.18 5 1988 4544 5.48 6 1646 4248 1.16
20 1 5 1890 4751 0.81 4 2507 5163 6.16 6 1538 4747 0.59

all 28 1250 3536 0.57 26 1490 3747 3.57 32 903 3539 0.44

PF BDA BD

|S| r #s t(s) TWT gap(%) #s t(s) TWT gap(%) #s t(s) TWT gap(%)

5 3 7 1325 2116 0.84 9 883 2111 0.22 8 817 2114 0.44
10 5 4 2345 3127 3.10 7 1684 3124 2.01 8 807 3052 0.20
15 8 3 2843 4752 7.77 4 2436 4717 15.06 6 1498 4388 0.57
20 10 2 2930 5319 24.50 3 2790 5347 15.61 7 1411 5034 0.84

all 16 2361 3828 9.05 23 1948 3825 8.23 29 1133 3647 0.51

Table 2 reports the comparison of the DTPR with the regular timetables. We compare solutions w.r.t.
the total waiting time of the passengers (TWT), the maximum number of passengers on board a train
(max(B)), the mean value of the number of passengers on board a train (avg(B)) and its variance (σ2(B)).
We denote by D the measures associated with the DTPR solution and by R measures associated with the
regular timetable.

From Table 2, we observe that the DTPR solutions tend to reduce the maximum number of boarded
passengers, the variance observed in the number of boarded passengers. Conversely, the average number
of passengers on board a train tends to increase. This implies that DTPR timetables typically achieve a
better utilization of the available trains, with fewer trains that are completely empty or carry a very small
number of passengers. Additionally, the maximum number of boarded passengers tends to be reduced, thus
reducing the probability of observing overcrowded trains.

5.4. Application to Lines with a Subset of Short-turning Stations

Now, we discuss the impact of reducing the number of short-turning stations on the DTPR. We modify
the previously presented instances so that a percentage of the stations are non-short-turning. Specifically,
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Table 2: Comparison of the DTPR solutions to the regular timetables, average on 8 instances with h ∈ {30, 40, . . . , 100}.

(TWTR − TWTD)

TWTR
(%)

(max(BR)−max(BD))

max(BR)
(%)

(avg(BR)− avg(BD))

avg(BR)
(%)

(σ2(BR)− σ2(BD))

σ2(BR)
(%)

|S| r all optimal all optimal all optimal all optimal

5 1 3.3 3.3 0.7 0.7 -3.9 -3.9 2.7 2.7
10 1 14.2 14.2 21.4 21.4 -3.6 -3.6 3.3 3.3
15 1 13.9 15.8 18.1 18.4 -4.5 -4.4 4.2 4.0
20 1 14.4 16.3 12.5 11.5 -4.6 -4.5 4.4 4.3

all 11.4 12.4 13.2 13.0 -4.1 -4.1 3.6 3.6

(TWTR − TWTD)

TWTR
(%)

(max(BR)−max(BD))

max(BR)
(%)

(avg(BR)− avg(BD))

avg(BR)
(%)

(σ2(BR)− σ2(BD))

σ2(BR)
(%)

|S| r all optimal all optimal all optimal all optimal

5 3 3.2 3.5 0.3 -0.3 -3.9 -4.2 2.6 2.8
10 5 14.1 15.0 22.0 23.3 -3.6 -3.9 3.3 3.6
15 8 10.8 12.0 20.7 18.0 -2.5 -2.6 2.3 2.4
20 10 9.4 10.9 19.9 18.8 -1.9 -2.1 1.8 2.0

all 9.4 10.3 15.8 15.0 -3.0 -3.2 2.5 2.7

with the exclusion of the extreme stations of the line, we set one out of four stations or one out of two stations
as non-short-turning. When presenting the results, we denote the case where short-turning is allowed at all
stations as S0, the case where one out of four stations are non-short-turning as S1, and the case where one
out of two stations are non-short-turning as S2.

Table 3 reports the performance achieved by the BD in cases S0, S1 and S2. For case S1 and S2, two
versions of the BD are presented: 1) by fixing the relevant variables to zero in the BD (No Compression), 2)
by utilizing the compression procedure presented in Section 4. The table reports the average solution times
in seconds (t(s)), the average optimality gaps, and the number of instances solved to optimality out of 10
(#s), the average objective value (TWT). Detailed results are found in Appendix C, in Tables 8 and 9.

We observe that reducing the number of short-turning stations allows BD to solve a larger number of
instances. Overall, utilizing the compression procedure improves the performance of the algorithm. Utilizing
compression, we are able to solve more instances in less time and achieve better optimality gaps. In both
cases S1 and S2, we are able to solve to optimality 77 out of 80 test instances when using compression.

6. Concluding Remarks

In this paper we propose the DTPR problem, which is a particular case of the more general DTP. In the
DTPR, we utilize a flexible scheduling strategy to minimize the total waiting time of the passengers. Unlike
traditional approaches, in the DTPR, the trains are scheduled individually, and are allowed to short-turn.
Compared to the DTP, in the DTPR we assume the presence of a designated root station, i.e., a station that
cannot be skipped by short-turning, and we assume that trains are not allowed to idle with passengers on
board. We developed a path-based formulation for the DTPR and an efficient Benders-based branch-and-cut
algorithm. We derived closed-form solutions of the Benders sub-problems used in the decomposition, proved
their optimality, and specify an efficient algorithm to generate violated cuts for a given incumbent solution.
Furthermore, we developed compression approach to reduce the size of the problem when short-turning is
not allowed at all stations of the line.

We showed the effectiveness of the developed formulation and the Benders-based branch-and-cut algo-
rithm. Then, we compared the DTPR solutions to the commonly used regular timetables. We observed the
DTPR solutions tend to reduce the maximum number of boarded passengers, the variance of the occupancy,
and the distance traveled by the trains. Lastly, we tested the developed compression approach on instances
where short-turning is not allowed at all stations of the line, and evaluated the impact of such limitation.
We tested two short-turning configurations, with a different number of allowed short-turning stations. In
both configurations, we observed that the developed compression yields significant computational benefits,
allowing us to solve 77 out of 80 instances.
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Table 3: Results of the Benders-based branch-and-cut algorithm in configurations S0 and S1, with and without compression of
the graph.

S0 S1 S1-compression

|S| r #S t(s) TWT gap(%) #S t(s) TWT gap(%) #S t(s) TWT gap(%)

5 1 10 45 2111 0.0 10 1 2127 0.0 10 1 2127 0.0
10 1 10 384 3050 0.0 9 692 3051 0.1 10 298 3050 0.0
15 1 6 1646 4248 1.2 9 786 4227 0.2 9 602 4222 0.0
20 1 6 1538 4747 0.6 9 665 4770 0.0 10 604 4770 0.0

all 32 903 3539 0.4 37 536 3544 0.1 39 376 3542 0.0

S2 S2-compression

|S| r #S t(s) TWT gap(%) #S t(s) TWT gap(%)

5 1 10 1 2127 0.0 10 1 2127 0.0
10 1 8 782 3082 0.1 10 501 3081 0.0
15 1 8 817 4251 0.2 8 771 4249 0.1
20 1 10 716 4778 0.0 10 298 4778 0.0

all 36 579 3559 0.1 38 392 3559 0.0

S0 S1 S1-compression

|S| r #S t(s) TWT gap(%) #S t(s) TWT gap(%) #S t(s) TWT gap(%)

5 3 8 817 2114 0.4 10 3 2127 0.0 10 3 2127 0.0
10 5 8 807 3052 0.2 9 842 3050 0.1 10 494 3050 0.0
15 8 6 1498 4388 0.6 10 693 4424 0.0 10 382 4424 0.0
20 10 7 1411 5034 0.8 8 849 5045 0.1 8 875 5047 0.1

all 29 1133 3647 0.5 37 597 3661 0.0 38 438 3662 0.0

S2 S2-compression

|S| r #S t(s) TWT gap(%) #S t(s) TWT gap(%)

5 3 10 1 2127 0.0 10 1 2127 0.0
10 5 8 800 3085 0.2 9 748 3082 0.1
15 8 10 382 4425 0.0 10 179 4425 0.0
20 10 7 1232 5076 0.2 10 610 5075 0.0

all 35 604 3678 0.1 39 384 3677 0.0

The exact solution of the DTPR provides a system optimum for the direct timetabling paradigm. Heuris-
tics capable of handling large-sized lines or networks within a reasonable computational time will render
the paradigm more applicable. Moreover, such heuristics may enable incorporating further operational
considerations and constraints.
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Appendix A: The Benders dual sub-problem for case Db

The sub-problem associated with passengers (i, j, t) where (i, j) ∈ Db, is as follows.

min
∑
δ∈∆

(δāti,jy
t,δ
i,j ) (63)

∑
δ∈∆

yt,δi,j = 1 (64)

yt,δi,j ≤
∑

d∈S−γ,i

∑
n∈Qd

x̄t+δ−nυ,d,n ∀δ ∈ ∆ (65)

yt,δi,j ≥ 0 ∀δ ∈ ∆. (66)

Let λti,j be the dual variables corresponding to constraint (64), and πt,δi,j be the dual variables corresponding
to constraints (65). The dual sub-problem is as follows.

[BDb] max ηti,j = λti,j −
∑
δ∈∆

(
πt,δi,j

∑
d∈S−γ,i

∑
n∈Qd

x̄t+δ−nυ,d,n

)
(67)

λti,j − π
t,δ
i,j ≤ δā

t
i,j ∀δ ∈ ∆ (68)

λti,j ≥ 0 (69)

πt,δi,j ≥ 0 ∀δ ∈ ∆ (70)

We note that sub-problems BDf and BDb have a similar structure. The difference between the two cases
lies in the components of the path vector x̄ in the objective function. This is due to the fact that the primal
sub-problems associated with case Df consists of constraints (10) and (12). Conversely, in case Db the
sub-problem consists of constraints (10) and (13).

Appendix B: Proofs

Lemma 1. Given a feasible path vector x, the trip with the least waiting time for passengers (i, j, t) where
(i, j) ∈ Df is established by only boarding the train stating at time-step:

min
t′∈T

(
t′ :

∑
d∈Sυ(i,j),j

∑
n∈Qd

xt
′

υ(i,j),d,n = 1 ∧ t′ ≥ t
)
,

i.e., the first train passing by station i headed to station j seen by passengers (i, j, t).

Proof. Passengers that intend to reach station j from station i can do so either by boarding one or multiple
trains. If they board exactly one train, they must board a train that is associated with a path that reaches
station j. In this case, the passengers will board the first train that passes by station i, headed to station j.

Consider passengers boarding two trains to reach their destination. Thus, the passengers board a train
at station i, reach an intermediate station k, alight, and wait for the next train to perform the last leg of
their trip to station j. Any path that reaches station j from station k must also pass by station i. Trains
cannot overtake each other, therefore no reduction in waiting time can be established by taking trains that
short-turn before reaching j as the passengers would end up eventually boarding the same train they would
have boarded from station i. The same argument can be used in the case of more than two legs. �
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Lemma 2. Given a feasible path vector x, the trip with the least waiting time for passengers (i, j, t) where
(i, j) ∈ Db is established by only boarding the train starting at time-step:

min
t′∈T

(
t′ :

∑
d∈S−υ(i,j),i

∑
n∈Qd

xt
′−n
−υ(i,j),d,n = 1 ∧ t′ ≥ t

)
,

i.e., the first train headed towards r seen by passengers (i, j, t).

Proof. Let us consider a station k ∈ S that lies between station i and j, i.e., i < k < j ≤ r or r ≤ i < k < j.
Any path that connects station i to station k, also connects i to j. Since trains cannot overtake each other,
no reduction in waiting time can be established by having passengers (i, j, t) alight before reaching their
destination station to take another train. �

Lemma 3. Given a feasible path vector x, the trip with the least waiting time for passengers (i, j, t) where
(i, j) ∈ Dc is established by boarding at most two trains, specifically boarding the first train passing by station
i headed towards r or j at time-step:

min
t′∈T

(
t′ :

∑
d∈S−υ(i,j),i

∑
n∈Qd

xt
′−n
−υ(i,j),d,n = 1 ∧ t′ ≥ t

)
,

then departing from the root station at time-step:

min
t′′∈T

(
t′′ :

∑
d∈Sυ(i,j),j

∑
n∈Qd

xt
′

υ(i,j),d,n = 1 ∧ t′′ ≥ t′
)
.

Proof. Trains are not allowed to skip stops, thus the trip with the least waiting time that connects two
stations i, j can be separated into the two sub-trips connecting i to an intermediate station i′, and i′ to
the destination station j. Where i′ that lies between i and j. By construction, the ending time of the trip
between i and i′ corresponds with the starting time of the trip between i′ and j. Since trains cannot overtake
each other, the trip with the least waiting time can be established by independently minimizing the waiting
time in each of the two sub-trips.

Considering r as the intermediate station, it holds (i, r) ∈ Db and (r, j) ∈ Df , each of the two legs of the
trip connecting i to j can be performed with the least waiting time without alighting at any intermediate
stations as per Lemmas 1 and 2. Thus, the trip with the least waiting time between (i, j) can always be
completed by changing trains at most once at the root station. �

Lemma 4. Given a feasible path vector x̄, the constraint matrix of formulation PF0 is totally unimodular.

Proof. If the path vector is fixed to x̄, formulation PF0 reduces to constraints (10)–(15), (17), (18).
Furthermore, Constraints (14) and (15) can be rewritten as:

yt,δ,δ
′

i,j ≤
( ∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n

)( ∑
d∈Sυ,j

∑
n∈Qd

x̄t+δ
′

υ,d,n

)
∀(i, j) ∈ Dc, t ∈ T̄υ(i,j),i, δ, δ

′ ∈ ∆ : δ ≤ δ′. (71)

The resulting formulation can be decomposed into a sub-problem for each passenger tuple (i, j, t). Each
sub-problem belongs to one out of three cases. We now detail these cases.

In the case where (i, j) ∈ Df , the sub-problems are structured as follows.

[SDf ] min
∑
δ∈∆

(δāti,jy
t,δ
i,j ) (72)

∑
δ∈∆

yt,δi,j = 1 (73)

26



yt,δi,j ≤
∑
d∈Sγ,j

∑
n∈Qd

x̄t+δυ,d,n ∀δ ∈ ∆ (74)

yt,δi,j ∈ {0, 1} ∀δ ∈ ∆ (75)

In the case where (i, j) ∈ Db, the sub-problems are structured as follows.

[SDb] min
∑
δ∈∆

(δāti,jy
t,δ
i,j ) (76)

∑
δ∈∆

yt,δi,j = 1 (77)

yt,δi,j ≤
∑

d∈Sυ(i,j),j

∑
n∈Qd

x̄t+δ−n−υ(i,j),d,n ∀δ ∈ ∆ (78)

yt,δi,j ∈ {0, 1} ∀δ ∈ ∆ (79)

In the case where (i, j) ∈ Dc, the sub-problems are structured as follows.

[SDc] min
∑
δ∈∆

∑
δ′∈∆:δ′≥δ

(
δ′āti,jy

t,δ,δ′

i,j

)
(80)

∑
δ∈∆

∑
δ′∈∆:δ′≥δ

yt,δ,δ
′

i,j = 1 (81)

yt,δ,δ
′

i,j ≤
( ∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n

)( ∑
d∈Sυ,j

∑
n∈Qd

x̄t+δ
′

υ,d,n

)
∀δ, δ′ ∈ ∆ : δ ≤ δ′ (82)

yt,δ,δ
′

i,j ∈ {0, 1} ∀δ, δ′ ∈ ∆ : δ ≤ δ′ (83)

In the case of sub-problem SDf , we note that constraint (73) is a special case of the knapsack constraint,
where all items have a weight of one, and the knapsack has a capacity of one. Additionally, for a fixed value
of x̄ constraints (74) can either be yt,δi,j ≤ 1 or yt,δi,j ≤ 0. In the latter case, the involved variable is always
zero and can be removed from the formulation. Thus, formulation SDf is a special case of the knapsack
problem, where {δ ∈ ∆ :

∑
d∈Sγ,j

∑
n∈Qd x̄

t+δ
υ,d,n ≥ 1} is the set of items. In this case, sub-problem SDf is

totally unimodular.
Following the same logic, it is possible to prove that SDb and SDc, are also totally unimodular. Therefore,

given a feasible path vector x̄, formulation PF0 is totally unimodular.
�

Lemma 5. Cut (45) is valid for the DTPR, and dominates all other cuts (42) with λti,j = āti,jσ, ∀σ ∈ N0.

Proof. For a given σ ∈ N0, cut (45) corresponds to having the dual variables set as follows.

λti,j = āti,jσ, πt,δi,j = āti,j(σ − δ) ∀ δ ∈ ∆ : δ ≤ σ, πt,δi,j = 0 ∀ δ ∈ ∆ : δ > σ (84)

The configuration described in (84) is feasible for BDf by inspection. Thus, the inequality (45) is valid for
DTPR.

Every dual variable πt,δi,j only appears in constraint set (28), i.e., in constraint λti,j − π
t,δ
i,j ≤ δāti,j . The

variables πt,δi,j are all associated with non-positive coefficients in the objective function (27). Therefore, each

πt,δi,j can be minimized independently with respect to the objective function. The optimal value of πt,δi,j ,

∀δ ∈ ∆ is āti,j max(0, σ − δ), which is independent of x̄. Thus, cut (45) dominates all other cuts with
λti,j = āti,jσ. �
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Lemma 6. Given a path vector x̄, for a given σ ∈ N0, Benders cut (45) is generated by an optimal solution
of the BDf sub-problem if exactly one train is available to serve the customers (i, j) in the equivalent time
interval [t, t+ σ], i.e., it holds:

σ ≥ 0 :
∑

δ∈∆:δ≤σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1 (46)

Proof. When the condition (46) is verified, the following holds.

∃!k ∈ ∆ : πt,ki,j > 0 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1.

Therefore, the passengers will wait for k time-steps before boarding the train that will lead them to their
destination, i.e., the primal objective function is āti,jk. The dual objective function, associated with cut (45)
can be developed to:

āti,jσ − āti,j(σ − k) = āti,jk.

By strong duality, we conclude that the cut (45) is optimal for the dual sub-problem. �

Proposition 1. Benders cuts of the form (45) are Pareto-optimal ∀σ ∈ N0.

Proof. We conduct this proof by contradiction. Let us assume that cut (45) with σ ∈ N0 is not Pareto-
optimal. Therefore, there exists another cut that dominates it with properly selected parameters:

ηti,j ≥ λ̄ti,j −
∑
δ∈∆

π̄t,δi,j
∑
d∈Sυ,j

∑
n∈Qd

xt+δυ,d,n (85)

For the ease of notation, let us denote by X the polytope described by constraints (6)–(9) and (16). For cut
(85) to dominate (45) the following must hold.

λti,j −
∑
δ∈∆

πt,δi,j
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n ≤ λ̄
t
i,j −

∑
δ∈∆

π̄t,δi,j
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n ∀x̄ ∈ X (86)

Where the parameters of cut (45) are specified as follows.

λti,j = āti,jσ, πt,δi,j = āti,j(σ − δ) ∀δ ∈ ∆ : δ ≤ σ, πt,δi,j = 0 ∀δ ∈ ∆ : δ > σ.

Additionally, at least one of the inequalities (86) must strictly hold. We examine four cases of x̄, and utilize
(86) to infer conditions on the parameters of cut (85).

Case 1:. First, let us consider a path vector x̄ such that x̄t
′

γ,d,n = 0 ∀t′ ∈ T, γ ∈ Γ, d ∈ Sγ , n ∈ Qd. In this
case, inequality (86) reduces to:

λ̄ti,j ≥ λti,j = āti,jσ (87)

Case 2:. We consider path vectors x̄ such that:

1) a train is available to connect stations i and j at time-step t+ k, with k ≤ σ,
2) cut (45) is optimal,
3) no other trains connect stations i and j during the rest of the planning horizon, ∀k ∈ N0 : k ≤ σ.
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Formally, the following holds:

1)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1,

2)
∑

δ∈∆:δ≤σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1,

3)
∑

δ∈∆:δ>σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 0.

Replacing such a solution into inequality (86) it reduces to:

λ̄ti,j − π̄
t,δ
i,j ≥ λ

t
i,j − π

t,δ
i,j = āti,jk ∀k ∈ ∆ : k ≤ σ.

Combining this result with the dual constraint (28), we conclude the following.

λ̄ti,j − π̄
t,k
i,j = λti,j − π

t,k
i,j = āti,jk ∀k ∈ ∆ : k ≤ σ (88)

Therefore, it holds:

π̄t,δi,j = λ̄ti,j − āti,jk ∀k ∈ ∆ : k ≤ σ (89)

Case 3:. We consider path vector x̄ such that:

1) a train is available to connect stations i and j at time-step t+ k, with k ≤ σ,
2) cut (45) is optimal,
3) exactly one train connects stations i to j after time-step t+σ at time-step t+k′, ∀k, k′ ∈ ∆ : k ≤ σ < k′

Formally, the following holds:

1)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1,

2)
∑

δ∈∆:δ≤σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1,

3)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+k
′

υ,d,n = 1, ∧
∑

δ∈∆:δ>σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1.

We recall that πt,k
′

i,j = 0; therefore, we can write inequality (86) in this case as follows:

λ̄ti,j − π̄
t,k
i,j − π̄

t,k′

i,j ≥ λ
t
i,j − π

t,k
i,j ∀ k, k′ ∈ ∆ : k ≤ σ < k′.

However, based on (88), it holds: λ̄ti,j − π̄
t,k
i,j = λti,j − π

t,k
i,j , therefore:

− π̄t,k
′

i,j ≥ 0 ∀ k′ ∈ ∆ : k′ > σ.

Which, as for dual constraint (30), becomes:

π̄t,k
′

i,j = 0 ∀ k′ ∈ ∆ : k′ > σ (90)
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Case 4:. Lastly, considering x̄ such that exactly two trains are available to connect stations i and j at
time-steps t+ k and t+ k′, ∀k, k′ ∈ N0 : k < k′ ≤ σ, i.e.,∑

d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+k
′

υ,d,n = 1 ∧
∑

δ∈∆:δ≤σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 2.

In this case, inequality (86) reduces to the following:

λ̄ti,j − π̄
t,k
i,j − π̄

t,k′

i,j ≥ λ
t
i,j − π

t,k
i,j − π

t,k′

i,j .

We substitute (89) in the condition, as follows:

− λ̄ti,j + āti,j(k + k′) ≥ −λti,j + āti,j(k + k′).

Which, along with condition (87) implies:

λ̄ti,j = λti,j (91)

As for conditions (89), (90), and (91) we conclude that (85) must correspond to (45), violating the initial
hypotheses that there exists a dominating cut. �

Lemma 7. Let σ, µ ∈ N0 : µ ≤ σ, cut (47) is valid for DTPR.

Proof. For given σ, µ ∈ N0, cut (44) corresponds to having the dual variables set as follows:

ξti,j = āti,jσ, φt,δi,j = 0 ∀δ ∈ ∆ : δ < µ,

θt,δi,j = āti,j(σ − δ) ∀δ ∈ ∆ : δ < µ, φt,δi,j = āti,j(σ − δ) ∀δ ∈ ∆ : µ ≤ δ < σ,

θt,δi,j = 0 ∀δ ∈ ∆ : δ ≥ µ, φt,δi,j = 0 ∀δ ∈ ∆ : δ ≥ σ.

Which can be verified to be feasible for BDc by inspection. Thus, inequality (47) is valid for DTPR. �

Lemma 8. Given a path vector x̄, if x̄ satisfies (48), there exist σ, µ ∈ N0 such that: 1) in the equivalent
time interval [t, t + µ] exactly one train is available to bring the passengers from station i to station j at
equivalent time-step t + k, with k ∈ [0, µ], 2) in the equivalent time interval [t, t + µ] no other trains are
available to bring the passengers at station i to r, and 3) in the equivalent time interval [t + µ, t + σ] no
trains depart from r headed to station j. Formally:

1) ∃k ∈ [0, µ] :
∑

d∈S−υ,i

∑
n∈Qd

x̄t+k−n−υ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1 (50)

2)
∑

δ∈∆:δ≤µ

∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 1 (51)

3)
∑

δ∈∆:δ>µ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 0 (52)

Then an optimal solution of BDc generates cut (47).

Proof. If (48) holds, setting σ = p and µ = 0 satisfies conditions (50)–(52). Cut (47) along with the
conditions (50)–(52) yields: ηti,j ≥ āti,jσ − āti,j(σ − k) = āti,jk. Condition (50) implies that there exists one
trip that is able to bring the passengers from their origin station i to their destination j where the passengers
wait for a total of k time-steps. Condition (51) implies that in the time interval [t, t+µ] exactly one train is
available to bring the passengers from i to r. Condition (52) implies that no train is available to bring the
passengers from r to j in the equivalent time interval [t+ µ, t+ σ]. Overall, these conditions imply that in
the best trip available to the passengers (i, j, t) is the one associated with condition (50). Thus, the optimal
objective value of the primal problem corresponds to āti,jk. Therefore, by strong duality we can conclude
that the dual variables associated with cut (47) are optimal for the sub-problem. �
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Lemma 9. Given a path vector x̄, if x̄ satisfies (49), there exist σ, µ ∈ N0 : σ ≥ µ such that: 1) in the
equivalent time interval [t+µ, t+σ] exactly one train departs from station r headed to station j, at equivalent
time-step t + k, with k ∈ [µ, σ], 2) in the equivalent time interval [t, t + µ) no train is available to bring
the passengers from station i to r, and 3) in the equivalent time interval [t + µ, t + k] at least one train is
available to bring the passengers from station i to station r. Formally:

1) ∃k ∈ [µ, σ] :
∑

δ∈∆:µ<h≤k

∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1 (53)

2)
∑

δ∈∆:δ<µ

∑
d∈S−υ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 0 (54)

3)
∑

δ∈∆:µ<h≤σ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1 (55)

Then an optimal solution of BDc generates cut (47).

Proof. If (49) holds, setting σ = p′ and µ = p satisfies conditions (54)–(55). Cut (47) along with the
conditions (54)–(55) yields: ηti,j ≥ āti,jσ − āti,j(σ − k) = āti,jk. Condition (54) implies that the passengers
will not leave their origin station in the time interval [t, t+ µ− 1]. Condition (53) requires that there exists
one trip that is able to bring the passengers from i to j where the passengers wait for a total of k time-steps.
Condition (55) implies that exactly one train in the equivalent time interval [t + µ, t + σ] is able to bring
the passengers from r to j. Overall, these conditions imply that in the best trip available to passengers
(i, j, t) is the one associated with condition (53). Thus, the optimal objective value of the primal problem
corresponds to āti,jk. Therefore, by strong duality we can conclude that the dual variables associated with
cut (47) are optimal for the sub-problem. �

Proposition 2. Benders cuts of the form (47), are Pareto-optimal ∀σ, µ ∈ N0 : µ ≤ σ.

Proof. We conduct this proof by contradiction. Let us assume that cut (47) with σ, µ ∈ N0 is not Pareto-
optimal. Therefore, there exists another cut that dominates it with properly chosen parameters:

ηti,j ≥ ξ̄ti,j −
∑
δ∈∆

(
θ̄t,δi,j

∑
d∈S−υ,i

∑
n∈Qd

xt
′+δ−n
−υ,d,n + φ̄t,δi,j

∑
d∈Sυ,j

∑
n∈Qd

xt
′+δ
υ,d,n

)
(92)

For the ease of notation, let us denote by X the polytope described by constraints (6)–(9) and (16). For cut
(92) to dominate (47) the following must hold.

ξ̄ti,j −
∑
δ∈∆

(
θ̄t,δi,j

∑
d∈S−υ,i

∑
n∈Qd

x̄t
′+δ−n
−υ,d,n + φ̄t,δi,j

∑
d∈Sυ,j

∑
n∈Qd

x̄t
′+δ
υ,d,n

)
≤ ξti,j −

∑
δ∈∆

(
θt,δi,j

∑
d∈Sυ,i

∑
n∈Qd

x̄t
′+δ−n
−υ,d,n + φt,δi,j

∑
d∈Sυ,j

∑
n∈Qd

x̄t
′+δ
υ,d,n

)
∀x̄ ∈ X (93)

Where the parameters of cut (47) are specified as follows.

ξti,j = āti,jσ, φt,δi,j = 0 ∀δ ∈ ∆ : δ < µ,

θt,δi,j = āti,j(σ − δ) ∀δ ∈ ∆ : δ < µ, φt,δi,j = āti,j(σ − δ) ∀δ ∈ ∆ : µ ≤ δ < σ,

θt,δi,j = 0 ∀δ ∈ ∆ : δ ≥ µ, φt,δi,j = 0 ∀δ ∈ ∆ : δ ≥ σ.

Additionally, at least one of the inequalities (93) must strictly hold. We examine five cases of x̄, and utilize
(93) to infer conditions on the parameters of cut (92).

Case 1:. Consider a path vector x̄ such that x̄t
′

γ,d,n = 0 ∀t′ ∈ T, γ ∈ Γ, d ∈ Sγ , n ∈ Qd; inequality (93) is
reduced to:

ξ̄ti,j ≤ ξti,j = āti,jσ (94)
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Case 2:. We consider path vectors x̄ such that:

1) there is exactly one train that connects station i to station j at equivalent time-step t+ δ, with δ ≤ σ,
2) there are no other trains that connect station i to station r,
3) there are no other trains that connect station r to station j, i.e., ∀δ ∈ N0 : δ ≤ σ,

Formally, the following holds.

1)
∑
d∈Sυ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1,

2)
∑
t′∈T

∑
d∈Sυ,i

∑
n∈Qd

x̄t
′−n
−υ,d,n = 1,

3)
∑
t′∈T

∑
d∈Sυ,j

∑
n∈Qd

x̄t
′

υ,d,n = 1.

Replacing x̄ into inequality (93) it reduces to:

ξ̄ti,j − φ̄
t,k
i,j − ψ̄

t,k
i,j ≤ ξ

t
i,j − φ

t,k
i,j − ψ

t,k
i,j = āti,jσ − āti,j(σ − k) = āti,jk.

Combing this result with dual constraints (37) we obtain the following.

ξ̄ti,j − φ̄
t,k
i,j − ψ̄

t,k
i,j = ξti,j − φ

t,k
i,j − ψ

t,k
i,j = āti,jk ∀k ∈ [0, σ] (95)

Case 3:. We consider path vectors x̄ such that:

1) there is exactly one train that connects station i to station j at time-step t+ k, with t+ k ∈ [t, t+ µ],
2) there exists an additional train that connects station i to r at time-step t + k′, with k 6= k : t + k′ ∈

[t, t+ µ],
3) there are no other trains that connect station r to station j for the entire planning horizon,
4) there are no other trains that connect station i to station r in the rest of the planning horizon,
∀k, k′ ∈ [0, µ].

Formally, the following holds.

1)
∑
d∈Sυ,i

∑
n∈Qd

x̄t+k−n−υ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1

2)
∑
d∈Sυ,i

∑
n∈Qd

x̄t+k
′−n

−υ,d,n = 1

3)
∑
t′∈T

∑
d∈Sυ,i

∑
n∈Qd

x̄t
′−n
−υ,d,n = 2

4.
∑
t′∈T

∑
d∈Sυ,j

∑
n∈Qd

x̄t
′

υ,d,n = 1

Replacing x̄ into inequality (93) it reduces to:

ξ̄ti,j − φ̄
t,k
i,j − φ̄

t,k′

i,j − ψ̄
t,k
i,j ≥ ξ

t
i,j − φ

t,k
i,j − φ

t,k′

i,j − ψ
t,k
i,j = ξti,j − φ

t,k
i,j − ψ

t,k
i,j = āti,jk.

This, combined with (95), implies the following:

−φ̄t,k
′

i,j ≥ 0.

As for the non-negativity constraint of the dual variables (40), it results:

φ̄t,k
′

i,j = 0 ∀k′ ∈ [0, µ] (96)

32



Case 4:. We consider path vectors x̄ such that:

1) there is exactly one train that connects station i to station j at time-step t+ k, with k ∈ (µ, σ],
2) there exists an additional train that connects station r to j at time-step k′ 6= k ∈ (µ, σ],
3) there are no other trains that connect station i to station r for the entire planning horizon,
4) there are no other trains that connect station r to station j in the rest of the planning horizon,
∀k, k′ ∈ (µ, σ].

Formally, the following holds:

1)
∑
d∈Sυ,i

∑
n∈Qd

x̄t+k−n−υ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+kυ,d,n = 1,

2)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+k
′

υ,d,n = 1,

3)
∑
t′∈T

∑
d∈Sυ,i

∑
n∈Qd

x̄t
′−n
−υ,d,n = 1,

4)
∑
t′∈T

∑
d∈Sυ,j

∑
n∈Qd

x̄t
′

υ,d,n = 2.

Replacing x̄ into inequality (93) and applying the same reasoning as Case 3, we obtain the following:

θ̄t,k
′

i,j = 0 ∀k′ ∈ (t+ µ, t+ σ]. (97)

Case 5:. We consider path vectors x̄ such that:

1) there is exactly one train connecting station i to station j in equivalent time interval [t, t + σ], at
time-step t+ k with k ∈ [0, σ],

2) there is exactly one train connecting station i to station j after equivalent time interval [t, t + σ], at
time-step t+ k′ with k′ > σ,

3) there are no other trains that connect station i to station r for the entire planning horizon, and
4) there are no other trains that connect station r to station j for the entire planning horizon, ∀k, k′ ∈

∆ : k ≤ σ, k′ > σ, i.e.,

Formally, the following holds:

1)
∑
d∈Sυ,i

∑
n∈Qd

x̄t+δ−n−υ,d,n = 1 ∧
∑
d∈Sυ,i

∑
n∈Qd

x̄t+δ
′−n

−υ,d,n = 1,

2)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δ
′

υ,d,n = 1,

3)
∑
t′∈T

∑
d∈Sυ,i

∑
n∈Qd

x̄t
′−n
−υ,d,n = 2,

4)
∑
t′∈T

∑
d∈Sυ,j

∑
n∈Qd

x̄t
′

υ,d,n = 2.

Replacing x̄ into inequality (93) and applying the same reasoning as Case 3, we obtain the following:

φ̄t,k
′

i,j = 0 ∀k′ ≥ σ, (98)

θ̄t,k
′

i,j = 0 ∀k′ ≥ σ. (99)

Lastly, let us consider inequality (95) for k = σ. We incorporate inequalities (98) and (99) to obtain the
following:

ξ̄ti,j = āti,j(σ + µ). (100)
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As for inequalities (95), (96), (97), and (100) we conclude that cut (92) corresponds to cut (47), violating
the initial hypothesis that there exists a dominating cut. �

Proposition 3. Given path vector x̄ associated with the current BMP solution, a cut associated with sub-
problem (i, j, t), where (i, j) ∈ Df , needs to be generated if and only if either of the following conditions
hold:

1) ζ =
ηti,j
āti,j

is not integer, (56)

2)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+ζυ,d,n = 0. (57)

Proof. (A) ⇒ (B): Additional cuts have to be added to sub-problem (i, j, t) if the current value of ηti,j
cannot be projected onto a feasible solution in the original space of variables. Such projection must result
in a sub-problem with objective value which equates ηti,j . The binary nature of the passenger variables, in
conjunction with constraint (10), imply that this can only be achieved through the following projection:

yt,ζi,j = 1 (101)

yt,δi,j = 0 ∀δ ∈ ∆ : δ 6= ζ (102)

If this projection is feasible for the primal sub-problem, then no cut needs to be added, otherwise, additional
optimality cuts need to be generated. Requiring the feasibility of the projection implies that ζ has to be
integer, otherwise the variable yt,ζi,j would not exist in the primal model. Furthermore, the chosen variables
must also satisfy the constraints of the sub-problem involving the passenger variables, i.e., constraints (10)
and (12). Constraint (10) is directly satisfied by the chosen projection. Constraints (12) for passengers
(i, j, t) and δ = ζ, correspond to: ∑

d∈Sυ,j

∑
n∈Qd

xt+ζυ,d,n ≥ y
t,ζ
i,j = 1,

i.e., the negation of condition (57).

(A)⇐ (B): If (56) and (57) do not hold, it implies that:∑
d∈Sυ,j

∑
n∈Qd

xt+ζυ,d,n ≥ 1.

Thus, the projection defined by (101) and (102) is feasible for the primal problem, and therefore no cut
needs to be added. �

Lemma 10. Given path vector x̄ associated with the current BMP solution, if all the Benders cuts associated
with sub-problem (i, j, t), where (i, j) ∈ Df , are of the form (45) with σ ∈ N0, the quantity ζ = ηti,j/ā

t
i,j is

integer.

Proof. The dual variables ηtij are minimized in the master problem BMP and are only bounded from below
by cuts (42).

ηti,j ≥ āti,j
(
σ −

∑
δ∈∆:δ≤σ

(σ − δ)
∑
d∈Sυ,j

∑
n∈Qd

xt+δυ,d,n

)
If σ ∈ N0, all the parameters of the cut are integer multiples of ātij , therefore, the bound imposed by the
cut will always be such that ηti,j/ā

t
i,j ∈ N0. �
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Proposition 4. Given path vector x̄ associated with the current BMP solution, if all the Benders cuts
associated with sub-problem (i, j, t) where (i, j) ∈ Df are of the form (45) with σ ∈ N0, and a cut needs to
be generated for the sub-problem; a cut of the form (45) with σ = ζ + 1 where ζ = ηti,j/a

t
i,j, is violated by

the incumbent solution.

Proof. Lemma 10 guarantees that ζ = ηti,j/ā
t
i,j is integer. Additionally, cut (45) is valid as for Lemma 7.

Thus, the total waiting time of passengers (i, j, t) cannot be smaller than ηti,j , i.e.,∑
δ∈∆:δ≤ζ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δγ,d,n = 0.

Substituting this information in cut (45) with σ = ζ + 1, we obtain:

ηti,j ≥ āti,j(ζ + 1)

Which is trivially violated. �

Proposition 5. Given path vector x̄ associated with the current BMP solution, a cut associated with sub-
problem (i, j, t) where (i, j) ∈ Df needs to be generated if and only if at least one the following conditions
hold:

1) ζ =
ηti,j
āti,j

is not integer, (58)

2) ζ is integer ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+ζυ,d,n = 0 (59)

3) 6 ∃k′ : 0 ≤ k′ ≤ ζ ∧
∑

d∈S−υ,i

∑
n∈Qd

x̄t+k
′−n

−υ,d,n = 1 (60)

Proof. (A) ⇒ (B): Additional cuts have to be added to sub-problem (i, j, t) if the current value of ηti,j
cannot be projected onto a feasible solution in the original space of variables. Such projection must result
in a sub-problem with objective value which equates ηti,j . The binary nature of the passenger variables, in
conjunction with constraint (11), imply that this can only be achieved through the following projection:

yt,k,ζi,j = 1 (103)

yt,δ,δ
′

i,j = 0 ∀δ, δ′ ∈ ∆ : δ 6= k ∧ δ′ 6= ζ (104)

With k ∈ N0 : k ≤ ζ. If the projection described by (103) and (104) is feasible for the primal sub-problem,
then no cut needs to be added. Otherwise, additional optimality cuts need to be generated. Requiring the
feasibility of the projection implies that ζ has to be integer, otherwise no variable yt,k,ζi,j would exist in the
primal model ∀k ∈ N0.
Secondly, the chosen projection must satisfy the constraints of the sub-problem involving the passenger
variables, i.e., constraints (11)–(15). Constraint (11) is directly satisfied by the chosen projection. For
passengers (i, j, t) constraints (14) are:∑

d∈S−υ,j

∑
n∈Qd

x̄t+δ−n−υ,d,n ≥
∑

δ′∈∆:δ′≥δ

yt,δ,δ
′

i,j ∀δ ∈ ∆.

Clearly, if yt,δ,δ
′

i,j = 0 the constraint is always satisfied. Conversely, for the case yt,k,ζi,j = 1 it must hold:∑
d∈S−υ,j

∑
n∈Qd

x̄t+k−n−υ,d,n ≥ 1.
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Thus, a necessary condition for the projection to be feasible is:

∃k ∈ N0 : k ≤ ζ ∧
∑

d∈S−υ,j

∑
n∈Qd

x̄t+k−n−υ,d,n ≥ 1,

i.e., the negation of condition (60).

For passengers (i, j, t) constraints (15) are:∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n ≥
∑

δ′∈∆:δ′≤δ

yt,δ
′,δ

i,j ∀δ ∈ ∆,

If yt,δ,δ
′

i,j = 0 the constraint is always satisfied. Conversely, for the case yt,k,ζi,j = 1 it must hold:∑
d∈Sυ,j

∑
n∈Qd

x̄t+ζυ,d,n ≥ 1,

i.e., the negation of condition (59).

(A)⇐ (B): If (58), (59) and (60) it implies that:∑
d∈S−υ,j

∑
n∈Qd

x̄t+k−n−υ,d,n ≥ 1 ∧
∑
d∈Sυ,j

∑
n∈Qd

x̄t+ζυ,d,n ≥ 1,

with k ∈ N0 : k ≤ ζ. Thus making the projection defined by (103) and (104) feasible for the primal problem,
and therefore no cut needs to be added. �

Lemma 11. Given path vector x̄ associated with the current BMP solution, if all the Benders cuts associated
with sub-problem (i, j, t), where (i, j) ∈ Dc, are of the form (47) with σ ≤ µ ∈ N0; the quantity ζ = ηti,j/ā

t
i,j

is integer.

Proof. The proof is identical to the proof of Lemma 10. The dual variables ηtij are minimized in the master
problem BMP and are bounded from below by the Benders cuts (47). Recalling the structure of the cut is
the following:

ηti,j ≥ āti,j(σ −
∑

δ∈∆:δ<µ

(σ − δ)
∑

d∈S−υ,j

∑
n∈Qd

x̄t+δ−n−υ,d,n −
∑

δ∈∆:µ≤δ<σ

(σ − δ)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n).

If σ, µ ∈ N0, all the parameters of the cut are integer multiples of atij , therefore, regardless of the selection of
the train variables, which are binary, the bound imposed by the cut will always be such that ηti,j/a

t
i,j ∈ N0.

�

Proposition 6. Given path vector x̄ associated with the current BMP solution, if all the Benders cuts
associated with sub-problem (i, j, t), where (i, j) ∈ Dc, are of the form (47) with σ ≤ µ ∈ N0, and a cut needs
to be generated for the sub-problem; there exists a cut of the form (47) with σ = ζ + 1 where ζ = ηti,j/a

t
i,j

that is violated by the incumbent solution.

Proof. As for Lemma 11, ζ = ηti,j/ā
t
i,j is integer. Additionally, cut (47) is valid as for Lemma 7. Thus,

the total waiting time of passengers (i, j, t) cannot be smaller than ηti,j , i.e., x̄ is such that passengers (i, j, t)
wait more than ζ = ηti,j/ā

t
i,j to reach their destination. Therefore, one of the following statements holds:

1) there are no trains in the time interval [t, t+ ζ] that connect station r to j,
2) there are no trains in the time interval [t, t+ k] that connect station i to r, with k ≤ ζ such that there

is at least a train in the time interval [t+ k, t+ ζ] that connect station r to j.
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Formally:

1)
∑

δ∈∆:δ≤ζ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 0 (105)

2) 6 ∃k ∈ [0, ζ] :
∑

d∈S−υ,j

∑
n∈Qd

x̄t+k−n−υ,d,n = 1 ∧
∑

δ∈∆:k≤δ≤ζ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 1 (106)

If (105) holds, setting µ = 0 leads to the inequality:

ηti,j ≥ āti,j(σ −
∑

δ∈∆:δ<σ

(σ − δ)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n),

which becomes:

ηti,j ≥ āti,j(ζ + 1),

which is trivially violated.

If (106) holds, then:

∃k ∈ [0, ζ] :
∑

δ∈∆:δ<k

∑
d∈S−υ,j

∑
n∈Qd

x̄t−n+δ
−υ,d,n = 0 ∧

∑
δ∈∆:k≤δ≤ζ

∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n = 0.

Setting µ = k leads to inequality:

ηti,j ≥ āti,j
(
ζ −

∑
δ∈∆:δ<µ

(ζ − δ)
∑

d∈S−υ,j

∑
n∈Qd

x̄t+δ−n−υ,d,n −
∑

δ∈∆:k≤δ<ζ

(ζ − δ)
∑
d∈Sυ,j

∑
n∈Qd

x̄t+δυ,d,n

)
,

which becomes:

ηti,j ≥ āti,j(ζ + 1),

which is trivially violated. �

Appendix C: Detailed Tables

In this section, we report the comprehensive tables of results for the computational experiments.

Tables 4 and 5 report the detailed results of PF, BDA, and BD on instances with r = 1 and r = b|S|/2c
respectively. For each instance and each method, we report the computational time, the objective function
value of the incumbent solution at the end of the computation (TWT), and the final optimality gap (gap(%)).

Tables 6 and 7 report the detailed comparison of the DTPR solutions to the regular timetables and the
DTP solutions. The comparison is conducted w.r.t. total waiting time of the passengers (TWT), maximum
number of passengers on board a train (max(B)), mean value of the number of passengers on board a train
(avg(B)) and its variance (σ2(B)) We denote by D the measures associated with the DTPR solution (i.e.,
TWTD, max(BD), avg(BD), and σ2(BD)), by R the measures associated with the regular timetable (i.e.,
TWTR, max(BR), avg(BR), and σ2(BR)), and by N the measures associated with the regular timetable
(i.e., TWTN , max(BN ), avg(BN ), and σ2(BN )). Instances marked with * are not solved to optimality by
the DTPR, instances marked with � are not solved to optimality by the DTP.

Tables 8 and 9 report the detailed results of the BD in configurations S0, S1, and S2, with and without
compression on instances with r = 1 and r = b|S|/2c respectively. For each instance and each configuration,
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we report the computational time achieved, the objective value of the incumbent solution at the end of the
computation (TWT), and the final optimality gap (gap(%)).

Lastly, Tables 10–13 report the detailed comparison of the DTPR solutions in configurations S1 and S2,
to the regular timetables and to the DTPR solutions of configuration S0. We denote by SN the measures
associated with the DTPR solution in configuration N (i.e., TWTSN , max(BSN ), avg(BSN ), σ2(BSN ), and
DISTSN ). Instances marked with * are not solved to optimality by the DTPR in configurations S1 or S2,
instances marked with � are not solved to optimality by the DTPR in configuration S0.

Table 4: Comprehensive results of the flow formulation, cut generation algorithm, path formulation, and Benders-based branch-
and-cut algorithm with r = 1.

PF BDA BD

|S| |T | r t(s) TWT gap(%) t(s) TWT gap(%) t(s) TWT gap(%)

5

10

1

1 366 0.0 1 366 0.0 1 366 0.0
20 1 696 0.0 2 696 0.0 1 696 0.0
30 1 1113 0.0 3 1113 0.0 1 1113 0.0
40 5 1544 0.0 9 1544 0.0 1 1544 0.0
50 3 1966 0.0 7 1966 0.0 1 1966 0.0
60 47 2308 0.0 31 2308 0.0 7 2308 0.0
70 68 2646 0.0 37 2646 0.0 5 2646 0.0
80 245 3041 0.0 112 3041 0.0 69 3041 0.0
90 206 3533 0.0 240 3533 0.0 68 3533 0.0
100 1026 3898 0.0 931 3898 0.0 299 3898 0.0

10

10

1

1 442 0.0 1 442 0.0 1 442 0.0
20 1 1049 0.0 5 1049 0.0 1 1049 0.0
30 8 1645 0.0 19 1645 0.0 3 1645 0.0
40 45 2214 0.0 96 2214 0.0 8 2214 0.0
50 275 2723 0.0 316 2723 0.0 37 2723 0.0
60 687 3335 0.0 1565 3335 0.0 76 3335 0.0
70 504 3893 0.0 491 3893 0.0 41 3893 0.0
80 969 4507 0.0 3600 4547 2.2 274 4507 0.0
90 3600 5042 1.4 3600 5621 13.1 1378 5020 0.0
100 3600 5689 1.3 3600 6221 10.9 2023 5675 0.0

15

10

1

1 495 0.0 1 495 0.0 1 495 0.0
20 3 1383 0.0 24 1383 0.0 2 1383 0.0
30 38 2205 0.0 129 2205 0.0 12 2205 0.0
40 846 3029 0.0 711 3029 0.0 108 3029 0.0
50 935 3805 0.0 1019 3805 0.0 192 3805 0.0
60 3600 4532 1.6 3600 4536 2.6 1741 4508 0.0
70 3600 5494 2.1 3600 5819 8.4 3600 5495 1.8
80 3600 6155 1.6 3600 7239 16.9 3600 6145 1.1
90 3600 7159 2.2 3600 7919 12.0 3600 7303 4.0
100 3600 8033 4.2 3600 9011 14.8 3600 8107 4.8

20

10

1

1 554 0.0 5 554 0.0 1 552 0.0
20 9 1446 0.0 104 1446 0.0 3 1446 0.0
30 35 2504 0.0 192 2504 0.0 12 2504 0.0
40 301 3391 0.0 3168 3391 0.0 48 3391 0.0
50 3600 4240 0.2 3600 4352 4.0 404 4239 0.0
60 559 5206 0.0 3600 5456 5.7 515 5206 0.0
70 3600 6254 1.9 3600 6686 8.8 3600 6211 0.2
80 3600 6955 1.4 3600 8042 15.2 3600 6994 1.4
90 3600 8048 1.6 3600 9095 13.2 3600 8065 1.5
100 3600 8911 3.0 3600 10099 14.7 3600 8864 2.7
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Table 5: Comprehensive results of the flow formulation, cut generation algorithm, path formulation, and Benders-based branch-
and-cut algorithm with r = b|S|/2c.

PF BDA BD

|S| |T | r t(s) TWT gap(%) t(s) TWT gap(%) t(s) TWT gap(%)

5

10

3

1 366 0.0 1 366 0.0 1 366 0.0
20 1 687 0.0 1 687 0.0 1 687 0.0
30 5 1113 0.0 3 1113 0.0 1 1113 0.0
40 108 1539 0.0 22 1539 0.0 4 1539 0.0
50 52 1966 0.0 23 1966 0.0 8 1966 0.0
60 488 2308 0.0 193 2308 0.0 96 2308 0.0
70 1799 2646 0.0 292 2646 0.0 97 2646 0.0
80 3600 3041 1.1 1592 3041 0.0 762 3041 0.0
90 3600 3539 2.6 3103 3533 0.0 3600 3534 0.7
100 3600 3954 4.7 3600 3906 2.1 3600 3940 3.7

10

10

5

1 442 0.0 1 442 0.0 15 442 0.0
20 11 1049 0.0 24 1049 0.0 19 1049 0.0
30 400 1645 0.0 81 1645 0.0 5 1645 0.0
40 1443 2214 0.0 233 2214 0.0 15 2214 0.0
50 3600 2723 1.3 1325 2723 0.0 60 2723 0.0
60 3600 3361 3.2 3286 3335 0.0 159 3335 0.0
70 3600 4042 5.7 1075 3890 0.0 109 3890 0.0
80 3600 4611 4.8 3600 4529 2.6 491 4507 0.0
90 3600 5268 8.3 3600 5131 4.8 3600 5022 0.9
100 3600 5915 7.6 3600 6279 12.7 3600 5688 1.1

15

10

8

1 516 0.0 2 516 0.0 1 516 0.0
20 436 1468 0.0 59 1468 0.0 3 1468 0.0
30 2786 2310 0.0 589 2310 0.0 22 2310 0.0
40 3600 3262 6.6 1832 3155 0.0 43 3155 0.0
50 3600 4166 7.5 3600 4114 5.2 187 3991 0.0
60 3600 4816 5.7 3600 4875 6.5 327 4701 0.0
70 3600 6393 14.8 3600 6393 14.3 3600 5739 1.6
80 3600 7225 14.7 3600 7225 14.3 3600 6489 1.7
90 3600 8200 13.8 3600 7953 10.3 3600 7387 1.5
100 3600 9163 14.6 3600 9163 100.0 3600 8121 0.9

20

10

10

2 572 0.0 8 572 0.0 1 570 0.0
20 493 1600 0.0 493 1600 0.0 3 1600 0.0
30 3600 2643 1.0 1510 2643 0.0 9 2643 0.0
40 3600 3637 3.4 3600 3697 4.2 43 3591 0.0
50 3600 4544 4.3 3600 4844 10.3 129 4467 0.0
60 3600 6057 11.9 3600 6043 11.1 1289 5528 0.0
70 3600 7065 10.8 3600 7001 9.4 1839 6551 0.0
80 3600 8011 13.7 3600 8011 11.3 3600 7397 2.2
90 3600 9049 100.0 3600 9049 9.7 3600 8656 4.1
100 3600 10012 100.0 3600 10012 100.0 3600 9339 2.0
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