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Abstract

Given an undirected graph G = (V,E), the longest induced path problem (LIPP) consists
of obtaining a maximum cardinality subset W ⊆ V such that W induces a simple path in G.
In this paper, we propose two new formulations with an exponential number of constraints
for the problem, together with effective branch-and-cut procedures for its solution. While the
first formulation (cec) is based on constraints that explicitly eliminate cycles, the second one
(cut) ensures connectivity via cutset constraints. We compare, both theoretically and experi-
mentally, the newly proposed approaches with a state-of-the-art formulation recently proposed
in the literature. More specifically, we show that the polyhedra defined by formulation cut
and that of the formulation available in the literature are the same. Besides, we show that
these two formulations are stronger in theory than cec. We also propose a new branch-and-
cut procedure using the new formulations. Computational experiments show that the newly
proposed formulation cec, although less strong from a theoretical point of view, is the best
performing approach as it can solve all but one of the 1065 benchmark instances used in the
literature within the given time limit. In addition, our newly proposed approaches outperform
the state-of-the-art formulation when it comes to the median times to solve the instances to
optimality. Furthermore, we perform extended computational experiments considering more
challenging and hard-to-solve larger instances and evaluate the impacts on the results when
offering initial feasible solutions (warm starts) to the formulations.

Keywords: combinatorial optimization, integer programming, longest induced path, maxi-
mum induced subgraphs, maximum cardinality.

1 Introduction

Given a simple undirected graph G = (V,E), the longest induced path problem (LIPP), also
known as the maximum induced path problem, consists of obtaining a maximum cardinality subset
of vertices W ⊆ V inducing a simple path. More formally, denote by G[W ] = (W,E′) the graph
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induced in G by W ⊆ V , whose set of edges E′ ⊆ E is formed by all the edges in E whose extremities
belong to W , namely, E′ = {e = uv ∈ E | u, v ∈ W}. LIPP consists of obtaining a maximum
cardinality subset W ⊆ V inducing a simple path G[W ]. The problem is known to be NP-hard as
its decision version is NP-complete (Garey & Johnson, 1979). Figure 1 exemplifies an input graph
and one of its longest induced paths.
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Figure 1: Examples of (a) an input graph G with node set V = {a, b, c, d, e, f, g, h} and (b) a longest
induced path G[W ] with W = {a, c, d, e, f}.

LIPP encounters applications in both practical and more graph theoretical situations. Obtaining
the longest induced paths in hypercube graphs is known as the snake-in-the-box problem and has
applications in error-checking codes, communications, and data storage (Kautz, 1958; Yehezkeally
& Schwartz, 2012; Hood, Recoskie, Sawada, & Wong, 2015). Given a graph and two predefined
vertices u, v ∈ V , the detour distance between u and v is defined as the length of the longest induced
path between them (Chartrand, Johns, & Tian, 1993). In this context, LIPP finds applicability in
the evaluation of worst case transmission times in large communication and neural networks (Gavril,
2002). Additionally, it is also applicable to the analysis of social networks as it extends the concept
of diameter of a graph, which is given by the longest of its shortest paths (Matsypura, Veremyev,
Prokopyev, & Pasiliao, 2019). Furthermore, the existence of long induced paths plays an important
role in the characterization of properties for several problems in graph theory (Lozin & Rautenbach,
2003; Golovach, Paulusma, & Song, 2014; Bonomo et al., 2018; Chudnovsky, Schaudt, Spirkl, Stein,
& Zhong, 2019; Jaffke, Kwon, & Telle, 2020).

Although LIPP is NP-hard in general, there are several classes of graphs for which it can be
solved in polynomial time (Gavril, 2002; Kratsch, Müller, & Todinca, 2003; Ishizeki, Otachi, &
Yamazaki, 2008; Jaffke et al., 2020). However, to the best of our knowledge, approaches for solving
general instances of the problem were only proposed very recently. Matsypura et al. (2019) presented
three compact integer programming (IP) formulations and an exact iterative IP-based algorithm
using their IP formulations. The authors also presented a randomized heuristic to tackle larger
instances of the problem. Bökler, Chimani, Wagner, and Wiedera (2020a, 2020b) described branch-
and-cut approaches based on IP formulations using cutset (or generalized subtour elimination)
constraints and clique inequalities. The authors showed that the proposed formulations provide
stronger linear relaxation bounds than those presented in Matsypura et al. (2019). Furthermore,
computational experiments demonstrated the superiority of the new formulations in terms of the
number of instances solved to optimality and the median times for solving them. Marzo and Ribeiro
(2021) proposed an exact backtracking algorithm, based on which they also derived a heuristic
approach.

In addition, several problems which are somehow related to the longest induced path problem
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have been tackled using integer programming approaches in the literature. Ljubić et al. (2006) and
Costa, Cordeau, and Laporte (2009) presented integer programming formulations and branch-and-
cut methods for Steiner tree problems. The problem of obtaining the longest induced simple cycle
of a graph was considered in Lucena, Salles da Cunha, and Simonetti (2013). Formulations for the
maximum weighted connected subgraph problem were proposed in Álvarez-Miranda, Ljubić, and
Mutzel (2013), and Rehfeldt and Koch (2019). Agra, Dahl, Haufmann, and Pinheiro (2017) analyzed
exact approaches for finding maximum k-regular induced subgraphs of a graph. Melo, Queiroz, and
Ribeiro (2021) considered the maximum weighted induced forest problem in the context of solving
the minimum weighted feedback vertex set problem. Melo and Ribeiro (2021) proposed new IP
formulations for the maximum weighted induced forest problem and showed how to adapt their
approaches to find maximum weighted induced trees.

In the same line of the recent works of Matsypura et al. (2019), Bökler et al. (2020a, 2020b), and
Marzo and Ribeiro (2021), we consider the longest induced path problem for general graphs. We
propose two new formulations with exponential numbers of constraints. We perform a theoretical
comparison regarding the polyhedra defined by these formulations and that of a state-of-the-art
formulation available in the literature (Bökler et al., 2020a). We also propose an effective branch-
and-cut approach for the problem which, based on the characteristics of the instance, either adds a
priori to the formulation the clique inequalities for all the maximal cliques in the graph, or applies
a cutting-plane heuristic to separate such inequalities. Extensive computational experiments are
conducted, highlighting the superiority of our approaches when compared to a state-of-the-art
formulation in terms of both the number of instances solved to optimality and the median times to
solve them.

The remainder of the paper is organized as follows. Section 2 describes the newly proposed
formulations. Section 3 presents the computational experiments, where implementation details of
the branch-and-cut approach are also given. Concluding remarks are discussed in Section 4. For the
sake of completeness, the state-of-the-art formulation proposed in Bökler et al. (2020a) is presented
in Appendix A. A theoretical comparison of the polyhedra defined by the different, existing and
new, problem formulations is presented in Appendix B. A theoretical analysis of the different clique
inequalities is presented in Appendix C.

2 New integer programming formulations

In this section, we propose two new formulations with an exponential number of constraints
for the longest induced path problem (LIPP). We also describe the clique inequalities available
for problems related to encountering induced subgraphs. Both formulations are undirected and
consider a slightly modified graph constructed as follows, as Bökler et al. (2020a) also did. Given
the graph G = (V,E), we build Gs = (Vs, Es) with Vs = V ∪ {s} and Es = E ∪ {sv : v ∈ V }.
The goal of the dummy vertex s is to be linked to both extremities of the induced path G[W ],
with W ⊆ V . In the remainder of the paper, let E(V ′) ⊆ E be the set of edges in E with both
extremities in V ′, and δG(V ′) be the set of edges in G with an extremity in V ′ and another one in
V̄ ′ = V \ V ′.

2.1 Formulation with explicit cycle elimination constraints

In order to formulate LIPP as an integer program, define the binary variable yv to be equal
to one if the vertex v ∈ Vs belongs to the solution, zero otherwise. Besides, consider the binary
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variable xe to be equal to one if edge e ∈ Es is in the solution, zero otherwise. Let C denote the
family of all cycles in the graph G. The formulation with explicit cycle elimination constraints can
be defined as

(cec) max
∑
v∈V

yv (1)∑
e∈δGs (v)

xe = 2yv, ∀ v ∈ V, (2)

∑
e∈δGs (s)

xe = 2, (3)

∑
v∈C

yv ≤ |C| − 1, ∀ C ∈ C, (4)

xe ≤ yv, ∀ v ∈ V, e ∈ δGs(v), (5)

xe ≥ yu + yv − 1, ∀ e = uv ∈ E, (6)

x ∈ {0, 1}|Es|, (7)

y ∈ {0, 1}|Vs|. (8)

The objective function (1) maximizes the number of vertices in the induced path. Constraints (2)
guarantee that each selected vertex has degree two. Constraint (3) ensures exactly two edges are
adjacent to the dummy vertex. Constraints (4) force the induced subgraph to be acyclic. Note that
there is an exponential number of such constraints, one for each cycle in the graph. Constraints (5)
and (6) ensure the path is induced. Constraints (7) and (8) determine, respectively, the integrality
of the x and y variables.

Note that, similarly to Bökler et al. (2020a), the formulation assumes |E| > 1. We remark,
though, that such assumption is not restrictive, as obtaining the optimal solution for a graph
without any edges is straightforward. An alternative way that could include the trivial graph as a
feasible input would be to insert an additional dummy vertex to the transformed graph and, instead
of closing a cycle with both extremities of the induced path, one would build a path between the
two dummy vertices.

2.2 Formulation with cutset constraints

The undirected cutset formulation is similar to that with explicit cycle elimination constraints,
with the difference that it guarantees the elimination of cycles using cutset constraints. Using the
same variables defined in Subsection 2.1, it can be cast as

(cut) (1)− (3), (5)− (8),∑
e∈δGs (S)

xe ≥ 2yv, S ⊆ V, v ∈ S. (9)

Constraints (9) guarantee the solution to be acyclic in G by ensuring connectivity. To be more
specific, given a partition {S, S̄}, with vertex v ∈ S, the constraint enforces at least two edges in
the cut (S, S̄) to be in the solution whenever yv = 1.

Note that an alternative well-known approach for ensuring connectivity, which is known to be
equivalent to the use of cutset inequalities, is the employment of generalized subtour elimination
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constraints (Goemans & Myung, 1993; Bökler et al., 2020a). This means that an equivalent way
to ensure (9) is via ∑

e∈E(S)

xe ≤
∑

u∈S\{v}

yu, S ⊆ V, v ∈ S. (10)

Constraints (10) guarantee that for a given subset S of vertices, the number of edges connecting
them is at most the number of selected vertices minus one (whenever there is at least one selected
edge from E(S)).

2.3 Clique inequalities

A clique in a graph is a subset of its vertices which are all pairwise adjacent. Consider K to be
the family of all cliques in the graph G. Bökler et al. (2020a, 2020b) described the clique inequalities
using the edge variables as ∑

e∈E(K)

xe ≤ 1, ∀ K ∈ K. (11)

Inequalities (11) enforce the number of edges connecting vertices in a clique to be at most one.
On the other hand, clique inequalities can also be modeled using the variables corresponding to

the vertices (Brunetta, Maffioli, & Trubian, 2000; Melo & Ribeiro, 2021), resulting in∑
v∈K

yv ≤ 2, ∀ K ∈ K. (12)

Inequalities (12) ensure that at most two vertices in a clique are selected.

2.4 Theoretical analysis of the formulations and clique inequalities

We provide a theoretical comparison regarding the polyhedra defined by formulations cec, cut,
and BCWWy (Bökler et al., 2020a, 2020b) in Appendix B. Namely, we show that the polyhedra
defined by cut and BCWWy are equivalent. We also prove that the polyhedra determined by cut
and BCWWy are strictly contained in that defined by cec. For completeness, BCWWy is described
in Appendix A.

A theoretical analysis of the different clique inequalities, (11) and (12), is presented in Ap-
pendix C. We demonstrate that (11) and (12) are not equivalent when applied to our formulation.
In addition, we characterize conditions that must hold for each inequality to imply the other.

3 Computational experiments

In this section, we report the computational experiments assessing the performance of the newly
proposed formulations. The experiments were carried out on a machine running under Ubuntu, with
an Intel(R) Core(TM) i7-8700 Hexa-Core 3.20 GHz and 16 GB of RAM. The formulations were
coded in Julia v1.4.2, using JuMP v0.18.6. Furthermore, the formulations were solved using Gurobi
9.0.2.

We considered in our experiments the instances proposed for the longest induced path prob-
lem in Matsypura et al. (2019) and Bökler et al. (2020a), also used by Marzo and Ribeiro (2021).
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These instances can be obtained from Bökler, Chimani, Wagner, and Wiedera (2019), where ad-
ditional details can be encountered. They are grouped into four sets, which are: RWC, MG,
BAS, and BAL. RWC is composed of 22 real-world networks corresponding to communication and
social networks of companies, characters in books, as well as transportation, biological and techni-
cal networks. MG corresponds to The Movie Galaxy dataset and contains 773 graphs associated
to social networks of movie characters (Kaminski, Schober, Albaladejo, Zastupailo, & Hidalgo,
2018). BAS and BAL were generated by Bökler et al. (2020a) using the Barabási-Albert proba-
bilistic model for scale-free networks (Barabási & Albert, 1999) in an attempt to recreate those
used in Matsypura et al. (2019). BAS is composed of 120 graphs divided into four subsets with
(|V |, d) ∈ {(20, 3), (30, 3), (40, 3), (40, 2)}, where |E| = (|V |−d)×d, having 30 instances each. BAL
is composed of 150 graphs with 100 vertices divided into five subsets with d ∈ {2, 3, 10, 30, 50}, each
of them containing 30 instances.

3.1 Tested approaches

The following approaches were considered in our experiments:

- cec: the formulation with explicit cycle elimination constraints, described in Section 2.1;

- cut: the formulation with cutset constraints, described in Section 2.2;

- Cn,c
int : best performing formulation described in Bökler et al. (2020a) (see Appendix A);

- Cn
int: formulation described in Bökler et al. (2020a) corresponding to Cn,c

int without the clique
inequalities (see Appendix A).

Note that we do not explicitly consider in our experiments the approaches of Matsypura et al.
(2019), as they were already shown not to be as effective in general as those proposed in Bökler et
al. (2020a).

The reported values for Cn,c
int and Cn

int are those in Bökler et al. (2020a, 2020b). We observe that
we implemented their formulations and executed our implementations in our own computational en-
vironment. However, although our implementation showed a similar performance for the small and
medium instances in the original benchmark set, its results were outperformed by those reported by
the authors for the larger instances. Thus, Table 1 compares the computational resources involved
in the experiments based on the benchmarks in PassMark (2021) to evaluate the performance of
the formulations.

Table 1: CPU performance comparison with data extracted from PassMark (2021): Higher values
represent better performance. The second and third columns correspond to the hardware used in
this paper and in Bökler et al. (2020a), respectively.

Benchmarks Intel Core i7-8700 Intel Xeon Gold 6134

Clock speed (GHz) 3.2 3.2
Turbo speed (GHz) Up to 4.6 Up to 3.7
CPU single thread rating 2,681 2,251
CPU mark rating 13,090 16,513

3.2 Implementation details and parameter settings

We report in this section some relevant implementation issues.
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(A) Separation of cycle constraints: the separation of the cycle constraints (4) for formulation
cec is performed based on the approach described in Melo and Ribeiro (2021). It receives as input a
separation graph Gsep = G[Vsep] induced by the vertices corresponding to the y variables assuming
a nonzero value in the solution (which can be either a fractional solution corresponding to the linear
relaxation or an integer solution). More specifically, Vsep = {v ∈ Vs | ŷv > 0}, where ŷv represents
the value assumed by variable yv in the solution. The separation of violated inequalities for integer
solutions is performed using the well-known depth-first search algorithm (DFS) (Cormen, Leiserson,
Rivest, & Stein, 2009) in Gsep. More specifically, for every back edge traversed during the DFS,
the corresponding cycle is stored. The separation procedure adds to the formulation all the cycles
encountered during the execution of DFS. On the other hand, the separation for fractional solutions
is performed heuristically. It uses an alternative DFS with certain greedy components in Gsep by
considering the vertices to be visited in non-increasing order of their associated ŷ values. Whenever
a back edge is traversed during the search, the algorithm checks if such cycle violates constraints
(4). In case that happens, it is stored. At the end of the execution of this alternative DFS, the
separation procedure adds to the formulation all the violated inequalities which were encountered
during the procedure.

(B) Separation of cutset constraints: the separation of the cutset constraints (9) for formula-
tion cut also takes Gsep = G[Vsep] as input. The separation of violated inequalities for integer
solutions is performed with a small variation of the well-known breadth-first search algorithm
(BFS) (Cormen et al., 2009) in Gsep. The algorithm starts at the dummy vertex s and defines
the part S̄ of the partition {S, S̄} of Vsep as the vertices which could be reached from s. In what
follows, for each vertex in v ∈ S the algorithm stores the corresponding violated inequality. At
the end of the execution of the algorithm, all the encountered violated inequalities are added to
the formulation. Separation for fractional solutions is performed exactly using maximum flows
(minimum cuts), following the approach of Magnanti and Wolsey (1995). Namely, the approach
builds a directed graph based on the solution (ŷ, x̂) in which the capacities of the arcs are defined
by the values assumed by the x̂ variables. Thus, a maximum flow problem is solved from s to each
v ∈ Vsep. A violated constraint (9) is stored whenever it is encountered. At the end of the execution
of the algorithm, all the obtained violated inequalities are inserted into the formulation.

(C) Separation of clique inequalities: the separation of clique inequalities (12) for formula-
tions cec and cut also takes the separation graph Gsep = G[Vsep] as input. It uses the heuristic
approach described in Melo and Ribeiro (2021), which works as follows. Firstly, the vertices in
Vsep are sorted in non-increasing order of their corresponding ŷ values. In case of ties, they are
considered in non-increasing order of their degree in Gsep. Next, a vertex adjacent to all others
that were already chosen is greedily chosen to compose the clique under construction. These steps
are repeated while a maximal clique in Gsep was not yet obtained. Whenever a violated inequality
is obtained for a maximal clique in Gsep, the approach attempts to lift such inequality by possibly
adding new vertices that were not in the separation graph to get a maximal clique in the original
graph G. The selection of vertices to lift the inequality uses a similar greedy idea, but it only
considers their degrees.

(D) A priori addition of clique inequalities: in certain situations, we also consider adding
a priori to the formulation the clique inequalities corresponding to all the maximal cliques in the
graph. The enumeration of maximal cliques can be performed based on the algorithm of Bron and
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Kerbosch (Bron & Kerbosch, 1973; Tomita, Tanaka, & Takahashi, 2006). Although the maximum
number of such cliques can be exponential (Moon & Moser, 1965), it was observed in Bökler et
al. (2020a) that, for most of the benchmark instances, the number of maximal cliques was rather
reasonably tractable.

(E) Settings and further details: whenever the number of maximal cliques with at least three
vertices do not exceed a parameter maxcl, all the corresponding clique inequalities are added a
priori to the formulation. Otherwise, the separation of clique inequalities is employed. Based on
preliminary tests to check the tractability of larger formulations, in our experiments, maxcl was
set to 500. All the separation procedures were implemented as callbacks in the MIP solver. The
separations for fractional solutions were configured to be executed only at the root node in an
attempt not to overload the formulation with inequalities generated throughout the search tree.
The MIP solver was executed using the standard configurations, except for the relative optimality
tolerance gap, which was set to 10−6, and for the number of used threads, which was fixed to one.
Each execution of the solver was limited to 1200 seconds.

3.3 Results

In this section, we compare our formulations cec and cut with the state-of-the-art integer pro-
gramming approaches proposed by Bökler et al. (2020a), with one single thread for each run.

Table 2 displays the computational experiments on the RWC instances. The second column
gives the optimal value. The third and fourth columns show the number of vertices and edges in
each instance, respectively. The fifth and sixth columns display the time in seconds taken by the
best ILPCut implementations (Cn

int,C
n,c
int ) of Bökler et al. (2020a). The last two columns, indicated

respectively by cec and cut, present the running times of our formulations. The time limit was set
to 1200 seconds and timeouts are denoted by �.

The table shows that, for the RWC instances, our new formulation cec outperformed the other
implementations in terms of the number of instances solved to optimality. Formulation cec solved
all but one instance, being the only one to solve the large instances 494bus and 662bus. The
running time of cec is only 0.2% and 10.6% of those of formulations Cn

int and Cn,c
int , respectively,

for instance anna. A more straightforward and fair comparison between the performances of the
new formulations proposed in this work and those in Bökler et al. (2020b) can be done considering
the benchmarks in Table 1. The ratio 2681

2251 ≈ 1.19 between the CPU single thread ratings of the
machines used in each work gives a good approximation for the relative speed between them. If
the running times for formulations cec and cut were adjusted by multiplying them by the ratio
1.19, under these conditions we could see that cec would be the fastest formulation for eleven RWC
instances, followed by cut and Cn,c

int for seven and three (high-tech, karate and usair) instances,
respectively. Formulation Cn

int was never the fastest.
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Table 2: Running times in seconds of the formulations on the RWC instances.
Instance OPT |V | |E| Cn

int Cn,c
int cec cut

high-tech 13 33 91 0.51 0.41 0.68 0.61
karate 9 34 78 1.07 0.66 0.59 0.75
mexican 16 35 117 1.22 0.87 0.65 0.51
sawmill 18 36 62 0.85 0.82 0.55 0.45
chesapeake 16 39 170 2.29 3.19 0.72 0.56
tailorS1 13 39 158 1.51 3.29 0.73 0.58
tailorS2 15 39 223 3.20 2.89 0.96 0.81
attiro 31 59 128 1.20 0.89 0.64 0.47
dolphins 24 62 159 19.21 3.01 0.82 0.72
krebs 17 62 153 16.00 3.90 0.69 1.73
prison 36 67 142 3.62 1.02 0.57 0.44
huck 9 69 297 114.27 5.96 0.82 5.53
sanjuansur 38 75 144 8.22 3.79 0.72 0.81
jean 11 77 254 81.03 3.88 0.69 0.56
david 19 87 406 85.88 6.93 0.70 0.56
ieeebus 47 118 179 15.69 22.72 0.88 �
sfi 13 118 200 15.13 3.31 0.55 0.39
anna 20 138 493 439.23 7.09 0.75 0.92
usair 46 332 2126 � 922.94 887.76 �
494bus 142 494 586 � � 88.41 �
662bus 305 662 906 � � 212.54 �
yeast unknown 2361 6646 � � � �
# of timeouts 4 3 1 5

Figure 2 shows the legend used in Figures 3-5, with the identification of our formulations (cec
and cut) and of the two best ILPCut implementations of Bökler et al. (2020a). We also indicate
by cec∗ and cut∗ the results obtained by formulations cec and cut, respectively, with their running
times multiplied by the factor 2681

2251 ≈ 1.19.

Cnint

C
n, c
int

instances

cec

cut

cec*

cut*

Figure 2: Identifications of the formulations.

Figure 3 displays comparative results for the MG instances, with the horizontal axis indicating
the subsets into which the MG graphs were divided, according to their number of edges. Figure 4
shows the comparative results for the instances in sets BAS and BAL, with the horizontal axis
indicating the subsets into which the graphs were divided, according to their number of vertices,
their number of edges and the value of parameter d. Figure 5 correlates the median running times
of three formulations with the size of the longest induced path (OPT), considering all 1065 test
instances. The horizontal axis of the figure indicates the subsets into which the graphs were divided,
according to the optimal value. Vertical bars in light blue in the background give the number of
instances in each subset. For each formulation, we represent the median of the running times over
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all instances in the same subset. Furthermore, in Figures 3(b), 4(b) and 5 the whiskers mark the
20% and 80% percentiles of the running times for each subset. In the cases where not all instances
in the same subset have been solved to optimality, we indicate the number of solved instances by
gray encircled markers connected by dotted lines (see Figure 4(a)).

Figures 3-5 show that even though cec and cut can be outperformed by Cn
int and Cn,c

int for some of
the small instances, they become much more effective than the latter as the instance sizes become
larger. It is noticeable that in most cases our formulations present smaller variations in the running
times. We can see from Figure 3 that for instances MG our formulations are more robust and
their running times much less dependent on the instance sizes. Figure 4 highlights the fact that,
for instances BAS and BAL, the four formulations present a similar behavior regarding how the
running times increase as the instances become larger, but it is noteworthy that our formulations
cec and cut present much lower median times.

Table 3 summarizes, for each group of instances, the number of timeouts for each formulation
considering the time limit of 1200 seconds. Formulation cec, although less strong from a theoretical
point of view, showed the best performance, being able to solve all the 1065 instances, except
the largest one (the instance named yeast), which was not solved by any of the formulations.
A possible explanation for the good performance of cec is that it can still achieve good bounds
(which are close to those obtained by cut) at the root node using lower computational effort for the
considered instances. Furthermore, we observed that the solver can frequently achieve good-quality
feasible solutions earlier in the enumeration tree when using cec.

Table 3: Number of instances not solved to optimality by each formulation within the time limit of
1200 seconds.

Group Number of timeouts

Name Instances Cn
int Cn,c

int cec cut

RWC 22 4 3 1 5
MG 773 0 0 0 0
BAS 120 1 1 0 0
BAL 150 4 0 0 0

Total 1065 9 4 1 5
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(a) Running times in seconds.
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(b) Boxplots of the running times in seconds.

Figure 3: Computational results on the MG instances. The new formulations cec and cut are more
robust and their running times are much less dependent on the instance size.
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(b) Boxplots of the running times in seconds.

Figure 4: Computational results on the BAS and BAL instances. Although the four formulations
presented a similar behavior, the new formulations cec and cut showed smaller median times, in
particular for the BAL instances.
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Figure 5: Running times vs. optimal values for all instances: whiskers mark the 20% and 80%
percentiles. The gray area on top of the plot marks timeouts. Each run was limited to 20 minutes.
The new formulations cec and cut presented much smaller variations in the running times and lower
median times in most cases.

3.4 Experiments with more challenging larger instances

In this section we analyze the performance of the newly proposed approaches, cec and cut,
on a benchmark set composed of more challenging, larger instances. The goal of these additional
experiments was twofold. Firstly, we wanted to show that even though our approaches were able
to solve nearly all the original benchmark instances to optimality, there are still instances that are
hard to solve in practice. Secondly, we investigated the impact of offering warm start solutions (i.e.,
initial feasible solutions) to the formulations.

This benchmark set is composed of 23 challenging larger instances. It contains: (a) three
hypercube graphs, where k-cube denotes the k-dimensional hypercube with 2k vertices; (b) six
2-connected random graphs, originally proposed by Carrabs, Cerulli, Gentili, and Parlato (2011)
for the minimum weighted feedback vertex set problem (MWFVS), each of which identified in our
work as Rand |V | |E| seed; (c) three toroidal graphs, also proposed for MWFVS, each of them
represented by Toro n n seed, where n represents the dimension of a square grid based on which
the toroidal graph was obtained (notice that each toroidal graph has n× n vertices); (d) ten larger
BAL instances, half of them with 1000 vertices, 9900 edges, and d = 10, while the other five have
1485 vertices, 13860 edges and d = 3; and (e) the largest RWC instance yeast, which was not solved
by any of the formulations within 1200 seconds. Note that we consider the unweighted versions of
the instances corresponding to items (b) and (c) enumerated in this paragraph.

The warm starts used in the experiments were produced by the G-HLIPP heuristic of Marzo and
Ribeiro (2021). This greedy heuristic explores all vertices of the graph as possible source vertices
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of induced paths. The source vertices are selected in the non-increasing order of their eccentricities
and ties are broken in favor of vertices with smaller degrees. Parameter maxpaths of the heuristic,
which limits the number of induced paths that are explored from each source vertex, was empirically
set to 5000. The heuristic stops after generating a sequence of maxpaths induced paths from each
vertex of the graph that do not improve the incumbent solution.

Given the large sizes of the instances, the maximum allowed running time for the experiments
in this section was set to 3600 seconds (1 hour) for each run. For the executions of the plain
formulation, i.e., without warm starts, the solver was executed with the full time limit of 3600
seconds. For the executions with warm starts, the heuristic G-HLIPP was run for 360 seconds
(6 minutes, corresponding to 10% of the total maximum allowed time), while the remaining 3240
seconds (54 minutes) were made available to run the formulation using the solver.

Table 4 reports the computational results for formulations cec, cut, and their variants with
warm starts. The table shows that, among all formulations, cec with warm starts reached the
lowest average gap and the highest number of best values regarding the incumbent (column Obj)
and relative gap, but cec was better in terms of the number of best upper bounds (although by
just one instance of difference). For eight instances none of the formulations with warm starts was
able to improve in 54 minutes the best solution found by heuristic G-HLIPP and for eight instances
the heuristic found better solutions than cec and cut. We remark that the optimal solutions for
instances 7-cube (51) and 8-cube (99) are known and were obtained in the context of specialized
approaches for the snake-in-the-box problem (Österg̊ard & Pettersson, 2015).

When we make a specific comparison between cec and cec with warm starts, the table shows
that cec with warm starts reached the highest number of best values regarding the incumbent
(column Obj) and the relative gap, but cec was better in terms of the number of best upper bounds
(although by just an instance of difference). For eight instances cec with warm starts was not able
to improve in 54 minutes the best solution found by heuristic G-HLIPP and for eight instances
the heuristic found better solutions than cec. When comparing cut and cut with warm starts, it
can be noticed that cut with warm starts reached the highest number of best values regarding the
incumbent (column Obj), upper bound, and relative gap. For ten instances cut with warm starts
was not able to improve in 54 minutes the best solution found by heuristic G-HLIPP and for twelve
instances the heuristic found better solutions than cut.

To summarize, the benchmark set considered in this section is composed of very challenging
instances. The results indicate that even though nearly all original benchmark instances are solved,
there is still room for advances in these approaches to solve these larger instances. Furthermore,
the use of warm starts was shown to be a very important contribution when compared to the
use of the plain formulations, as they became much more stable when it comes to the achieved
optimality gaps. This is also depicted in Figure 6. It can be noticed that the improvements were
more significant for formulation cut.
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Table 4: Performance of formulations cec, cut, and their variants with warm starts on difficult instances. The time limit for cec (resp. cut), G-HLIPP, and
cec with warm starts (resp. cut with warm starts) was set to 3600, 360, and 3240 seconds, respectively. The best values are highlighted in bold.

Instance |V | |E| cec cut G-HLIPP cec + warm start cut + warm start
Obj UB Gap (%) Obj UB Gap (%) Obj Obj UB Gap (%) Obj UB Gap (%)

7-cube 128 448 50 67 34.0 48 67 39.6 48 49 66 34.7 49 67 36.7
8-cube 256 1,024 88 139 58.0 86 139 61.6 84 86 140 62.8 87 140 60.9
9-cube 512 2,304 143 285 99.3 145 285 96.6 160 160 284 77.5 160 284 77.5
Rand 200 796 10203 200 796 86 101 17.4 84 101 20.2 67 86 102 18.6 85 101 18.8
Rand 200 3184 11203 200 3,184 32 62 93.8 33 62 87.9 30 30 62 106.7 30 62 106.7
Rand 200 12139 12283 200 12,139 11 56 409.1 11 56 409.1 12 12 42 250.0 12 42 250.0
Rand 300 1644 12739 300 1,644 101 149 47.5 93 149 60.2 82 92 150 63.0 97 150 54.6
Rand 300 7026 13787 300 7,026 35 92 162.9 36 99 175.0 33 34 91 167.6 33 91 175.8
Rand 300 27209 14811 300 27,209 11 101 818.2 11 101 818.2 12 12 101 741.7 12 101 741.7
Toro 10 10 1187 100 200 59 61 3.4 59 62 5.1 54 59 61 3.4 59 62 5.1
Toro 20 20 2283 400 800 259 262 1.2 259 263 1.5 213 259 262 1.2 259 262 1.2
Toro 23 23 2595 529 1,058 344 349 1.5 344 349 1.5 282 344 349 1.5 344 349 1.5
ba.1000.10.0 1,000 9,900 232 511 120.3 213 513 140.8 130 269 511 90.0 236 512 116.9
ba.1000.10.1 1,000 9,900 271 513 89.3 278 513 84.5 135 272 512 88.2 271 513 89.3
ba.1000.10.2 1,000 9,900 263 510 93.9 241 512 112.4 123 232 510 119.8 268 511 90.7
ba.1000.10.3 1,000 9,900 304 511 68.1 208 515 147.6 128 264 512 93.9 284 514 81.0
ba.1000.10.4 1,000 9,900 270 511 89.3 107 515 381.3 131 169 511 202.4 205 513 150.2
ba.1000.3.0 1,485 13,860 7 675 9542.9 168 674 301.2 252 252 675 167.9 252 675 167.9
ba.1000.3.1 1,485 13,860 11 679 6072.7 156 680 335.9 253 254 680 167.7 254 680 167.7
ba.1000.3.2 1,485 13,860 158 679 329.7 134 681 408.2 234 234 680 190.6 234 680 190.6
ba.1000.3.3 1,485 13,860 3 683 22666.7 3 684 22700.0 241 241 683 183.4 241 683 183.4
ba.1000.3.4 1,485 13,860 105 680 547.6 84 684 714.3 243 243 682 180.7 243 682 180.7
yeast 2,361 6,646 226 516 128.3 4 543 13475.0 188 286 509 78.0 188 646 243.6

Number of best values 9 16 10 6 7 3 7 14 15 13 12 9 11
Average gap (%) 1804.1 1764.3 134.4 138.8
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Figure 6: Boxplots of the relative gaps (%) associated with our formulations cec, cut, and their
variants with warm starts on the 23 difficult instances. The box extends from the lower (25th
percentile) to upper quartile (75th percentile) values of the data, with a line at the median. The
whiskers extend from the box to show the range of the data. Beyond the whiskers, data were
considered outliers (points outside 1.5 times the interquartile range) and were plotted as individual
points. We can see that the variants with warm starts presented less outliers and lower variability
of the relative gaps and the interquartile range, confirming their greater robustness in comparison
with the plain formulations cec and cut.

4 Concluding remarks

In this paper, we proposed two new formulations with an exponential number of constraints
for the longest induced path problem on general graphs, together with effective branch-and-cut
procedures for its solution. We proved that the polyhedra defined by formulation cut (wich ensures
connectivity via cutset constraints) and by a state-of-the-art formulation, recently proposed in the
literature (Bökler et al., 2020a), are equivalent. Besides, we showed that they are strictly contained
in the polyhedron defined by formulation cec (which is based on constraints that explicitly eliminate
cycles). We also analyzed the strength of clique inequalities when using variables corresponding to
edges and to vertices.

Extensive computational experiments showed that our newly proposed approach based on the
explicit elimination of cycles, although less strong in theory, performs very well in practice. More
specifically, it outperforms the others as it is able to solve all but one of the 1065 benchmark
instances used so far in the literature, showing a clear advantage especially for the more challenging
instances.

In addition, we performed extended computational experiments on a newly proposed benchmark
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set consisting of 23 hard-to-solve larger instances, which poses a tough challenge to our approaches.
These extended experiments also showed that offering initial feasible solutions to our formulations
had a very positive impact in reducing the variability of the achieved optimality gaps.
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Appendix A State-of-the-art integer programming formula-
tion

The state-of-the-art integer programming formulation for the longest induced path problem was
proposed by Bökler et al. (2020a, 2020b). It considers the transformed graph Gs = (Vs, Es), with
Vs = V ∪ {s} and Es = E ∪ {sv : v ∈ V }. Given the x variables described in Section 2, their base
formulation can be defined as

(BCWW) max
∑
e∈E

xe (13)∑
e∈δGs (s)

xe = 2, (14)

∑
e∈δGs (v)

xe ≤
∑

e∈δGs (S)

xe, ∀ S ⊆ V, v ∈ S, (15)

2xe ≤
∑

f∈δGs ({u,v})

xf ≤ 2, ∀ e = uv ∈ E, (16)

x ∈ {0, 1}|Es|. (17)

The authors have observed that constraints (15) are equivalent to the generalized subtour elimina-
tion constraints (10). They also proposed a modified formulation using the y variables (described
in Section 2) and relaxes the integrality requirements on the x variables. It can be cast as

(BCWWy) (13)− (16) (18)

yv =
1

2

∑
e∈δGs (v)

xe, ∀ v ∈ V, (19)

x ∈ [0, 1]|Es|, (20)

y ∈ {0, 1}|V |. (21)

We remark that Bökler et al. (2020a, 2020b) tested several configurations of their formulation.
We refer to Cn,c

int as the best performing approach in their computational experiments, considering
the number of instances solved to optimality and the average times for solving them. Cn,c

int uses
formulation BCWWy, add the clique inequalities (11) corresponding to all maximal cliques a priori
to the formulation, and separates the cutset inequalities (15) only for integer solutions. Additionally,
Cn

int denotes the variant of Cn,c
int without the addition of clique inequalities.
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Appendix B Theoretical comparison of the formulations cec,
cut and BCWWy

Denote by Qcec, Qcut, and QBCWWy the polyhedra defined by the linear relaxations of formu-
lations cec, cut, and BCWWy, respectively. Each of these polyhedra is defined as the set of feasible
points satisfying all the corresponding constraints. We remark that the objective functions (1) and
(13) are equivalent, even for the linear relaxations of the formulations.

B.1 Comparing Qcec with Qcut

In what follows, we show that Qcut ⊂ Qcec. Consider a solution (x̂, ŷ) ∈ Qcut. The proof consists
in showing that (x̂, ŷ) ∈ Qcec and that there is a solution (x̄, ȳ) ∈ Qcec such that (x̄, ȳ) /∈ Qcut.
Firstly, notice that the only difference between these two formulations is related to the constraints
to remove cycles, namely, (4) for cec and (9) for cut.

Lemma 1. Solution (x̂, ŷ) satisfies (4).

Proof. First, remember that constraints (9) imply (10)(Goemans & Myung, 1993; Bökler et al.,
2020a). Consider any cycle C. As (10) implies that

∑
e∈E(C)

xe ≤
∑

u∈C\{v}
yu for every v ∈ C, any

right-hand side is at most |C| − 1. Thus, (x̂, ŷ) satisfies (4).

Lemma 2. Qcut ⊆ Qcec.

Proof. The proof follows from Lemma 1 together with the fact that all other constraints defining
these polyhedra are the same.

Lemma 3. Qcec 6⊆ Qcut.

Proof. Consider the fractional solution (x̄, ȳ) ∈ Qcec represented by Figure 7. Note that it violates
constraints (9) and, in consequence, (x̄, ȳ) /∈ Qcut.

Proposition 1. Qcut ⊂ Qcec.

Proof. The proof follows from Lemmas 2-3.

B.2 Comparing QBCWWy with Qcut

In the following, we demonstrate that Qcut = QBCWWy. Consider a solution (x̂, ŷ) ∈ Qcut. We
show that (x̂, ŷ) ∈ QBCWWy. After that, we show that any solution (x̄, ȳ) ∈ QBCWWy also belongs
to Qcut.

Lemma 4. Solution (x̂, ŷ) satisfies (14), (19), (20) and the continuous relaxation of (21).

Proof. This is a straightforward implication of constraints (2), (3), and the continuous relaxations
of (7) and (8).

Lemma 5. Solution (x̂, ŷ) satisfies (15).
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3 ,
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3 , ye = yf = 1, and xef = xes = xfs = 1.

Proof. Constraints (9) imply that ∑
e∈δGs (S)

xe ≥ 2yv =
∑

e∈δGs (v)

xe.

Therefore, (x̂, ŷ) satisfies (15).

Lemma 6. Solution (x̂, ŷ) satisfies (16).

Proof. Assume without loss of generality that yv ≤ yu. Summing up inequalities (2) for u and v,
we get ∑

f∈δGs ({u,v})

xf + 2xe = 2yv + 2yu. (22)
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Firstly, we show that the inequality on the left is satisfied, namely, that

2xe ≤
∑

f∈δGs ({u,v})

xf .

Observe that constraints (5) imply that 2xe ≤ 2yv. This, together with (22), ensures that∑
f∈δGs ({u,v})

xf ≥ 2yu ≥ 2xe. (23)

We now show that the inequality on the right is fulfilled, namely, that∑
f∈δGs ({u,v})

xf ≤ 2.

Notice that whenever yv + yu ≤ 1, the inequality is satisfied due to (22), since the right-hand side
would sum up to at most two and the left hand side only has nonnegative terms. Now, assume that
yv + yu > 1. Constraints (22) can be rewritten as∑

f∈δGs ({u,v})

xf = 2yv + 2yu − 2xe. (24)

We now claim that the right-hand side of (24) is at most two. Observe that (6), together with the
fact that we assumed that yv + yu > 1, implies that

2yv + 2yu − 2xe ≤ 2yv + 2yu − 2(yu + yv − 1) = 2. (25)

Observe that xe could be substituted by its lower bound as it was ensured to be positive, given the
assumptions.

As a consequence, (x̂, ŷ) satisfies (16).

Lemma 7. Qcut ⊆ QBCWWy.

Proof. The proof follows from Lemmas 4-6.

Now, consider (x̄, ȳ) ∈ QBCWWy. As Lemma 4 already discusses the equivalence of several of
the constraints, it only remains to show that (x̄, ȳ) satisfies constraints (5) and (6).

Lemma 8. Solution (x̄, ȳ) satisfies (5).

Proof. This is a consequence of constraints (15) which imply the generalized subtour elimination
constraints (10). More specifically, observe that the latter imply for an edge e = uv, considering
S = {u, v}, that xe ≤ yu and xe ≤ yv. Consequently, (x̄, ȳ) satisfies (5).

Lemma 9. Solution (x̄, ȳ) satisfies (6).

Proof. Remember that summing up inequalities (2) for u and v, we obtain (22), which can be
rearranged as

2xe = 2yv + 2yu −
∑

f∈δGs ({u,v})

xf . (26)

Note that (16) imply that
2xe ≥ 2yv + 2yu − 2, (27)

which dividing by two, guarantees that (x̄, ȳ) satisfies (6).
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Lemma 10. QBCWWy ⊆ Qcut.

Proof. This is a consequence of Lemmas 4, 8, and 9.

Proposition 2. QBCWWy = Qcut.

Proof. It follows from Lemmas 7 and 10.

Proposition 3. QBCWWy ⊂ Qcec.

Proof. It follows from Propositions 1 and 2.
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Appendix C Comparing the strength of the different clique
inequalities

We claim that the clique inequality on the edge variables (11) is as strong as the inequality on
the vertex variables (12), under certain conditions.

Lemma 11. Given a clique K ⊆ V of G, the inequality (11) implies the inequality (12) only if∑
e∈δ(K)

xe ≤ 2

is satisfied.

Proof. Consider a clique K ⊆ V of G and sum all the constraints (3) corresponding to its vertices,
which gives ∑

e∈δ(K)

xe +
∑

e∈E(K)

2xe =
∑
v∈K

2yv.

Dividing by two in both sides we have that∑
e∈δ(K)

1

2
xe +

∑
e∈E(K)

xe =
∑
v∈K

yv.

Assuming that (11) is valid we have that∑
v∈K

yv ≤
∑

e∈δ(K)

1

2
xe + 1.

Notice that, in order for
∑
v∈K

yv ≤ 2, one must have that
∑

e∈δ(K)

xe ≤ 2.

Lemma 12. Given a clique K ⊆ V of G, inequality (12) implies inequality (11) only if∑
e∈δ(K)

xe ≥
∑

e∈E(K)

2xe

is satisfied.

Proof. Using the same reasoning employed in Lemma 11, we have that∑
e∈δ(K)

1

2
xe +

∑
e∈E(K)

xe =
∑
v∈K

yv.

Now, assuming that (12) is valid, we obtain∑
e∈δ(K)

1

2
xe +

∑
e∈E(K)

xe ≤ 2.

Notice that, in order to have
∑

e∈E(K)

xe ≤ 1 we must have that
∑

e∈δ(K)

1
2xe ≥

∑
e∈E(K)

xe. Thus, the

result follows.
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Proposition 4. In Qcut, neither inequality (12) implies inequality (11) nor inequality (11) implies
inequality (12)

Proof. The proof consists in showing two examples of feasible fractional solutions belonging to Qcut.
The first example, depicted in Figure 8, presents a solution that fulfills the inequality (12) but does
not respect the inequality (11). The second one, illustrated in Figure 9, presents a solution that
satisfies the inequality (11) but does not respect the inequality (12).

s

v1

1
3

v2

1
3

v3

2
3

v4

2
3

v5

2
3

1
3

1
3

2
3

1
3

1
3

1
3

1
3

2
3

1
3

Figure 8: Example of feasible fractional solution that fulfills inequality (12) but does not satisfy
inequality (11). Notice that the values corresponding to the edges linking the vertices in the clique
{v3, v4, v5} sum up 4

3 , which is strictly greater than 1.
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sv3

4
6

v4

5
6

v5

4
6

v1

1
6

v2

1
6

1
6

1
6

4
6

4
6

4
6

1
6

2
6

2
6

2
6

Figure 9: Example of feasible fractional solution that fulfills inequality (11) but does not satisfy
inequality (12). Notice that the values corresponding to the vertices in the clique {v3, v4, v5} sum
up to 13

4 , which is strictly greater than 2.
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