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Abstract

Finding the largest cardinality feasible subset of an infeasible set of linear
constraints is the Maximum Feasible Subsystem problem (MAX FS). Solving
this problem is crucial in a wide range of applications such as machine learn-
ing and compressive sensing. Although MAX FS is NP-hard, useful heuristic
algorithms exist, but these can be slow for large problems. We extend the
existing heuristics for the case of dense constraint matrices to greatly increase
their speed while preserving or improving solution quality. We test the ex-
tended algorithms on two applications that have dense constraint matrices:
binary classification, and sparse recovery in compressive sensing. In both
cases, speed is greatly increased with no loss of accuracy.

Keywords: Maximum Feasible Subsystem, Linear Programming,
Classification, Compressive Sensing

1. Introduction

Finding the maximum cardinality feasible subsystem of an infeasible set
of linear constraints is known as the Maximum Feasible Subsystem problem
(MAX FS) [1]. Its complement is the Minimum Unsatisfied Linear Relation
problem (MIN ULR) [2] of finding the minimum number of constraints to
remove from an infeasible set such that the remaining constraints have a
feasible solution. Moreover, all infeasible systems have atleast one Irreducible
Infeasible Subsets (IISs) in their original set of constraints. An IIS is a set
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of constraints that is infeasible, but is rendered feasible if any constraint
is removed. If all of the IISs in the model are enumerated, then a MIN
ULR solution is found as a minimum cover of the IISs; this is known as
the minimum IIS cover problem [3]. In this paper, MAX FS, MIN ULR,
and MIN IIS COVER are the same problem and the terms will be used
interchangeably.

MAX FS is NP-hard [4, 5, 6] so exact solution algorithms are only avail-
able for relatively small instances, but solutions are still needed in a wide
variety of applications including machine learning [7], misclassification min-
imization [8], training of neural networks [2], telecommunications [9], com-
putational biology [10], and compressive sensing (CS) [11]. To be useful
in practice, MAX FS heuristics should obtain high quality solutions (large
feasible subsets, or equivalently, small MIN ULR subsets) quickly.

The MAX FS problem can be formulated for exact solution in various
ways, including as a mixed-integer linear program [12], a linear program with
equilibrium constraints (LPEC) [13, 14, 15, 16], or as a type of set-covering
problem [17, 18, 19, 20]. As shown in chapter 7 of [12], there are practical
difficulties in using any of these exact methods to solve this NP-hard problem
(i.e. they can be used for a very small MAX FS problem). For this reason,
heuristic solutions are required.

Chinneck [3, 21] developed a set of effective linear programming (LP)-
based heuristics for solving the MAX FS problem, and showed experimentally
that they give better results than methods such as MISMIN, a state-of-the-
art LPEC solver at the time [21]. Variants of Chinneck’s methods have
been developed more recently for finding sparse solutions to underdetermined
systems of linear equations in unbounded variables [11] for sparse recovery
in compressive sensing.

This paper extends Chinneck’s algorithms to provide major improvements
in solution speed for the case of dense constraint matrices, based on the ob-
servation that dense constraint matrices provide multiple similar candidates
for removal during the MAX FS solution process. The new extensions are
evaluated on the following two applications that have dense constraint ma-
trices: binary classification, and sparse recovery in compressive sensing.

Chinneck’s algorithms remove constraints from the original set one by one
until what remains is the heuristic MAX FS solution; the removed constraints
constitute the heuristic MIN ULR solution. An inner loop assesses candidate
constraints, and an outer loop removes the single constraint chosen by the
inner loop. Two extensions that greatly improve solution speed when a dense
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constraint matrix provides multiple similar candidates are proposed in this
paper. Extension 1 amalgamates the two loops into a single one that both
assesses the candidates and removes multiple constraints at each iteration.
Extension 2 provides an early exit under certain conditions. When tested on
binary classification and compressive sensing sparse recovery, the extended
heuristics greatly reduce solution time while preserving or improving solution
quality.

The paper is structured as follows. Section 2 reviews the existing MAX
FS solution heuristics. The new extensions are developed in Section 3. The
experimental results for binary classification are given in Section 4 and for
compressive sensing sparse recovery in Section 5. Section 6 concludes the
paper and outlines future work.

2. LP-based MAX FS Solution Heuristics

Chinneck’s original polynomial time heuristics [3] are briefly summarized
here. All variants first elasticize the infeasible set of linear row constraints
(and possibly variable bounds) by adding nonnegative elastic variables as
shown in Table 1. The elastic variables measure the extent to which each
constraint is violated, so a linear program (LP) minimizing their sum finds
the minimum total violation for an infeasible set of constraints and bounds.
There are two types of elastic models: the standard elastic LP elasticizes
only the row constraints, and the full elastic LP elasticizes both the row
constraints and the column bounds. The objective for a full elastic LP is:
minZ =

∑

i(e
+
i + e−i ) +

∑

j(e
+
j + e−j ) for constraints i = 1...m and bounded

variables j = 1...n; the second term is omitted for a standard elastic LP.
Z = 0 indicates a feasible system.

Table 1: Elasticizing constraints by adding non-negative elastic variables.

Type Nonelastic Standard elastic Full elastic

Row Cons.

∑

j aijxj ≥ bi
∑

j aijxj + ei ≥ bi
∑

j aijxj + ei ≥ bi
∑

j aijxj ≤ bi
∑

j aijxj − ei ≤ bi
∑

j aijxj − ei ≤ bi
∑

j aijxj = bi aijxj + e+i − e−i = bi
∑

j aijxj + e+i − e−i = bi

Var. Bnds
xj ≥ lj xj ≥ lj xj + e+j ≥ lj
xj ≤ uj xj ≤ uj xj − e−j ≤ uj

As shown in Fig. 1, the General MAX FS algorithm of [3] has an inner
loop (line 10) and an outer loop (line 5). The inner loop tests each member
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of a set of candidate constraints in CandidateSet by examining their effect
on Z when temporarily removed from the model. The candidate constraint
that most reduces Z when removed is selected as the Winner candidate, and
is subsequently removed from the model and added to MINULR in the outer
loop. This process continues until Z = 0 (feasibility is reached). The con-
straints remaining in the model constitute the heuristic MAX FS solution;
the removed constraints in MINULR constitute the heuristic MIN ULR so-
lution. Algorithm variants differ in how the list of candidate constraints is
constructed.

The heuristic relies on Observation 3 from [3], which notes that a con-
straint that appears in more than one IIS will reduce Z more than a constraint
that appears in a single IIS because it will eliminate multiple IISs upon re-
moval. This means that a large drop in Z when a constraint is removed is
a useful sign that the constraint is part of the MINULR set. The larger the
drop in Z, the more IISs the constraint likely covers.

There are efficiency enhancements in terms of algorithm processing time.
If the CandidateSet has a single element (line 6), then that element is added
to MINULR and the algorithm exits: there is no need to solve the LP. As
the Winner constraint is updated, so is the list of candidates for the next
round, NextCandidateSet. All versions of the algorithm solve multiple LPs,
but each LP is identical to the last one except for two constraints, so simplex
advanced starts to speed the process considerably.

Algorithm 1 to 3 of the base algorithm differ in how the list of candidate
constraints is constructed, as described next.

2.1. Algorithm 1

Candidate constraints are those to which the elastic objective function is
sensitive (nonzero dual price). Constraints not in this list do not affect Z

when dropped, so they are not candidates (Observation 4 from [3]). This is
the longest possible candidate list, but its length can be limited as follows.
Sort the constraints in descending order by their absolute dual cost and take
only the first k elements of the sorted list. This is referred to as Algorithm
1(k). For clarity in the sequel, unlimited lists are indicated by k =∞.

2.2. Algorithm 2

Algorithm 2 uses a different criterion for constructing the CandidateSet
based on Observation 5 in [21]: a good predictor of the magnitude of the
drop in Z obtained by deleting a violated constraint j is given by Eqn. (1):
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Figure 1 General MAX FS Algorithm [3]

1: MINULR← ∅
2: Set up elastic LP.
3: Solve elastic LP.
4: Construct CandidateSet.
5: do [outer loop]:
6: if | CandidateSet | = 1 then

7: Add the single candidate to MINULR and exit.
8: end if

9: WinnerZ ←∞.

10: for each candidate j in CandidateSet do [inner loop]:
11: Delete candidate j.
12: Solve elastic LP.
13: if Z = 0 then

14: Add candidate j to MINULR and exit.
15: end if

16: if Z < WinnerZ then

17: Winner← candidate j.

18: WinnerZ← Z.

19: Construct NextCandidateSet.
20: end if

21: Reinstate candidate j.
22: end for

23: Add Winner to MINULR.
24: Delete Winner permanently.
25: CandidateSet← NextCandidateSet.

26: end do

OUTPUT: MINULR is a heuristic MIN ULR solution.
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Product : ej × |constraint j dual price| (1)

For equality constraints, the larger of the two elastic variables is used in Eqn.
(1). Algorithm 2 can also limit the length of the candidate list. First sort the
candidate constraints in descending order by product magnitude, and then
add only the top k constraints to CandidateSet ; this is Algorithm 2(k). List
length k = 1 is particularly useful in some applications, where it is referred
to as the maximum product algorithm.

2.3. Algorithm 3

Algorithm 3 uses Observation 6 [21]: for satisfied constraints, a good pre-
dictor of the relative magnitude of any drop in Z that may be obtained by
deleting the constraint is given by |constraint dual price|. Algorithm 3 uses 2
lists: (i) for violated constraints, the list of product magnitudes (Eqn. (1)),
and for satisfied constraints (ii) the list of absolute constraint sensitivities.
Both lists are independently sorted in descending order, and the top k ele-
ments are taken from each list, resulting in 2k candidates in total. This is
referred to as Algorithm 3(k).

2.4. Finding Sparse Solutions to Linear Systems

A sparse solution is one having very few nonzeros. Algorithms 1-3 can be
used to find sparse solutions to general systems of linear constraints as fol-
lows. Given the system Ax{≤,=,≥}b, add the variable zeroing constraints
x = 0. Now apply any of Algorithms 1-3 with candidates chosen only from
among the constraints x = 0. The MAX FS solution provides the sparsest
solution by allowing the smallest number of nonzero variables. Finding the
sparsest solution to an underdetermined system of linear equalities in un-
bounded variables is of particular interest in a number of applications. We
focus on this problem here.

Chinneck’s algorithms have been adapted for underdetermined systems
of linear equations in unbounded variables. Jokar and Pfetsch [22] modified
Chinneck’s algorithm as follows. Given the m × n linear system Ax = b in
unbounded variables, all variables xj are first replaced by uj− vj where both
uj and vj are nonnegative, and the following LP is constructed:

minZ =
∑

j

(uj + vj) s.t. A(u− v) = b, u ≥ 0, v ≥ 0 (2)
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This LP has m constraints in 2n nonnegative variables. The objective func-
tion attempts to drive all variables to zero in a manner similar to driving
elastic variables to zero in Algorithms 1-3.

The basic algorithm follows the logic in Fig. 1, except that candidates
are variables and not constraints. Additional differences from Fig. 1:

• Candidate variables are those not in the MIN ULR set and having a
nonzero value in the current LP solution. Candidates are sorted in
decreasing order by the magnitude of |uj − vj|.

• Candidate variables are tested in the inner loop by temporarily remov-
ing them from the objective function by setting the objective coeffi-
cients of the associated uj, vj pair to zero and re-solving the LP.

• A candidate variable xj is moved into the MIN ULR set by resetting
the objective function coefficients of uj and vj to zero permanently so
that xj > 0 no longer affects Z.

• At exit, the variables in the MIN ULR set are those that can take
nonzero values in the sparse solution.

• Extraneous variables are sometimes included in the MIN ULR solution.
A simple post-processing step may remove them. First construct Amn

by eliminating all columns from A that are not in the MIN ULR solu-
tion. For each variable in the MIN ULR set in turn, force it to zero and
test the feasibility of Amnx = b; if feasible then the tested variable is
permanently removed from the MIN ULR set.

The well-known BasisPursuit (BP) algorithm [23] solves system (2) a
single time. This works well if the solution is very sparse, but when this is
not the case, Fig.1 with the modifications above is more effective.

Several other recent variants have been shown to be very effective for this
problem [24, 11]:

• Method B uses system (2). The objective coefficients of the uj and vj
associated with variable xj moved into the MIN ULR set are perma-
nently reset to 0.1 instead of zero [24]. Since Z never reaches 0, exit is
instead triggered when | CandidateSet |= 0.
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• Method M combines Method B with Basis Pursuit (BP) [23], based
on the observation that if BP fails, it returns a solution that is typically
of size m or nearly so. Thus, the BP result (the set of nonzeros in the
first solution of (2)) is taken when the number of nonzeros is less than
m− 3. Method B is applied when the number of nonzeros in that first
solution is larger than m− 3.

• Method C has explicit elastic variable zeroing constraints, resulting
in the following LP:

minZ =
∑

j

(e+j + e−j ) s.t.

[

A 0m×n 0m×n

I I −I

]





x

e+

e−



 =

[

ym×1

0n×1

]

(3)
where e+j and e−j are nonnegative, A is m× n and I is n× n. This LP
has m+n constraints in 3n variables. There are two lists of candidates:
(1) a list based on the magnitude of nonzero variables not yet assigned
to the MIN ULR set, and (2) a list based on the dual prices of the
variable zeroing constraints xj + e+j − e−j = 0. The selected variable is
added to the MIN ULR set by zeroing the objective coefficients of the
corresponding elastic variables.

3. Extensions to Increase Solution Speed

The existing algorithms are effective, but there are opportunities for im-
proving their speed. Limiting the length of the candidate list is helpful,
but there are still two bottlenecks: evaluating multiple candidates in the
inner loop, and removing just a single constraint in the outer loop. New
Extension 1 eliminates the inner loop entirely and removes multiple candi-
date constraints simultaneously in the single remaining loop. The trick is in
identifying which constraints to remove in each iteration. New Extension 2
provides an early exit under certain conditions.

Each of the extensions can be combined with any of the existing list con-
struction algorithms to create new combinations, e.g. combining Algorithm
2(∞) and Extension 1 creates Algorithm 2(∞)E1.

3.1. Extension 1(E1)

There are three ways to assemble the candidate list in Algorithms 1-3.
Regardless of the type of list, previous research shows that the order in the
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sorted list of candidates is important: those earlier in the list are much more
likely to be part of the MIN ULR than those later in the list. Thus, if we
remove multiple constraints at each iteration of a single loop, it makes sense
to select them from the start of the sorted list. This argument is especially
potent when the constraint matrix is dense. In a dense constraint matrix, all
constraints involve all of the variables, so all of the constraints are similar in
structure. A consequence is that many of the constraints have similar impacts
on Z. For example, in the classification application, where the constraints
are derived from the data points, data points that are close together generate
similar constraints. These similar constraints have similar ranking scores in
the candidate list, and hence have similar effects on Z when removed from
the LP, leading to this Observation: When candidates have similar ranking
measures as the top-ranked element in the candidate list, they are likely to
appear in the final MIN ULR set.

This observation allows both the elimination of the inner loop to test
individual candidate constraints and the simultaneous removal of multiple
candidates in the single remaining loop. The question is how to determine
which ranking scores are “similar” to the top score. We sort the candidates by
descending ranking score and apply standard methods for detecting abrupt
changes in the mean of subsets of the set [25]. We select for removal all
candidates up to the first identified abrupt change.

3.2. Extension 2(E2)

Extension 2 provides an early exit. If the number of candidates is less
than or equal to ℓ, then permanently remove all candidates and exit the
algorithm. This is designated E2(ℓ).

4. Application: Binary Classification

Amaldi [2], Parker [17], Chinneck [26, 27, 21], and Silva [28] have shown
how the binary classification problem can be transformed into a MAX FS
problem:

Given a training set of I data points (i =1. . . I) in J dimensions
(j =1. . .J) where the class of each point is known (Type 0 or 1).

Define a constraint for each data point:

– For points of Type 0:
∑

j dijwj ≤ w0 − ǫ
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– For points of type 1:
∑

j dijwj ≥ w0 + ǫ

where dij indicates the value of attribute j for point i. The dij are
known constants, ǫ is a small positive constant and the variables wj

are unrestricted.

Most datasets cannot be completely separated by a single hyperplane, so
the initial system is infeasible. After the MAX FS solution, the final LP is
feasible, and its solution returns the separating hyperplane

∑

j dijwj = w0

which correctly classifies all of the data points in the MAX FS subset while
those in the MIN ULR subset are incorrectly classified. This is heuristically
the most accurate hyperplane.

4.1. Binary Classification Algorithm
Prior work shows that Algorithm 2 provides a major speed-up over Al-

gorithm 1 for binary classification [21], with a tiny loss in average accuracy.
Violated constraints correspond to misclassified points, so the product rank-
ing score (Eqn. 1) used in Algorithm 2 estimates the drop in Z relatively
accurately. A standard elastic program is used because the variables are
unrestricted. Since all attribute values are specified for all data points, the
constraint matrix, D, is dense; hence, Extension 1 can be applied. The re-
vised algorithm is designated as Algorithm 2E1, and is summarized in Fig.
2.

To illustrate the workings of Extension 1, Fig. 3 shows the first sorted
candidate list for the “Ozone Level Detection” dataset. The first sharp drop-
off occurs after the fifth candidate, so the first five constraints/points are
removed in this case.

4.2. Comparators
We compare Algorithm 2E1 with two existing algorithms: (i) original

Algorithm 2(∞) and (ii) original Algorithm 2(1). Both have been shown to
provide high accuracies in binary classification [21].

4.3. Evaluation Metric
Accuracy is used to evaluate the quality of the solutions:

Accuracy =
Total # correctly classified instances

Total # instances
(4)

For comparison with previous results [21], the training set is identical to the
entire dataset.
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Figure 2 Algorithm 2E1

MINULR← ∅
Set up the standard elastic LP.
do:

Solve LP.
if Z = 0 then

Exit.
end if

Construct CandidateSet using Eq. 1.
if | CandidateSet | = 1 then

Add the single candidate to MINULR and exit.
end if

Sort candidates from largest to smallest product.
Select top p candidates for removal based on abrupt change in product score.
Add the p selected candidates to MINULR and remove them from the LP.

end do

OUTPUT: MINULR is a heuristic MIN ULR solution.
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Figure 3: First Sorted Candidate List for “Ozone Level Detection” Dataset.
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4.4. Data Sets

Twenty binary classification problems are derived from datasets in the
UCI Repository of Machine Learning Databases [29]. Table 2 summarizes
their characteristics.

Table 2: Classification Datasets

Dataset Instances Features

Breast Cancer Wisconsin Original 683 9
Cardiotocography (Type 1 vs. others) 2126 34
Cardiotocography (Type 2 vs. others) 2126 34
Car Evaluation (Type 1 vs. others) 1728 6
Car Evaluation (Type 2 vs. others) 1728 6
Car Evaluation (Type 3 vs. others) 1728 6
Car Evaluation (Type 4 vs. others) 1728 6
Climate Model Simulation Crashes 540 18
Credit Approval 653 15
Diabetic Retinopathy Debrecen 1151 19
Glass Identification 214 9
Heart Disease 297 13
Hepatitis Domain 112 18
Ionosphere 351 33
BUPA Liver Disorders 341 6
Ozone Level Detection 1848 102
Parkinson’s Data Set 195 22
Pima Indians Diabetes 768 8
Thyroid Gland Data 215 5
Vowel Recognition Data 990 11

4.5. Software and Hardware

All algorithms are implemented in Matlab version 2020.The linear pro-
gramming solver is MOSEK via the MOSEK Optimization Toolbox for Mat-
lab version 8.1.0.56 [30]. Abrupt changes in the ranking scores in the can-
didate list are identified using the Matlab ischange() function. The compu-
tations are carried out on a 3.40 GHz Intel core i7 machine with 16.0 GB
RAM, running Windows 10.

4.6. Results and Discussion

The results in this section show the higher accuracy and greater speed
of Algorithm 2E1 vs. original Algorithms 2(∞) and 2(1) for binary classi-
fication. Table 3 reports algorithm accuracies with the best results bolded.
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Table 4 shows the difference from the best accuracy on each data set. The
last three rows give additional metrics: the largest difference from the best
accuracy, the average difference from the best accuracy, and number of best
accuracies obtained by each algorithm.

Algorithm 2E1 provides better total accuracy. It has the smallest average
difference from best accuracy, and provides the best accuracy for 12 of the 20
data sets while it was 8 for the two existing algorithms. The largest difference
from the best accuracy for Algorithm 2E1 is −1.38, which is smaller than
those for the other two (−4.28 for both).

Table 3: Algorithm Accuracies for Classification Datasets.

Dataset
Accuracy

Algorithm 2(∞) Algorithm 2(1) Algorithm 2E1
Breast Cancer Wisconsin Original 98.10 98.10 98.39
Cardiotocography (Type 1 vs.others) 99.72 99.72 99.86
Cardiotocography (Type 2 vs.others) 99.67 99.58 99.81
Car Evaluation (Type 1 vs.others) 78.47 78.47 82.75
Car Evaluation (Type 2 vs.others) 96.01 96.01 96.01
Car Evaluation (Type 3 vs.others) 87.79 88.42 89.01
Car Evaluation (Type 4 vs.others) 98.15 98.09 98.09
Climate Model Simulation Crashes 98.89 98.70 98.52
Credit Approval 88.05 86.68 86.68
Diabetic Retinopathy Debrecen 79.06 79.41 78.62
Glass Identification 84.11 84.56 83.18
Heart Disease Cleveland 89.56 89.56 89.56
Hepatitis Domain 92.86 96.43 96.43
Ionosphere 98.01 98.01 97.73
BUPA Liver Disorders 75.37 75.66 74.78
Ozon Level Detection 98.86 99.13 99.19
Parkinsons Data Set 94.36 94.87 96.41
Pima Indians Diabetes 80.47 80.08 79.69
Thyroid Gland Data 94.42 94.42 94.42
Vowel Recognition Data 98.38 98.38 98.48

Table 5 compares the number of linear programs solved (LPs) and the
processing time in seconds (sec) for each algorithm, with best results in bold
face. Algorithm 2E1 requires the fewest LP solutions and the least processing
time in all cases. Table 6 reports the percentage reduction in number of
LPs and processing time for Algorithm 2E1 vs. the comparators for each
dataset. For example, the processing times for Algorithms 2(∞) and 2E1 are
3.1 and 0.3 seconds respectively for the first dataset in Table 5. Therefore,
Arithm 2E1 provides a 90.32% reduction in processing time when compared
to Algorithm 2(∞) for the first dataset in Table 6. The last two rows of
Table 6 show the maximum and average speed improvements obtained by

13



Table 4: Differences from Best Accuracy.

Dataset Algorithm 2(∞) Algorithm 2(1) Algorithm 2E1
Breast Cancer Wisconsin Original -0.29 -0.29 0
Cardiotocography (Type 1 vs.others) -0.14 -0.14 0
Cardiotocography (Type 2 vs.others) -0.14 -0.23 0
Car Evaluation (Type 1 vs.others) -4.28 -4.28 0
Car Evaluation (Type 2 vs.others) 0 0 0
Car Evaluation (Type 3 vs.others) -1.22 -0.59 0
Car Evaluation (Type 4 vs.others) 0 -0.06 -0.06
Climate Model Simulation Crashes 0 -0.19 -0.18
Credit Approval 0 -1.37 -1.37
Diabetic Retinopathy Debrecen -0.35 0 -0.79
Glass Identification -0.45 0 -1.38
Heart Disease Cleveland 0 0 0
Hepatitis Domain -3.57 0 0
Ionosphere 0 0 -0.28
BUPA Liver Disorders -0.29 0 -0.88
Ozon Level Detection -0.33 -0.06 0
Parkinsons Data Set -2.05 -1.54 0
Pima Indians Diabetes 0 -0.39 -0.39
Thyrod gland data 0 0 0
Vowel Recognition Data -0.1 -0.1 0

Largest Difference -4.28 -4.28 -1.38
Average Difference -0.66 -0.46 -0.27

No. of bests 8 8 12

Algorithm 2E1 when compared with the other two algorithms. Algorithm
2E1 reduces the average number of LPs by about 96.56% and 67.90% when
compared to Algorithms 2(∞) and 2(1), respectively, and also reduces the
solution time by 94.77% and 71.31% when compared to Algorithm 2(∞) and
Algorithm 2(1) respectively.

Algorithm 2E1 thus reduces solution time by an average 70-90% when
compared to the existing algorithms, while also marginally improves the total
accuracy on average.

5. Application: Sparse Recovery in Compressive Sensing

Finding a sparse solution to an underdetermined system of linear equa-
tions in unbounded variables is an essential step in compressive sensing (CS)
[31]. A common way to compress an input signal vector x in CS is to multiply
it by a random matrix A of size m× n where m << n to yield a compressed
vector b of size m, which is transmitted or stored. The input vector is as-
sumed to be sparse, so the decompression or recovery process tries to find a
sparse solution given only A and the compressed vector b. The CS sparse

14



Table 5: Algorithm speeds (number of LPs, seconds) for binary classification.

Dataset
Algorithm 2(∞) Algorithm 2(1) Algorithm 2E1
LPs Sec LPs Sec LPs Sec

Breast Cancer Wisconsin Original 100 3.1 12 0.7 6 0.3
Cardiotocography (Type 1 vs.others) 35 4.3 4 0.6 2 0.3
Cardiotocography (Type 2 vs.others) 67 5.1 4 0.6 2 0.3
Car Evaluation (Type 1 vs.others) 2583 350.6 372 28.1 8 0.7
Car Evaluation (Type 2 vs.others) 462 28.7 69 4.5 1 0.1
Car Evaluation (Type 3 vs.others) 1458 183.2 203 13.8 10 0.9
Car Evaluation (Type 4 vs.others) 205 16.7 33 2.3 5 0.4
Climate Model Simulation Crashes 77 3.2 7 0.3 5 0.2
Credit Approval 1237 37.1 87 7.3 1 0.1
Diabetic Retinopathy Debrecen 4723 625.2 238 25.6 16 1.4
Glass Identification 292 3.1 33 1.5 7 0.3
Heart Disease Cleveland 404 5.3 31 1.0 6 0.2
Hepatitis Domain 16 0.4 4 0.2 2 0.1
Ionosphere 104 4.2 7 0.3 5 0.3
BUPA Liver Disorders 581 14.8 83 2.7 10 0.3
Ozon Level Detection 542 159.7 14 4.1 7 2.1
Parkinsons Data Set 103 2.7 7 0.4 4 0.4
Pima Indians Diabetes 1325 41.7 153 6.7 12 0.5
Thyrod gland data 61 1.3 12 0.4 6 0.2
Vowel Recognition Data 146 4.0 14 0.5 7 0.3

recovery problem is to find a sparse solution y to the underdetermined system
Ay = b, where y is of size n× 1 and all of its components are unbounded.

Numerous algorithms have been developed to solve the sparse recovery
problem [32, 33, 34]. Recently developed MAX FS based algorithms (Meth-
ods B, C, and M) provide better quality solutions than the state-of-the-art
algorithms in certain CS scenarios, though they can be comparatively slow
[11]. Several choices from various families of random matrices can result in
a dense mathbfA, and thus the recovery process becomes more suitable for
the extended algorithms introduced here. This section examines whether
the new algorithm extensions can increase the speed of the MAX FS based
algorithms for the sparse recovery problem without loss of solution quality.

5.1. MAX FS for Sparse Recovery

Methods B, C, and M (Section 2.4) have been applied to CS sparse re-
covery and are observed to provide improvements over the state of the art in
certain scenarios. Previous work [11] showed Method M to be one of the bet-
ter methods for CS sparse recovery. So we combine it with our two extensions
to create Method ME1E2(ℓ). The steps are summarized in Fig. 4.

Method ME1E2(ℓ) assumes BP failure if the length of the first candidate
list is greater than the defined threshold ℓ. We set ℓ to m − 3, as done for
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Table 6: Percentage reductions in LPs solved and solution times by using Algorithm 2E1
instead of original Algorithms 2(∞) and 2(1) for classification.

Dataset
Algorithm 2E1 vs.
Algorithm 2(∞)

Algorithm 2E1 vs.
Algorithm 2(1)

LPs Sec LPs Sec
Breast Cancer Wisconsin Original 94 90.32 50 57.14
Cardiotocography (Type 1 vs.others) 94.29 93.02 50 50
Cardiotocography (Type 2 vs.others) 97.01 94.12 50 50
Car Evaluation (Type 1 vs.others) 99.69 99.80 97.85 97.51
Car Evaluation (Type 2 vs.others) 99.78 99.65 98.55 97.78
Car Evaluation (Type 3 vs.others) 99.31 99.51 95.07 93.48
Car Evaluation (Type 4 vs.others) 97.56 97.60 84.85 82.61
Climate Model Simulation Crashes 93.51 93.75 28.57 33.33
Credit Approval 99.92 99.73 98.85 98.63
Diabetic Retinopathy Debrecen 99.66 99.78 93.28 94.53
Glass Identification 97.60 90.32 78.79 80
Heart Disease Cleveland 98.51 96.23 80.64 80
Hepatitis Domain 87.5 75 50 50
Ionosphere 95.19 97.62 28.57 66.67
BUPA Liver Disorders 98.28 97.97 87.95 88.89
Ozon Level Detection 98.71 98.68 50 48.78
Parkinsons Data Set 96.12 96.30 42.86 74.36
Pima Indians Diabetes 99.09 98.80 92.16 92.54
Thyrod gland data 90.16 84.61 50 50
Vowel Recognition Data 95.20 92.5 50 40

Maximum Percent Reduction 99.92 99.80 98.85 98.63
Average Percent Reduction 96.56 94.77 67.90 71.31

Method M in [11].

5.2. Comparators

Method ME1E2(ℓ) is compared with the original Methods B(2), C(2),
and M(2). We choose list length k = 2 to provide fast solutions with good
solution quality (k is typically 1− 7 [21]). Postprocessing is not used in any
of these three methods.

5.3. Evaluation Metric

In sparse recovery, if the number of nonzeros in recovered signal y equals
the number of nonzeros in the input signal x, then y and x are usually
identical. For this reason our main metric relates to the sparsity (number of
nonzeros) of y vs. x. The critical sparsity is the largest number of nonzeros
in the input vector x for which the sparsity of y reliably equals the sparsity
of x. Higher critical sparsity means that input vectors that have been more
compressed, or that they have more nonzeros and therefore can be reliably
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Figure 4 Algorithm ME1E2(ℓ)

MINULR← ∅
Set up the sparse recovery LP.
do:

Solve LP.
Construct CandidateSet: variables xj not in MINULR that have nonzero | uj − vj |.
if | CandidateSet | = φ then exit.
if first iteration and | CandidateSet | ≤ ℓ then

Add all candidates to MINULR and exit.
end if

Sort candidates from largest to smallest | uj − vj |.
Select top p candidates for removal based on first abrupt change in | uj − vj |.
Add the p selected candidates to MINULR and set the objective coefficients of the
associated uj , vj pairs to 0.1.

end do

OUTPUT: MINULR is small number of nonzeros forming a support for the system of
equations.

recovered. We use the critical sparsity as the evaluation metric: higher is
better.

5.4. Test Models

We construct examples for which the solution is known. The system is
A128×256x256×1 = b128×1, providing a compression ratio (CR) = (1−m

n
)×100

= 50%. A is a random matrix with values ranging from -10 to 10, and hence
dense. The constructed input vector x has various numbers of nonzeros
ranging from 12 to 96, randomly distributed among its elements, and with
values randomly drawn from a normal distribution with mean 0 and variance
1.

5.5. Hardware and Software

See Section 4.5.

5.6. Results and Discussion

Table 7 compares Algorithm ME1E2(ℓ) with existing methods, namely,
Methods B(2), C(2), and M(2). Results in the table are averages over 100
instances at each sparsity level S (actual number of nonzeros in the solution).
Estimated sparsity (T ) is the average number of nonzeros returned by each
method at each value of S over 100 instances, with the number of correct

17



results shown in brackets. Results that are accurate in all 100 cases are shown
in boldface. The critical sparsity is the largest number shown in boldface for
each method. Extended Algorithm ME1E2(ℓ) has the same critical sparsity
as the other methods.

Table 8 shows the number of LPs solved and the processing time for
Method ME1E2(ℓ) and the comparators. The smallest number of LPs and
time in seconds are bolded. Method ME1E2(ℓ) requires the fewest LP solu-
tions at all values of S. It is significantly faster than the other algorithms, as
shown in Table 9 which reports the percentage reduction in LP solutions re-
quired and processing times for Method ME1E2(ℓ) when compared to others.
The last two rows of the table show the maximum and the average percent
improvement. At S = 52, Method ME1E2(ℓ) reduces the solution time by
96.02%, 92.49%, and 92.83% compared to Methods C(2), B(2), and M(2),
respectively. Method ME1E2(ℓ) does not run faster than Method M(2) when
the input is very sparse (up to S = 36), but for S > 36 it reduces solution
time when compared to M(2) by 62.32% on average . Method ME1E2(ℓ)
provides a 98.82%, 97.55%, and 66.61% reduction in LPs solved when com-
pared to Methods C(2), B(2), and M(2), respectively.It reduces the average
solution time by 95.95%, 92.86%, and 62.32% when compared to Methods
C(2), B(2), and M(2), respectively.

Method ME1E2(ℓ) reduces solution time significantly with no loss of so-
lution quality (as measured by critical sparsity) for this CS sparse recovery
scenario.
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Table 7: Average and critical sparsities of Method ME1E2(ℓ) vs. Methods C(2), B(2) and
M(2) for random matrices of size m = 128 and n = 256 in CS sparse recovery.

S
Estimated sparsity (T)

Method C(2) Method B(2) Method M(2) Method ME1E2(ℓ)

12 12(100) 12(100) 12(100) 12(100)

16 16(100) 16(100) 16(100) 16(100)

20 20(100) 20(100) 20(100) 20(100)

24 24(100) 24(100) 24(100) 24(100)

28 28(100) 28(100) 28(100) 28(100)

32 32(100) 32(100) 32(100) 32(100)

36 36(100) 36(100) 36(100) 36(100)

40 40(100) 40(100) 40(100) 40(100)

44 44(100) 44(100) 44(100) 44(100)

48 48(100) 48(100) 48(100) 48(100)

52 52(100) 52(100) 52(100) 52(100)

56 56(99) 56.03(98) 56.04(98) 56.10(98)

60 64.91(90) 64.24(86) 65.59(86) 66.43(86)

64 75.49(77) 76.3(67) 77.32(67) 77.0(73)

68 92.21(50) 94.53(45) 94.48(45) 92.95(39)

72 108.65(25) 106.87(25) 107.63(25) 106.77(19)

76 119.55(9) 121.85(5) 120.92(5) 120.9(6)

80 125.41(3) 126.52(4) 125.56(4) 125.27(3)

84 127.58(1) 127.55(0) 127.6(0) 127.14(0)

88 128(0) 127.98(0) 128(0) 128(0)

92 128(0) 128(0) 128(0) 128(0)

96 128(0) 127.96(0) 128(0) 128(0)
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Table 8: Number of LPs and processing times for Method ME1E2(ℓ) vs. Methods C(2),
B(2) and M(2) for random matrices of size m = 128 and n = 256 in CS sparse recovery.

S
Method C(2) Method B(2) Method M(2) Method ME1E2(ℓ)
LPs Sec LPs Sec LPs Sec LPs Sec

12 48 1.44 23 0.84 1 0.06 1 0.06
16 64 2.02 31 1.16 1 0.05 1 0.05
20 80.06 3.07 39 1.72 1 0.06 1 0.06
24 96.06 4.25 47 2.3 1 0.06 1 0.06
28 112.24 5.34 55 2.98 1 0.06 1 0.06
32 128.82 5.49 63 3.02 1 0.07 1 0.07
36 146.14 6.53 71 3.66 1 0.07 1 0.07
40 165.84 7.93 79 4.27 81 5.01 1.03 0.08
44 186.56 7.97 87 4.27 99.01 5.23 1.2 0.12
48 209.46 8.75 95 4.6 98 5.42 1.49 0.23
52 227.1 10.06 103 5.33 120.22 5.58 2.35 0.40
56 246.87 11.33 111.12 5.99 132.01 6.02 3.01 0.53
60 286.09 13.41 127.68 7.02 133.45 7.26 3.82 0.73
64 328.65 15.72 152.26 8.56 165.78 9.01 4.63 0.90
68 395.37 18.98 189.39 10.72 192.08 11.54 5.46 1.12
72 456.75 21.87 214.48 12.15 253.66 12.01 5.95 1.31
76 493 23.7 245.06 13.91 256.08 14.05 6.36 1.42
80 505.55 24.02 254.84 14.37 259.06 14.53 6.18 1.41
84 509.31 24.25 257.09 14.5 259.24 14.54 6.85 1.58
88 511.12 24.28 258.2 14.55 260.02 14.68 6.75 1.57
92 511.15 24.9 258.18 14.83 261.01 15.02 6.87 1.67
96 511.1616 24.52 257.9394 14.64 261 15.11 7.3 1.79

6. Conclusions

We propose two new extensions to Chinneck’s original MAX FS solution
algorithms [3] [21] for use with dense constraint matrices. These extensions
increase solution speed greatly with no loss of solution quality when tested in
two applications: classification, and sparse recovery in compressive sensing:

• Classification: The new Algorithm 2E1 reduces the mean solution time
by about 94.77% and 71.31% when compared to Algorithms 2(∞) and
2(1), respectively, while slightly improving accuracy on average. The
better classification accuracies reflect larger feasible subsets found by
the algorithm over its predecessors.

• Sparse recovery in compressive sensing : The new Method ME1E2(ℓ)
reduces processing time by 95.95%, 92.86% and 62.32% when compared
with Methods C, B and M, on average, with no reduction in the critical
sparsity.

We expect that these results will generalize to other applications that have
dense constraint matrices. We plan to investigate the use of the extended
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Table 9: Percent reduction in number of LPs and processing times for Method ME1E2(ℓ)
vs. Methods C(2), B(2) and M(2) for random matrices of size m = 128 and n = 256 in
CS sparse recovery.

S
Method ME1E2(ℓ) vs.

Method C(2)
Method ME1E2(ℓ) vs.

Method B(2)
Method ME1E2(ℓ) vs.

Method M(2)
LPs Sec LPs Sec LPs Sec

12 97.92 95.83333 95.65 92.86 0 0
16 98.44 97.53 96.77 95.69 0 0
20 98.75 98.05 97.44 96.51 0 0
24 98.96 98.59 97.87 97.39 0 0
28 99.11 98.88 98.18 97.99 0 0
32 99.22 98.73 98.41 97.68 0 0
36 99.32 98.93 98.59 98.09 0 0
40 99.38 98.99 98.70 98.13 98.73 98.403
44 99.36 98.49 98.62 97.19 98.79 97.70
48 99.29 97.37 98.43 95 98.48 95.76
52 98.96 96.02 97.72 92.49 98.04 92.83
56 98.78 95.32 97.29 91.15 97.72 91.20
60 98.66 94.56 97.01 89.60 97.14 89.94
64 98.59 94.28 96.96 89.49 97.21 90.01
68 98.62 94.10 97.12 89.55 97.16 90.29
72 98.69 94.01 97.23 89.22 97.65 89.09
76 98.71 94.01 97.40 89.79 97.52 89.89
80 98.78 94.13 97.57 90.19 97.61 90.29
84 98.65 93.48 97.34 89.10 97.36 89.13
88 98.68 93.53 97.39 89.21 97.40 89.30
92 98.66 93.41 97.34 88.94 97.37 89.08
96 98.577 92.670 97.17 87.77 97.20 88.15

Maximum 99.38 98.99 98.70 98.13 98.79 98.40
Average 98.82 95.95 97.55 92.86 66.61 62.32

algorithms in the recovery of compressively sensed biomedical signals and
dictionary learning. We also intend to extend the basic ideas to less dense
constraint matrices, including those found in general LPs.
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