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Abstract: Distributed Denial of Service (DDoS) cyberattacks represent a
major security risk for network operators and internet service providers.
They thus need to invest in security solutions to protect their network against
DDoS attacks. The present work focuses on deploying a network function vir-
tualization based architecture to secure a network against an on-going DDoS
attack. We assume that the target, sources and volume of the attack have
been identified. However, due to 5G network slicing, the exact routing of the
illegitimate flow in the network is not known by the internet service provider.
We seek to determine the optimal number and locations of virtual network
functions in order to remove all the illegitimate traffic while minimizing the
total cost of the activated virtual network functions. We propose a robust
optimization framework to solve this problem. The uncertain input param-
eters correspond to the amount of illegitimate flow on each path connecting
an attack source to the target and can take values within a predefined un-
certainty set. In order to solve this robust optimization problem, we develop
an adversarial approach in which the adversarial sub-problem is solved by a
Branch & Price algorithm. The results of our computational experiments,
carried out on medium-size randomly generated instances, show that the
proposed solution approach is able to provide optimal solutions within short
computation times.
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1 Introduction

Distributed Denial of Service (DDoS) attacks are among the top threats to
network operators and internet service providers (ISPs). A distributed denial
of service is a type of cyberattack in which multiple compromised computer
systems attack a target, such as a server or a website, and cause a denial
of service for its legitimate users. DDoS flooding attacks are often launched
through the use of botnets. A botnet is a network of user computers or
Internet of Things (IoT) devices that are remotely controlled by a hacker
through malwares. Under the direction of the hacker, an army of botnets
can launch a DDoS attack against a target by simultaneously sending to it a
large amount of traffic or service requests. The flood of incoming messages,
connection requests or malformed packets exhausts the resources of the target
and forces it to slow down or even shut down, thereby preventing it to provide
service to its legitimate users.

In recent years, the number, intensity and diversity of DDoS attacks have
increased dramatically. Thus, in 2016, the BBC website was targeted by a
DDoS attack of more than 600 Gbps and was unavailable for a few hours
(Khandelwal, 2016). More recently, Amazon announced that its AWS Shield
service mitigated a 2.3Tbps DDoS attack in February 2020 (AWS, 2020).
There is also a continuous appearance of new attack vectors, i.e. new tech-
niques enabling hackers to launch a DDoS attack, and new combinations of
attack vectors: see e.g. the recent report provided in (Netscout Systems,
2020) and (FBI, 2020). This trend is likely to continue and even accentu-
ate in the near future. Namely, with the development of the Internet of
Things, systems based on smart devices (such as sensors) connected to the
Internet are widely deployed. This increases the vulnerability of networks
and the number of potential DDoS targets: see among others Rahimi et al.
(2018), Akpakwu et al. (2018), Fysarakis et al. (2016) and Silva et al. (2020).
Furthermore, as mentioned e.g. by Grawe (2020), the COVID-19 pandemic
has forced organizations to accelerate their digital transformation plans, thus
further increasing the attack surface for hackers and criminals.
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DDoS attacks can be very damaging for the organization they target. For
instance, a survey carried out in 2017 by the cybersecurity company Kapersky
Lab estimated the average cost of a DDoS attack for large (1000+) businesses
to be around $2.3 millions (Berard, 2018). This cost mainly comprises the
cost incurred in fighting the attack and restoring service, the investment in
an offline or back-up system while online services are unavailable, the loss of
revenue or business opportunities and the loss of trust from customers and
partners.

Many DDoS mitigation solutions have been proposed to protect organi-
zations’ networks, servers and services. The traditional approach consists in
deploying specialized hardware security appliances that are fixed in terms of
strength, functionality and capacity. This means in particular that the loca-
tion and capacity (in terms of the volume of malicious traffic it can process)
of the defense appliances are determined in advance, before the DDoS attacks
actually take place. As explained e.g. by Fayaz et al. (2015), companies are
thus forced to over provision by deploying appliances capable of handling a
high but predefined volume of attack at several points in the network. A
second approach consists in using an external cloud-based DDoS protection
service. In this case, when under attack, all the incoming traffic to the tar-
geted service is diverted towards a cloud scrubbing center managed by a third
party. In the scrubbing center, the traffic is inspected and only the legitimate
traffic is routed back towards its destination. These cloud-based services are
more flexible and scalable than dedicated hardware appliances. They how-
ever raise concerns relative to customers’ privacy violation and often lead to
increased latency (Alharbi and Aljuhani, 2017).

Network Function Virtualization (NFV) is a recent network architecture
concept in which network functions (e.g. network address translation, fire-
walling, domain name service, etc.) are implemented as software and de-
ployed as virtual machines running on general purpose commodity hardware
(Jakaria et al., 2016). Virtualization increases manageability, reliability and
performance of the network and allows a flexible and dynamic implemen-
tation of the network services, which significantly reduces the cost of the
infrastructure and simplifies the deployment of new services. These numer-
ous benefits have convinced operators to largely embrace virtualization of
network functions: see e.g. Donovan (2014) and Savi (2018).

NFV offers new possibilities to counter DDoS attacks. In particular, its
flexibility and reactivity allows to postpone the DDoS defense deployment
after the attack is detected. This allows to place adapted defense mechanisms
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where they are needed and to launch them depending on the scale of the
attack (Fayaz et al., 2015). Moreover, NFV-based mitigation approaches do
not require the use of an external service provider, which reduces the privacy
and latency issues encountered by cloud-based DDoS mitigation.

As mentioned e.g in Alharbi and Aljuhani (2017), Silva et al. (2020)
and Jakaria et al. (2016), NFV is a promising technology to mitigate DDoS
attacks. However, in order to fully leverage its potential, some difficulties
should be overcome. First, virtual network functions (VNFs) are instan-
tiated on virtual machines. These virtual machines consume the limited
computing resources (CPU, memory,...) of the servers on which they run.
When designing an NFV-based infrastructure to counter an on-going DDoS
attack in a network, these limitations in the available computing resources
should be taken into account. The number of VNFs which can be instan-
tiated at each node of the network depends on the resources of the servers
located at this node. Second, each VNF has a limited filtering capacity and
can thus remove only part of the attack flow. The filtering capacity of a VNF
corresponds to the maximum amount of malicious flow an instance of this
VNF can stop. If the malicious flow going through a VNF is larger than its
filtering capacity, the excess malicious flow is forwarded in the network and
may thus reach its target. This translates into the fact that, in order to stop
all the malicious traffic of an attack, several VNFs may have to be placed at
different nodes on the paths used to route the flow between its source and its
target. A carefully optimized VNF placement strategy taking into account
both the limited computing resources in the network and the limited filtering
capacity of a VNF is thus needed.

In the present work, we focus on the deployment of an architecture based
on the NFV technology to secure a network against DDoS attacks. We
assume that the on-going attack has been detected and that its ingress points,
its volume and its target have been identified. Based on this information,
we seek to determine the optimal number and location of VNFs in order to
remove all the illegitimate traffic while trying to minimize the total cost of
the activated VNFs.

We take here the perspective of an internet service provider (ISP) aim-
ing at providing a DDoS mitigation service to its customers in a 5G net-
work. Among the key features of 5G networks is network slicing: see e.g.
Vyakaranam and Krishna (2018). Network slicing is an architecture in which
the physical network infrastructure managed by an ISP is partitioned into
multiple virtual independent networks termed slices. Each slice is an iso-
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Figure 1: 5G network slicing

lated end-to-end network which is lent by the ISP to a single customer and
is adapted to meet the specific requirements of this customer in terms of
quality of service (bandwidth, reliability, latency, etc.). See Figure 1 for a
graphical illustration of 5G network slicing. Network slicing thus provides
an opportunity to the ISP to flexibly configure its physical network so as
to simultaneously fulfill quality-of-service requirements that may strongly
vary from one customer to the next. However, on each slice of the network,
the routing of the flow will not be managed anymore by the ISP but by its
customer which will rely on its own proprietary routing algorithms. This
significantly enhances the difficulty for the ISP of providing a DDoS mitiga-
tion service as it will not control the exact routing of the malicious flow that
needs to be stopped.

Our main contributions are thus threefold. First, we present a robust op-
timization (RO) model to optimally design an NFV-based DDoS mitigation
infrastructure in the context of 5G network slicing. This model explicitly
takes into account the fact that the ISP is not aware of the exact routing
of the attack flow. This is done by considering the malicious flow routing
as an input parameter of the optimization problem which is subject to un-
certainty. To the best of our knowledge, this is the first time such a robust
optimization model is investigated to design a DDoS mitigation infrastruc-
ture in 5G networks. Second, we propose an efficient algorithm to solve
the robust optimization problem. This algorithm relies on an adversarial
approach which decomposes the problem into a master problem and an ad-
versarial sub-problem. The master problem seeks to optimally place the
filtering VNFs while taking into account a limited number of possible mali-
cious flow routings. The adversarial sub-problem aims at finding the worst
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flow routing for a given VNF infrastructure and is used to generate new rout-
ings, i.e. new constraints, to be taken into account in the master problem.
Moreover, as the adversarial sub-problem involves an exponential number
of decision variables, we develop a Branch & Price algorithm to solve it in
a computationally efficient way. Third, we provide the results of computa-
tional experiments carried out on medium-size randomly generated instances.
These results show that the proposed solution algorithm is able to efficiently
provide optimal or near-optimal solutions within short computation times.

The paper is organized as follows. We first review the related literature
in Section 2. We then provide in Section 3 a formal description of the prob-
lem, discuss its modeling as a robust optimization problem and present a
complexity analysis. We describe in Section 4 the adversarial solution ap-
proach proposed to solve this RO problem. Numerical results carried out on
medium-size randomly generated instances are provided in Section 5. Finally,
Section 6 gives a conclusion and some research perspectives.

2 Related works

We provide in this section a brief overview of the works closely related to
ours. We first discuss papers proposing NFV-based infrastructures for DDoS
mitigation. We then consider papers dealing with the optimal placement
of virtual network functions in a network for generic cases and focus on
two recent works studying the optimal placement of VNFs in a network for
the specific case of DDoS mitigation. Finally, we review the literature on
the network flow interdiction problem as this problem shares some common
features with our problem.

2.1 NFV-based infrastructures for DDoS mitigation

NFV-based infrastructures to counter DDoS attacks are investigated in sev-
eral recent papers. Fung and McCormick (2015) propose a solution based on
request prioritization to protect an online application server from a DDoS
attack. The incoming requests to the servers are categorized into two pri-
ority levels: requests from trusted sources are assigned a high priority and
are guaranteed to be served whereas requests from untrusted sources are as-
signed a low priority and will be served based on the resource availability
on the server. The proposed architecture makes use of a VNF for priority
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assignment and flow dispatching. Another widely used mitigation strategy
against DDoS attacks is flow filtering: see e.g. Silva et al. (2020). Basically,
flow filtering consists in analyzing the information contained in the headers
of the data packets to block the malicious flow. The filtering process thus
exploits information such as the source and destination IP addresses, the
origin and destination ports or the network layer protocol to identify mali-
cious packets and drop them. Jakaria et al. (2016), Rashidi et al. (2018) and
Jakaria et al. (2019) investigate a DDoS mitigation framework in which this
filtering process is carried out by VNFs which are dynamically allocated as
needed depending on the volume of the attack. More precisely, their frame-
work aims at protecting an online product server against a specific type of
DDoS attacks, termed SYN floods, which exploit some weak points of the
TCP internet protocol. This framework involves a dispatcher/load balancer
which receives the incoming packets from the internet and distributes them
to filtering VNFs instantiated on commodity servers. These VNFs verify
the source IP address of each packet, drop the packet in case it is illegiti-
mate or forward it to the product server in case its source is white-listed.
Finally, Fayaz et al. (2015) and Alharbi and Aljuhani (2017) propose DDoS
mitigation infrastructures in which VNFs may have a variety of functions
depending on the type of the attack.

2.2 Optimal placement of virtual network functions

In their survey on network function placement, Li and Qian (2016) distinguish
between two types of placement problems. The first one corresponds to
the case where independent network functions, i.e. functions which do not
interact with one another, should be placed in the network. The second one,
called service chaining, applies when each flow must traverse a predefined
sequence of network functions (such as firewall→ intrusion detection system
→ proxy) between its ingress point and its destination point in the network.
Note that the problem under study in this work belongs to the first type of
problem as we consider a single type of network functions. We refer the reader
to Demirci and Sagiroglu (2019) for a general overview of the literature on
the optimal placement of virtual network functions and focus in what follows
on the specific context of DDoS mitigation.

To the best of our knowledge, there are only two works dealing with
the problem of optimally placing VNFs in a network to counter an on-going
DDoS attack. Fayaz et al. (2015) develop the Bohatei system based on NFV
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and SDN (software-defined networking). Their system includes a resource
manager which determines the type, number and location of VNFs to be
instantiated based on the available information on the ingress points, tar-
get, type and volume of the on-going attack so as to minimize the costs
related to the malicious flow traffic. They consider a case in which the mit-
igation of each type of DDoS attack (e.g. SYN food, DNS amplification
or UDP flood) is a multi-step process requiring the use of different types
of network functions. They formulate the underlying optimization problem
as a mixed-integer linear program and solve it using a two-step heuristic.
Jakaria et al. (2019) consider an architecture involving two types of VNFs,
namely dispatchers and filtering agents, to counter SYN flood attacks. They
deploy these VNFs through virtual machines running on commodity servers.
The objective is to process all the incoming traffic while using a minimum
number of commodity servers. Their mathematical model is formulated as
a constraint satisfaction (SAT) problem (Apt, 2003). It takes into account
the limited computing resources of each commodity server, the limited band-
width of the links between the dispatchers and the filtering agents and the
relation between the packet filtering rate of a VNF and the computing re-
sources allocated to the virtual machine on which it is instantiated. Note
that, contrary to the problem under study here, both Fayaz et al. (2015) and
Jakaria et al. (2019) assume in their problem modeling that the flow of the
attack, once detected, can be flexibly routed towards the launched virtual
machines.

2.3 Network flow interdiction problem

In the network flow interdiction problem, an attacker and a defender take
measurements on a capacitated network. The defender seeks to maximize
the flow through the network, while the attacker suppresses some arcs to
minimize the maximum flow. Each arc has a removal cost. Thus, the goal
for the attacker is to select a subset of arcs to remove without exceeding
a fixed budget. The network interdiction problem is known to be an NP-
complete problem: see Phillips (1993) and Wood (1993). However, it can
be solved in polynomial time for certain categories of graphs such as planar
graphs (Phillips, 1993; Wollmer, 1964).

Different classes of the network flow interdiction problem are studied in
the literature: see e.g. Church et al. (2004). Baffier et al. (2018) investi-
gate an adaptive network interdiction flow problem. The defender aims to
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maximize the flow value and the attacker seeks to minimize the remaining
flow value by removing a set of k links. The goal is to find a robust flow
against any k edge attack. A bilevel optimization framework is developed
to address this problem. Naoum-Sawaya and Ghaddar (2017) also formu-
late the problem as a bi-level mixed-integer program. An iterative cutting
plane algorithm is proposed and implemented in a branch-and-cut approach.
Lim and Smith (2007) study problems with discrete and continuous inter-
dictions. They describe a linearized model to optimize the discrete network
interdiction problem and compare it to a penalty model. For the continuous
case, they describe an optimal partitioning algorithm as well as a heuristic
procedure to estimate the optimal value of the objective function. Altner
et al. (2010) propose two classes of polynomially separable valid inequalities
for the Maximum Flow Network Interdiction Problem. An approximation
factor-preserving reduction from a simpler interdiction problem is also devel-
oped. Lei et al. (2018) consider maximum flow interdiction problem under
interdiction-effect uncertainties. The problem is characterized as a Stack-
elberg game. They consider risk-neutral and risk-averse behaviors of the
two players. Five bi-level/tri-level programming models for different risk-
preference combinations are investigated. An application of the network
interdiction problem to security issues is studied by Guo et al. (2016). The
problem is to optimally interdict illegal network flow in the context of the
containment of the flow of drugs through the US-Mexico border patrol. A
Stackelberg game model for network interdiction flow with a single source-
destination flow is presented. The proposed solution approach is based on
column generation and constraint generation algorithm. Fu and Modiano
(2019) propose a new paradigm for network interdiction that models sce-
narios. The interdiction is performed through injecting bounded-value flows
to maximally reduce the throughput of the residual network. They study
two problems under the paradigm: deterministic flow interdiction and ro-
bust flow interdiction. An algorithm with logarithmic approximation ratio is
developed.

Note that the present works investigates a defender-attacker problem
which significantly differs from the network flow interdiction problem. Namely,
in our case, the defender, i.e. the internet service provider, allocates secu-
rity resources without changing the network topology. Virtual functions are
deployed on network nodes in order to suppress attacking flows but this
security mechanism does not remove any component (node or link) in the
network. Our goal is to minimize the costs of VNFs deployment while grad-
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ually eliminating the malicious flows, rather than destroying links to prevent
the attacker from reaching its target. This implies significant differences in
the mathematical formulations of the problem. The methodologies proposed
in the existing works can therefore not be directly applied to our problem.

3 Problem description and mathematical mod-

eling

In this section, we first describe in a more formal way the optimization prob-
lem under study and present the proposed robust optimization model. We
then provide a small illustrative example. Finally, we discuss the use of
aggregated filtering constraints in the problem formulation and study its
complexity status.

3.1 Problem definition

The network topology is modeled by a digraph G = (N ,L) in which N , the
set of nodes, represents specific equipment in the network and L, the set
of arcs, corresponds to the links that can be used to route the traffic. The
routing of the traffic in the network is limited by the bandwidth bl of each link
l. In practice, part of this bandwidth is used to route the legitimate traffic in
the network. In the present work, for the sake of simplicity, we assume that
the bandwidth consumed by the legitimate traffic is negligible as compared
to the one consumed by the illegitimate traffic. We thus consider that the
illegitimate traffic may use all the bandwidth of a link if needed.

The illegitimate traffic corresponding to the on-going DDoS attack is rep-
resented as a set A of attacks: attack a ∈ A corresponds to an illegitimate
traffic of F a Mbps between a source sa ∈ N and the target t ∈ N of the
DDoS attack. Source nodes, {sa, a ∈ A}, are network access nodes (also
termed gateways) managed by the ISP. They are able to compute the num-
ber of incoming packets and to detect suspicious traffic entering the network.
In contrast, the target node t is a strategic node belonging to an external net-
work managed by a customer which subscribed to a security service provided
by the ISP. The ISP must thus secure this node against the on-going DDoS
attack but it is not allowed to install any software (i.e. to deploy VNFs) on
this node. The malicious traffic corresponding to the attack thus has to be
stopped before it reaches t.

10



As explained in the introduction, in the present work, we consider the
case in which an ISP lends slices of its physical network infrastructure to its
customers and each of these customers uses its own flow routing algorithms
to route the flow on the slice assigned to it. The result is that, by the time the
ISP has to decide on the NFV-based DDoS mitigation infrastructure, it does
not know the exact routing of the malicious flow to be stopped. Let Pa be
the set of all potential paths between sa and t for attack a. N a,p (resp. La,p)
denotes the set of nodes (resp. the set of links) belonging to path p ∈ Pa and
Pa(n) denotes the subset of paths of Pa going through node n. The amount
of malicious flow of attack a ∈ A on path p ∈ Pa, denoted by f̃a,p, is thus
subject to uncertainty. However, even if the exact value of parameter f̃a,p

is unknown, there are some restrictions on its potential value. Namely, we
know that the total amount of malicious flow routed on the paths belonging
to Pa may not be greater than F a, the amount of illegitimate traffic of
attack a. Moreover, the malicious flow routing must comply with the limited
bandwidth of each link. These two pieces of information should be exploited
as best as possible to avoid using more network resources than necessary for
the DDoS attack mitigation.

In the considered DDoS mitigation framework, VNFs are used to filter and
stop the illegitimate traffic before it reaches its target. A VNF instantiated
on a node n ∈ N of the network can be seen as a software running on the
server located at node n and filtering the flow going through n. As explained
in Section 2, this filtering process mainly consists in selectively stopping
unwanted traffic by exploiting the information contained in the header of
each data packet. This information can be the source, destination, port or
routing protocol of the data packet to be processed. The filtering capacity of
a VNF corresponds to the number of packets it can receive and process per
second: if the malicious flow the VNF has to handle is larger than its filtering
capacity, the excess flow is forwarded in the network and may thus reach its
target. This filtering capacity is linked to the amount of computing resources
consumed by the VNF on the server where it is instantiated. Indeed, data
packets arriving at the VNF are first extracted and stored in memory. They
then undergo several processing cycles on the available CPUs in order to
analyze their content. Thus, the number of CPUs allocated to the VNF
strongly limits its packet processing rate. Moreover, widely used filtering
rules consist in analyzing the destination of a set of packets and storing them
in memory. If there are too many packets targeting the same destination at
the same time, these packets are considered as suspicious and are discarded.
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Consequently, the filtering process requires some memory to implement the
malicious traffic filtering rules. The set of available VNF types is described by
V = {1, ..., V }. A VNF of type v is characterized by its filtering capacity φv,
its cost Kv and its computing resources consumption. The set of computing
resources (CPU, memory, etc.) is denoted by R = {1, ..., R}. Let krv be the
amount of computing resource r required by the instantiation of one VNF of
type v and Caprn the amount of computing resource r available at node n.

Table 3.1 summarizes the notation used to describe the input parameters
of the various mathematical models throughout the paper.

The optimization problem consists in identifying the location and number
of VNFs to be placed in the network so as to stop all the malicious flow before
it reaches its target, and this whatever its routing through the network,
while minimizing the cost of the instantiated VNFs and complying with the
limitations on the computing resources.

3.2 Mathematical formulation

We propose to handle this optimization problem using a robust optimization
(RO) approach. A robust optimization problem is an optimization problem
in which some parameters are subject to uncertainty. In a RO problem, the
uncertainty on the input parameters is not described in terms of probability
distributions but rather by means of an uncertainty set containing all the
possible values that these parameters may take. Solving a RO problem con-
sists in finding a solution which is feasible for any realization of the uncertain
parameters in the uncertainty set and which provides the best possible value
of the objective function. The reader is referred to Gorissen et al. (2015) for
a practical introduction on robust optimization.

In the present case, the routing of the malicious flow in the network is
not known by the ISP. The amount of malicious flow of attack a ∈ A on
path p ∈ Pa, f̃a,p, can thus be seen as an uncertain input parameter for the
problem of optimally placing VNFs to counter the DDoS attack. However,
as mentioned in Subsection 3.1, even if the exact value of parameter f̃a,p

is unknown, its value should comply with two restrictions. First, for each
attack a, the total flow routed in the network may not be larger than the
total attack traffic, i.e. we have

∑
p∈Pa f̃a,p ≤ F a for each attack a ∈ A.

Second, the flow routed on each link l of the network may not exceed the
bandwidth bl of this link. We thus have

∑
a∈A

∑
p∈Pa s.t. l∈La,p f̃

a,p ≤ bl for
each link l.
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A Set of all on-going attacks to be stopped
C Collection of restricted sets of paths
G Graph representing the telecommunication network
L Set of links used to route the traffic in the network
La,p Set of all links belonging to path p ∈ Pa

N Set of nodes, i.e. of pieces of equipment in the network
N a,p Set of all nodes belonging to path p ∈ Pa

N (f̃) Subset of nodes through which part of the malicious flow transits when

it is routed according to routing f̃
Pa Set of all paths between sa and t
Pa(n) Subset of paths in Pa such that n ∈ N a,p

Pa
R Restricted set of paths for attack a
R Set of computing resources
U Uncertainty set
UR Restricted uncertainty set
V Set of available VNF types
A Number of attacks
bl Bandwidth of link l
Caprn Amount of computing resource r available at node n
F a Total illegitimate traffic of attack a

f̃a,p Unknown amount of malicious flow of attack a ∈ A routed on path p ∈ Pa

f̃ Unknown routing of the DDoS attack ; f̃ = {f̃a,p s.t. a ∈ A, p ∈ Pa}
f Given routing belonging to the uncertainty set U
Kv Cost of instantiating a VNF of type v
krv Amount of resource r required to instantiate a VNF of type v
R Number of computing resources
sa Source, i.e. ingress point, of attack a
t Target common to all on-going attacks
V Number of available VNF types
x Given placement of the filtering VNFs in the network
φv Filtering capacity of a VNF of type v

Table 1: Notation for the input parameters used in the various mathematical
models
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Problem RVNFD
xvn Number of VNFs of type v placed at node n

Problem TP
da,pn Amount of filtering capacity placed at node n allocated to stopping

the malicious flow relative to attack a and routed on path p
Problem DMP (UR)
xvn Number of VNFs of type v placed at node n

Problems AP (x), RAP (x, C) and RAP (x, C)
fa,p Amount of flow related to attack a routed on path p
zn zn = 1 if some malicious flow transits through n, to 0 otherwise

Table 2: Notation for the decision variables used in the various mathematical
models

This means that the uncertain malicious flow routing, f̃ = {f̃a,p s.t. a ∈
A, p ∈ Pa}, belongs to the uncertainty set U defined by:

U = {f̃ ≥ 0|
∑
p∈Pa

f̃a,p ≤ F a, ∀a ∈ A∑
a∈A

∑
p∈Pa s.t. l∈La,p

f̃a,p ≤ bl, ∀l ∈ L}

Note that the first restriction on f̃ is expressed as an inequality rather
than as an equality. Namely, in some cases, it may not be possible to route all
the malicious flow of the attack in the network due to the limited bandwidth
of the network links. In these cases, expressing the restriction as an equality
would lead to an empty uncertainty set. For the RO problem, this would
mean that there is no malicious flow routed in the network, i.e. no malicious
flow to be stopped by the VNF-based infrastructure, whereas in practice part
(but not all) of the attack flow will be routed in the network.

We introduce the integer decision variables xvn which represent the number
of VNFs of type v placed at node n: see Table 2 for a summary of the decision
variables used in the various mathematical models investigated in the paper.

Using the previously introduced notation,the robust virtual network func-
tion deployment problem, which will be denoted by Problem RVNFD, is
formulated as follows:
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Z∗ = min
∑
v∈V

∑
n∈N

Kvxvn (1)∑
v∈V

krvxvn ≤ Caprn ∀n ∈ N ,∀r ∈ R (2)∑
n∈N (f̃)

∑
v∈V

φvxvn ≥
∑
a∈A

∑
p∈Pa

f̃a,p ∀f̃ ∈ U (3)

xvt = 0 ∀v ∈ V (4)

xvn integer ∀n ∈ N ,∀v ∈ V (5)

The objective (1) is to minimize the total costs of the deployed VNFs.
Constraints (2) ensure that the VNFs installed at each node n do not con-
sume more than the available computing capacity for each computing re-
source. Constraints (3) translate the fact that we seek to avoid any damage
to the target by stopping all the malicious flow before it reaches it. In Con-
straints (3), N (f̃) = {n ∈ N \ {t}|

∑
a∈A

∑
p∈Pa(n) f̃

a,p > 0} represents the
subset of nodes n through which part of the malicious flow transits when
considering the flow routing f̃ . Constraints (3) impose that, for each pos-
sible routing f̃ , the total filtering capacity installed on the nodes traversed
by a strictly positive amount of malicious flow in the routing f̃ , i.e on the
nodes belonging to N (f̃), is larger than the total malicious flow actually
routed through the network in f̃ . Constraints (4) forbid any filtering at the
targeted node. Note that Constraints (3) are robust constraints that should
hold for any flow routing belonging to the uncertainty set U .

3.3 Small illustrative example

Before discussing some theoretical aspects relative to the formulation and
complexity of Problem RVNFD, we provide a small illustrative example to
facilitate the understanding of the proposed models and methods.

Let us consider a small network G including |N | = 5 nodes and |L| =
5 links, each one with a bandwidth of bl = 15Mbsp. The malicious flow
corresponding to the on-going DDoS attack enters the network at a gateway
located at node 1 and targets a critical customer node located at node 5:
we thus have A = 1, s1 = 1 and t = 5. We consider R = 1 computing
resource corresponding to the number of CPUs available at each node: we
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Figure 2: Small illustrative example: two possible routings for the malicious
flow

have Cap1n = 4 CPUs available at node n ∈ {1, 2} and Cap1n = 2 CPUs
available at node n ∈ {3, 4}. There is a single type of filtering VNF, i.e.
V = 1. Each instantiated VNF has a filtering capacity of φ1 = 5Mbps and
requires k1,1 = 2 CPUs.

Figure 2 displays two possible routings of the malicious flow. This one
may use |P1| = 2 paths from node 1 to reach its target: path p = 1 corre-
sponds to 1 → 2 → 5 and path p = 2 to 1 → 3 → 4 → 5. The routing
displayed on the left correspond to f̃left = (f̃ 1,1

left, f̃
1,2
left) = (15, 5), the routing

displayed on the right to f̃right = (f̃ 1,1
right, f̃

1,2
right) = (5, 15). f̃left and f̃right are

two elements (in fact two extreme points) of the uncertainty set U .
By solving Problem RVNFD for this small instance, we obtain the VNF

placement shown in Figure 3. It consists in placing two VNFs at nodes 1
and 2 (i.e. x11 = x12 = 2) and one VNF at nodes 3 and 4 (i.e. x13 = x14 = 1.)
Finally, Figure 4 presents how the malicious flow may be filtered by the
instantiated VNFs in case it is routed according to f̃left (see the network on
the left) or according to f̃right (see the network on the right). Note how, in
both cases, all the malicious flow is filtered and stopped before it reaches the
target located at node 5.

3.4 Discussion on the aggregated attack filtering con-
straints

Constraints (3) can be seen as aggregated attack filtering constraints ensuring
that the total filtering capacity installed on the set of nodes traversed by f̃
is larger than the total malicious flow routed through the network. As such,
they do not guarantee that the filtering capacity installed on each potential
path p ∈ Pa of each attack a is enough to stop all the flow related to attack
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Figure 4: Small illustrative example: malicious flow filtering for two possible
routings
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a routed on this path, i.e. that the filtering capacity installed on each path
p ∈ Pa is larger than f̃a,p. However, we show in what follows that, for any
feasible solution x of Problem RVNFD and any flow f belonging to U , we can
find at least one allocation of the filtering capacity installed at each node n
to the flows going through n such that all the malicious traffic can be filtered.
This can be done by solving the following transportation problem denoted
by TP.

Let da,pn be the decision variable representing the amount of filtering ca-
pacity installed at node n allocated to stopping the malicious flow routed on
path p ∈ Pa, a ∈ A.

Z∗TP = min
∑
n∈N

∑
a∈A

∑
p∈Pa(n)

da,pn (6)

∑
a∈A

∑
p∈Pa(n)

da,pn ≤
∑
v∈V

φvxvn ∀n ∈ N \ {t} (7)

∑
n∈Na,p\{t}

da,pn ≥ f
a,p ∀a ∈ A,∀p ∈ Pa (8)

da,pn ≥ 0 ∀n ∈ N ,∀a ∈ A,∀p ∈ Pa(n) (9)

The objective (6) seeks to minimize the total amount of filtering capacity
used to stop the malicious flow. Constraints (7) ensure that, at each node
n, the total amount of filtering capacity allocated to stop the flow routed on
each path p ∈ Pa of each attack a going through node n is not larger that the
amount of filtering capacity available at node n. Constraints (8) guarantee
that, for each attack a and each path p ∈ Pa used to route the attack in f ,
the total amount of filtering capacity dedicated to p on the nodes belonging
to it is large enough to stop all the malicious flow routed on p before it reaches
t.

Proposition 1. If x is a feasible solution of Problem RVNFD and f a flow
belonging to the uncertainty U , there exists at least one feasible solution for
Problem TP, i.e. one allocation of the installed filtering capacity to the paths
used by the attacks such that the total filtering capacity allocated to each path
p of each attack a is larger than f

a,p
.

Proof. The proof is done by contradiction.
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Let assume that Problem TP is unfeasible. It means that there exists
a subset of attacks A′ ⊂ A and a subset of paths P ′a ⊂ Pa for each at-
tack a ∈ A′ such that

∑
n∈N ′

∑
v∈V φ

vxvn <
∑

a∈A′
∑

p∈P ′a f
a,p

where N ′ =
∪a∈A′,p∈P ′aN a,p. In other words, it exists a subset of paths P ′a, a ∈ A′, such
that the total filtering capacity installed on the nodes belonging to N ′ is
insufficient to stop the flow going through these nodes.

Let us consider the routing f ′ defined by: f ′a,p = f
a,p

if a ∈ A′ and
p ∈ P ′a and f ′a,p = 0 otherwise. We have N (f ′) = N ′. As f ′ belongs to
the uncertainty set U and x is a feasible solution of Problem RVNFD, the
constraint

∑
n∈N (f ′)

∑
v∈V φ

vxvn ≥
∑

a∈A′
∑

p∈P ′a f ′a,p should hold. This is in
contradiction with the strict inequality written above.

In other words, solving Problem TP provides a VNF placement ensuring
that all the malicious flow of the attack will be stopped provided we use an
allocation of the filtering capacity to the paths actually used by the attack
which complies with Constraints (7)-(9). Lemma 1 guarantees that such an
allocation exists. However, solving Problem RVNFD does not guarantee that
any allocation of the installed filtering capacity to the paths actually used
by the attack will enable the ISP to block all the malicious flow.

3.5 Complexity analysis

Proposition 2. Problem RVNFD is NP-hard, even if the uncertainty set U
contains a finite and discrete set of potential routings.

Proof. The proof is done by reduction from the minimum set covering prob-
lem.

Consider an instance I ′ of the minimum set covering problem. I ′ includes
N potential location sites (indexed by n = 1, ...N) for the facilities and D
demand points (indexed by δ1, ..., δD). For each demand point δd, d = 1, ..., D,
we define the subset of potential location sites, N (δd) ⊂ {1, ..., N}, which
may cover it. The objective of the minimum set covering problem is to cover
all demand points while minimizing the total number of opened facilities.

This instance of the minimum set covering problem can be transformed
into an instance I of Problem RVNFD as follows. The graph G = (N ,L) has
N + 1 nodes and N links. The nodes indexed by n = 1...N correspond to
nodes where VNFs may be instantiated by the ISP and the node indexed by
N+1 corresponds to the target of the attack: we thus haveN = {1, ..., N+1}.
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There is a link l ∈ L between each node indexed by n = 1...N and the node
indexed by N + 1. Each link has a bandwidth equal to bl = 1. The DDoS
attack enters the network at A = N ingress points corresponding to the
nodes indexed by n = 1...N (i.e. sa = a for a = 1...N) and targets node
N + 1 (i.e. t = N + 1). We set F a = 1

A
for each attack a.

Each attack a may thus use a single path to reach the target: for each a in
A, |Pa| = 1 and the path indexed by (a, 1) corresponds to a→ t. A routing
in the network is thus a vector fd = (f 1,1

d , ..., fa,1
d , ..., fA,1

d ) describing the flow
of malicious traffic on the single path of each attack. For each demand point
δd, d = 1...D, of the minimum set covering problem, we add a routing fd in
the discrete uncertainty set UD with fa,p

d = 1
A

if node a belongs to N (δd) and
fa,p
d = 0 otherwise.

We consider a single computing resource (R = 1) with Cap1n = 1 for each
node n in {1, ..., N}. There is a single type of VNF indexed by v = 1 with a
cost equal to K1 = 1, a filtering capacity φ1 equal to 1 and a consumption of
the computing resource k1,1 equal to 1. The total amount of malicious flow
in any routing fd ∈ UD,

∑
a∈A F

a, is less than or equal to 1. Consequently,
placing a VNF on any node belonging to N (fd) suffices to ensure that the
aggregated filtering constraints (3) will be satisfied for routing fd.

Moreover, as the sets N (δd) and N (fd) coincide for each d, a demand
point δd will be covered in instance I ′ as long as a VNF is instantiated on
a node belonging to N (fd) in instance I. As a consequence, determining,
for instance I, the minimum cost VNF placement enabling to stop all the
malicious flow, whatever its routing fd ∈ UD, provides the minimum set of
potential location sites covering all demand points in instance I ′. Solving
instance I ′ of Problem RVNFD thus provides a solution to instance I of the
minimum set covering problem.

As the minimum set covering problem is known to be NP-hard (see e.g.
Korte and Vygen (2012)), the results follows.

Figure 5 illustrates this reduction on a small instance I ′ of the minimum
set cover problem with N = 3 potential location sites (represented as dashed
nodes indexed from 1 to 3) and D = 4 demand points represented by the
nodes denoted by δ1 to δ4. We have N (δ1) = {1, 2}, N (δ2) = {1, 2, 3},
N (δ3) = {2} and N (δ4) = {3}. The corresponding graph is displayed at the
top of Figure 5.

This instance of the minimum set covering problem can be transformed
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into an instance I of Problem RVNFD as follows. The corresponding graph
G = (N ,L) has N + 1 = 4 nodes and N = 3 links: see the bottom part
of Figure 5. The DDoS attack enters the network at A = 3 ingress points
corresponding to the nodes indexed by n = 1...3 (i.e. s1 = 1, s2 = 2 and
s3 = 3) and targets node t = 4. We set F a = 1

A
= 0.33 for each attack

a. A routing fd = (f 1,1
d , f 2,1

d , f 3,1
d ) describes the amount of malicious flow

routed on the single path a → 4 that may be used by each attack a to
reach the target. For each demand point δd, d = 1...D, of the minimum
set covering problem, we add a routing fd in the discrete uncertainty set
UD such that fa,p

d = 1
A

if node a belongs to N (δd) and fa,p
d = 0 otherwise.

This gives f1 = (0.33, 0.33, 0), f2 = (0.33, 0.33, 0.33), f3 = (0, 0.33, 0) and
f4 = (0, 0, 0.33). We thus have N (δd) = N (fd) for each d = 1...D. We set
R = 1, Cap1n = 1 for n = 1..3, V = 1, K1 = 1, φ1 = 1 and k1,1 = 1 as
described in the proof of Proposition 2.

The optimal solution of instance I ′ consists in placing a VNF at nodes 2
and 3 as this suffices to ensure that the aggregated filtering constraints (3)
will be respected for all routings in the discrete uncertainty set UD. This
gives an optimal solution of instance I which consists in opening a facility at
the potential sites 2 and 3.

4 Solution approach

As explained e.g. by Gorissen et al. (2015), Problem RVNFD may seem
intractable as such as the number of constraints (3) is infinite. Two main
ways have been proposed in the literature to handle this difficulty.

The first one consists in applying reformulation techniques which result
in the formulation of a deterministic problem with a finite number of con-
straints: see e.g. Bertsimas and Sim (2004). In our case, the use of these
reformulation techniques is not possible. Namely, the worst case reformation
of Constraints (3) would lead to the following expression:

min
f̃∈U

∑
n∈N

I
(∑

a∈A

∑
p∈Pa(n)

f̃a,p > 0
)∑

v∈V

φvxvn −
∑
a∈A

∑
p∈Pa

f̃a,p > 0 (10)

where I
(∑

a∈A
∑

p∈Pa(n) f̃
a,p > 0

)
is an indicator function that is equal to

one if
∑

a∈A
∑

p∈Pa(n) f̃
a,p > 0 and zero otherwise. The resulting inner mini-

mization problem cannot be formulated as a linear program (but rather as a
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Figure 5: Reduction of an instance of the minimum set covering problem
(top) into an instance of Problem RVNFD (bottom)

22



mixed-integer linear program) due to the presence of this indicator function.
It is thus not possible to use the duality theory to reformulate it and obtain
a computationally tractable robust counterpart as is commonly done in this
type of reformulation approach.

The second possible way of solving a RO problem such as Problem RVNFD
consists in applying an adversarial approach. Such approaches are based on
the decomposition of the initial problem into a master problem and a sub-
problem. The master problem, called the decision maker problem in this
context, can be seen as a restricted version of the original RO problem in
which only a finite number of extreme points UR ⊂ U of the uncertainty
set (instead of the whole uncertainty set U) are used to express the robust
constraints. This problem is a deterministic optimization problem with a
finite number of constraints and is thus computationally tractable. The sub-
problem is called the adversarial problem. Given the solution provided by
the decision maker problem, the adversarial problem seeks to find an extreme
point of U for which this solution is infeasible. If no such extreme point can
be found, the current solution of the decision maker problem is optimal for
the initial RO problem. If such an extreme point is found, we add it to the
restricted set UR and reiterate the process. The finite convergence of this
algorithm is ensured by the fact that the uncertainty set U has a finite num-
ber of extreme points. Adversarial approaches have been successfully used
to solve RO problems arising in a variety of applications: see among others
Bienstock and Özbay (2008), Attila et al. (2017), van Hulst et al. (2017) and
Agra et al. (2018).

4.1 Adversarial approach

The proposed adversarial approach thus iteratively solves the decision maker
problem and the adversarial sub-problem. At each iteration, the decision
maker problem is solved using the current restricted uncertainty set UR and
provides a placement of the VNFs x which is optimal for this restricted
uncertainty set. x being given, the adversarial problem is solved to find the
worst-case routing of the malicious flow for the VNF placement described by
x, i.e. to find an extreme point of U wich maximises the infeasibility of x if
it exists. In case such an extreme point is found, we update the restricted
uncertainty set UR by adding the newly found routing f and go on to the
next iteration. Otherwise, x is feasible for all extreme points of U , the current
VNF placement x is optimal and the algorithm stops.
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4.1.1 Decision maker sub-problem

The decision maker problem, denoted by DMP (UR), can be formulated as
follows:

Z∗DMP (UR) = min
∑
v∈V

∑
n∈N

Kvxvn (11)∑
v∈V

krvxvn ≤ Caprn ∀n ∈ N , ∀r ∈ R (12)∑
n∈N (f̃)

∑
v∈V

φvxvn ≥
∑
a∈A

∑
p∈Pa

f̃a,p ∀f̃ ∈ UR (13)

xvt = 0 ∀v ∈ V (14)

xvn integer ∀n ∈ N , ∀v ∈ V (15)

Problem DMP (UR) thus displays the same structure as the initial RO
problem but the number of Constraints (13) is now finite. Moreover, as will
be shown by the numerical experiments provided in Section 5, in practice,
the cardinality of UR, and as a consequence the number of Constraints (13)
involved in the formulation, remain rather limited when implementing the
adversarial approach. Problem DMP (UR) can thus be directly solved by
a mixed-integer linear programming solver with a reasonable computational
effort.

4.1.2 Adversarial sub-problem

Let us now focus on the adversarial sub-problem. In order to formulate it,
we introduce the following decision variables:
- fa,p: amount of malicious flow of attack a routed on path p ∈ Pa,
- zn ∈ {0, 1}: zn = 1 if there is a positive amount of malicious flow transiting
through node n, 0 otherwise.

Given the current VNF placement x, the maximum amount of malicious
flow which can reach its target can be found by solving the following mixed-
integer linear program, denoted by AP (x).
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Z∗AP (x) =max
∑
a∈A

∑
p∈Pa

fa,p −
∑

n∈N\{t}

(
∑
v∈V

φvxvn)zn (16)

∑
p∈Pa

fa,p ≤ F a ∀a ∈ A (17)∑
a∈A

∑
p∈Pa s.t. l∈La,p

fa,p ≤ bl ∀l ∈ L (18)∑
a∈A

∑
p∈Pa(n)

fa
p ≤ (

∑
a∈A

F a)zn ∀n ∈ N \ {t} (19)

fa,p ≥ 0 ∀p ∈ Pa (20)

zn ∈ {0, 1} ∀n ∈ N (21)

The linear variables f thus describe the worst-case routing of the mali-
cious flow for the VNF placement x. Constraints (17) ensure that, for each
attack, the total amount of flow of attack a routed through the network is
smaller that the total amount of flow of the attack F a. Note that due to the
limited bandwidth of the network links, it might not be possible to route all
the flow of attack a through the network: Constraints (17) are thus formu-
lated as inequalities rather than as equalities. Constraints (18) guarantee
that the flow routed on each link does not exceed its bandwidth. In other
words, Constraints (17), (18) and (20) make sure that the solution of
problem AP (x) provides a flow f belonging to the uncertainty set U .

The objective function (16) seeks to maximize the amount of malicious
flow which will reach its target, i.e. which will not be filtered by a VNF
between its source and its target. Note that the filtering capacity

∑
v∈V φ

vxvn
placed at node n can stop part of the malicious flow only if there is a
positive flow routed through node n, i.e. only if

∑
a∈A

∑
p∈Pa(n) f

a
p > 0.∑

a∈A
∑

p∈Pa fa
p −

∑
n∈N\{t}(

∑
v∈V φ

vxvn)zn thus computes the total amount
of unfiltered flow as the difference between the total flow routed through the
network,

∑
a∈A

∑
p∈Pa fa

p , and the total amount of ’active’ filtering capacity,∑
n∈N\{t}(

∑
v∈V φ

vxvn)zn. This ’active’ filtering capacity is given by the sum
of the filtering capacities installed at the nodes n through which a positive
amount of malicious flow transits. Constraints (19) ensure that, for each
node n, variable zn is equal to 1 as soon as there is some positive amount of
malicious flow which is routed through node n.

Note that, similar to what is done in Constraint (3) of the initial RO
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problem, in the objective function (16) of the adversarial sub-problem, the
total amount of unfiltered flow is computed in an aggregate manner, i.e. by
looking at the total routed flow and at the total active filtering capacity on
all nodes of the network. In a feasible solution of problem AP (x), this might
lead to an underestimation of the malicious flow which will reach its target.
Namely, we may have a subset of nodes N ′ such that the total flow routed
through the nodes n ∈ N ′,

∑
a∈A

∑
p∈∪n∈N′Pa(n) f

a
p , is smaller than the total

filtering capacity placed on these nodes,
∑

n∈N ′(
∑

v∈V φ
vxvn). In this case,

the actual filtering taking place at some of the nodes n ∈ N ′ is not equal to∑
v∈V φ

vxvn but to a smaller value. More precisely, the total filtering taking
place on the subset of nodes N ′ is equal to

∑
a∈A

∑
p∈∪n∈N′Pa(n) f

a
p rather

than to
∑

n∈N ′(
∑

v∈V φ
vxvn). This means that the objective function (16)

overestimates the actual filtering taking place on the part of the network
corresponding to N ′ and thus underestimates the amount of unfiltered ma-
licious flow. However, we show in what follows that such a situation cannot
occur in an optimal solution of AP (x).

Proposition 3. Any optimal solution of AP (x) provides the worst-case rout-
ing for the given VNF placement x.

Proof. Let us consider a solution of AP (x) in which there is at least one
subset of nodes N ′ such that the total flow routed through the nodes n ∈ N ′,∑

a∈A
∑

p∈∪n∈N′Pa(n) f
a
p , is smaller than

∑
n∈N ′(

∑
v∈V φ

vxvn). We show that

this solution cannot be optimal for AP (x).
It is namely possible to build another feasible solution of AP (x) by setting

to 0 the flow on all the paths belonging to ∪n∈N ′Pa(n) and by setting zn to
0 for all nodes n ∈ N ′. The objective value of the obtained solution will be
increased by

∑
n∈N ′(

∑
v∈V φ

vxvn) −
∑

a∈A
∑

p∈∪n∈N′Pa(v) f
a
p > 0, i.e. will be

strictly larger than the one of the initial solution. This latter can therefore
not be optimal.

4.2 Resolution of the adversarial sub-problem

The adversarial sub-problem AP (x) is a mixed-integer linear program which
could theoretically be solved directly by a mathematical programming solver.
However, the number of paths that could possibly be used to route the ma-
licious flow of a given attack a between its source sa and the target t, and
as a consequence the number of flow variables fa,p, grows exponentially fast
with the network size.
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This difficulty may be overcome by using a column generation technique.
In a column generation algorithm, we start solving problem AP (x) with a
restricted number of flow variables (i.e. of columns), which provides an initial
feasible solution. This initial solution is then improved by iteratively adding
new flow variables (i.e. by generating new columns) to the formulation of
the problem until no more improving flow variables can be found.

Let RAP (x, C) be a restricted version of problem AP (x) in which only
a subset of the flow variables fa,p are explicitly considered. Here, C denotes
a collection of subsets of paths. More precisely, we have C = {Pa

R, a ∈ A}
where Pa

R ⊂ Pa is the restricted subset of potential paths available for attack
a taken into account in the problem formulation.

RAP (x, C) can be formulated as follows:

Z∗RAP (x, C) =max
∑
a∈A

∑
p∈Pa

R

fa
p −

∑
n∈N\{t}

(
∑
v∈V

φvxvn)zn (22)

∑
p∈Pa

R

fa
p ≤ F a ∀a ∈ A (23)

∑
a∈A

∑
p∈Pa

R s.t. l∈La,p
fa
p ≤ bl ∀l ∈ L (24)

∑
a∈A

∑
p∈Pa

R(n)

fa
p ≤ (

∑
a∈A

F a)zn ∀n ∈ N \ {t} (25)

fa
p ≥ 0 ∀p ∈ Pa

R (26)

zn ∈ {0, 1} ∀n ∈ N (27)

Note that RAP (x, C) displays the same structure as AP (x) but the ob-
jective and constraints are expressed using a limited number of flow variables
fa,p, namely those corresponding to paths belonging to the restricted subset
Pa

R, for each attack a ∈ A.
The column generation process, i.e. the process of adding new flow

variables fa,p, relies on the linear relaxation, denoted by RAP (x, C), of
RAP (x, C).

More precisely, at each iteration of the column generation algorithm, in
order to identify improving flow variables to be added to the formulation, we
first solve RAP (x, C) with the current collection of path subsets C. We then
solve the pricing problem for each attack a ∈ A. It consists in finding a flow
variable fa,p with a positive reduced cost, i.e. a flow variable whose inclusion
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in the linear programming formulation might lead to an improvement of the
objective function, or determining that no such variable exists. If at least
one improving flow variable is found, we carry on with a new iteration of the
algorithm. If no such variable is found, it means that the current solution
of RAP (x, C) is an optimal solution of the AP (x), the linear relaxation of
AP (x), and we stop.

Let αa be the dual value of Constraint (23) relative to attack a, βl the
dual value of Constraint (24) relative to link l and γn the dual value of
Constraint (25) relative to node n in the optimal solution of RAP (x, C).
The reduced cost of variable fa,p is given by rca,p = 1 − (αa +

∑
l∈La,p βl +∑

n∈Na,p γn).
Given an attack a ∈ A, solving the pricing problem, i.e. identifying

the variable fa,p with the largest reduced cost, thus amounts to finding the
path p ∈ Pa with the smallest value of

∑
l∈La,p βl +

∑
n∈Na,p γn. This can

be done by looking for the shortest path between sa and t in the weighted
digraph (N ,L, w) in which each link l has a weight of wl = βl +γdest(l) where
dest(l) is the destination node of link l. This shortest path problem can be
solved in polynomial time by Dijskra’s algorithm. If a variable fa,p with a
positive reduced cost is found, the corresponding path is added to Pa

R and
the collection C is updated accordingly.

Algorithm 1 provides a formal description of the column generation algo-
rithm used to solve AP (x).

Note that Algorithm 1 solves to optimality the linear relaxation of AP (x).
In order to solve the original adversarial sub-problem AP (x), which is a
mixed-integer linear program, we consider two alternative ways of using it.

The first one corresponds to an exact Branch & Price algorithm. Basi-
cally, a Branch & Price algorithm is a Branch & Bound method in which, at
each node of the search tree, new variables may be added to the linear pro-
gramming relaxation. More precisely, the Branch & Price algorithm starts
solving the restricted version of the adversarial sub-problem RAP (x, C) with
an initial collection of path subsets C, using a branch-and-bound method.
At each node of the Branch & Bound search tree, we use Algorithm 1 to
solve AP (x) and add new columns in the formulation (i.e. new paths in C).
When no new column can be generated by Algorithm 1, i.e. when the linear
relaxation of the restricted master problem has been solved to optimality at
the current Branch & Bound node, we either get an integer feasible solution
of the initial problem AP (x) or we branch on a fractional variable zn to
create new nodes in the search tree and continue with the Branch & Bound
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input : A VNF placement x and a collection of path subsets C
output: An updated collection of path subsets C
begin

repeat
stop ← 0
solve RAP (x, C) with a linear programming solver
get the dual values (α, β, γ) of Constraints (23)-(25)
for l=1 to L do

wl ← βl + γdest(l)
end
for a=1 to A do

find the shortest path ps between sa and t in (N ,L, w)
rcaps ← 1− (αa +

∑
l∈Laps

βl +
∑

n∈Na
ps
γn)

if rcaps > 0 then
stop ← 1
Pa

R ← Pa
R ∪ {ps}

end

end

until stop = 0 ;

end

Algorithm 1: Column generation algorithm solving AP (x) to opti-
mality

algorithm. The algorithm stops when there are no more open nodes in the
search tree.

The second one is a heuristic algorithm. In this case, we first solve AP (x)
using Algorithm 1. When Algorithm 1 stops, we get the updated collection
of path subsets C, reintroduce the integrality constraints on variables zn, n ∈
N , and solve the restricted problem RAP (x, C) as a mixed-integer linear
program. Note that this algorithm may provide a sub-optimal solution of
AP (x) as the collection of path subsets C obtained by solving AP (x) may
not be the same as the one needed to obtain an optimal solution of AP (x).

4.3 Summary of the proposed solution approach

The overall proposed solution approach is described by Algorithm 2 for the
case where the adversarial sub-problem is solved exactly and Algorithm 3 for
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the case where the adversarial sub-problem is solved heuristically.
In Algorithms 2 and 3, the restricted uncertainty set UR is initialized as

an empty set whereas the restricted path subset Pa
R to be used for each attack

a ∈ A initially contains a single path, namely the shortest path in terms of
hops between the source of attack a and the target. Moreover, note that the
subsets Pa

R, a ∈ A, are not reinitialized at each iteration of the adversarial
algorithm. This means that the improving paths found while solving AP (xi),
where xi denotes the solution of DMP (UR) found at iteration i of the ad-
versarial algorithm, are part of the initial collection of path subsets provided
to Algorithm 1 when it will be used to solve AP (xj), where xj denotes the
solution of DMP (UR) found at any iteration j > i of the adversarial algo-
rithm. Our preliminary numerical experiments namely showed that this was
more computationally efficient than reinitializing the subsets Pa

R, a ∈ A, at
each iteration of the adversarial algorithm.

begin
UR ← ∅
build the weighted digraph G = (N ,L, w) with wl = 1,∀l ∈ L
for a=1 to A do

find the shortest path ps between sa and t in G
Pa

R ← {ps}
end
C ← {Pa

R, a ∈ A}
repeat

solve DMP (UR) and record the current VNF placement x
solve RAP (x, C) with a Branch & Price algorithm using
Algorithm 1 to generate new columns at each node of the
search tree and record the updated collection of path subsets
C

if Z∗RAP (x, C) > 0 then

record the optimal flow routing f
UR ← UR ∪ {f}

end

until Z∗RAP (x, C) ≤ 0;

end

Algorithm 2: Solution algorithm with an exact solution of the ad-
versarial sub-problem

30



begin
UR ← ∅
build the weighted digraph G = (N ,L, w) with wl = 1,∀l ∈ L
for a=1 to A do

find the shortest path ps between sa and t in G
Pa

R ← {ps}
end
C ← {Pa

R, a ∈ A}
repeat

solve DMP (UR) and record the current VNF placement x
solve RAP (x, C) using Algorithm 1 and record the updated
collection of path subsets C

solve RAP (x, C) as a mixed-integer linear program
if Z∗RAP (x, C) > 0 then

record the optimal flow routing f
UR ← UR ∪ {f}

end

until Z∗RAP (x, C) ≤ 0;

end

Algorithm 3: Solution algorithm with a heuristic solution of the
adversarial sub-problem

5 Numerical results

5.1 Instances

We randomly generated a set of medium-size instances of the problem follow-
ing the indications provided by public data released by different cloud and
telecom providers.

Network. We used 4 internet network topologies. The first three ones
correspond to three internet networks described in the Internet Topology Zoo
library, IntelliFiber (N = 73, L = 96), Colt Telecom (N = 153, L = 179)
and Cogentco (N = 197, L = 245): see Knight et al. (2011) and Knight
et al. (2013) for more detail. We also used a topology corresponding to the
former network of the French company Free (V = 120, E = 167): see Ferre
(2010). Recall that the problem under study arises within the general con-
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Topology N L %Low %Medium %High
IntelliFiber 73 96 62% 37% 1%
Colt Telecom 153 179 72% 24% 4%
Cogentco 197 245 59% 39% 2%
Free 120 167 66% 28% 6%

Table 3: Percentage of nodes assigned to a low, medium or high computing
capacity for each network topology

text of 5G network slicing. As a consequence, we do not consider in our
problem the whole physical network installed by the ISP but only the por-
tion of this network, i.e. the virtual network or slice, lent by the ISP to the
customer currently undergoing a DDoS attack. Thus, the bandwidth bl of a
link between two nodes does not correspond to the total bandwidth of the
physical link installed by the ISP between these nodes but only to the portion
of this bandwidth allocated to the virtual network assigned to the customer
under attack. This is why we randomly generated values of bl correspond-
ing to rather small transmission capacities. More precisely, the bandwidth
bl of each link was randomly generated using a discrete distribution with a
support equal to {4.8, 12, 20, 40, 100} Mbps.

Computing resources. R = 2 types of computing resources were taken
into account at each node: the number of CPUs and the memory. We con-
sidered three types of nodes: low computing capacity with Cap = (8, 32),
medium computing capacity with Cap = (40, 160) and high computing ca-
pacity with Cap = (400, 1600). In each considered network topology, we
assign each node to a type according to its degree. Thus, nodes with a
degree less than 2 were assigned a low computing capacity, nodes with a de-
gree between 3 and 5 were assigned a medium computing capacity and nodes
with a degree larger than 6 were assigned a high computing capacity. Table 3
provides a summary of the percentage of nodes assigned to each type (low,
medium and high computing capacity) for each considered network topology.

VNFs. V = 1 type of VNFs was considered requiring γ1,1 = 4 CPUs
and γ1,2 = 16 units of memory, providing a filtering capacity of φn = 16
Mbps, with a unit cost of K1 = 130.

Attacks. The number of sources was set to A ∈ {5, 10, 15, 20, 30, 40}. In
each instance, the sources and target of the attack were randomly selected.
The intensity F a of each attack (in Mbps) was randomly generated following
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the normal distribution N (50, 25).
For each considered network topology and value of A, we randomly gen-

erated 5 instances, leading to a total of 140 instances.

5.2 Results

Each generated instance was solved using Algorithms 2 and 3. In both cases,
the decision maker problem was solved as a mixed-integer linear program
using the CPLEX 12.8.9 solver with the default settings. The adversarial
sub-problem was solved using either the Branch & Price algorithm embedded
in the SCIP 7.0.0 solver (Algorithm 2) or the simplex and Branch & Cut
algorithms embedded in the CPLEX 12.8.9 solver (Algorithm 3). All tests
were carried out on an PC running under Windows 10 equipped with an Intel
Core i5-8350U processor (4 cores, frequency of 1.9GHz) and a 16 GB RAM
with a 2400MHz speed. Note that the CPLEX 12.8.9 solver, in its default
settings, is set to use a number of threads equal to the number of available
cores whereas the SCIP 7.0.0 solver is by default single-threaded.

For each algorithm, each network topology and each considered value of
A, we report in Table 4 the average value over the 5 corresponding instances
of:

• Cost: the cost of the optimal VNF placement,

• #IT : the average number of iterations of the algorithm,

• #P : the total number of source-target paths added to C by column
generation over the course of the algorithm,

• Time: the total computation time in seconds of the algorithm.

Algorithm 3 is an approximate solution algorithm which may provide a
solution which is not feasible for the initial robust optimization problem,
i.e. for Problem RVNFD. Indeed, as the adversarial sub-problem is solved
heuristically, the amount of malicious flow that will reach the target may
be underestimated in some cases so that the filtering constraints (13) added
to the decision maker problem may not be tight enough. In order to es-
timate the impact of this heuristic resolution, we carry out the following
post-optimization analysis. We consider the optimal VNF placement xapp
obtained with Algorithm 3. We solve problem AP (xapp) exactly using the
Branch & Price algorithm. We then record AD the actual damage, i.e. the
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amount of malicious flow which will actually reach its target, if we use the
VNF placement xapp. We then compute the percentage of total unfiltered
flow %UF as %UF = 100AD∑

a∈A Fa . We report in Table 4, for each set of 5

instances, #Inf the number of instances for which the solution obtained
with Algorithm 3 was infeasible and Max%UF the maximum percentage of
unfiltered flow.

Results from Table 4 first show that Algorithm 2 is able to provide optimal
solutions to the RO problem with a reasonable computational effort. Namely,
the average computation time, over the 140 considered instances, is 22s.
This performance is mainly explained by the fact that both the number
of iterations #IT of the algorithm (and as a consequence the number of
Constraints (13) of DMP (UR)) and the number of source-target paths #P
generated by column generation (and as a consequence the number of flow
variables in AP (x)) stay limited.

However, the computation time of Algorithm 2 exceeds 60s for 10 out
of the 140 considered instances. This might be a problem as the decisions
on the VNFs deployment should be taken as quickly as possible after the
attack detection and identification. The approximate Algorithm 3 might
prove useful in such cases. It is namely able to provide optimal solutions
of the RO problem for 137 out of the 140 considered instances, and this
with an average computation time below 3s and a maximum computation
time of 25s. Moreover, for the 3 instances for which the solution provided
by Algorithm 3 did not comply with the original robust constraints (3), the
amount of malicious flow which could reach the target stays below 3%, which
seems acceptable.

6 Conclusion

This paper described a new robust optimization approach for the defense
against Distributed Denial of Service (DDoS) attacks in the context of 5G
network slicing. More precisely, we considered the problem of optimally de-
ploying virtual network functions in order to stop an ongoing DDOS attack.
We assumed that the target, sources and volume of the attack are identified
but that the exact routing of the illegitimate traffic on the network is not
known. To take into account these uncertainties, we proposed a robust opti-
mization (RO) model and developed an adversarial approach to solve it. This
iterative approach is based on the decomposition of the initial problem into
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a master problem and a sub-problem. The master problem is a restricted
version of the original RO problem in which only a finite number of possible
malicious flow routings are used to express the robust constraints. Consid-
ering the current placement of VNF provided by the solution of the master
problem, the adversarial sub-problem seeks to find a malicious flow routing
that maximizes the amount of attack reaching its target. We tested the ef-
ficiency of our algorithms on medium-sized randomly generated instances.
The results of computation experiments show that our approach is able of
providing optimal solutions in short computation times.

Current work suggests several possible directions for future research. In
terms of problem solving, it might be possible to further improve the decom-
position approach by carrying out a polyhedral study of the problem and
developing new valid inequalities to help solving it more quickly. As for the
problem modeling, a first research direction could consist in studying a disag-
gregated formulation of the robust filter constraints. This could ensure that
the instantiated VNFs will be able to stop all the malicious flows regardless
of the allocation of filtering capacities. It would also be interesting to study
how the legitimate traffic, which will consume network resources and whose
routing is also unknown, could be taken into account in the model.
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Altner, D. S., Ergun, Ö., and Uhan, N. A. (2010). The maximum flow
network interdiction problem: valid inequalities, integrality gaps, and ap-
proximability. Operations Research Letters, 38(1):33–38.

Apt, K. R. (2003). Principles of Constraint Programming. Cambridge Uni-
versity Press.
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