
Distributed Asynchronous Column Generation

S.Basso and A.Ceselli

Università degli Studi di Milano, Dipartimento di Informatica
{saverio.basso@unimi.it, alberto.ceselli@unimi.it}

Pre-Print Pre-Review Version for Institutional Use

Abstract

We propose a revision of the classical column generation algorithm for
solving Dantzig-Wolfe decompositions of mixed integer programs. It is
meant to fully exploit the availability of distributed computing resources,
making optimization algorithms in general purpose solvers to scale better.

The main idea is to trigger massive parallelism by fully decoupling
the computing flow of each component, including the resolution of the
master problem, thus allowing different pricing algorithms to concurrently
work on different sets of dual variables, and the master algorithm to asyn-
chronously update dual information as soon as new columns are available.

Our algorithms ensure the same optimality convergency properties of
the classical method. Experiments on mixed integer programs for three
benchmark problems from the combinatorial optimization literature prove
our approach to be one order of magnitude faster than state-of-the-art
general purpose solvers in computing high quality root node dual bounds.
Even if devised to exploit clusters of machines which do not share mem-
ory space, our algorithms show to be faster than earlier attempts from the
literature also when run on virtual machines hosted on a single physical
one, proving this improvement to derive from our algorithmic methodol-
ogy rather than technological factors.

1 Introduction

Information systems are invaluable assets for a company. They currently provide
the only practical mean of managing flows of data in business processes. A
recent trend is that of virtualization, offloading information systems as cloud
services. This yields major advantages, among which the option of performing
on-demand provisioning of hardware resources like CPU cores, keeping them
reactive also under load peaks [1].

Information systems represent also the entry point for diverse enterprise
tools for the analysis of data, among which those performing quantitative de-
cision support. Their complexity, and the need for flexibility, makes it often
impractical to develop and deploy fully ad-hoc code. That is why general pur-
pose solvers for mathematical programming problems [2, 3, 4] keep on increasing
their penetration in industrial contexts.

1

However, the current architecture of general purpose solvers makes them
hard to be adapted and scale well in an offloading environment. In fact, relying
on branch-and-cut algorithms, they ask for centralized computations in a sin-
gle powerful unit, while offloading grants computing power by the concurrent
availability of several smaller units.

Decomposition methods provide a clear architectural advantage in this con-
text. Recent attempts show that decomposition techniques like Dantzig-Wolfe
ones can be applied automatically to some extent [5] [6] [8], thereby opening the
road to general purpose solvers based on column generation and branch-and-
price [7] instead of cutting planes and branch-and-cut.

Dantzig-Wolfe decomposition methods are expected to actually unfold po-
tential when highly decomposable problems need to be optimized, and there-
fore massive parallelism can be potentially triggered. However, this intuition
clashes with experimental evidence: standard parallelization methods typically
fail. In fact, attempts from the literature often consider using limited paralleliza-
tion, restricting such approach to the resolution of individual subproblems [9].
More effective methods have been proposed, which are however problem-specific
[10] [11]. Finally, more elaborate implementations appear in the literature,
which however are leveraging parallelism by dropping optimality guarantees
[12] [13], actually becoming heuristics. At the same time, additional paralleliza-
tion strategies have been recently studied for other decomposition methods,
like bundle methods [14] [15] [16], although they focus mainly on distributed
computation for cutting plane approaches.

In [17] we have introduced instead an Asynchronous Column Generation
(ACG) mechanism. It is a concurrent version of column generation, that does
not exploit the combinatorial structure of any specific problem, and guarantees
the same optimality convergence properties of the classical method. It allows,
thanks to asynchronous computing, almost linear speed-ups with respect to the
available resources and much better performance than state-of-the-art solvers,
on large scale instances. To the best of our knowledge, no further attempt to
devise concurrent approaches to column generation for generic mathematical
programs has been carried out in the literature.

In this paper we propose instead a distributed computing framework for
column generation. It exploits massive concurrency when a cluster of machines
is available by distributing calculations on multiple nodes in a smart way.

The main idea is not only to solve pricing problems in parallel, but to fully
decouple the computing flow of each component, including the resolution of the
master problem, thus allowing different pricing algorithms to concurrently work
on different sets of dual variables, and the master algorithm to asynchronously
update dual information as soon as new columns are available. We also discuss
terminating conditions under which no optimality convergency property of the
classical method is lost.

We remind the reader to Appendix A.1 for a review on the main concepts
concerning parallel and distributed computing. Unfortunately, existing tech-
niques are not easy to adapt in a distributed framework for two main reasons:
(a) cluster machines do not share memory space, and therefore synchroniza-
tion mechanisms among computing threads in different machines need to be
specifically designed, and (b) cluster machines are often connected one another
by network links which are orders of magnitude slower than CPU to RAM
buses. On the contrary, techniques devised in a distributed setting can always

2

be adapted in shared memory (or even sequential) ones.
To achieve our goals, we focus on maximizing concurrent computation through

the design of dedicated data structures, clean yet effective communication strate-
gies. Part of our research is also a set of techniques to filter, rebalance and
manage column pools, allowing concurrent column generation algorithm run
faster; although we propose them in a distributed computing setting, these can
be adapted in a sequential one as well.

We focus on the standard implementation, that is, we do not use all the
machinery to speedup column generation, such as stabilization techniques [18],
that have been developed during the last decades. Our approach, instead, allows
to analyse in detail the impact of parallelization. However, we remark that
these additional techniques can always be implemented on top of our version.
Likewise, we focus on the column generation process for producing root node
dual bounds, expecting reoptimization in inner nodes to be faster, and existing
branch-and-bound techniques (even parallel ones) to be compatible with our
approach.

We report a thorough experimental analysis where we compare our dis-
tributed algorithm against the asynchronous single machine version (ACG) pro-
posed in [17] and state-of-the-art solvers.

The paper is organized as follows. In section 2 we review the main concepts
of Dantzig-Wolfe decomposition for Integer Programs dual bounding, we intro-
duce our notation, and we compare the standard column generation method
with some parallelization options, highlighting the corresponding weaknesses
and bottlenecks. In section 3 we introduce our asynchronous distributed com-
puting framework for column generation and we compare its design to other
parallel ones from the literature. Then, in section 4 we detail our implemen-
tation and parameters tuning. We then report its full experimental analysis.
Finally, in section 5 we collect some conclusions.

2 Notation and Background

Dantzig-Wolfe decomposition was introduced in the sixties to cope with Linear
Programming models not fitting into the very limited memory of computers.
In the last two decades, however, its applicability range strongly expanded as
researchers understood how to use it to obtain strong dual bounds for Mixed
Integer Programs (MIPs), and in particular Integer Linear Programming (ILP)
ones. In fact, let us assume to be given an ILP in the following form:

min
∑
j∈J

cjxj (1)

s.t.
∑
j∈J

Bjxj ≥ b (2)

Ajxj ≥ aj ∀j ∈ J (3)

xj ∈ Xj ∀j ∈ J (4)

where x is the vector of variables, J is a partitioning of this vector, cj are
the objective function coefficients for each class in the partition, (2) is a set of
constraints that potentially link different vectors xj , (3) are |J | sets of block

3

constraints, each j ∈ J involving only variables xj , and (4) define the domain
of each variable (e.g. contain integrality constraints). That is, the constraint
matrix has a single bordered block-diagonal form and constraints (2) correspond
to the horizontal border. An additional vertical border can be defined as well,
with a slight generalization, by considering an additional set of variables poten-
tially belonging to all constraints but, for the sake of brevity, we disregard its
notation. Similarly, minor additional notation (but no additional concept) is
needed if the region described by (3) and (4) is unbounded. To ease exposition,
we simply assume it to be a polytope.

Following the interpretation of [5] in terms of partial convexification, let θj

be the convex hull of the extreme points of (3) and (4), that is, for each j ∈ J :

θj = conv{x|Ajx ≥ aj , x ∈ Xj} (5)

that is, when Xj encodes integrality conditions, θj represents the convex hull
of extreme integer points of (3).

Let Ωj be the set of indices of extreme points in θj and, for each p in Ωj , let
x̄j
p be one of these extreme points. According to the Dantzig-Wolfe principle,

we find a relaxation by replacing xj ∈ Xj with xj ∈ Rnj and by forcing for each
j ∈ J :

xj =
∑
p∈Ωj

x̄j
pz

j
p

where zjp are new variables that act as multipliers to enforce that each xj is

a convex linear combination of the extreme points of θj .
DWD allows to disaggregate these problems in a master entity, involving

only constraints (and variables) in the border, and one or more subproblems,
one for each diagonal block, according to the following extended formulation:

min
∑
j∈J

∑
p∈Ωj

cj x̄j
pz

j
p (6)

s.t.
∑
j∈J

∑
p∈Ωj

Bj x̄j
pz

j
p ≥ b (7)

∑
p∈Ωj

zjp = 1 ∀j ∈ J (8)

0 ≤ zjp ≤ 1 ∀j ∈ J, ∀p ∈ Ωj (9)

We report that an alternative interpretation of the Dantzig-Wolfe princi-
ple, leading to a similar (but not fully equivalent) integer counterpart of this
extended formulation is exploited in research streams like [20].

2.1 Sequential and Parallel Column generation algorithms

To solve an extended formulation efficiently, state-of-the-art approaches adopt
column generation. It consists in the following: (i) each set Ωj is replaced by a
restricted subset Ω̄j (ii) the restricted master program (RMP) that remains is
optimized (iii) being a linear program, the optimization produces both a primal
and a dual solution: the set of dual variables is collected, and for each j ∈ J , a
search for the element of Ωj corresponding to the column of minimum reduced

4

cost is carried out (iv) if any negative reduced cost column is found for some
j ∈ J , the corresponding Ω̄j is updated, and the process iterates from (ii). On
the contrary, if no new column is found, column generations is stopped, and
the RMP solution is retained, being optimal for the full problem (that considers
whole Ωj) as well. The optimization problem that needs to be solved for finding
minimum reduced cost columns (step (iii)) is called the pricing problem. Since
only extreme integer points need to be considered, the pricing problem involves
in general optimization over integer variables.

For each j ∈ J , we denote as πj the following pricing subproblem

min {(cj − λ)xj
k − µj , s.t. x

j
k ∈ Ωj}.

It needs to be solved at each column generation iteration. Vector λ refers to the
dual variables of constraints (7), and vector µ to those of constraints (8).

Such a process can be performed for any ILP, but unfolds more potential if
the original problem has a large value of |J | and few constraints (7), showing
to be a composition of smaller subproblems which are easier to be solved than
a single large one during pricing.

Sequential column generation (CG). In a standard setting, like the one
described in [7], pricing subproblems are solved in turn, sequentially, for each
j ∈ J . Scholars have devised many techniques for speeding up this type of
column generation algorithms. One of them is partial pricing: as soon as a neg-
ative reduced cost column is found while solving a certain pricing subproblem
j, the control returns to the restricted master (step (ii)). We also mention the
popular use of heuristic pricing procedures, in which each pricing subproblem is
tentatively solved first by means of fast heuristics. Exact pricing is performed
only when no negative reduced cost columns are found by heuristics. Both
techniques share the intuition that solving all pricing problems to optimality
might be needed only at the last column generation iteration, to prove optimal-
ity. The earlier one is in the column generation process, the more is worth to
quickly populate the RMP with columns which are just good enough to lead the
RMP dual solution into the right direction. Both techniques share also the same
weakness: columns yielding only marginal changes to the RMP dual solution
might be generated in a certain column generation iteration, while much better
ones would have been found by either pricing subproblems which are skipped (in
case of partial pricing) or by exactly solving some pricing subproblems (in case
of heuristic pricing). Both techniques must therefore be fine tuned carefully,
and such a tuning is in general problem dependent.

Synchronous parallel column generation (SCG). As fully detailed in [17],
step (iii) can be easily run in parallel: the search for new columns for each j ∈ J
can be performed independently. In terms of parallel computing, a set of disjoint
tasks is obtained by assigning a different execution thread to each subproblem
πj , where disjoint means that, working on different data, tasks do not need to
communicate. They only need a single synchronization point, waiting all these
tasks to terminate before joining execution back in a single thread. Therefore,
as long as a column generation algorithm waits such a join before proceeding
to step (iv) and possibly iterating, no additional synchronization structures are
needed, and there are no changes to the standard algorithm (i) – (iv). Pricing

5

algorithms for different subproblems are even allowed to be run on different ma-
chines. This is indeed the common technique exploited in the literature (see e.g.
[10]). Heuristic pricing is still a viable option. Partial pricing is instead a clear
example about how even simple techniques which are standard in CG could par-
tially clash in a concurrent setting: asking a subproblem to stop the others when
a negative reduced cost is found requires tasks to communicate one another, at
least with shared termination flag variables. That, however, makes tasks not
disjoint anymore, thereby requiring to introduce synchronization mechanisms,
allowing to simultaneously read and write these flag variables from a single task
at a time. This in turn reduces parallelism potential. Any policy introducing a
partial ordering between subproblems would similarly bring the algorithm back
towards the sequential setting. In any case, synchronous column generation has
a fundamental drawback: the time of the slowest subproblem πj might strongly
impact the time required for completing step (iii), that is, one subproblem may
act as bottleneck when significantly slower than the others.

Asynchronous concurrent column generation (ACG). In [17] we have
proposed to remove such a drawback and exploit massive concurrency. All sub-
problems j ∈ J are initially run in parallel. As soon as a negative reduced cost
column is found by any j ∈ J , and the corresponding set Ω̄j is updated, we start
computing step (ii) and update the set of dual variables, as it would happen
with a partial pricing approach. At the same time, the other subproblems are
not stopped; on the contrary, they are let free to complete their computation.
Therefore, this mitigates also the weakness of partial pricing: no column is lost
because of early interruptions in the pricing sequence. Furthermore, such a
setting allows the additional option of running heuristic and exact pricing algo-
rithms in parallel, no one becoming bottleneck of the other, and still requiring
no synchronization, thereby mitigating also the weakness of heuristic pricing.

3 Distributed algorithms

We remark that ACG allows to remove also the join point before step (iv),
which is instead needed in SCG, thus further improving concurrency. In terms
of computation structure, however, the direct result of our ACG approach is the
following: different subproblems πj , as well as different algorithms for the same
subproblem, may be concurrently working on different sets of dual variables.

While intuitively simple, designing a suitable algorithmic framework for
managing such a massive concurrent approach turned out to be non trivial
in practice. We highlight two issues. The first issue is computational: to choose
data structures and synchronization points in such a way that both synchro-
nization overhead and idle time remain limited. The second issue is theoretical:
to ensure that the convergence properties of column generation are kept.

An outline of our ACG algorithm is depicted in Figure 1. In our design, RMP
and subproblems are assigned to concurrent tasks that update and solve their
configuration as soon new information is available, and the only synchronization
point is at the end of the algorithm, to check terminating conditions. The tasks
communicate through a shared pool that contains the latest dual variables of
the RMP and new columns, produced by subproblems. Since different tasks
may be working on different versions of dual variables, we also store and use

6

an integer value, the version stamp, to keep track, for each task, of the latest
dual variables that have considered for their last configuration. This is again
necessary to guarantee optimality when checking terminating conditions. We
avoid race conditions with fine tuned exclusive access. More in detail, after
the RMP solve step, new dual variables are written in the pool. The RMP
then awaits for new columns to be produced by subproblems. As soon one
is available, the RMP gets updated and solved. At the same time, when a
subproblem has finished computing a solution, it stores a new column in the
pool and, if newer dual variables are available, its configuration gets updated
and solved. Termination happens only when no new columns are available in
the pool and all the version stamps of the tasks match, that is, the lastest dual
variables produced by the RMP have been considered and processed by all the
subproblems. An example of key steps of our ACG algorithm can be found in
A.2, in the Appendix.

We refer to [17] for all the technical details and its experimental validation.
In short, testing showed that ACG allowed consistent gains and almost linear
speedups with respect to the number of CPU cores used.

Subproblem 1

Subproblem J

Shared Pool

RMP Version Stamp
Dual Variables

Subproblem version stamps
Column pool

Solve
Write duals

Fetch
Check

Termination Stop

Start
Update

Solve

Write

RMP

Ωj

 updated

terminating
conditions

verified
otherwise

Subproblem j

Figure 1: Asynchronous column generation algorithm

However, our ACG has a weakness blocking further scalability: it requires
a shared pool for communication, with suitable locks on critical sections. Al-
though this implementation is effective on a single machine, storing global data
structures in memory requires a shared address space. Unfortunately, our at-
tempts for directly mapping such a system design on computer clusters, pro-
duced poor results. In fact, emulating shared pools in a distributed memory
environment introduced too much overhead.

3.1 A distributed asynchronous column generation algo-
rithm

We propose a completely new architecture to exploit distributed computing. A
general outline of our algorithm is reported in Figure 2.

We commit to the same asynchronous philosophy, considering however a sce-
nario in which multiple machines are available for computation. We propose a
distributed algorithm that greatly improves parallelism by decoupling the con-
current execution of the restricted master problem and the subproblems πj on
different computing units. In particular, we use the term core to define a single
computing unit, and the term node to define pools of computing units: cores of
the same node share memory space, while different nodes do not, and commu-
nicate instead by means of slower links. We design a master-client architecture

7

in which the RMP is assigned to a specific master node and the subproblems
are split on the cores of the remaining available nodes. For every subproblem
we create one task. Precise load optimization of the system is possible and can
be fine tuned by manually balancing the number or the overall complexity of
tasks assigned to specific nodes.

We devised communication by making use of a message passing paradigm
and by following a centralized strategy: in our design, the master node controls
the exchange of messages by deciding when to send data to or retrieve data from
client nodes.

In the following we detail our Distributed concurrent Column Generation
method (DCG).

3.1.1 Data structures

Similarly to the ACG we store, for each task, an integer value, that is the
version stamp that represents the overall progress of algorithm. For the RMP, it
indicates the overall number of LP optimization problems that have been solved.
For each subproblem, instead, it represents the corresponding dual solution that
it is being used to solve the current iteration of the specific subproblem task.
Unlike ACG, however, we do not employ global data structures. Instead, each
node stores its own local data. We detail data structures below.

Master node data structures The master node stores locally the following
information:

• RMP version stamp
the current version stamp of the RMP;

• dual variables
a vector containing the values of dual variables obtained by the RMP at
the end of the last optimization process;

• subproblem version stamps
a collection of every subproblem version stamp.

Since the master node is dedicated for the RMP, no action is required to
make data task safe.

Client nodes data structures Client nodes store instead a local pool that
is shared among the assigned subproblems. On these nodes, we make use of an
additional dedicated task, the handler, that is relegated to pool management
and answering queries of the master node.

The local pool contains:

• RMP version stamp
the latest version stamp of the RMP received from the master node;

• dual variables
a vector containing the latest values of dual variables received from the
master node;

8

• solution pool
a collection of solutions found by subproblems on the client; each solution
consists of a subproblem version stamp and a column vector.

Competition synchronization mechanisms are used to make the local pools
task safe. Additional information about communication and termination are
stored and managed by the RMP and each handler.

MPI Handler

Subproblem 1

Subproblem J

Client node 1

Client node M

Local pool

RMP Version Stamp
Dual Variables

Solution pool

Local data

RMP Version Stamp
Dual Variables

Subproblem version stamps

Client node m

Subproblem jRMP

Master node

. . .

. . .

. . .

. . .

Figure 2: Distributed asynchronous column generation algorithm general outline

9

3.1.2 Algorithm outline

After initialization, the master node follows the subsequent steps:

Master node (RMP task).

1. solve: optimize the current RMP

2. write duals: check if the new dual solution is different from the previous
one

• if it is, (i) update the RMP version stamp and dual variables (ii)
broadcast the dual solution and the stamp to every client node

• Otherwise, broadcast an up-to-date signal

Then, apply Rebalancing strategies.

3. fetch: check if new solutions can be collected from the clients; if at least
one column can be fetched, update the respective local subproblem version
stamps and apply RMP update policy.

4. check termination: if any subset Ω̄j is updated during fetch, broadcast
a continue signal and goto solve; else check RMP terminating conditions:
if they are verified, broadcast a termination signal and then stop, as global
optimality is reached; otherwise broadcast a request signal and goto fetch.

MPI

Solve Write duals Fetch Check
Stopping StopCheck

Convergence

Client node 1 Client node M

Start

Master Node
Ωj updated

otherwise
system

idle verified

otherwise

. . .

Check Termination

Solve Write duals Fetch

Figure 3: Distributed asynchronous column generation algorithm. Master node
outline

A graphical outline for the master node is reported in Figure 3. In the
following, we detail Rebalancing strategies and RMP update policy. We
summarize instead RMP terminating conditions at the end of this section.

Rebalancing strategies Whenever the overall number of variables in the
RMP configuration exceeds an upper limit maxsols we rebalance the system by
eliminating unpromising columns to lower computing times for the RMP solve

operation.
We order the RMP variables by non-decreasing reduced cost until a specified

position minsol. All the variables that follow this position and have a worse
reduced cost are discarded, that is, minsol acts as a lower limit to the overall
number of variables in the RMP. We commit to rebalancing at the beginning of
the algorithm.

10

RMP update policy When a new column is collected from client nodes we
can apply one of the following policies:

• Aggressive: the corresponding Ω̄j set is always updated;

• Conservative: we recompute the reduced cost of the column with the
latest dual variables. If it is still negative, we update Ω̄j . Otherwise, we
discard the column.

We commit to a strategy at the beginning of the algorithm. We do not
change the update policy at runtime.

On the client nodes instead, subproblem tasks and the dedicated handler
repeat, at the same time, the following operations:

Client node (Subproblem task).

1. update: check if the subproblem version stamp is different from the RMP
version stamp stored in the local pool.

• If they differ, store locally the new duals and set the local subproblem
version stamp to be equal to the RMP version stamp in the local pool

• Otherwise, wait for a suitable signal (from handle broadcast) into
a sleeping state, and then repeat update

2. solve: optimize the subproblem with the local set of dual variables

3. write: save the solution into the local pool; goto update.

We remark that, during the write step, solutions are saved in the local pool
independently of their reduced cost.
Client node (Handler task).

1. handle broadcast: wait for a new dual solution or an up-to-date signal
from the master node (write duals); if a new solution has been received,
(i) update the dual solution and the RMP version stamp in the local pool
(ii) send an update signal to subproblem tasks

2. handle fetch: wait for a fetch request from the master node; when a
request arrives, (i) send every solution in the pool to the master node (ii)
clean the pool

3. handle status: wait for a status signal from the master node

• if a continue signal is received, goto handle broadcast

• if a request signal is received, goto handle fetch

• if a termination signal is received, then stop

We show the processing flow outline for client nodes in Figure 4. Additional
details on concurrency and on the subproblem task solve step are reported
below.

11

MPI

Client node 1 Client node M

Master node

handle broadcasthandle fetch

handle status

Local Pool

RMP Version Stamp
Dual Variables

Solution pool

Subproblem 1

Subproblem J

. . .

Handler

Client node m

Figure 4: Distributed asynchronous column generation algorithm. Client node
outline

Subproblems timelimit policy A global timelimit for the solve step can
be specified for the subproblems. In this case, subproblems might terminate
early their execution and normally proceed to the write and update steps.
When this happens, they write in the local pool a dummy solution, that will be
discarded, along with an integer timelimit flag to take note of the early stopping.
This is necessary for terminating conditions. The advantage of this policy is
twofold. First, we can improve meaningful computing: slower subproblems
that are normally stuck on the solve step for a very long time might not be
able to produce a column that is relevant for the current version of the RMP.
Second, early interruption of subproblems allows to grasp the main advantages
of asynchronous computation, that is, subproblems are able to fetch new versions
of the dual variables from the RMP as fast as possible. This means that the
algorithm, as whole, is expected to converge faster to the optimal solution.

We commit to a timelimit policy at the beginning of the algorithm.

Concurrency The local pool we use on each client node requires synchro-
nization to manage race conditions. We use two mutex regions to limit reading
and writing. The first one regulates access to the dual variables and the RMP
version stamp. This region is locked by the handler during handle broadcast

and by the subproblems during update. The second one is used instead for the
solution pool: the handler locks it during handle fetch, whilst subproblems
do during write. Differently from ACG, we do not partition the solution pool,
that is, every subproblem task will write columns in the same data structure.
Partitioning was quite useful to reduce overhead in ACG but in this version,
due to the reduced number of subproblems assigned to each machine, the perfor-
mance impact is negligible. Priority for updating is always given to the handler
task. We also specify that the RMP presents an active wait between the fetch
and check termination steps, like in ACG. However, since this time the task
is running on a dedicated machine, there is no notable performance impact.

RMP terminating conditions Termination of the algorithm is managed by
the RMP during the check termination operation.

12

1 Check Stopping: First, we make sure that no subproblem is running.
When the version stamp of the latest columns collected from every sub-
problem is equal to the latest version stamp of the RMP, the system is
idle.

2 Check Convergence: Then, we check if any subproblem had reached its
timelimit during their last iteration. If they did, their computation is
resumed with no timelimit. If at least one column with negative reduced
cost is produced, the RMP follows the solve and write duals operations.
If the update is successful, and new dual variables have been generated,
check termination fails and the algorithm proceeds normally.

3 Otherwise, if the system is idle and every subproblem has fully completed
computation, no further solution can be collected from client nodes. When
this holds, termination conditions are satisfied.

We designed these conditions to preserve the guarantee of convergence to a
global optimum.

Proposition 1. Upon termination according to conditions 1 - 3, the DCG al-
gorithm is guaranteed to achieve a global optimal solution of (6) – (9).

Proof. We observe that the correctness of sequential column generation in yield-
ing a global optimum relies on the following invariant: at each iteration either
the RMP solution is optimal, or a possibly improving direction, that is a column,
is produced. In other terms, the RMP may be seen as an oracle, producing a
dual solution: a certificate of its optimality is given whenever no negative re-
duced cost column is found by the pricing subproblems, independently on which
dual solution is produced by the oracle. The same invariant holds in our DCG.
The RMP can be seen as an oracle, producing dual solutions, together with
an associated version stamp: if all subproblems are run on that version stamp
(condition 1), without producing new columns (as the system is idle), and each
of them was solved optimally (condition 3), then the dual solution having that
version stamp is optimal. Similarly, when early termination of some subprob-
lems occurs (condition 2) which given the chance of terminating find no new
column, we fall back to the previous argument (condition 3). A case remains to
be considered, that is after being resumed, some subproblem finds new columns,
but no change in the dual solution is observed in the subsequent RMP optimiza-
tion. In that case, running the subproblems on the same dual solution would
produce no new column, falling again back to the previous argument (condition
3). This last case might happen only in presence of degeneracy and aggressive
RMP update policy.

At the same time, as in sequential column generation, if any improving
direction exists with respect to a dual solution with a certain version stamp, it
must be possible for some subproblem to find it when running on that version
stamp.

4 Implementation and experimental analysis

We developed our Distributed Asynchronous Column Generation (DCG) algo-
rithm in C++11, by using the Open MPI 3.0.1 library for distributed communi-

13

cation. Boost 1.66 was used as an MPI interface and for threads management.
We remark that our investigations are mainly driven by the perspective ap-

plication of decomposition techniques in general purpose solvers. We therefore
designed our code with a generic philosophy by using abstract data structures
and inheritance to decouple the execution of the algorithm from the problem
as much as possible, that is, the core of the algorithm is not built on a specific
mathematical programming problem. For the same reason, in the main ex-
periments reported in Section 4.2, each pricing problem was solved as a generic
MIP. Indeed, speeding up our column generation algorithms by means of ad-hoc
pricing algorithms is possible and promising: we evaluate the relative impact of
such a choice, also reporting the full experimental results in Section A.6.2. We
used CPLEX 12.6.3 with default settings to solve both the RMP LPs and the
pricing problem MIPs. Single thread execution was set for each subproblem.

Architecture We employed the master-client architecture defined in section
3.1. When more than one machine was available, we reserved the dedicated
master workstation for the RMP whilst we divided subproblems equally on the
remaining client ones. We also considered an additional configuration where
the Master machine was split in two virtual slots, and we assigned RMP to one
slot and subproblems resolution to the other one. We made use of this scenario
when RMP workload was light or for the single machine version.

Handling concurrency We implemented concurrent tasks for the helper and
the subproblems as threads and critical sections in the shared pool of each
machine were protected by lock objects. The handler of each client machine was
given update priority through simple boolean flags and conditional variables
were used for managing waiting times for subproblems. The RMP part was
implemented as a sequential algorithm.

Communication Our implementation made use of a shared communicator
for message exchange and synchronization between the master node and the
client nodes. We considered two types of functions: collective functions such as
broadcast are used to notify all client machines of new dual variables whilst point
to point communication is used to query each client, in turn, for new columns.
Serialization of data was necessary to send messages and was achieved with the
boost library. We report that an attempt to employ multiple parallel point to
point communication was done during an initial prototype phase. However, at
the time of development, this OpenMPI feature was not fully tested and the
system was not stable. We therefore discarded it.

Computing environment The experimental environment was setup as a
beowulf cluster [22] up to 4 identical workstations running on Ubuntu 16.04
os, equipped with a quad-core Intel(R) Core(TM) i7-6700K 4.00GHz CPU and
32GB RAM. Each CPU is able to manage up to 8 physical threads, therefore
the overall system grants resources for 32 cores and 128 GB or RAM. NFS
directories were used for exchanging data.

Initial parameter tuning The starting configuration of parameters followed
the setup used with ACG. That is, we stop the subproblems solve step at the

14

first solution with negative reduced cost and we use depth first exploration for
the search trees to reduce memory footprint. After preliminary experiments
rebalancing policies were fine tuned as follows. We chose 10000 columns for
minsol and 20000 columns for maxsol. Initial timelimit for each subproblem
was set to 10 minutes. Additional parameter tuning is detailed in subsection
4.2 in which we discuss the impact of the subproblem timeouts, rebalancing and
RMP updating policies.

4.1 Test-bed instances

Designing a suitable test-bed needs special care. On one hand, our framework
currently applies to problems having MIP formulations for which effective de-
composition patterns are known, or can be detected by methods such as those
of [5] or [8]. On the other hand, improving the state-of-the-art algorithms in
specific combinatorial optimization problems is well beyond the scope of this
paper.

To this end, we care of selecting diverse MIP conditions: both conditions in
which formulations are known, making a standard general purpose solver per-
form well and conditions for which only weak compact formulations are known.
The second key factor we take into account is how much MIPs are amenable for
a massive decomposition approach in terms of number and hardness of pricing
subproblems.

We therefore consider MIPs for three representative optimization problems
for testing. The first one is the multi-dimensional variable size and cost bin-
packing problem (MDVCSBP). It requires to pack optimally a set of items into
different bin types with different capacities and costs. Its details, including
the mathematical programming formulation, are reported in the Appendix, in
section A.3. It represents a compromise benchmark: it allows for an effective
decomposition approach but, at the same time, small and medium size instances
can generally be solved easily by general purpose solvers through branch-and-
cut. For testing we used 30 instances from the ones that we generated in [17],
in particular, all the large ones with either 500 or 1000 objects and 250, 500 or
750 subproblems. The second problem we consider is a heterogeneous Vehicle
Routing Problem with Time Windows (VRPTW). In this case, we have a fleet
of vehicles, with different capacities and costs, whose routes must be designed
to satisfy known demands of customers that can be visited only in a specified
time interval at minimum cost. In section A.4 of the Appendix, we report the
full mathematical model and its Dantzig-Wolfe reformulation. We tested our
algorithm against 21 instances from the literature [21], with 30 customers and a
fleet of maximum 25 vehicles of 5 possible types. The instances are split in three
different classes (A, B and C) defined by different costs assignment strategies for
the vehicles. The VRPTW is more challenging for pure generic approaches, as
compact formulations are typically weak. The third problem is a Multi-Depot
variant of our VRPTW (MDVRPTW), whose full mathematical model and
Dantzig-Wolfe reformulation are reported in section A.5. It combines features
of MDVCSBP and VRPTW: hard heterogeneous MIP subproblems, but high
decomposition potential.

That is, these three problems represent three completely different working
scenarios. The MDVCSBP is characterized by a massive number of subproblems
with limited complexity. In fact, full tuning of parameters has been done on

15

MDVCSBP. The VRPTW, instead, has very few hard routing subproblems,
one for each type of vehicle. Intuitively, our framework is better suited for
MDVCSBP instances because of the sheer number of parallelism opportunities.
In the VRPTW, instead, asynchronous computation is limited. Therefore it
does not represent the normal working conditions for employing a distributed
system. MDVRPTW is an intermediate case.

4.2 Experiments

In the following, we report the results of the experimental analysis of DCG.
For comparison, we also included results for the state of the art general pur-
pose solver CPLEX, asynchronous column generation (ACG) and the naive,
synchronous implementation of classical column generation (SCG). CPLEX is
used mainly as a reference term indicating the behaviour of branch-and-cut
when large scale data is considered and more computing resources are avail-
able. SCG and ACG are instead the baseline and direct benchmark from the
literature, respectively, for parallel column generation. To obtain a meaning-
ful comparison, we always gave to CPLEX the same MIP which was used for
the Dantzig-Wolfe decomposition considered in the corresponding SCG, ACG
and DCG tests. Since pricing is also solved as a MIP, that simulates the work-
ing condition in which a MIP is submitted to a solver, and the solver decides
to solve it either by parallel branch-and-cut or by parallel column generation.
This experimental setting also weakens as much as possible the link between
the underlying combinatorial optimization problem test and the results: what
is mostly relevant is the structure of the starting MIP; from a qualitative point
of view, both the branch-and-cut of CPLEX and the pricing problems of the
CG would benefit (resp. suffer) better (resp. worse) formulations.

Benchmark algorithms were developed in C++11. We also analyzed the
performance impact of the different policies that we have designed and, in the
reminder, we refer to our algorithm as DCGopt when we adopted the best poli-
cies. Otherwise, the default implementation with the same settings of ACG
(that is, no rebalancing, aggressive RMP update policy and global subproblem
timelimit policy) is called DCGplain. Finally, we provide scalability tests as the
number of nodes increases. In the experiments, we used a timelimit of 30 hours
for solving each MDVCSBP instance and 10 hours for solving each VRPTW
one. Computation of DCG and CPLEX was stopped at the root node of the
branching tree in every experiment. For VRPTW instances, we split the master
node in two virtual nodes. After preliminary experiments, we found these set-
tings to give a good compromise between interpretability of results and overall
simulation time.

4.2.1 Optimizing DCG performance

In the first round of experiments we estimated the impact of our column man-
agement, rebalancing and subproblems timelimit policies.
In Table 1 we report the relative speedup of DCG over 2, 3 and 4 nodes with
respect to a single workstation. We present the results when solving MDVCSBP
instances under aggressive and conservative update policies as the average wall
time ratio for each number of objects n and each number of bin types |J |. Higher
values mean better performance.

16

Aggressive Conservative

n |J | 2 3 4 2 3 4

500
250 3.28 2.95 2.34 3.83 4.09 3.97
500 3.63 3.02 2.41 3.45 4.96 5.34
750 2.54 2.58 1.90 2.67 3.73 3.81

1000
250 3.20 2.22 2.00 3.61 3.69 3.63
500 4.11 2.68 1.96 4.85 4.67 4.53
750 6.14 4.25 2.75 5.50 6.79 6.67

Overall 3.82 2.95 2.23 3.99 4.66 4.66

Table 1: DCG speed-up profiling over 2, 3 and 4 machines when solving MD-
VCSBP under aggressive and conservative update policies

Results show that DCG almost attains 4 times the speedup when two work-
stations are used instead of one. However, under the aggressive strategy per-
formance deteriorates when increasing the size of the cluster. This behavior
does not happen with a conservative policy as limited speedups can be observed
up to 3 machines and further increasing the cluster size does not have a nega-
tive impact. Generally, when more workstations are available, subproblems are
spread among multiple nodes and more columns can be generated at the same
time, possibly based on the same set of dual variables. In particular, when using
an aggressive policy, the size of Ω̄j grows faster, the solve step for RMP takes
longer and subproblems are updated less frequently to new dual variables. These
results show that a conservative management is beneficial to the algorithm as
any kind of negative impact on the frequency of generation of new dual variables
greatly undermines the advantages of asynchronous computation.

In Table 2 we report results when solving MDVCSBP on 2 machines under
a conservative policy, active rebalancing and using different subproblem time-
limits. We consider the following configurations: 600 seconds (like ACG), 30
seconds and 1 second. We present the relative average wall clock time ratio for
each n and each |J | when compared to DCG on 2 machines with 600 seconds
subproblem timelimit and no rebalancing. Higher values mean better perfor-
mance.

n |J | 600 [s] 30 [s] 1 [s]

500
250 1.12 1.86 6.19
500 1.03 1.47 1.55
750 0.97 1.54 2.22

1000
250 1.07 1.33 2.53
500 1.22 1.41 4.39
750 1.18 1.39 1.34

Overall 1.10 1.50 3.04

Table 2: DCG speed-up profiling on 2 machines over subproblem timelimits
when solving MDVCSBP with conservative updates and rebalancing

17

When facing identical subproblem timelimits, our rebalancing strategy pro-
vides around a 10% boost in performance. Higher improvements can be expected
over longer runs when more subproblems or more machines are present. How-
ever, the largest impact on solution time is provided by the timelimit policy for
subproblems. In fact, when we move from a 600 seconds to a 1 second timelimit
the algorithm finishes computation 3 times faster. This is due to asynchronous
computation. When a very short timelimit is enforced, the algorithm saves only
the columns that are generated in that specific time frame. This means, that
slower subproblems stop computation immediately and start from scratch with
the newest dual variables. Unpromising columns are discarded and we move to
the generation of more favorable ones. This behavior speeds up the convergence
of the algorithm. However, further experiments are needed to fully evaluate the
impact of this pricing strategy on parallelization.
To summarize, when DCG is tuned with the best policies (DCGopt) we can ob-
serve a big performance improvement. This includes conservative solution man-
agement, active rebalancing and short subproblem timelimits. For MDVCSBP
we used a 1 second timelimit. For VRPTW, after preliminary experiments, we
chose a 60 seconds subproblem timelimit.

4.2.2 Comparison against Asynchronous Column Generation

In our second round of experiments we studied how our DCG algorithm performs
with respect to the asynchronous column generation. To this end, we compared
CPLEX, DCG with default parameters (DCGplain) and DCG with optimized
policies (DCGopt) with respect to ACG when solving MDVCSBP. We omit a
direct comparison with SCG, since the superiority of ACG over SCG has been
extensively discussed in [17].

To make this comparison fair, distributed algorithms run on a single machine
through virtualization, that is, we create a scenario in which each algorithm can
exploit the same amount of computing resources. We report the relative average
wall clock time ratio (Spd-up) and the total number of timeouts for each n and
each |J | in Table 3. The speed up averages take into account also the tests that
have reached timeout. For speed up, higher values mean better behavior.

CPLEX DCGplain DCGopt

|J | Spd-up Timeouts Spd-up Timeouts Spd-up Timeouts

500
250 0.10 0 0.76 0 1.86 0
500 0.12 1 0.91 0 1.78 0
750 0.04 1 0.91 0 1.55 0

1000
250 0.19 0 0.99 0 2.42 0
500 0.48 3 0.89 1 2.62 0
750 0.41 5 0.93 0 3.11 0

Overall 0.22 10 0.90 1 2.22 0

Table 3: CPLEX and DCG pre optimization (DCGplain) and post optimization
(DCGopt) compared to ACG, on a single machine, when solving MDVCSBP

When facing such big instances CPLEX is simply not competitive and, on the
largest ones, systematically hits timeouts on all of them (|J | = 750, n = 1000).
DCGplain retains most of the speed-up of asynchronous column generation,

18

achieving about 90% of its efficiency. We speculate that the missing 10% is lost
because of the communication and virtualization overhead that we meet when
using a single machine. However, when we employ DCG with optimized policies
we obtain a noticeable performance boost even on a single node. In fact, results
show thatDCGopt is on average more than twice as fast as ACG, providing up to
three times the performance on the largest problems. Furthermore, DCGopt is
the only algorithm that finishes all computations before hitting a single timeout.

From these results a question arises, if the improvement of DCG is given en-
tirely by the additional local columns pool management policies. To investigate
this, in Table 4 we compare the total computing time for solving MDVCSBP,
when using the same number of CPU cores, over 1 or 2 machines (Configura-
tion), with ACG, DCGplain and DCGopt. That is, all configurations share the
same amount of CPU resources.

Algorithm Configuration Total Time

ACG 1 node, 8 cores 522387.15

DCGplain
1 node, 8 cores 600764.10

2 nodes, 4 cores each 124740.00

DCGopt
1 node, 8 cores 209852.18

2 nodes, 4 cores each 68522.97

Table 4: ACG, DCG pre optimization (DCGplain) and post optimization
(DCGopt) total solving time, for MDVCSBP instances, when using the same
number of cores on 1 and 2 nodes.

The comparison between the two configurations of DCGplain allows to un-
derstand the contribution given by the distributed architecture alone. It can
be noticed that the total time decreases sharply when moving from 1 node to 2
nodes, even if the total number of available cores remains the same. This is also
true for DCGopt. The comparison between the rows of DCGplain and DCGopt

on identical configurations allows instead to evaluate the contribution given by
the new policies alone, which is significant as well. We also notice that even
the distributed architecture alone allows DCGplain to greatly outperform ACG
when moving to 2 nodes, while keeping the same number of cores. The same
happens comparing DCGopt and ACG on a single node, due to the new policies.

Finally, in Table 5, we study how ACG and DCGopt perform from a con-
vergence point of view. For each algorithm and each n and |J |, we report the
average number of iterations (IT) of the RMP and the average total number of
generated variables (Var.). For DCG, we report results when run on 2 nodes.

This Table shows how DCGopt converges to the solution in about the same
number of iterations of ACG. It would be easy to assume that a performance
boost could be obtained anyway by brute forcing parallel computing in a dis-
tributed system. However, our architecture works more efficiently. In fact, the
average total number of variables that we generate in our runs are one order
of magnitude less than ACG. We argue that, thanks to our design and policy
changes, this new algorithm is capable of converging with less but more mean-
ingful columns that are generated faster. This holds true even when using a
single machine.

19

ACG DCGopt

|J | IT Var. IT Var.

500
250 1751.20 81408.80 1826.80 22070.40
500 2829.00 143325.00 4294.80 32112.60
750 1918.40 145395.80 2427.60 31155.60

1000
250 3530.80 152800.80 3589.80 49585.60
500 4154.40 248396.60 4685.80 72420.60
750 4466.60 350803.20 4261.20 81364.20

Overall 3108.40 187021.70 3514.33 48118.17

Table 5: Convergence comparison between ACG and DCGopt on two machines
when solving MDVCSBP

4.2.3 DCG performance profiling

In our third round of experiments, we study how DCG performs when the avail-
able resources increase, that is when there are more machines for subproblems
computation.

MDVCSBP. In Table 6 we report the average total wall clock time (Time)
of DCGopt when solving MDVCSBP over 1, 2, 3 and 4 machines. We also
present the speed-up (Spd-up) as the average ratio between the wall clock time
of 2, 3 and 4 workstations and the wall clock time of one workstation. For
completeness, the rows marked as ’Overall’ report the average wall clock times
and the average speedup over the instances of the corresponding block.. For
time lower scores are better whilst for the speed-up higher values mean better
performance.

1 2 3 4

n |J| Time Spd-up Time Spd-up Time Spd-up Time

500
250 923.29 3.52 262.86 3.80 242.94 3.79 242.62
500 4015.91 3.05 1377.78 4.57 843.63 4.73 806.38
750 1961.90 3.24 611.18 4.80 408.33 4.66 418.20

Overall 2300.36 3.27 750.61 4.39 498.30 4.39 489.07

1000
250 5167.02 2.13 2488.58 2.28 2327.75 2.10 2492.41
500 15998.30 2.73 5602.79 2.57 6113.38 2.38 7912.23
750 13904.03 2.79 5032.92 2.77 5132.72 2.72 5309.86

Overall 11689.78 2.55 4374.76 2.54 4524.62 2.40 5238.17

Overall 6995.07 2.91 2562.69 3.47 2511.46 3.39 2863.62

Table 6: DCGopt speed-up profiling over 1, 2, 3 and 4 machines when solving
MDVCSBP

When n = 500, DCGopt attains consistent performance boosts up to 3 ma-
chines and, in these particular instances, more than linear speed-ups. However,
the algorithm hits some limitations when 4 workstations are considered: this is
consistent in all the testing. We also observe that DCG has better speed-ups
when subproblems are easier. In fact, when we increase the number of objects n
from 500 to 1000 we lose, in some instances, a bit of efficiency, even when using

20

3 machines. We conjecture that this behavior is a consequence of asynchronous
computation, that is, to sustain high speed the algorithm needs to produce
very quick solutions for both the RMP and the subproblems. When one gets
slower asynchronous computation is less effective and the system slows down.
Summarizing, when facing problems that are well suited for distributed com-
puting decoupling RMP and subproblems on different machines grants very big
improvements. Further scaling with additional workstations might be problem
and instance dependent.

VRPTW. In Table 7 we consider DCGopt performance when facing VRPTW
instances. As reported before, this is a stress test for the algorithm because of
the limited number of subproblems: asynchronous computation can hardly be
exploited optimally. We present, for each instance class, the average total wall
clock time when using from 1 to 4 workstations and the relative improvement
(Spd-up) with respect to one machine. For speed-ups higher scores are better,
for time lower values mean better results. Full results can be found in Table 9
in the Appendix.

1 2 3 4

Class Time Spd-up Time Spd-up Time Spd-up Time

A 314.06 0.93 372.85 1.90 266.49 1.05 337.77

B 1104.93 1.10 877.65 1.10 893.59 1.42 727.98

C 1765.78 1.28 1312.32 1.32 1497.56 1.22 1486.20

Overall 1061.59 1.10 854.28 1.16 885.88 1.23 850.65

Table 7: DCGopt speed-up profiling over 1, 2, 3 and 4 machines when solving
VRPTW

Scalability is not as strong as with MDVCSBP instances. On average,
DCGopt shows small improvements up to 4 machines. Differently from be-
fore, having RMP and subproblems running on different nodes is not enough to
provide a very noticeable boost. We also notice that scaling is not consistent,
that is, there are class of problems in which 3 machines work better than 4 and
vice versa.

In an effort for better understanding this behaviour we measured the realtive
time spent by the RMP task in actually solving LPs, and that spent in waiting
for new columns to be produced by pricing subproblems. For detailed results
we refer to [19]. In synthesis, on MDVCSBP instances less than 1% of the time
is spent in waiting; on VRPTW instances the opposite happens: less than 1%
of the time is spent in LP solving. Furthermore, for every VRPTW instance,
the overall number of generated variables is always under 1000. These results
are indeed in line with intuition from sequential and even synchronous column
generation.

Under these conditions (few, slow subproblems), asynchronous computation
is heavily undermined. In general, parallelization techniques have less potential
in this setting, as pricing-intensive computations can be saved only by exploiting
runtime information from one pricing problem to another, which cannot easily be
done if pricing computing threads are disjoint. Even in this worst case scenario

21

with very few subproblems, our algorithm still provides benefits and a decent
boost in performance. We suspect that even better results could be obtained by
considering also auxiliary heuristic subproblems to generate columns quickly.

One may argue that these limited speed-ups arise from the use of MIP solvers
for pricing in a VRP context, which is not the common practice. We have there-
fore performed another experiment, implementing a dynamic programming al-
gorithm for the elementary resource constrained shortest path pricing problem.
Our results are reported in Appendix (Table 10). As expected, the running
time strongly decreases, however the speed-up values remain similar, proving
our overall analysis to be robust in this regard. That also suggests that our
methods are indeed complementary to existing ones on specific problems, pro-
viding similar improvement, and the additional gain of distributed computing.

MDVRPTW. In Table 8 we report our results on the MDVRPTW in terms
of average wall clock time (Time) for 1, 2 and 4 machines for each class of
problems. We also report the average speed-up (Spd-up). Full results can be
found in Table 11 in the Appendix. We remark that our MDVRPRTW differs
from the VRPTW of the previous section mainly by the number of pricing
subproblems (5 on the VRPTW, 155 on the MDVRPTW).

1 2 4

Class Time Spd-up Time Spd-up Time

A 1138.89 2.19 523.17 4.76 232.32

B 3964.75 2.11 1952.04 4.63 684.83

C 3531.35 2.56 1085.80 4.67 645.54

Overall 2798.58 2.27 1168.25 4.69 507.12

Table 8: DCGopt speed-up profiling over 1, 2 and 4 machines when solving
MDVRPTW

Differently from the VRPTW experiments, which presented limited scala-
bility over a small number of subproblems, DCGopt scales more than linearly
with the number of nodes, obtaining results that are similar (but even better)
than with MDVCSBP. Indeed, this confirms the potential of our architecture
when solving large scale instances of highly decomposable problems: when fac-
ing a large number of subproblems, our algorithm is capable of exploiting all
the available resources, providing great benefits when moving from one machine
to a cluster of nodes. Additionally, these results confirm that our architecture
can scale well even when facing formulations with complex pricing problems.

4.2.4 Comparison with cutting planes.

To conclude our analysis, we evaluate the potential of using Dantzig-Wolfe
decomposition and our DCG algorithms to solve highly decomposable MIPs,
with respect to state-of-the-art branch-and-cut approaches. In particular, since
branch-and-cut does not provide a straightforward way to exploit distributed
computing, our aim is to understand if we can expect to get any farther by
changing the resolution paradigm, using our methods. We therefore compared
the overall performance of DCGopt with CPLEX, when both are used to get

22

dual bounds at the root node of a branch-and-bound tree. Our full results are
reported in Table 12 of the Appendix. We remark that these results need to be
seen in the light of solving specific MIPs (at the root node) with general purpose
algorithms, which is different than choosing best performing methods and for-
mulations for the corresponding combinatorial optimization problems. We also
stress that cutting planes (as CPLEX) and Dantzig-Wolfe decomposition (as in
our algorithms) produce in general different bounds and are therefore difficult to
compare. However, in our test-bed, CPLEX and our algorithms experimentally
produced bound values remarkably similar. That is, Dantzig-Wolfe decomposi-
tion and generic cutting planes tend to produce, respectively by inner and outer
representation, similar partial convexifications.

When massive parallelism can be exploited, like with MDVCSBP instances,
the performance gains we get are massive. DCGopt completes the experiments
on average 87 times faster than CPLEX and, in some instances, the algorithm
is hundreds times better. We also report that CPLEX cannot complete compu-
tation before the timelimit in 10 instances. In these cases, computing times are
likely much greater. Even when we observe results for VRPTW, DCGopt per-
forms very well, always completing the root node dual bounding phase, whilst
CPLEX at the root node goes systematically out of memory in 19 instances and
reaches the timelimit in the remaining 2.

A graphical representation of the performance of the algorithms is also re-
ported in Figure 5, where we present the average computing time in seconds on
the y-axis and the number of subproblems on the x-axis. We report results for
CPLEX, ACG and DCGopt (with 3 machines). As a benchmark, we also re-
port the results for SCG, that is the classical implementation of parallel column
generation. SCG needs to be considered more as a reference than as a bench-
mark, having the structural drawbacks highlighted in section 2.1. We consider
only MDVCSBP instances, since for this problem the compact MIP used with
CPLEX is known to perform well.

250 500 750
0

20000

40000

60000

80000

100000

Performance profiling

CPLEX
SCG
ACG
DCGopt

Subproblems

T
im

e
[s

]

Figure 5: Computing time for MDVCSBP instances over 250, 500 and 750
subproblems

23

As reported, on large scale instances the performance gains with respect
to CPLEX are massive. However, it is also notable that ACG and DCG are
the only configurations that scale very well when the number of subproblems
increases. Surprisingly, DCG performs even better with 750 subproblems, rather
than 500. This is a strong indicator of scalability, and suggests that even in this
scenario, we are still far from saturating all the computational capabilities of our
architecture. Results also confirm that asynchronous computation has a huge
impact on the performance column generation, since the synchronous version
hits timeout on all the instances.

5 Conclusions

In this paper we proposed a restructuring of classical column generation al-
gorithms which takes full advantage of distributed computing. Our design and
architectural choices allow to benefit of massive performance boosts when facing
large scale decomposable problems. Our framework proves potential to tackle
complex problems with large scale data, with a completely generic approach,
while providing improvements in memory management and very fast computing
times by exploiting effectively distributed computation.

The most clear improvement with respect to earlier attempts as [17] is struc-
tural: we are able to exploit clusters of machines which do not share memory
space, as opposed to state-of-the-art approaches like [17] which instead assume
tasks to always run on the same physical machine. Additionally, our experi-
ments highlight improvements also when compared on a single physical machine,
proving them to be due to a better architecture and additional algorithmic tech-
niques.

When compared to state-of-the-art branch-and-cut solvers, when attempt-
ing to solve the same MIPs, our algorithms produce similar bounds, and are
systematically able to produce tight dual bounds on instances where CPLEX
at the root node either goes timeout, or runs out of memory. On MIPs for a
MDVCSBP, our algorithms run one order of magnitude faster.

In particular, our experiments highlight how maximizing asynchronous com-
putation is fundamental for faster convergence. Logically splitting the optimiza-
tion of the master problem from the other components appears to be a key step.
Our smart filtering and rebalancing strategies, which are based more on prop-
erties of the optimization process than on simple computing loads, play also a
sensible role in producing an effective framework.

In perspective, studying how generation of supplementary heuristic columns
impact computations looks promising. In particular, for instances that present
a limited number of hard pricing subproblems, the concurrent run of different
heuristics for the same subproblem might yield further improvements.

Acknowledgments

The authors wish to thank three anonymous reviewers, whose insightful com-
ments helped to improve the paper. The work has been partially funded by
University of Milan, Piano Sostegno alla Ricerca.

24

References

[1] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, J.P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey”, Journal of
Systems Architecture 98: 289-330 (2019).

[2] IBM Cplex webpage: https://www.ibm.com/analytics/cplex-optimizer
(last access Nov. 2020)

[3] GUROBI webpage: http://www.gurobi.com (last access Nov. 2020)

[4] FICO xpress webpage: http://www.fico.com/en/products/fico-xpress-
optimization-suite (last access Nov. 2020)

[5] M. Bergner, A. Caprara, A. Ceselli, F. Furini, M. Lübbecke, E. Malaguti, E.
Traversi “Automatic Dantzig—Wolfe reformulation of mixed integer pro-
grams”, Mathematical Programming A, 149(1-2): 391–424 (2015)

[6] S. Basso, A. Ceselli “Computational evaluation of ranking models in an au-
tomatic decomposition framework”, Proc. of EURO/ALIO 2018, Electronic
Notes in Discrete Mathematics, Volume 69: 245-252 (2018)

[7] G. Desaulniers, J. Desrosiers, M.M. Solomon (Eds.) “Column Generation”,
Springer, Berlin (2005)

[8] S. Basso, A. Ceselli “Computational Evaluation of Data Driven Local
Search for MIP Decompositions”, Proc. of ODS 2019, Advances in Opti-
mization and Decision Science for Society, Services and Enterprises. AIRO
Springer Series, vol 3: 207-217 (2019)

[9] O. Tombus, T. Bilgic “A column generation approach to the coalition for-
mation problem in multi-agent systems”, Computers and Operations Re-
search 31: 1635 –1653 (2004)

[10] R. Martinelli, C. Contardo “Exact and heuristic algorithms for capacitated
vehicle routing problems with quadratic costs structure”, INFORMS Jour-
nal on Computing 27: 658-676 (2015)

[11] T. Wang, B. Jaumard, C. Develder “Anycast (re)routing of multi-period
traffic in dimensioning resilient backbone networks for multi-site data cen-
ters”, proceedings of the 18th International Conference on Transparent
Optical Networks (ICTON) (2016)

[12] D.W. Casbeer, R.W. Holsapple “A Column Generation Approach to the
Vehicle Routing Problem”, AIAA Infotech@Aerospace (2010)

[13] V. Huart, S. Perron, G. Caporossi, C. Duhamel “A Column Generation
Heuristic for the Time-Dependent Vehicle Routing Problem with Time
Windows”, in “Computational Management Science”, Lecture Notes in
Economics and Mathematical Systems 682: 73-78 (2016)

[14] F. Fischer “Dynamic Graph Generation and an Asynchronous Parallel Bun-
dle Method Motivated by Train Timetabling”, PhD thesis, Chemnitz Uni-
versity of Technology (2013)

25

[15] K. Kim, C.G. Petra , V.M. Zavala “An Asynchronous Bundle-Trust-Region
Method for Dual Decomposition of Stochastic Mixed-Integer Program-
ming”, SIAM Journal on Optimization 29(1): 318–342 (2019)

[16] F. Iutzeler, J. Malick, W. de Oliveira “Asynchronous level bundle meth-
ods”, Mathematical Programming 184: 319–348 (2020)

[17] S. Basso, A. Ceselli “Asynchronous Column Generation”, Proceedings
of the Ninteenth Workshop on Algorithm Engineering and Experiments
(ALENEX), 197-206 (2017)

[18] A. Pessoa, R. Sadykov, E. Uchoa F. Vanderbeck “In-Out Separation and
Column Generation Stabilization by Dual Price Smoothing”, proc. of SEA
2013. LNCS 7933 (2013)

[19] S. Basso “Data driven algorithms and distributed computing for automatic
MIP decompositions”, PhD Thesis - University of Milan (2021)

[20] F. Vanderbeck and M.W.P. Savelsbergh “A generic view of Dantzig–Wolfe
decomposition in mixed integer programming”, Operations Research Let-
ters 34(3); 296-306 (2006)

[21] R. Baldacci, M. Battarra, D. Vigo “Routing a heterogeneous fleet of vehi-
cles”, Operations Research/ Computer Science Interfaces Series, 43, 3-27
(2008)

[22] D.J. Becker, T. Sterling, D. Savarese, J.E. Dorband, U.A. Ranawak, C.V.
Packer, “BEOWULF: A parallel workstation for scientific computation”,
Proceedings, International Conference on Parallel Processing 95, 11-14
(1995)

26

A Appendix

A.1 Parallel and distributed computing concepts

Numerical resolution of ILPs requires to intertwine algorithm design and algo-
rithm engineering. To clarify our approach we recall the following key architec-
tural concepts.

• Algorithms are composed by statements.

• In a sequential computing setting statements are to be executed one after
another; the execution order in the computer implementation is deter-
mined by a single thread of control flow (i.e. a sequence of instructions
executed on the same CPU).

• A parallel computing setting is obtained by allowing more than one com-
puting thread, each potentially running on a different CPU simultaneously.
That is, more than a single statement might be executed simultaneously.

• The ratio between the computing time of an algorithm parallel implemen-
tation and the sequential one is called speedup.

• When statements in different computing threads do not share data, these
threads are said to be disjoint. It is a very desirable property: since
disjoint threads do not interfere one another, their overall computing time
corresponds only to the computing time of the longest one (instead of their
sum), thus yielding high speedup. Theoretically, a speedup which is linear
in the number of available physical resources is the best one can expect,
as it corresponds to all the computing being disjoint and perfectly split
and balanced.

• Perfect parallelism can be obtained only if an algorithm can be fully de-
composed, which is normally not possible: different threads need to share
data; when threads are able to share system memory, sharing data means
to have variables for which different threads need to write and read.

• Simultaneous access to shared variables by different threads may lead to
inconsistencies; therefore, threads which are not disjoint need to be syn-
chronized (only) when performing these operations.

• Synchronization is obtained by enforcing mutual exclusion (mutex) regions
in computer codes where shared variables are used.

• A few paradigms exist in the design of such regions, according to the
semantics of the access. The most common one is the competition syn-
chronization need, where a mutex is created to prevent multiple threads
to write in the same variable concurrently.

• The more synchronization needs, the less parallelism can be exploited. A
lack of synchronization leads to a potentially (unwanted) non-deterministic
behaviour, known as race condition. An excess of synchronization leads
to threads waiting other threads to operate, ultimately requiring CPUs to
simply wait in a so-called idle state, and thereby lowering the speedup.

27

• By proper synchronization a computer code is made thread safe, meaning
it allows multiple thread execution without race conditions.

• The CPUs where threads run are meant as logical cores. That is, parallel
algorithms are designed to work independently on the number of actual
CPUs in the system. Then, a specific run of an algorithm implementation
exploits a number of physical cores, that are physical CPUs (or CPU por-
tions) allowing to actually host simultaneous control flows. The number
of logical and physical threads is therefore not required to match in well
designed parallel implementations. Still, some overhead is expected when
the number of logical threads greatly exceeds that of physical ones, as
physical CPUs need to simulate the executing of logical ones by switching
from one logical thread to another according to some policy, saving and
retrieving the so-called context of each logical thread at each switch.

• A distributed computing setting is obtained when CPUs of machines which
do not share memory space are employed to run computing threads. These
are normally a so-called cluster of computers connected one another by
network links, but can also be virtual machines hosted on the same com-
puter. Since no memory space is shared among different machines, dis-
tributed algorithms need further design, as the synchronization of threads
running on CPUs of different computers (a) cannot rely on shared variables
(b) needs to rely on alternative communication methods such as messages
on (potentially slow) networks. It is therefore of paramount importance
to keep synchronization and communication data as low as possible.

• Broadcasting refers to the operation of one node to transmit the same
message to all other connected nodes. If the message is data with involved
structure (e.g. a collection of values) they need to be serialized to be
transmitted from one node to another, that is transmitted one component
after another, byte by byte, in a specific sequence which is known to both
the sender and the receiver. Serialization and broadcasting can indeed be
considered time consuming operations in a high-performance computing
setting.

A.2 ACG: example

We report in Figure 6 an example with 4 steps of the ACG algorithm, with a
small setup that includes only 3 subproblems. Additional information about
the version stamp (VS) of the dual variables taken into account by each task is
also reported in the figure.

We focus on the following scenario: the RMP has finished computing itera-
tion 10 and is waiting to collect, in the fetch step, new columns in the shared
pool. Subproblem 1 has finished solving a configuration with the latest iter-
ation of the dual variables, and it is waiting for a new update. Subproblem
2 is currently solving VS 7 whilst Subproblem 3 is still computing VS 1. We
remark that in a sequential or synchronous column generation implementation,
the whole system would still be at the first iteration.

In Figure 6a, Subproblem 2 has finished computing a solution: therefore, it
records the latest version stamp solved and writes the new column in the pool.
Then, in 6b, the RMP fetches that column and updates its configuration. At

28

Subproblem 1

Subproblem 3

Shared Pool

RMP Version Stamp: 10
Dual Variables

Subproblem version stamps:
[10, 7, 0]

Column pool:
[Column 2]

Solve
Write duals

Fetch
Check

TerminationStop

Start
Update

Solve

Write

RMP

Ωj

 updated

terminating
conditions

verified otherwise

Subproblem 2

VS: 10
(Wait)

VS: 10
(Wait)

VS: 7
(Write)

VS: 1
(Solve)

(a) Step 1

Subproblem 1

Subproblem 3

Shared Pool

RMP Version Stamp: 10
Dual Variables

Subproblem version stamps:
[10, 7, 0]

Column pool:
[Column 2]

Solve
Write duals

Fetch
Check

TerminationStop

Start
Update

Solve

Write

RMP

Ωj

 updated

terminating
conditions

verified otherwise

Subproblem 2

VS: 10
(Fetch)

VS: 10
(Wait)

VS: 7 -> 10
(Update)

VS: 1
(Solve)

(b) Step 2

Subproblem 1

Subproblem 3

Shared Pool

RMP Version Stamp: 10
Dual Variables

Subproblem version stamps:
[10, 7, 0]

Column pool:
[empty]

Solve
Write duals

Fetch
Check

TerminationStop

Start
Update

Solve

Write

RMP

Ωj

 updated

terminating
conditions

verified otherwise

Subproblem 2

VS: 10
(Solve)

VS: 10
(Wait)

VS: 10
(Solve)

VS: 1
(Solve)

(c) Step 3

Subproblem 1

Subproblem 3

Shared Pool

RMP Version Stamp: 11
Dual Variables

Subproblem version stamps:
[10, 7, 0]

Column pool:
[empty]

Solve
Write duals

Fetch
Check

TerminationStop

Start
Update

Solve

Write

RMP

Ωj

 updated

terminating
conditions

verified otherwise

Subproblem 2

VS: 11
(Write)

VS: 10
(Wait)

VS: 10
(Solve)

VS: 1
(Solve)

(d) Step 4

Figure 6: Asynchronous Column Generation example

29

the same time, Subproblems 2 updates with the latest dual variables that are
available in the pool. Both RMP and Subproblem 2 start solving their new
configurations in 6c. Finally, in 6d, the RMP finishes computation and updates
both its version stamp and the dual variables in the pool.

A.3 AMulti-Dimensional Variable Size and Cost Bin-Packing
Problem

Let I be a set of items and let K be a set of resources. A weight coefficient wik

is given for each item i ∈ I and resource k ∈ K. Additionally, let J be a set of
bin types. Each bin type j ∈ J is characterized by a given set of available bins
Nj , along with a capacity Cj and a cost Vj .

We model the Multi-Dimensional Variable Size and Cost Bin-Packing Prob-
lem (MDVCSBP) as follows:

min
∑
j∈J

∑
q∈Nj

Vjyqj (10)

s.t.
∑
j∈J

∑
q∈Nj

xiqj = 1 ∀i ∈ I (11)

∑
i∈I

wikxiqj ≤ Cjyqj ∀j ∈ J, ∀q ∈ Nj ,∀k ∈ K (12)

xiqj ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀q ∈ Nj (13)

yqj ∈ {0, 1} ∀j ∈ J, ∀q ∈ Nj (14)

and we give value 1 to variable xiqj , if we assign item i to bin q of type j. It
has value 0 otherwise. If we use a bin q of type j, yqj = 1, otherwise yqj = 0.
The objective function (10) minimizes the overall cost of using bins. Constraints
(11) enforce that every item has to be assigned to exactly one bin. Additionally,
(12) impose that items cannot be assigned to unused bins and that the sum of
the weights assigned to a given bin of type j, is not greater than its capacity,
for each resource. Integrality conditions are then imposed by (13) and (14).

The extentend formulation, obtained through Dantzig-Wolfe decomposition,
has one column for each feasible pattern of assignment of items to bins:

min
∑
p∈Ωj

∑
j∈J

Vjz
j
p (15)

s.t.
∑
p∈Ωj

∑
j∈J

xj
ipz

j
p = 1 ∀i ∈ I (16)

∑
p∈Ωj

zjp ≤ |Nj | ∀j ∈ J

0 ≤ zjp ≤ 1 ∀j ∈ J, ∀p ∈ Ωj (17)

where xj
ip = 1 if item i is chosen, for a bin type j, in a pattern p. It is equal

to 0 otherwise.
For each j ∈ J , Ωj is set of indices of extreme points in the convex hull of

{(x1, . . . , x|I|) ∈ B|I||
∑

i∈I wikxi ≤ Cj∀k ∈ K}, that correspond to the feasible
solutions of the following pricing problem:

30

min Vjy −
∑
i∈I

λixi

s.t.
∑
i∈I

wikxi ≤ Cjy ∀k ∈ K

y ∈ {0, 1}
xi ∈ {0, 1} ∀i ∈ I

in which dual variables λi are associated to constraints (16).

A.4 A Vehicle Routing Problem with Time Windows

Let G = (V,A) be a graph that represents our transportation network, where V
= {0, 1, . . . , n} is a set of n customers. Let node 0 and d be two depots where,
respectively, vehicle routes start and terminate. Each node i ∈ V requires a
supply of qi that can be satisfied by servicing it, with a service time si, during
specific time windows that begin at ai and end at bi. Let lij be the length of
each arc (ij) ∈ A going from node i to node j. Let K be the set of vehicles and
let H be the set of vehicle types. Each vehicle of type h ∈ H requires a fixed
cost Fh and is equipped with capacity Wh.

The model for the Vehicle Routing Problem with Time Windows (VRPTW)
is the following:

min
∑
i∈V

∑
j∈V

∑
k∈K

lijxijk +
∑
h∈H

∑
k∈K

Fhzhk (18)

s.t.
∑
j∈V

xjik =
∑
j∈V

xijk ∀i ∈ V \ {0, d},∀k ∈ K (19)

∑
j∈V

x0jk = 1 ∀k ∈ K (20)

∑
j∈V

xjdk = 1 ∀k ∈ K (21)

∑
j∈V

∑
k∈K

xjik = 1 ∀i ∈ V \ {0, d} (22)

yik =
∑
j∈V

xjik ∀i ∈ V,∀k ∈ K (23)

∑
i∈V

wiyik ≤
∑
h∈H

Whzhk ∀k ∈ K (24)∑
h∈H

zhk = 1 ∀k ∈ K (25)

tj ≥ ti + si + lijxijk −M(1− xijk) ∀i, j ∈ V,∀k ∈ K (26)

xijk ∈ {0, 1} ∀i, j ∈ V,∀k ∈ K (27)

yik ∈ {0, 1} ∀i ∈ V,∀k ∈ K (28)

zhk ∈ {0, 1} ∀h ∈ H,∀k ∈ K (29)

aj ≤ tj ≤ bj ∀j ∈ V (30)

31

where xijk = 1 when vehicle k is travelling on arc (ij), zhk = 1 when vehicle
k is of type h, and yik = 1 when vehicle k visits node i. They are set to 0
otherwise. Finally, ti decides the arrival time at node i.

The objective function (18) minimizes the travel cost for visiting the cus-
tomers and the fixed costs for the heterogeneous fleet. Integrality constraints
are managed in (27), (28) and (29). For each vehicle, constraints (19) impose
that the number of incoming arcs in a node is equal to the number of outgoing
arcs. The starting and ending depots are considered two special cases and are
enforced respectively in (20) and (21). Constraints (22) impose that each node
is visited exactly by one vehicle; this is also used in (23) to set variable yik.
Capacity constraints are enforced in (24). (25) imposes that each vehicle can be
at most of one type. Finally, (26) are subtour elimination constraints in Miller-
Tucker-Zemlin form: the coefficient M needs to be set to a sufficiently large
value (e.g.

∑
i∈V,j∈V lij). They both impose the consistency of time values tj

and forbid cycles. Together with (30), they impose time windows on variables
tj . We report that, from a practical resolution point of view, some simplifica-
tion is possible. For instance, coefficients Fh can be mapped to the costs of arcs
leaving the depot. Furthermore, all those pairs of nodes having ai+si+ lij > bj
yield xijk = 0; the corresponding constraints (26) can be removed accordingly.
Constraints (26) for pairs of nodes having bi + si + lij ≤ aj are redundant as
well.

The extentend formulation, obtained through Dantzig-Wolfe decomposition,
has one column for each feasible route of a given vehicle type:

min
∑
h∈H

∑
p∈Ω̄h

Ch
p z

h
p (31)

s.t.
∑
h∈H

∑
p∈Ω̄h

∑
j∈V

xh
jipz

h
p ≥ 1 ∀i ∈ V \ {0, d} (32)

∑
h∈H

∑
p∈Ω̄h

zhp ≤ K (33)

0 ≤ zhp ≤ 1 ∀h ∈ H,∀p ∈ Ω̄h (34)

(35)

where coefficients xh
ijp = 1 if arc ij is included in a route p for vehicle of type

h, 0 otherwise. Constraints (32) have been relaxed as inequalities without loss
of generality, since an optimal solution always exists in which each node is not
visited more than once. This allows to restrict in sign the corresponding dual
variables.

For each h ∈ H, Ω̄h is the set of indices of feasible routes for vehicle h, which
can be formally defined as the vectors {(x00, . . . , x|V ||V |) ∈ B|V ||V |} correspond-
ing to the feasible solutions of the following pricing problem:

32

min Fh +
∑
i∈V

∑
j∈V

lijxij −
∑
i∈V

yiλi − µh (36)

s.t.
∑
j∈V

xji =
∑
j∈V

xij ∀i ∈ V \ {0, d} (37)

∑
j∈V

x0j = 1 (38)

∑
j∈V

xjd = 1 (39)

yi =
∑
j∈V

xji ∀i ∈ V (40)

∑
i∈V

wiyi ≤ Wh (41)

tj ≥ ti + si + lijxij −M(1− xij) ∀i, j ∈ V (42)

xij ∈ {0, 1} ∀i, j ∈ V (43)

yi ∈ {0, 1} ∀i ∈ V (44)

aj ≤ tj ≤ bj ∀j ∈ V (45)

where λi are the dual variables associated to constraints (32) and µh is the
dual variable associated to (33).

A.5 A Multi-Depot Vehicle Routing Problem with Time
Windows

The Multi-Depot variant of the VRPTW that we consider (MDVRPTW) has the
following additional feature: a set S of depots are located on the network defined
in the previous section. Each vehicle can start from a different depot s ∈ S;
any vehicle starting from s must also go back to s at the end of its route. Each
depot s has a potentially different distance from each node of the graph G, and
a potentially different fixed usage cost, which is incurred whenever each vehicle
starts from that depot. We omit the compact formulation of the MDVRPTW,
since it was never used in our experiments. The extentend formulation, obtained
through Dantzig-Wolfe decomposition, has one column for each feasible route
of a given vehicle type, starting from a given depot:

min
∑
s∈S

∑
h∈H

∑
p∈Ω̄s,h

Cs,h
p zs,hp (46)

s.t.
∑
s∈S

∑
p∈Ω̄s,h

∑
j∈V

∑
h∈H

xs,h
jipz

s,h
p ≥ 1 ∀i ∈ V \ {0, d} (47)

∑
s∈S

∑
h∈H

∑
p∈Ω̄s,h

zs,hp ≤ K (48)

0 ≤ zs,hp ≤ 1 ∀s ∈ S, ∀h ∈ H,∀p ∈ Ω̄s,h (49)

(50)

where coefficients xh
ijp = 1 if arc ij is included in a route p for vehicle of type h

starting from depot s, 0 otherwise. For each s ∈ S and h ∈ H, Ω̄s,h is the set

33

of indices of feasible routes for vehicle h starting from s, which can be formally
defined as before as vectors {(x00, . . . , x|V ||V |) ∈ B|V ||V |} corresponding to the
feasible solutions of one in a set of |S| × |H| pricing problems. Each of them is
identical to that of Appendix A.4, except that both s and h are fixed, defining
costs Fh as well as the distance from the depot to the first customer in the route,
and the last customer in the route and the depot.

A.6 Full experimental results

A.6.1 Vehicle Routing Problem with Time Windows

We report in Table 9 the wall clock time (Time) for each instance (Inst.) when
solving VRPTW with DCGopt over 1, 2, 3 and 4 nodes. We also present the
speed-up (Spd-up) obtained over a single node. Average values are also pre-
sented for each class.

1 2 3 4

Class Inst. Time Spd-up Time Spd-up Time Spd-up Time

A

R103 416.99 1.00 417.45 7.16 58.25 1.38 302.08
R104 423.92 0.87 486.55 1.31 324.06 0.90 470.94
R106 119.62 1.53 78.14 0.39 304.73 1.70 70.51
R107 309.43 0.81 384.11 1.02 302.57 1.02 302.75
R108 414.94 0.70 592.72 1.19 348.33 0.68 610.99
R110 311.31 1.01 308.80 1.66 187.31 1.03 302.74
R111 202.21 0.59 342.20 0.59 340.21 0.66 304.37

A Overall 314.06 0.93 372.85 1.90 266.49 1.05 337.77

B

R103 775.26 0.85 917.37 1.07 724.68 1.37 566.71
R104 2969.57 1.80 1652.62 1.51 1960.82 1.98 1503.42
R106 198.15 0.76 260.30 0.64 311.00 1.26 157.28
R107 715.74 0.80 894.02 0.85 838.60 1.11 645.51
R108 2113.00 1.42 1483.10 1.34 1575.29 1.41 1503.31
R110 405.55 0.95 425.81 1.10 368.72 1.62 249.79
R111 557.23 1.09 510.35 1.17 476.04 1.19 469.84

B Overall 1104.93 1.10 877.65 1.10 893.59 1.42 727.98

C

R103 1415.12 1.66 853.09 1.53 927.57 1.18 1202.90
R104 4458.34 1.37 3242.78 0.94 4735.31 0.95 4675.51
R106 209.54 1.25 167.84 1.29 162.67 0.94 222.52
R107 1137.63 0.99 1150.69 1.49 765.91 0.91 1245.15
R108 3838.58 1.48 2599.65 1.32 2905.42 1.85 2079.46
R110 598.96 0.97 617.09 1.48 404.53 1.43 419.96
R111 702.27 1.27 555.11 1.21 581.49 1.26 557.89

C Overall 1765.78 1.28 1312.32 1.32 1497.56 1.22 1486.20

Overall 1061.59 1.10 854.28 1.16 885.88 1.23 850.65

Table 9: DCGopt speed-up profiling over 1, 2, 3 and 4 machines when solving
VRPTW

A.6.2 Vehicle Routing Problem with ad-hoc pricing algorithms

In Table 10 we present the wall clock time (Time) for each instance (Inst.) for
solving VRPTW with DCGopt, when using ad-hoc pricing algorithms, over 1,
2 and 4 nodes. Additionally, we report the speed-up (Spd-up) obtained over a
single node.

34

1 2 4

Class Inst. Time Spd-up Time Spd-up Time

A

R103 35.84 1.14 31.32 0.86 41.83
R104 659.85 1.31 504.33 1.36 486.76
R106 5.11 0.79 6.47 1.41 3.61
R107 97.38 1.32 73.67 1.65 59.13
R108 741.94 1.14 648.54 1.33 557.02
R110 5.96 1.02 5.84 1.17 5.11
R111 21.84 1.16 18.82 0.80 27.35

A Overall 223.99 1.13 184.14 1.22 168.69

B

R103 11.43 1.10 10.37 1.05 10.87
R104 604.35 2.79 216.29 2.40 251.38
R106 1.58 0.96 1.65 0.73 2.16
R107 33.25 1.09 30.64 1.29 25.88
R108 652.37 1.10 591.59 1.42 457.87
R110 2.16 0.82 2.61 0.69 3.10
R111 8.27 1.08 7.68 1.13 7.29

B Overall 187.63 1.28 122.97 1.25 108.36

C

R103 14.08 1.94 7.27 1.95 7.22
R104 279.78 1.60 175.29 1.35 207.76
R106 1.58 1.11 1.43 0.81 1.94
R107 21.41 0.92 23.36 0.90 23.71
R108 512.98 0.96 537.03 1.49 345.40
R110 1.65 0.83 1.99 0.68 2.43
R111 6.97 1.49 4.67 1.14 6.12

C Overall 119.78 1.26 107.29 1.19 84.94

Overall 177.13 1.22 138.13 1.22 120.66

Table 10: DCGopt speed-up profiling over 1, 2 and 4 machines when solving
VRPTW with ad-hoc pricing algorithms

A.6.3 Multi Depot Vehicle Routing Problem

Finally, we report results for DCGopt when solving MDVRPTW over 1, 2 and
4 nodes in Table 11. For each instance (Inst.) we present the wall clock time
(Time) and the the speed-up (Spd-up) obtained over a single node. Average
value are also presented for each class. They do not take into account instances
for which a timeout has happened.

A.6.4 Comparison with CPLEX

In Table 12 we report the performance gains of DCG when solving every in-
stance of MDVCSBP and VRPTW as the relative wall clock ratio (Spd-up)
with respect to CPLEX. Values above 1 mean that DCG performs better. We
also mark the instances in which CPLEX could not finish before the timelimit
(TL) and the ones that reported an out of memory error (OOM) in the status
column.

35

1 2 4

Class Inst. Time Spd-up Time Spd-up Time

A

R101 71.54 1.44 49.81 2.60 27.47
R102 1032.05 2.30 447.84 4.74 217.80
R103 1803.60 2.12 849.56 5.56 324.25
R104 1625.53 1.76 921.95 4.40 369.58
R105 305.66 2.11 144.55 5.28 57.90
R106 1140.28 2.78 410.84 5.21 218.77
R107 1474.37 2.15 686.71 5.06 291.26
R108 1864.88 1.97 944.53 4.71 396.02
R109 599.08 2.51 238.80 4.97 120.58
R110 1222.62 2.29 534.75 4.94 247.63
R111 1388.16 2.64 525.51 4.88 284.26

A Overall 1138.89 2.19 523.17 4.76 232.32

B

R101 50.30 1.96 25.65 4.17 12.06
R102 1421.68 2.33 610.94 4.63 307.12
R103 4377.66 1.69 2595.99 4.47 978.93
R104 Timeout 8304.74 4223.15
R105 343.41 2.28 150.67 4.29 80.14
R106 1853.13 2.61 709.79 4.51 410.66
R107 4087.94 1.91 2138.61 4.84 845.29
R108 22677.21 2.08 10910.36 7.72 2935.58
R109 620.63 2.14 290.05 4.26 145.56
R110 1989.61 2.29 867.01 3.72 535.22
R111 2225.92 1.82 1221.33 3.72 597.76

B Overall 3964.75 2.11 1952.04 4.63 684.83

C

R101 45.57 1.90 24.03 3.56 12.81
R102 1383.68 2.54 545.55 3.86 358.68
R103 11762.76 4.03 2920.83 5.53 2125.85
R104 Timeout Timeout Timeout
R105 290.02 1.91 151.90 3.95 73.47
R106 1495.05 1.55 965.43 3.76 398.04
R107 10484.52 4.55 2304.67 8.87 1182.11
R108 Timeout 32837.00 14809.17
R109 685.40 2.12 323.14 5.10 134.33
R110 2694.77 2.18 1234.78 3.85 700.57
R111 2940.33 2.26 1301.86 3.57 824.00

C Overall 3531.35 2.56 1085.80 4.67 645.54

Overall 2798.58 2.27 1168.25 4.69 507.12

Table 11: DCGopt speed-up profiling over 1, 2 and 4 machines when solving
MDVRPTW

36

MDVCSBP VRPTW

Objects Bins ID Spd-up Status Instance Spd-up Status

500 250 1 80.70 LS R103A - OOM
1000 250 2 25.82 LS R103B - OOM
500 500 3 73.39 LS R103C - OOM
1000 500 4 69.69 TL LS R104A 111.09 TL
500 750 5 279.22 LS R104B 18.36 TL
1000 750 6 41.71 TL LS R104C - OOM
500 250 7 53.91 LS R106A - OOM
1000 250 8 34.31 LS R106B - OOM
500 500 9 63.65 TL LS R106C - OOM
1000 500 10 53.05 TL LS R110A - OOM
500 750 11 188.80 TL LS R110B - OOM
1000 750 12 11.11 TL LS R110C - OOM
500 250 13 75.08 LS R111A - OOM
1000 250 14 53.33 LS R111B - OOM
500 500 15 39.73 LS R111C - OOM
1000 500 16 43.90 LS R107A - OOM
500 750 17 229.14 LS R107B - OOM
1000 750 18 20.51 TL LS R107C - OOM
500 250 19 76.00 LS R108A - OOM
1000 250 20 16.96 LS R108B - OOM
500 500 21 182.66 LS R108C - OOM
1000 500 22 2.80
500 750 23 122.35
1000 750 24 20.85 TL
500 250 25 305.05
1000 250 26 43.03
500 500 27 116.71
1000 500 28 33.38 TL
500 750 29 220.76
1000 750 30 37.10 TL

Overall 87.16 64.73

Table 12: Summary of performance of DCGopt against CPLEX in solving the
specific MIPs used in the test.

37

