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Abstract

We study elective surgery planning in flexible operating rooms (ORs) where emergency patients

are accommodated in the existing elective surgery schedule. Specifically, elective surgeries can be

scheduled weeks or months in advance. In contrast, an emergency surgery arrives randomly and

must be performed on the day of arrival. Probability distributions of the actual durations of elec-

tive and emergency surgeries are unknown, and only a possibly small set of historical realizations

may be available. To address distributional uncertainty, we first construct an ambiguity set that

encompasses all possible distributions of surgery durations within a 1-Wasserstein distance from the

empirical distribution. We then define a distributionally robust surgery assignment (DSA) problem

to determine optimal elective surgery assignment decisions to available surgical blocks in multiple

ORs, considering the capacity needed for emergency cases. The objective is to minimize the total

cost consisting of the fixed cost related to scheduling or rejecting elective surgery plus the maxi-

mum expected cost associated with OR overtime and idle time over all distributions defined in the

ambiguity set. Using the DSA model’s structural properties, we derive an equivalent mixed-integer

linear programming (MILP) reformulation that can be implemented and solved efficiently using

off-the-shelf optimization software. In addition, we extend the proposed model to determine the

number of ORs needed to serve the two competing surgery classes and derive a MILP reformula-

tion of this extension. We conduct extensive numerical experiments based on real-world surgery

data, demonstrating our proposed model’s computational efficiency and superior out-of-sample op-

erational performance over two state-of-the-art approaches. In addition, we derive insights into

surgery scheduling in flexible ORs.
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1. Introduction

Operating Rooms (OR) generates about 40–70% and 20–40% of hospitals’ revenues and operating

costs, respectively (Bovim et al., 2020; Jackson, 2002; Li et al., 2016; Viapiano and Ward, 2000).

As an essential area for cost management, planning and scheduling OR activities have received

intense research attention (Cardoen et al., 2010; Hof et al., 2017; May et al., 2011; Samudra et al.,

2016; Shehadeh and Padman, 2022; Zhu et al., 2019). In this paper, we focus on elective surgery

planning in flexible operating rooms where emergency patients are accommodated in the existing

elective surgery schedule. Elective cases can be scheduled weeks or months in advance. In contrast,

the arrival of emergency surgeries is random and they must be performed on the day of arrival

The probability distributions of the durations of elective and emergency cases are unknown, and

only small data on their durations is available. The goal is to construct a plan that specifies the

assignments of a subset of elective cases from a waiting list to available surgical blocks in multiple

ORs. The plan’s quality is a function of costs related to performing (scheduling) or delaying elective

surgeries and costs related to OR overtime and idle time.

The concept of flexible ORs differs from dedicated ORs. In the latter type, one or more ORs are

solely dedicated to accommodating emergency surgeries, and elective surgery can only be scheduled

and performed in any ORs dedicated to its type. Therefore, we do not consider emergency surgeries

when planning for elective surgeries in dedicated ORs. In contrast, in flexible ORs, the capacity

of the ORs is shared among the two competing surgery classes. Thus, when planning for elective

surgery in flexible ORs, we need to account for emergency surgery. Note that hospitals have either

flexible or dedicated ORs. However, most of the existing elective surgery scheduling approaches

focus on elective surgery scheduling in dedicated ORs (see Section 2).

Scheduling surgeries in ORs is a complex task primarily due to the significant variability of

surgery duration and limited OR capacity. To measure this variability, we use three-years worth

of actual surgery durations with respect to six different surgical specialties, namely General Cardi-

ology (CARD), Gastroenterology (GASTRO), Gynecology (GYN), Medicine (MED), Orthopedics

(ORTH), and Urology (URO) (from Mannino et al. (2012) and Mannino et al. (2010)). Figure 1

presents the empirical and fitted distributions of actual surgery durations data for each specialty.

This figure clearly illustrates significant variability in durations within and across surgery types.

Furthermore, there is a wide range of possible probability distributions for modeling the variability

(uncertainty) in surgery durations of each type, suggesting distributional ambiguity (i.e., uncer-

tainty of probability distribution). Such uncertainty and ambiguity are hard to predict and model

in advance when elective surgery is scheduled and the OR schedule is constructed.

Ignoring uncertainty and ambiguity may lead to devastating consequences, most notably un-

predictable OR utilization, overtime, idle time, and can lead to surgery cancellation and thus

sub-optimal quality of care (Carello and Lanzarone, 2014; Denton et al., 2010; Hof et al., 2017;
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(a) CARD (b) GASTRO

(c) GYN (d) MED

(e) ORTH (f) URO

Figure 1: The empirical and fitted probability distributions for actual surgery duration.

May et al., 2011; Shehadeh et al., 2019; Wang et al., 2014, 2019; Xiao and Yoogalingam, 2021). To

model uncertainty, most of the existing OR scheduling approaches assume that the exact distri-

bution of surgery duration is known (often lognormal) and employ stochastic programming (SP)

with sample average approximation (SAA) (see, e.g., Denton et al. (2007), Lamiri et al. (2008a),

Shylo et al. (2013), Batun et al. (2011)). The SAA approaches assume that the hospital manager

is risk-neutral and evaluates the overtime and idle time costs via the sample average, in which the

approximation accuracy improves with the increase of sample size, but the computation becomes

cumbersome as well (Birge and Louveaux, 2011; Shapiro et al., 2014).

SP remains the state-of-the-art approach to model uncertainty in healthcare scheduling and

other application domains. However, the applicability of the SP approach is limited to the case

in which we know the distribution of surgery durations of each type. In practice, however, it is

unlikely that decision-makers have access to a sufficient amount of high-quality data to estimate
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their probability distributions accurately (Viapiano and Ward, 2000; Keyvanshokooh et al., 2020;

Shehadeh and Padman, 2022; Wang et al., 2019). Even when hospitals collect data on surgery

durations, this data may not be readily available due to privacy issues.

In view of possible distributional ambiguity, if we solve a model with a data sample from a biased

distribution (as in the SP approach), then the resulting (biased) optimal scheduling decisions may

have a disappointing out-of-sample operational performance (e.g., excessive overtime) under the

true probability distribution when the schedule is implemented in practice (Mohajerin Esfahani

and Kuhn, 2018).

Alternatively, we can design a so-called ambiguity set (i.e., a family) of all distributions that pos-

sess certain partial information about the durations or are close enough to an empirical distribution.

Then, we can formulate a distributionally robust optimization (DRO) problem that determines the

optimal elective surgery assigning decisions that minimize the sum of patient-related costs plus the

maximum expected cost associated with overtime and idle time of ORs over all distributions defined

in the ambiguity set. Note that in DRO, the optimization is based on the worst-case distribution

within the ambiguity set, i.e., the distribution is a decision variable (Rahimian and Mehrotra, 2019).

DRO has received significant attention recently in many application domains due to the follow-

ing three primary benefits. First, DRO alleviates the unrealistic assumption of the decision-maker’s

complete knowledge of distributions. Second, DRO approaches acknowledge the presence of distri-

butional uncertainty. Thus, depending on the ambiguity set used, DRO solutions can anticipate

the possibility of disappointing out-of-sample consequences. Third, several studies have proposed

techniques to derive DRO models for real-life optimization problems that are more computationally

tractable than their SP counterparts, and we have seen many successful applications of DRO to OR

and surgery scheduling in recent years (see, e.g., Bansal et al. (2021); Keyvanshokooh et al. (2020);

Jiang et al. (2017); Mak et al. (2014); Shehadeh et al. (2020); Shehadeh and Padman (2021); Wang

et al. (2019) to name a few).

The computational tractability of a DRO model depends on the ambiguity set used (Rahimi

and Gandomi, 2020). There are various techniques to construct the ambiguity set, and it could be

based on moment information (Delage and Ye, 2010) or statistical measures such as the Wasserstein

distance (Mohajerin Esfahani and Kuhn, 2018). Most of the early DRO approaches employ moment

ambiguity sets, consisting of all distributions sharing certain moments, e.g., the first moment and

support. Mean-support ambiguity sets often lead to computationally tractable reformulations (see,

e.g., Jiang et al. (2017), Shehadeh et al. (2020), and Wang et al. (2019)). However, asymptotic

properties cannot be guaranteed because moment-based ambiguity sets only incorporate descrip-

tive statistics (i.e., moments information). New studies have shifted toward distance-based DRO

approaches that define the ambiguity set using a distance metric (e.g., Wasserstein distance) to

describe the deviation from a reference (often empirical) distribution. The main advantage of these

approaches is that they enable observed (possibly small-size) data to be incorporated directly and

4



effectively in the optimization problem.

Despite the potential advantages of DRO, there are no moment-based, distance-based, or any

other DRO models for elective surgery scheduling in flexible ORs. This inspires us to study a data-

driven DRO approach that can use some partial information on the true underlying distribution

of surgery duration from a small set of historical realizations and investigate the properties and

performance of such an approach for this specific problem. In particular, we aim to investigate the

value of the distance-based DRO approach in modeling uncertainty in the specific OR scheduling

problem that we consider in this paper.

1.1. Contributions

In this paper, we address the distributional ambiguity of surgery durations using a data-driven

distance-based DRO approach. First, we construct an ambiguity set of probability distributions,

incorporating 1-Wasserstein distance and the empirical support set of surgery duration. We then

define a data-driven distributionally robust surgery assignment (DSA) problem, which aim to de-

termine optimal elective surgery assignment decisions to available surgical blocks over a planning

horizon to minimize the sum of patient-related penalty costs (i.e., cost of performing or delaying

elective surgery) plus the worst-case (i.e., maximum) expected cost associated with overtime and

idle time of the ORs. We take the expectation overall distributions residing in the data-driven

1-Wasserstein ambiguity set. We summarize our main contributions as follows.

• To the best of our knowledge, and according to our literature review in Section 2, our paper

is the first to propose a data-driven DRO model (denoted as W-DRO) with a 1-Wasserstein

ambiguity set for elective surgery scheduling in flexible ORs. In addition, we derive a DRO

model (denoted as M-DRO) based on a mean-range ambiguity set and compare the oper-

ational performance of the two DRO models, demonstrating where significant performance

improvements could be gained with the proposed W-DRO model.

• Using DSA structural properties, we derive an equivalent mixed-integer linear programming

(MILP) reformulation of our proposed min-max DRO model that can be implemented and

efficiently solved using off-the-shelf optimization software, not requiring customized algorith-

mic development or parameter tuning, thereby enabling practitioners to use our MILP model.

As argued by Shehadeh et al. (2019), such implementability is necessary for an optimization-

based decision support tool to gain wide adoption in OR and other healthcare systems that do

not have ongoing access to support staff with optimization expertise.

• To demonstrate the value of a DRO approach for DSA, we conduct an extensive numerical

experiment using real-world surgery data. Specifically, our results demonstrate that our

proposed W-DRO model (1) yields robust decisions with both small and large data size; (2)

enjoys both asymptotic consistency and finite-data guarantees, (3) have a good out-of-sample
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performance under perfect and misspecified distributional information, even when a small

data set is used in the optimization; (4) is less conservative than the mean-support based

DRO model; and (5) is computationally efficient with solution times sufficient for real-world

implementation. In addition, we compare the flexible and dedicated ORs policies and show

the pros and cons of each in terms of overtime, OR utilization, and access (measured by the

number of scheduled surgeries under each policy).

• Finally, we extend our model to include the decisions of how many OR blocks to open. We

drive an equivalent MILP of this extension and conduct an experiment demonstrating the

superior performance of this extension over the classical SP approach.

1.2. Structure of the paper

The remainder of the paper is structured as follows. In Section 2, we review the relevant literature.

In Section 3, we detail our problem setting. In Section 4, we present our SP model. In Section 5, we

present and analyze our proposed DRO model. In Section 6, we extend our proposed DRO model

to include the decisions of how many OR blocks to open. In Section 7, we present our numerical

experiments and corresponding insights. Finally, we draw conclusions and discuss future directions

in Section 8.

2. Relevant Literature

In this section, we review the literature most relevant to our problem. Specifically, we focus on

studies that proposed stochastic optimization approaches for OR planning or surgery scheduling,

with two competing classes: elective and emergency. For comprehensive surveys of OR and surgery

planning, we refer to Cardoen et al. (2010), Gartner and Padman (2019), Hof et al. (2017), May

et al. (2011), Rahimi and Gandomi (2020), Samudra et al. (2016), Shehadeh and Padman (2022),

and Zhu et al. (2019). We refer to Pinedo (2016) for a detailed survey of a wide range of scheduling

problems, including their theory, algorithms, and applications. We also recognize that there is prior

literature that employs simulation to study elective surgery duration and emergency arrivals (see,

e.g., Wang et al. (2016) and references therein), similar objectives to us in deterministic models

(see, e.g., Fei et al. (2009) and references therein). Our problem is somewhat similar to Newsvendor

problem, in which one must find a trade-off between reserving too much versus too little OR time

for emergency surgeries (see, e.g., Choi (2012) and Nagarajan and Shechter (2014)). In addition

to solving the optimization model directly, some studies propose algorithmic and decomposition

approaches, including logic-based Benders decomposition approaches (see, e.g., the recent work of

Guo et al. (2021) and references therein). We refer to the surveys mentioned above and references

therein for other tactical and strategic decisions. For example, Anjomshoa et al. (2018) propose

an approach for tactical planning and patient selection for elective surgeries motivated by a case

study in a local hospital in Melbourne.
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Most of the existing stochastic optimization approaches assume that elective and emergency

surgeries have dedicated ORs and focus on elective surgery scheduling (see, e.g., Anjomshoa et al.

(2018); Batun et al. (2011); Denton et al. (2007); Deng et al. (2019); Guo et al. (2021); Gul

et al. (2011); Neyshabouri and Berg (2017); Shehadeh et al. (2019); Zhu et al. (2019), and the

references therein). Dedicating ORs to emergency cases has the apparent advantage of having OR

space readily available for emergency cases, which can be handled promptly without impacting the

scheduled elective surgeries. However, the drawback is the low utilization of costly OR resources

when emergency cases do not materialize, or emergency arrivals are lower than expected (Xiao and

Yoogalingam, 2021). Herein, we focus on flexible OR where emergency patients are accommodated

in the existing elective surgery schedule. However, our DRO model can be used for elective surgery

scheduling in ORs where emergency cases have dedicated blocks. In addition, we focus on two-

stage models with recourse. Recourse models result when some decisions must be fixed before

information relevant to uncertainty is available (e.g., in our problem surgery assignment to OR),

while some decisions can be delayed until this information is available (e.g., actual schedule on

the day of service and the associated overtime and idle time of the ORs). Two-stage models with

recourse have been widely employed to model and solve stochastic (healthcare) scheduling problems

(Ahmadi-Javid et al., 2017; Shehadeh and Padman, 2022).

Gerchak et al. (1996), Lamiri et al. (2008b), Lamiri et al. (2008a) proposed SP models for the

elective surgery planning problem in flexible OR shared between elective and emergency surgeries.

The planning problem in Lamiri et al. (2008b) is closely related to our work, and consists of

assigning elective patients to different ORs over a planning horizon in order to minimize elective-

patient-related costs (i.e., cost of performing or delaying surgery to the next planning horizon)

and the expected operating rooms’ utilization (overtime and idle time) costs. The expectation in

Lamiri et al. (2008b)’s model is taken with respect to the assumed known distribution of surgery

duration. To solve their SP, Lamiri et al. (2008b) proposed a column generation approach, which

can produce near-optimal solutions in a short computation time for problems with 12 operating

rooms. In contrast, Lamiri et al. (2008a) employed Monte Carlo Optimization to solve a sample-

average approximation of their SP.

These SP models assume that the hospital manager is risk-neutral and can fully characterize the

probability distribution of surgery duration. In practice, it is implausible that hospital managers

and other decision-makers have sufficient high-quality data to infer the distribution of random

parameters, especially in healthcare (Macario, 2010; Viapiano and Ward, 2000; Wang et al., 2019).

Moreover, the distribution of random parameters is often ambiguous (Mak et al., 2014; Qi, 2017;

Wang et al., 2019). As pointed out by Wang et al. (2019), various decisions theory, empirical, and

neural studies show that decision makers tend to be ambiguity-averse (Halevy, 2007; Hsu et al.,

2005). This is especially the case in healthcare and OR practice due to the high cost of care and

indirect costs resulting from adverse outcomes such as overtime, leading to surgery cancellation and
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OR staff fatigue and, consequently, sub-optimal care (Carello and Lanzarone, 2014; Denton et al.,

2010; Hof et al., 2017; May et al., 2011; Shehadeh et al., 2019; Wang et al., 2019, 2014; Xiao and

Yoogalingam, 2021).

Various robust approaches have been proposed to model the risk-averse nature of decision-

makers and uncertain parameters based on partial information of the distribution. The classical

robust optimization (RO) approach model the uncertain parameters based on an uncertainty set

of possible outcomes with some structure (e.g., ellipsoid or polyhedron, see, Bertsimas and Sim

(2004), Ben-Tal et al. (2015) Soyster (1973), Rowse (2015), Neyshabouri and Berg (2017)). In

RO, optimization is based on the worst-case scenario within the uncertainty set. By optimizing

based on the worst-case scenario, classical RO approaches may yield over-conservative solutions

and sub-optimal decisions for the other more likely to be observed scenarios (Chen et al., 2020;

Delage and Saif, 2021; Wang et al., 2019).

In contrast to RO, the DRO approach assumes that the distribution of random parameters

resides in a so-called ambiguity set, i.e., a family of all possible distributions that share some

common properties of random parameters. Accordingly, optimization is based on the distributions

residing within the ambiguity set, i.e., the probability distribution of a random parameter is a

decision variable in DRO. Most early DRO studies employ the moment ambiguity set, which consists

of all distributions sharing particular moments (e.g., the first and second moments). Notably, Wang

et al. (2019) is the first (and only study) to employ DRO for elective surgery scheduling and surgery

block allocation. Using an ambiguity set based on mean, mean absolute deviation, and support of

surgery duration, Wang et al. (2019) propose a DRO model that determines the number of ORs

to open and assign the surgeries in a daily listing to the open ORs. Wang et al. (2019)’ DRO

model aims to minimize OR opening costs and expected OR overtime cost. Wang et al. (2019) did

not consider emergency surgery and ignore idle time costs, which is an important metric of OR

efficiency and utilization (Girotto et al., 2010; Jebali and Diabat, 2015; Liu et al., 2019; Shehadeh

and Padman, 2021).

Moment-support-based DRO approaches often lead to tractable reformulations, but they known

to have weak convergence properties. New studies have shifted toward distance-based DRO ap-

proaches that construct ambiguity sets in the vicinity of a reference (empirical) distribution. The

distance-based DRO models’ main advantage is that they enable possibly small-size data to be

incorporated directly and effectively in the optimization problem. In this paper, we construct a

1-Wasserstein distance-based ambiguity set of all probability distributions of surgery durations.

Various authors have shown that 1-Wasserstein ambiguity admits tractable reformulation in many

real-world applications (see, e.g., Jiang et al. (2019) Saif and Delage (2021)). Then, we propose a

DRO model for elective surgery planning in flexible ORs. The objective is to minimize the sum of

patient-related penalty costs (i.e., cost of performing or delaying elective surgery) and the expecta-

tion of OR overtime and idle time cost. We take the expectation over all distributions residing in
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the data-driven 1-Wasserstein ambiguity set. We derive an equivalent MILP reformulation of our

min-max model. Our MILP can be implemented and solved directly with standard optimization

software packages, not requiring customized algorithmic development or tuning, thereby enabling

practitioners to use our MILP.

We use our MILP and real-world surgery data to conduct extensive computational experiments,

demonstrating our approach’s advantages. Finally, we extend our model to include the decision

of how many OR blocks to open, derive an equivalent MILP of this extension, and present an

experiment demonstrating the performance of this extension. To the best of our knowledge, and

according to recent survey papers on OR and surgery scheduling (Zhu et al., 2019), our paper is the

first to propose and analyze DRO approaches for this specific surgery and OR planning problem.

3. Problem Description

Let us now start to introduce our problem. We consider a hospital with B available surgical

blocks (or ORs) over an arbitrary planning horizon of T days (e.g., a week). Each surgical block

b ∈ [B] := {1 . . . , B} is assigned to a particular OR, has a pre-allocated length of time Lb, and is

dedicated to only one type of surgical specialty. For any b ∈ [B], the time length Lb is typically

long enough so that multiple surgeries can be performed during that time. Note that there can

be multiple blocks for the same specialty during a cycle of the OR schedule. The OR capacity is

shared among two competing surgery classes: a known number I of elective surgeries that are to

be planned in advance, and random emergency surgeries that must be performed on the day of

arrival.

Each elective surgery i ∈ [I] has a surgery type and can be assigned to any of the blocks

dedicated to the corresponding surgery type during the planning horizon. Associated with each

elective case, there is a cost for performing (scheduling) and for rejecting the surgery (i.e., cost of

delaying surgery to the next planning horizon). Let’s assume that patients who are not assigned

to any surgery block during the current planning horizon are assigned to a dummy block b′ /∈ [B].

Furthermore, let ci,b and ci,b′ represent the costs of performing and postponing surgery i ∈ [I],

respectively. Then, it is reasonable to assume that ci,b′ > ci,b, for all b ∈ [B] (a common assumption

in the elective surgery scheduling literature, see, e.g., Jebali and Diabat (2015), Min and Yih (2010),

Shehadeh and Padman (2021), and Zhang et al. (2019)). Moreover, the cost of assigning a surgery

to a block is block-dependent to take into account the surgery’s waiting time on the list and clinical

priority, among other potential factors (Jebali and Diabat, 2015; Lamiri et al., 2008b,a). However,

determining this cost is out of the scope of this paper.

Elective surgery duration (di, i ∈ [I]) are random and depend on surgery type. As defined in

Lamiri et al. (2008b) and Lamiri et al. (2008a), the total random surgery duration or capacity, eb,

needed for emergency cases in each surgical block b ∈ [B] is random. The probability distributions
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of these random parameters are ambiguous (unknown).

Given a waiting list of I elective surgeries and their types, we are interested in determining a

plan that specifies the number (or subset) of elective surgeries to schedule in each surgery block

(equivalently, surgery assignments to the available surgery blocks). The plan’s quality is a function

of costs related to performing (scheduling) or not performing (rejecting) elective surgeries and costs

related to OR overtime and total idle time. Overtime occurs when surgeries assigned to block b are

not completed within [0, Lb]. Idle time occurs when surgeries assigned to block b are completed

before Lb. Note that overtime and idle time are random (second-stage) performance metrics. That

is, they are observed after the realization of random parameters while the planned schedule is being

executed. In contrast, costs related to scheduling or not scheduling an elective surgery are fixed

planning (first-stage) costs incurred when the OR schedule is constructed. We make the following

assumption based on prior studies:

A1. The set of elective patients, their surgery types, and priorities are known with certainty (a

standard assumption in the elective surgery scheduling literature, see, e.g., Jebali and Diabat

(2015), Lamiri et al. (2008b), Lamiri et al. (2008a), Min and Yih (2010), and Neyshabouri

and Berg (2017)).

A2. The planning horizon T is an integer multiple of the surgery schedule cycle length.

A3. Surgical blocks and their assignments to operating rooms during a cycle of surgery schedule

are previously determined (Lamiri et al., 2008b,a; Neyshabouri and Berg, 2017).

A4. For ease of modeling, we assume that patients who are not assigned to any surgery block

during the current planning horizon are assigned to a dummy block b′ (Lamiri et al., 2008b,a).

A5. Patients of the same type have identical probability distributions of surgery duration (a

common assumption in prior studies).

A6. We assume that we know the lower (ddd,eee) and upper (ddd, eee) bounds on ddd and eee (this is a mild

and realistic assumption that holds in healthcare scheduling and mimic the OR practice).

Mathematically, we consider support S = Sd × Se, where Sd and Se are respectively the

supports of random parameters d and e, and defined as follows:

Sd :=
{
ddd ≥ 0 : di ≤ di ≤ di, ∀i ∈ [I]

}
, (1)

Se :=
{
eee ≥ 0 : eb ≤ eb ≤ eb,∀b ∈ [B]

}
. (2)

For modeling convenience, prior literature suggests that one can avoid excessive overtime by

assigning a high weight (cob) on overtime in the objective and/or setting Lb=(planned length of

b−∆) with ∆ > 0. Our model can accommodate such constraints.

Additional Notation: For a, b ∈ Z, we define [a] := {1, 2, . . . , a} and [a, b]Z := {c ∈ Z : a ≤ c ≤
b}, i.e., [a, b] represent the set of running integer indices {a, a+ 1, a+ 2, . . . , b}. The abbreviations
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Table 1: Notation.

Parameters and sets

I number, or set, of surgery

B number, or set, of OR blocks

ci,b cost of assigning surgery i to block b

cob unit overtime cost for each block b

cgb unit idle cost for each block b

di duration of surgery i

d/di lower/upper bounds of di

e capacity needed for emergency cases

ei/ei lower/upper bounds of ei

Lb capacity or planned length of block b

First-stage decision variables

yi,b

{
1, surgery i is assigned to OR block b

0, otherwise.

Second-stage decision variables

ob continuous decision variable capturing overtime in block b

gb continuous decision variable capturing idle time in block b

“w.l.o.g.” and “w.l.o.o.” respectively represent “without loss of generality” and “without loss of

optimality.” We use boldface notation to denote vectors, e,g., ddd := [d1, d2, . . . , dN ]>. A complete

listing of the parameters and decision variables can be found in Table 1.

4. Stochastic Programming Model

In this section, we present a two-stage SP formulation of the problem that assumes that the prob-

ability distributions of surgery durations are known. First, let us introduce the variables and

constraints defining the first-stage of this SP model. For each i ∈ [I] and b ∈ [B] ∪ {b′}, we define

a binary decision variable yi,b that equals 1 if we assign elective surgery i to block b, and is zero

otherwise. We define feasible region Y of yyy in (3) such that each elective surgery is assigned to

one surgical block with the obvious convention that a surgery assigned to the dummy block b′ (i.e.,

yi,b′ = 1) is postponed to the next planning period (i.e., rejected in the current planning period).

Y :=

{
yyy :

∑
b∈[B]∪{b′}

yi,b = 1, ∀i ∈ [I], yi,b ∈ {0, 1}, ∀i ∈ [I], b ∈ [B] ∪ {b′}
}
. (3)

Let us now introduce the parameters and variables defining our second-stage problem. For each

i ∈ [I], we let di represents the duration of elective surgery i. For all b ∈ [B], we define eb as the

duration of emergency surgery in block b (i.e., capacity needed for emergency cases as defined in

Lamiri et al. (2008b, 2009)). For all b ∈ [B], we define nonnegative continuous decision variables ob

and gb respectively to represent block b overtime and idle time. For all b ∈ [B], we define cob and cgb
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as the nonnegative unit penalty costs of overtime and idle time, respectively. Finally, we define Pξ
as the the probability distribution of ξ = [ddd,eee]>, and EPξ as the expectation under distribution Pξ.

The SP model can now be stated as follows (Lamiri et al., 2008a, 2009):

(SP) Ẑ = min
yyy∈Y

{∑
i∈I

∑
b∈B∪{b′}

ci,byi,b + EPξ [f(yyy, ξ)]

}
, (4)

where for a feasible yyy ∈ Y and a joint realization of uncertain parameters ξ = [ddd,eee]>, we compute

the random cost associated with overtime and idle time using the following linear program (LP).

f(yyy, ξ) := min
ooo,ggg

∑
b∈B

(
cobob + cgbog

)
(5a)

s.t. ob − gb =
∑
i∈I

diyi,b + eb − Lb, ∀b ∈ [B], (5b)

(ob, gb) ≥ 0, ∀b ∈ [B]. (5c)

Formulation (4) aim to find first-stage scheduling decisions yyy ∈ Y that minimize the first-stage

cost (i.e., costs related to performing/scheduling or not performing/rejecting elective surgeries) plus

the expected cost associated with overtime and idle time. Constraint (5b) yield either block overtime

or idle time based on the durations of surgeries preformed in this block. Finally, constraints (5c)

specify feasible ranges of the second-stage decision variables. It is easy to verify that the second-

stage (recourse) formulation (5) is feasible for any feasible first-stage decisions. Thus, we have a

relatively complete recourse.

5. DRO model over Wasserstein ambiguity set (W-DRO)

In this section, we present our proposed DRO models for the DSA that does not assume that the

probability distributions of surgery durations are known. Specifically, we consider the case that

the joint distribution Pξ of ξ := [ddd,eee]> may be observed via a possibly small finite set {ξ̂1, . . . , ξ̂N}
of N samples, which may come from the limited historical realizations or a reference empirical

distribution. Accordingly, we construct an ambiguity set based on 1-Wasserstein distance (i.e., we

use `1–norm in the definition of Wasserstein metric), which allows us to derive a tractable model.

Then, we formulate our DRO model (denoted as W-DRO) using this ambiguity set.

First, let us define the 1-Wasserstein distance. Suppose that random vectors ξ1 and ξ2 follow Q1

and Q2, respectively, where distributions Q1 and Q2 are defined over the common support S. The

1-Wasserstein distance dist(Q1,Q2) between Q1 and Q2 is the cost of an optimal transportation

plan for moving the probability mas in one so it becomes identical to the other, where the cost of

moving from ξ1 to ξ2 equals to the norm ||ξ1 − ξ2||. Mathematically,

dist(Q1,Q2) := inf
Π∈P(Q1,Q2)

{∫
S
||ξ1−ξ2|| Π(dξ1, dξ2)

∣∣∣∣∣ Π is a joint distribution of ξ1 and ξ2

with marginals Q1 and Q1, respectively

}
(6)
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where P(Q1,Q2) is the set of all joints distributions of (ξ1, ξ2) supported on S with marginals

Q1 and Q2. Accordingly, we construct the following 1-Wasserstein ambiguity set:

F(P̂Nξ , ε) =
{
Qξ ∈ P(S)

∣∣∣ dist(Qξ, P̂Nξ ) ≤ ε
}
, (7)

where P(S) is the set of all joint probability distributions supported on S, P̂Nξ = 1
N

∑N
n=1 δξ̂n

is the empirical distribution of ξ based on N i.i.d samples, and ε > 0 is the radius of the ambiguity

set. The set F(P̂Nξ , ε) represent a Wasserstein ball of radius ε centered at the empirical distribution

P̂Nξ . Note that we do not make any assumptions on elective and emergency surgeries durations

(i.e., ξ). Thus, they can be dependent, correlated, or independent.

Using the ambiguity set F(P̂Nξ , ε), we formulate our W-DRO model for DSA as follows:

(W-DRO) Ẑ(N, ε) = min
yyy∈Y

{∑
i∈I

∑
b∈B∪{b′}

ci,byi,b + sup
Pξ∈F(P̂Nξ ,ε)

EPξ [f(yyy, ξ)]

}
. (8)

Formulation (5) finds first-stage decisions yyy ∈ Y that minimize the first-stage cost plus the

maximum expectation of the second-stage cost, where the expectation is taken over all distributions

residing in F(P̂Nξ , ε).
We often seek asymptotic consistency in data-driven applications such as W-DRO. In particular,

one expects that as the sample size N increases to infinity, the optimal value of problem (5)

Ẑ(N, ε) converges to Z∗ (the optimal value of the SP model in (4) with perfect knowledge of

Pξ). Accordingly, as N increases, an optimal solution yyy to W-DRO tends to the optimal solution of

problem (4). Additionally, if Ẑ(N, ε) > Z∗ almost surely, then W-DRO provides a safe upper bound

guarantee on the expected total cost with any finite data size N . Assumption A6 indicates that

the support set S is non-empty, convex, and compact. As such, we can make use of existing theory

in establishing the asymptomatic consistency and finite sample guarantee of our W-DRO model.

In particular, given assumption A6, lemma 1 in Jiang et al. (2019) and Theorem 2 in Fournier

and Guillin (2015) assure that the `p-Wasserstein ambiguity set incorporates the true distribution

Pξ of ξ with high confidence. Theorem 1 in Jiang et al. (2019) and Theorem 3.6 in Mohajerin

Esfahani and Kuhn (2018) assure asymptotic consistency, and Theorem 2 in Jiang et al. (2019) and

Theorem 3.5 in Mohajerin Esfahani and Kuhn (2018) assure finite-data guarantee of W-DRO. We

refer to these papers for detailed proofs and discussion on these results. For completeness, below,

we provided the adapted Lemma 1, Theorem 1, and Theorem 2 and provide customized proofs to

fit our problem in Appendix B–Appendix D.

Lemma 1. (Adapted from Jiang et al. (2019) and Theorem 2 in Fournier and Guillin (2015)).

Suppose that Assumption A6 holds. Then there exist none-negative constants c1 and c2 such that,

for all N ≥ 1 and β ∈ (0,min{1, c1}),

PN
{

dist(Pξ, P̂Nξ ) ≤ εN (β)} ≥ 1− β,
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where PNξ represents the product measure of N copies of Pξ and εN (β) =
[

log(c1β−1)
c2N

] 1
max{3p,n}

(see

Appendix B for a proof).

As detailed in Jiang et al. (2019), Lemma 1 assures that the p-Wasserstein ambiguity (1-

Wasserstein ambiguity in our problem) contains the true distribution Pξ with high confidence.

Theorem 1. (Asymptotic consistency, adapted from Jiang et al. (2019) and Theorem 3.6 of Moha-

jerin Esfahani and Kuhn (2018)). Suppose that Assumption A6 holds. Consider a sequence of con-

fidence levels {βN}N∈R such that
∑∞

N=1 βN <∞ and limN→∞ εN (βN ) = 0, and let (ŷ(N, εN (βN ))

represents an optimal solution to W-DRO with the ambiguity set F(P̂Nξ , εN (βN )). Then, P∞ξ - al-

most surely we have Ẑ(N, εN (βN )) → Z∗ as N → ∞. In addition, any accumulation points of

{ŷ(N, εN (βN )}N∈N is an optimal solution of (4) P∞ξ - almost surely (see Appendix C for a proof).

Theorem 2. (Finite-data guarantee, adapted from Jiang et al. (2019) and Theorem 3.5 in Mo-

hajerin Esfahani and Kuhn (2018)). For any β ∈ (0, 1), let ŷ(N, εN (βN )), represent an optimal

solution of W-DRO with ambiguity set F(P̂Nξ , εN (βN )). Then,

PNξ
{
EPξ [f(ŷ(N, εN (βN ), ξ)] ≤ Ẑ(N, εN (βN ))

}
≥ 1− β.

(see Appendix D for a proof).

5.1. Reformulation of the W-DRO model

Recall that f(·) is defined by a minimization problem. Thus, in (5), we have an inner max-min

problem. As such, it is not straightforward to solve the W-DRO model in (5). In this section, we

derive an equivalent reformulation of the W-DRO model that is solvable. First, in Proposition 1,

we present an equivalent dual formulation of the inner maximization problem in (5) (see Appendix

A for a detailed proof).

Proposition 1. For fixed yyy ∈ Y, problem supPξ∈F(P̂Nξ ,ε)
EPξ [f(yyy, ξ)] in (5) is equivalent to

inf
ρ

{
ερ+

1

N

N∑
n=1

sup
ξ∈S
{f(yyy, ξ)− ρ||ξ − ξ̂n||}

}
(9a)

s.t. ρ ≥ 0. (9b)

Again, formulation (9) is not directly solvable using standard techniques. Fortunately, given

that the supports of ddd and eee are rectangular and finite (Assumption A6), we next show that we

can reformulate each of the inner maximization problems in (9) as a linear program (LP) for fixed

ρ ≥ 0 and yyy ∈ Y. First, we observe that for each yyy ∈ Y, the recourse problem can be decomposed

by each block, i.e., f(yyy, ξ) =
∑

b∈B fb(y, ξ), where for each b ∈ B:

fb(y, ξ) := min
ob,gb

(
cobob + cgbog

)
(10a)
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s.t. ob − gb =
∑
i∈I

diyi,b + eb − Lb, (10b)

(ob, gb) ≥ 0. (10c)

Let βb be the dual variables associated with constraint (10c). The dual of the LP in (10) is as

follows

fb(yyy, ξ) := max
β

(∑
i∈I

diyi,b + eb − Lb
)
βb (11a)

s.t. B := {−cgb ≤ βb ≤ c
o
b}. (11b)

Next, for fixed yyy ∈ Y and ρ ≥ 0, we define Qn(ρ,yyy) = supξ∈S{f(yyy, ξ) − ρ|ξ − ξ̂n|}, for all

n = 1, . . . , N . Given the dual formulation of fb(y, ξ) with feasible region B := {−cgb ≤ βb ≤ c
o
b}, we

write the problem of computing Qnb (ρ,yyy) as follows for each n ∈ [N ] and b ∈ [B].

Qnb (ρ,yyy) = sup
(ddd,eeeddd,eeeddd,eee)∈S

sup
β∈B

{(∑
i∈I

diyi,b + eb − Lb
)
βb − ρ

∑
i∈I
|di − d̂ni |yi,b − ρ|eb − ênb |

}
(12a)

≡ max
(ddd,eeeddd,eeeddd,eee)∈S

max
β∈B

{∑
i∈I

[
diβb − ρ|di − d̂ni |

]
yi,b +

[
ebβb − ρ|eb − ênb |

]
− Lbβb

}
. (12b)

It is easy to verify that for fixed yyy ∈ Y, ddd ∈ [d, d], eee ∈ [e, e], function maxβ∈B{
(∑

i∈I diyi,b +

eb −Lb
)
βb} in (12) is convex in variable βb. Hence, problem maxβb∈B{·} is a convex maximization

problem. It follows from the fundamental convex analysis that there exists an optimal solution β∗b

to problem maxβ∈B{·} at one of the extreme points β̂b of polyhedron B := {−cgb ≤ βb ≤ cob}. In

any extreme point, constraint −cgb ≤ β̂b ≤ c
o
b is binding at either the lower bound or upper bound.

Thus, given that ddd ∈ [d, d] and eee ∈ [e, e], it is easy to verify that the optimal objective value of

problem (12) is equivalent to

ηn∗b = max



∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebc

o
b − ρ|eb − ênb |

]
− Lbcob∑

i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebc

o
b − ρ|eb − ênb |

]
− Lbcob∑

i∈I

[
di(−cgb)− ρ|di − d̂

n
i |
]
yi,b +

[
eb(−cgb)− ρ|eb − ê

n
b |
]
− Lb(−cgb)∑

i∈I

[
di(−cgb)− ρ|di − d̂

n
i |
]
yi,b +

[
eb(−c

g

b)− ρ|eb − ê
n
b |
]
− Lb(−cgb)∑

i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebc

o
b − ρ|eb − ênb |

]
− Lbcob∑

i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebc

o
b − ρ|eb − ênb |

]
− Lbcob∑

i∈I

[
di(−c

g

b)− ρ|di − d̂
n
i |
]
yi,b +

[
eb(−cgb)− ρ|eb − ê

n
b |
]
− Lb(−cgb)∑

i∈I

[
di(−c

g

b)− ρ|di − d̂
n
i |
]
yi,b +

[
eb(−c

g

b)− ρ|eb − ê
n
b |
]
− Lb(−cgb)∑

i∈I
d̂ni c

o
byi,b + ênb c

o
b − Lbcob∑

i∈I
d̂ni (−cgb)yi,b + ênb (−cgb)− Lb(−c

g

b)



. (13)
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Accordingly, we can formulate problem (12) as the following linear program for a fixed yyy ∈ Y

Qnb (ρ,yyy) = min ηnb (14a)

ηnb ≥
∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebc

o
b − ρ|eb − ênb |

]
− Lbcob, (14b)

ηnb ≥
∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebc

o
b − ρ|eb − ênb |

]
− Lbcob, (14c)

ηnb ≥
∑
i∈I

[
di(−cgb)− ρ|di − d̂

n
i |
]
yi,b +

[
eb(−cgb)− ρ|eb − ê

n
b |
]
− Lb(−cgb), (14d)

ηnb ≥
∑
i∈I

[
di(−cgb)− ρ|di − d̂

n
i |
]
yi,b +

[
eb(−c

g

b)− ρ|eb − ê
n
b |
]
− Lb(−cgb), (14e)

ηnb ≥
∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebc

o
b − ρ|eb − ênb |

]
− Lbcob, (14f)

ηnb ≥
∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebc

o
b − ρ|eb − ênb |

]
− Lbcob, (14g)

ηnb ≥
∑
i∈I

[
di(−c

g

b)− ρ|di − d̂
n
i |
]
yi,b +

[
eb(−cgb)− ρ|eb − ê

n
b |
]
− Lb(−cgb), (14h)

ηnb ≥
∑
i∈I

[
di(−c

g

b)− ρ|di − d̂
n
i |
]
yi,b +

[
eb(−c

g

b)− ρ|eb − ê
n
b |
]
− Lb(−cgb), (14i)

ηnb ≥
∑
i∈I

d̂ni c
o
byi,b + ênb c

o
b − Lbcob, (14j)

ηnb ≥
∑
i∈I

d̂ni (−cgb)yi,b + ênb (−cgb)− Lb(−c
g

b). (14k)

Summing over b ∈ [B] and n ∈ [N ] and combining Qnb (ρ,yyy) in the from of (14) with the outer

minimization problem in (9), we derive the following equivalent reformulation of (9).

inf
ρ≥0,ηηη

{
εpρ+

1

N

N∑
n=1

ηnb

}
(15a)

s.t. (14b)− (14k). (15b)

Combining the inner problem in the form of (15) with the outer minimization problem in (8), we

derive the following equivalent mixed-integer non-linear programming (MINLP) reformulation of

the DSA model in (8).

Ẑ(N, ε) = min

{∑
i∈I

∑
b∈B∪{b′}

ci,byi,b + ερ+
1

N

N∑
n=1

ηnb

}
(16a)

s.t. yyy ∈ Y, ρ ≥ 0, (14b)− (14i). (16b)

Note that constraints (14b)-(14i) contains the interaction terms ρyi,b with binary variables yi,b

and the non-negative continuous variable ρ, for all i ∈ [I] and b ∈ [B]. To linearize, we define
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variables πi,b = ρyi,b, for all i ∈ [I] and b ∈ [B], and introduce the following inequalities for

variables πi,b

πi,b ≥ 0, πi,b ≥ ρ̄(yi,b − 1) + ρ, (17a)

πi,b ≤ ρ̄yi,b, πi,b ≤ ρ. (17b)

Accordingly, formulation (16) is equivalent to the following MILP:

Ẑ(N, ε) = min

{∑
i∈I

∑
b∈B∪{b′}

ci,byi,b + ερ+
1

N

N∑
n=1

ηnb

}
(18a)

s.t. yyy ∈ Y, ρ ≥ 0, (14b)− (14i), (17a)− (17b). (18b)

6. Extension: Block Allocation and Surgery Scheduling in Flexible ORs

In this section, we extend our W-DRO model to determine which OR to open and then assign

surgery to open OR. Specifically, we consider a Surgery Block Allocation (SBA) problem, which, as

defined in Wang et al. (2019), aims to determine the number of surgical blocks (i.e., ORs) to open

and the number of elective surgeries to schedule in each open block. The fixed cost of opening OR

or block b ∈ [B] is cfb, which incorporates staffing and equipment costs. The objective is to minimize

the total cost consisting of the fixed cost of opening ORs or surgical blocks, fixed cost related to

scheduling or rejecting elective surgery, and the expected cost associated with OR overtime and idle

time. Next, we propose a distributionally robust SBA (DSBA) model with 1-Wasserstein ambiguity

(denoted as W-DSBA) for this problem.

Let us introduce additional variables defining our W-DSBA model. For all b ∈ [B], we define

a binary decision variable xb, which equal 1 if block b is open and 0 otherwise. We define feasible

region Y ′ of (xxx,yyy) in (19) such that each elective surgery is assigned to one open surgical block or

postponed to the next planning period.

Y ′ :=


(xxx,yyy) :

yi,b ≤ xb, ∀b ∈ [B],∑
b∈[B]∪{b′}

yi,b = 1, ∀i ∈ [I],

xb ∈ {0, 1}, ∀b ∈ [B],

yi,b ∈ {0, 1}, ∀i ∈ [I], b ∈ [B] ∪ {b′}


. (19)

Using the ambiguity set Fξ(P̂Nξ , ε) defined in (7), we formulate the following DRO model for

the DSBA problem.

(W-DSBA) Ẑ ′(N, ε) = min
(xxx,yyy)∈Y ′

{∑
b∈B

cfbxb +
∑
i∈I

∑
b∈B∪{b′}

ci,byi,b + sup
Pξ∈F(P̂Nξ ,ε)

EPξ [f(xxx,yyy, ξ)]

}
, (20a)
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where for a feasible (xxx,yyy) ∈ Y ′ and a realization of ξ:

f(xxx,yyy, ξ) := min
ooo,ggg

∑
b∈B

(
cobob + cgbog

)
(21a)

s.t. ob − gb =
∑
i∈I

diyi,b + ebxb − Lbxb, ∀b ∈ [B] (21b)

(ob, gb) ≥ 0, ∀b ∈ [B]. (21c)

Formulation (20) finds first-stage decisions (xxx,yyy) ∈ Y ′ that minimize the sum of (1) fixed cost

of opening ORs (first term); (2) fixed cost of scheduling or postponing elective surgeries (second

term); and (3) maximum expected cost of OR overtime and idle time over all distributions defined

in the ambiguity set F(P̂Nξ , ε). We remark that formulation (20) is the first DRO formulation

with Wasserstein ambiguity for the DSBA problem in flexible ORs. Wang et al. (2019) proposed

a moment-based DRO model for surgery block allocation in dedicated OR. The objective is to

determine the ORs to open and assign the surgeries in a daily listing to the ORs, minimizing the

weighted sum of OR opening costs and expected overtime costs. However, Wang et al. (2019)’s

model cannot be used for flexible ORs because it does not account for emergency surgeries.

Using the same reformulation techniques in Section 5.1, we derive the following equivalent

reformulation of the W-DSBA model in (20)

Ẑ ′(N, ε) = min

{∑
b∈V

cfbxb +
∑
i∈I

∑
b∈B∪{b′}

ci,byi,b + ερ+
1

N

N∑
n=1

ηnb

}
(22a)

s.t. (xxx,yyy) ∈ Y ′, ρ ≥ 0, (22b)

ηnb ≥
∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebxbc

o
b − ρxb|eb − ênb |

]
− Lbxbcob, (22c)

ηnb ≥
∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebxbc

o
b − ρxb|eb − ênb |

]
− Lbxbcob, (22d)

ηnb ≥
∑
i∈I

[
di(−cgb)− ρ|di − d̂

n
i |
]
yi,b +

[
ebxb(−cgb)− ρxb|eb − ê

n
b |
]
− Lbxb(−cgb), (22e)

ηnb ≥
∑
i∈I

[
di(−cgb)− ρ|di − d̂

n
i |
]
yi,b +

[
ebxb(−c

g

b)− ρxb|eb − ê
n
b |
]
− Lbxb(−cgb), (22f)

ηnb ≥
∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebxbc

o
b − ρxb|eb − ênb |

]
− Lbxbcob, (22g)

ηnb ≥
∑
i∈I

[
dic

o
b − ρ|di − d̂ni |

]
yi,b +

[
ebxbc

o
b − ρxb|eb − ênb |

]
− Lbxbcob, (22h)

ηnb ≥
∑
i∈I

[
di(−c

g

b)− ρ|di − d̂
n
i |
]
yi,b +

[
ebxb(−cgb)− ρxb|eb − ê

n
b |
]
− Lbxb(−cgb), (22i)

ηnb ≥
∑
i∈I

[
di(−c

g

b)− ρ|di − d̂
n
i |
]
yi,b +

[
ebxb(−c

g

b)− ρxb|eb − ê
n
b |
]
− Lbxb(−cgb), (22j)

ηnb ≥
∑
i∈I

d̂ni c
o
byi,b + ênb xbc

o
b − Lbxbcob, (22k)
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ηnb ≥
∑
i∈I

d̂ni (−cgb)yi,b + ênb xb(−c
g

b)− Lbxb(−c
g

b). (22l)

Note that constraints (22c)-(22j) contains the interaction terms ρyi,b and ρxb with binary variables

yi,b and xb and the nonnegative continuous variable ρ, for all i ∈ [I] and b ∈ [B]. To linearize,

we use variables πi,b = ρyi,b, for all i ∈ [I] and b ∈ [B], and introduce inequalities (17a)–(17b)

for variables πi,b. We also define variables τb = ρxb, and introduce the following inequalities for

variables τb, for all b ∈ [B].

τb ≥ 0, τb ≥ ρ̄(xb − 1) + ρ, (23a)

τb ≤ ρ̄xb, τp ≤ ρ. (23b)

Accordingly, formulation (22) is equivalent to the following MILP:

Ẑ(N, ε) = min

{∑
b∈V

cfbxb +
∑
i∈I

∑
b∈B∪{b′}

ci,byi,b + ερ+
1

N

N∑
n=1

ηnb

}
(24a)

s.t. (y, x) ∈ Y, ρ ≥ 0, (22c)− (22l), (17a)− (17b), (23a)− (23b). (24b)

7. Computational Experiments

In this section, we use publicly available actual surgery duration data to construct several in-

stances of DSA and compare the performance of three proposed models: our 1-Wasserstein-based

DRO model (W-DRO), moment-based DRO model (M-DRO), and a sample average approxima-

tion (SAA) of the SP model. In M-DRO, we construct an ambiguity set based on the mean and

support of surgery duration (see Appendix E for the formulation). The SAA model solves model

(4) with Pξ replaced by an empirical distribution based on N samples of random parameters (see

Appendix F for the formulation). In Section 7.1, we describe the set of problem instances that we

constructed and discuss other aspects of our experimental setup. In Section 7.2, we examine the

effect of the radius ε on the performance of the W-DRO model. In Section 7.3, we compare the

out-of-sample performance of the models under unseen data from the in-sample distribution (i.e.,

the distribution we used in the optimization step). In Section 7.4, we compare the out-of-sample

performance of the models under unseen data from a distribution different than the one we used

in the optimization. In Section 7.5, we analyze the W-DRO and SAA models solution times. In

Section 7.6, we compare the flexible OR and dedicated OR policies. Finally, in Section 7.7, we

present an experiment comparing the performance the proposed W-DASBA model for the surgical

block allocation problem in Section 6 and its SP counterpart.

7.1. Description of the experiments

Our computational study is based on anonymized real-world surgery data presented by Mannino

et al. (2012) and Mannino et al. (2010). This data set involves three-years (10,390 observations)
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Table 2: Statistics for surgery duration (in minutes) based on surgery type. Notation: percent% is the percentage of

patients needing a specific type of surgery, µd and µl are respectively the empirical mean and standard deviations of

d.

Surgery type percent% µd σd

CARD 14.01 99 53
GASTRO 17.79 132 76
GYN 27.81 78 52
MED 4.41 75 72
ORTH 17.81 142 58
URO 17.98 72 38

Table 3: Block schedule.

OR room Monday Tuesday Wednesday Thursday Friday

1 GASTRO GASTRO GASTRO
2 GASTRO GASTRO GASTRO
3 CARD CARD CARD
4 ORTH ORTH ORTH ORTH
5 ORTH MED
6 GYN GYN GYN GYN
7 GYN GYN GYN GYN
8 URO URO URO URO
9 CARD URO CARD
10 URO ORTH

worth of daily surgery data that belong to six different surgical specialties, namely General Cardi-

ology (CARD), Gastroenterology (GASTRO), Gynecology (GYN), Medicine (MED), Orthopedics

(ORTH), and Urology (URO). Table 2 presents the mean and standard deviation of elective surgery

duration based on surgery type. These values where computed from publicly available data that is

referenced in Mannino et al. (2010) and Mannino et al. (2012).

We assume that we have 10 available ORs and B =32 surgical blocks (the largest benchmark

surgical suite and block schedule in the literature; see Min and Yih (2010) and Shehadeh and

Padman (2021)). Table 3 presents the weekly assignments of surgical blocks to ORs. Each block

b ∈ [B] is Lb =8-hours long, and an elective surgery can be assigned to any of the blocks allocated

to the corresponding surgery type during the planning horizon. It is worth to mention that the

distribution of surgery blocks through OR rooms and the week is often influenced by surgeons’ and

surgical teams’ schedules, and the setup of the operating rooms, among other factors.

We consider two different cost structures for the objective function: (1) Cost1: co = $26/min,

cg = co/1.5, and (2) Cost2: co = $26/min, cg = 0. An overtime cost of $26 per minute is based on

the work of Min and Yih (2010), Shehadeh and Padman (2021), andStodd et al. (1998). We fix the

ratio co/cg to 1.5 as in prior surgery scheduling studies (Jebali and Diabat, 2015; Liu et al., 2019;

Shehadeh et al., 2019).

We follow the same procedure in the literature to generate patient costs ci,b and ci,b′ (with

surgery of the same type having common values of these parameters). We compute the lower and

upper bound of surgery duration from the data . Lamiri et al. (2008b) and Lamiri et al. (2008a)

assumed that the daily capacity needed for emergency cases to be exponentially distributed with

a mean of 3 and 2 hours, respectively, and the mean of the elective case to be 2 hours. This indi-
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cates that, on average, the capacity required for emergency surgery in each block is approximately

equivalent to the capacity needed for 1 scheduled elective surgery. We apply this logic to construct

the parameters needed for emergency surgeries of each type.

We implemented and solved the three models using the AMPL modeling language and use

CPLEX (version 12.6.2) as the solver with its default settings. We performed all experiments on

a MacBook Pro with an Intel Core i7 processor, 2.6 GHz CPU, and 16 GB (2667 MHz DDR4) of

memory.

7.2. Effect of ε in W-DRO model

The Wasserstein ball’s radius ε is an input parameter to the W-DRO model, and a larger radius

implies that we seek a more distributionally robust solutions. In this section, we investigate the

impact of ε on the out-of-sample performance of the W-DRO’s optimal solution ŷ̂ŷy(ε,N) (i.e., the

objective value obtained by simulating ŷ̂ŷy(ε,N) under unseen data), with respect to the data size

N .

We evaluate the out-of-sample performance for ε ∈ {0.1, 0.5, 1, . . . , 100} as follows. First, for

each ε, we randomly sample 30 data sets of size N ∈{5, 10, 50, 100} from the empirical distribution

of surgery duration. Second, we solve the W-DRO in (18) for each of the generated data sets and

each ε. Third, we fix the first stage variables to ŷ̂ŷy(ε,N), then re-optimize the second-stage of the

SP using 10,000 out-of-sample (unseen) data. This is to compute the corresponding out-of-sample

overtime and idle time. For illustrative and brevity purposes, in this experiment, we focus on

an instance of I =60 surgeries with Cost 1. We observe similar results for other instances (see

Appendix G for results with I =80).

Figure 2 illustrates the mean values (over the 30 independent replications) of the out-of-sample

cost (i.e., first-stage cost plus the out-of-sample second-stage cost) as a function of ε. From this

figure, we first observe that irrespective of N , the out-of-sample cost first improves with ε and

then increases (or stabilize) after some (critical) value of ε. Such pattern is often observed in the

literature (see, e.g., Mohajerin Esfahani and Kuhn, 2018 and Jiang et al., 2019), and indicate that

there exists a Wasserstein radius ε∗ such that the corresponding optimal distributionally robust

solutions have the best out-of-sample performance.

Second, we observe that ε∗ decreases with the increase in N . Intuitively, a small sample does

not have sufficient distributional information, and thus a larger ε produces distributionally robust

solutions that better hedge against ambiguity. In contrast, with a larger sample, we may have more

information from the data, and thus we can make a less conservative decision using a smaller ε.

In practice, it is unlikely that OR managers and other decision-makers have the expertise or the

time to conduct the above exercise (or other iterative procedures) to obtain a suitable choice of ε for

each surgery list and parameter settings. In addition, we often have a small data set, which is not

enough for the optimization and simulation tasks (validation). Therefore, in the next sections, we
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(a) N = 5 (b) N = 10

(c) N = 50 (d) N = 100

Figure 2: Out-of-sample performance as a function of the Wasserstein radius

derive insights with 0.1 (small), 10 (relatively average), and 100 (relatively large), which captures

different extents of the robustness of the W-DRO model. This approach mimics, to a certain extent,

decision-makers’ thinking who do not have optimization expertise.

7.3. Solutions quality under the in-sample distribution

In this section, we compare the out-of-sample performance of the W-DRO, M-DRO, and SAA

models under unseen data sample from the in-sample data distribution (i.e., perfect information

case). We test the out-of-sample performance (i.e., the objective value obtained by simulating the

optimal solution of a model under a larger unseen data) as follows. First, we sample data sets of

sizes N ∈ {5, 10, . . . , 100} from the empirical distribution. Second, using each set of N scenarios,

we solve an instance of W-DRO, an instance M-DRO, and an instance of SAA. Third, we fix the

optimal first-stage decisions yyy yielded by each model in the SP model. Then, we solve the second-

stage recourse problem in (5) using yyy and N ′ = 10, 000 out-of-sample (unseen) data to compute

the corresponding out-of-sample cost (i.e., first-stage fixed cost plus simulated second-stage cost).

We perform these steps 20 times using 20 independent samples of N scenarios. For the W-DRO

model, we use ε = 0.1 (small), ε = 10 (relatively average), and ε = 100 (relatively large), which

captures different extents of the robustness of the W-DRO model. For illustrative purposes and

brevity, we use an instance of I =60 and 80 surgeries under Cost1. We observe similar results for

other instances.

Figures 3 and 4 present the mean (line) and the (shaded) area between the 20% and 80%
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(a) ε = 0.10 (b) ε = 10

(c) ε = 100

Figure 3: Out-of-sample performance under perfect information, I = 60

quantiles of the out-of-sample cost as a function of N and ε for I = 60 and I = 80, respectively.

We compute these values over the 20 independent simulation runs of each optimal solution and N .

Note that we do not know the optimal value Z∗ of the stochastic optimization problem because we

do not know the true (unknown) distribution. However, we know that Z∗ should be less than or

equal to the bounds yielded by all models. Therefore, for the sake of illustration and convenience

of making comparisons, one cane assume that Z∗ is the horizontal access in each sub-figure.

We observe the following from figures 3–4. First, the out-of-sample cost of the M-DRO model

are significantly larger than those of the W-DRO and SAA model across all values of N and ε.

Second, as N increases (i.e., more distributional information becomes available), the out-of-sample

costs of the W-DRO model decrease and converges to Z∗, which is consistent with Theorem 1

(demonstrating the that the W-DRO model enjoys the asymptotic consistency property). In con-

trast, the out-of-sample cost of the M-DRO model is relatively stable. These results are consistent

with the theoretical results in Theorem 1 (see Appendix C) demonstrating the asymptotic consis-

tency property of the W-DRO approach. The M-DRO model depends on the mean and support of

surgery duration (i.e., descriptive statistics), and thus one cannot guarantee asymptotic consistency.

Third, we observe that W-DRO slightly outperforms SAA, especially when N is small. This

demonstrates that the W-DRO model is capable to effectively learn distributional information even

from a very small amount of data (e.g., 5 and 10 scenarios). Thus, the proposed W-DRO model

is advantageous in ORs with scarce data on surgery duration. Finally, we observe a lower out-of-
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(a) ε = 0.10 (b) ε = 10

(c) ε = 100

Figure 4: Out-of-sample performance under perfect information, I = 80

sample cost under higher ε, which reflects the fact that one can achieve a stronger probabilistic

guarantee by increasing ε in W-DRO.

Finally, we attribute the higher out-of-sample cost of the M-DRO to the following. The W-

DRO model schedule a larger number of elective surgeries than the M-DRO model to hedge against

the cost of rejecting surgeries and excessive OR idle time. In contrast, the M-DRO model is

more conservative in the sense that it attempts to hedge against observing extremely long surgery

durations and overtime by scheduling fewer surgeries. However, in practice, we may not observe

extremely long durations. Accordingly, the M-DRO schedule will result in a higher out-of-sample

cost associated with larger idle time and rejecting a larger number of surgeries than the W-DRO

schedule. For example, consider the instance of I = 80 surgeries with ε = 0.1, N = 50, and Cost1.

The W-DRO and M-DRO models schedule 74 ad 57 surgery, respectively. The associated average

(surgery cost, overtime, idle time) with the W-DRO and M-DRO scheduling decisions are (1196,

27 minutes, 108) and (1638, 26 minutes, 201 minutes), respectively. Note that a lower idle time

indicates better utilization of the expensive OR resources. Moreover, scheduling more surgeries

indicates better access to surgical care. Thus, a decision-maker may prefer the W-DRO solutions.

7.4. Solutions quality under missspecified distributional information

Let us now analyze the out-of-sample performance of the models under the case where the true dis-

tribution is different than the one used in the optimization. That is, we investigate the performance

of optimal solutions of the models using N ′ data sample generated from a different distribution than
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(a) ε = 0.10 (b) ε = 10

(c) ε = 100

Figure 5: Out-of-sample performance under LogN, I = 60

the empirical distribution we used in the optimization. Specifically, we generate the N ′ = 10, 000

out-of-sample data from a Lognormal (LogN) distribution with the same mean, variance, and sup-

port of the in-sample distribution. For brevity, in Figures 5, we present the out-of-sample cost

under logN for an instance with I = 60.

Notably, both W-DRO and M-DRO yield lower out-of-sample costs on average and across all

quantiles than the SP model when N is small (i.e., limited distributional information). In fact,

the M-DRO model yields a slightly lower out-of-sample cost than the W-DRO model when N is

small. Second, when N is larger, the W-DRO and SAA models yield lower costs than the M-DRO

model. Third, the W-DRO model outperforms the SAA model in most instances, especially when

N is small. These results indicate that the DRO approach is effective in an environment where the

distribution of random parameters quickly changes, and there is small data or information on such

variability. Moreover, these results emphasize the value of modeling uncertainty and distributional

ambiguity of surgery duration.

7.5. CPU Time

In this section, we analyze the solution times of the W-DRO and SAA models. We take advantage

of the fact that our problem is separable by block for some instances and thus is decomposable.

We analyze solution times of the models (i.e., total CPU time needed to construct the OR

schedule) with three sizes of surgeries list I ∈ {60, 80, 100} under Cost1 (co = $26/min, cg = co/1.5),

and Cost2 (co = $26/min, cg = 0). Recall that the W-DRO and SAA models are scenario based.
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Table 4: Solution times in seconds

Cost1
Model I N Min Avg Max I N Min Avg Max I N Min Avg Max
W-DRO 60 5 0.2 0.4 0.7 80 5 1 1 2 100 5 0.4 1 2
SAA 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.3 0.5

W-DRO 10 0.4 0.5 0.8 10 1 2 3 10 1 2 6
SAA 0.10 0.13 0.2 1 1 2 1 1 2

W-DRO 50 1 3 9 50 3 6 21 50 4 11 25
SAA 0.13 0.2 1 1 1 3 1 1 3

W-DRO 100 3 5 10 100 6 10 29 100 6 14 63
SAA 0.3 1 3 1 2 3 1 2 4

W-DRO 500 20 29 58 500 89 164 267 500 105 133 174
SAA 1 2 3 2 4 11 5 6 13

Cost2
Model I N Min Avg Max I N Min Avg Max I N Min Avg Max
W-DRO 60 5 0.3 0.4 1 80 5 0.2 0.3 0.4 100 5 0.4 0.5 0.6
SAA 0.1 0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.4

W-DRO 10 0.4 0.5 1 10 0.25 0.30 0.4 10 0.4 0.6 1.1
SAA 0.1 0.2 0.2 0.1 0.2 0.3 0.2 0.3 1

W-DRO 50 0.5 0.6 1 50 0.5 0.6 0.7 50 1 1.4 1.8
SAA 0.2 0.2 0.3 0.2 0.3 0.5 1 1 1

W-DRO 100 0.6 0.7 1 100 0.9 1.1 1.5 100 3 4 6
SAA 0.3 0.3 0.4 0.3 0.4 0.5 1 1 1

W-DRO 500 1.3 1.5 2.6 500 5 9 15 500 16 27 63
SAA 1 1 1.1 2 2 3 4 5 7

Thus, solution times of these models depend on the sample size, N . Therefore, we next analyze

solution times of these two models under N ∈ {5, 10, 50, 100, 500}. For each N , I, and cost

structure, we generate 10 random instances and solve each using the W-DRO and SAA models.

Table 4 presents the minimum (Min), Average (Avg), and maximum (Max) solution times (in

seconds) of these instances.

We make the following observations from Table 4. First, solution times increase with I and

N . Second, both models solve all instances fairly quickly under Cost2. Third, solution times are

longer under Cost1, which makes sense as this cost structure require more variables (for idle time)

and includes more criteria in the objective to optimize. Fourth, under Cost2, solution times of

the W-DRO model are approximately similar to the SAA solution times when N is small (e.g.,

5 or 10) and longer than those of the SAA model when N is large (e.g., 100 or 500). However,

when N = 500, solution times of the W-DRO are all less than 5 minutes. Moreover, we have

demonstrated that our W-DRO approach is effective in ORs with scares (small) data.

We attribute the difference in solution times between the SAA and W-DRO models to their

respective sizes in terms of the number of variables and constraints. The W-DRO model has more

variables and constraints than the SAA model. As pointed out by (Artigues et al., 2015; Catanzaro

et al., 2015; Fortz et al., 2017; Jünger et al., 2009; Keha et al., 2009; Klotz and Newman, 2013;

Morales-España et al., 2016; Shehadeh et al., 2019), an increase in model size often suggests an

increase in solution time for the LP relaxation and, thus, the model’s overall solution time.
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Table 5: Optimal number of scheduled surgery under the flexible and dedicated ORs polices.

Base Emergency Rate Double Emergency Rate
Policy Cost1 Cost2 Cost1 Cost2
Flexible 79 76 76 72
Dedicated 79 79 79 79

Finally, it is worth mentioning that we were able to solve all instances using the M-DRO model

fairly quickly. This makes sense, because this model is deterministic, i.e., does not depend on N .

7.6. Flexible versus dedicated ORs

As mentioned earlier, some hospitals dedicate one or more operating rooms to emergency cases.

Dedicating some ORs to emergency cases may have the advantage of having some ORs readily

available to handle them promptly without impacting the scheduled elective surgeries. However,

this policy may results in a low utilization of costly OR resources (Xiao and Yoogalingam, 2021). In

this section, we compare the flexible and dedicated OR policies. In the latter, we solve our W-DRO

model assuming that emergency surgeries have some ORs dedicated for them. We compare the

optimal number of scheduled surgeries and performance with an instance of I = 80 surgeries and

with the base and twice (double) the base rate of emergency cases described in Section 7.1.

Table 5 presents the optimal number of scheduled surgery yielded by the flexible and dedicated

policies. From this table, we first observe that the W-DRO model always schedules more elective

surgeries under the dedicated policy than under the flexible policy. In fact, under the dedicated

policy, the model always schedules 79/80 surgeries irrespective of the cost structure and rate of

emergency cases. In contrast, we schedule fewer surgeries under the flexible policy, especially with

Cost2 (which ignores the idle time cost) and a higher rate of emergency cases. These results

make sense because by allocating an OR for emergency cases, we can accommodate more elective

surgeries, i.e., we can use the capacity of the remaining ORs solely for elective surgeries.

Next, we analyze the simulation performance of these optimal schedules with N ′ = 10, 000

scenarios from the empirical distribution. Table 6 presents the mean and quantiles of overtime

(total OT hours per week) and OR utilization (UT%=available OR time-idle time
available OR time × 100%, where a

larger UT% indicate less idle time and higher utilization rate). From this table, we observe that

there is no clear winner. While the dedicated policy yields significantly lower overtime, it yields a

significantly lower utilization than the flexible policy on average and at all quantiles. This makes

sense because the flexible policy uses some OR capacity for emergency surgeries (which must be

performed), thus mitigating the risk of OR idle time. In contrast, under the dedicated policy, we

perform emergency surgery in different ORs than those dedicated to elective surgery. This could

thus mitigate the risk of overtime in ORs dedicated to elective surgery but potentially lead to idle

time due to the unused capacity of the ORs dedicated to emergency cases.

These results show that the dedicated policy may improve access by scheduling a larger number

of surgery. It may also lead to less overtime but higher idle time than the flexible policy. However,
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Table 6: Simulation performance of optimal schedule of the flexible and dedicated policies. Notation: OT is overtime

and UT=

Base Emergency Rate
Cost1 Cost2

Metric Policy OT UT% Metric Policy OT UT%
Mean Flexible 2.7 63 Mean Flexible 1.3 61

Dedicated 0.7 44 Dedicated 0.8 44

75-q Flexible 3.8 61 75-q Flexible 2.0 61
Dedicated 1.0 43 Dedicated 1.4 44

95-q Flexible 5.9 59 95-q Flexible 3.7 59
Dedicated 2.5 41 Dedicated 2.9 43

Double Emergency Rate
Cost1 Cost2

Metric Policy OT UT% Metric Policy OT UT%
Mean Flexible 4.6 69 Mean Flexible 1.8 66

Dedicated 0.7 44 Dedicated 0.7 44

75-q Flexible 5.9 68 75-q Flexible 2.6 64
Dedicated 1.0 43 Dedicated 1.0 43

95-q Flexible 8.4 66 95-q Flexible 4.3 62
Dedicated 2.5 41 Dedicated 2.5 41

as mentioned in prior literature, dedicating (or opening an OR) for emergency surgery is costly (be-

cause the OR is an expensive resource) and may not be a feasible option (e.g., financial constraints,

etc).

7.7. Block allocation example

In this section, we compare the performance of our proposed W-DSBA model for the surgical block

allocation (SBA) problem (presented in Section 6) and its SP counterpart. For simplicity, we use

SP-SBA to denote the SP model.

For illustrative purposes, we use the data related to Gastro (described in Section 7.1) and

parameter settings from prior literature. Specifically, we consider B = 10 and B = 5 surgical

blocks or ORs, and regular time length of each block is 8 hours. By Min and Yih (2010) and Zhang

et al. (2019), cfb = 800, cob = 780, and cgb = 0. We set the cost of scheduling or rejecting an elective

surgery as described in Section 7.1. Finally, we consider a list of I = 25 Gastro surgeries.

Let us first compare the performance of these models under the perfect distributional informa-

tion case described in Section 7. That is under the case when N (optimization scenarios) and N ′

(simulation scenarios) are sampled from the empirical distribution. Figure 6 presents the mean

(line) and the (shaded) area between the 20% and 80% quantiles of the out-of-sample cost (over 30

optimization and simulation replications). The out-of-sample cost of DRO model is computed for

the best ε determined as described in Section 7.2.

We observe the following from Figure 6. Notably, the W-DSBA mode yields substantially lower

out-of-sample cost than the SP-SBA model under all values of B and N . This is partly because

the W-DSBA model schedules fewer surgeries and opens more blocks than the SP-SBA model to

hedge against ambiguity and overtime. For example, when B = 10, the W-DSBA model opens
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(a) B = 5 (b) B = 10

Figure 6: Out-of-sample performance for SBA

9–10 blocks and schedules 22–25 surgeries, while the SP-SBA model opens 8 blocks and schedules

24–25 surgeries. When B = 5, the DRO model opens all blocks and schedules 11–15 surgeries,

while the SP-SBA model opens all blocks and schedules 13–16 surgeries. In addition, the W-DSBA

decisions result in less overtime, which improve surgical team satisfaction, indirectly mitigate the

risk of canceling surgeries due to overtime, and reduces OR cost. For example, when B = 10

and N = 5, the SP and DRO models’ average OR overtime is 190 and 58 minutes, respectively.

Second, we observe that the out-of-sample cost of the W-DSBA model decrease and converges as

N increases. These results are consistent with the theoretical results in Theorem 1 (see Appendix

C), demonstrating the that W-DSBA model enjoys the asymptotic consistency property.

Next, we analyze the out-of-sample performance under the case when the data we use in the

optimization is biased. Specifically, we investigate the out-of-sample performance of the optimal

solution yielded by the SP-SBA and W-DSBA models using N ′ data sample from a LogN dis-

tribution defined on the same mean and support of the in-sample data. Figure 7 presents the

out-of-sample cost under LogN. It is clear that the optimal solutions of the W-DSBA maintains a

robust performance and yields a significantly lower out-of-sample cost than the optimal solutions

of the SP-SBA model, even when small data set is used in the optimization. These results again

confirm that our DRO approach is effective in environments with limited or no data on random

parameters.

8. Conclusion

In this paper, we proposed DRO models for elective surgery planning in flexible ORs under random

surgery duration. Specifically, we proposed a W-DRO model that determines optimal elective

surgery assigning decisions to available surgical blocks in multiple ORs over a planning horizon

that minimizes the sum of patient-related costs and the worst-case expected cost associated with

overtime and idle time of ORs over all distributions residing in the 1-Wasserstein ambiguity set. We

derived an equivalent MILP reformulation of our min-max W-DRO model. In addition, we extended
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(a) B = 5 (b) B = 10

Figure 7: Out-of-sample performance for SBA missspecified distribution (LogN)

our W-DRO model to determine the number of ORs to open and then surgery assignments to open

ORs. We derived an equivalent MILP of this extension.

Using real-world surgery data, we conduct extensive numerical experiments comparing our ap-

proach with the state-of-the-art approaches, namely the SP approach and a DRO approach based

on mean-support ambiguity (M-DRO). Our results demonstrate that our W-DRO approach (1)

enjoys both asymptotic consistency and finite-data guarantees, (2) yield robust decisions that have

a good out-of-sample performance, especially under limited data and quickly varying distributions

of uncertain surgery duration, and (3) is computationally efficient with solution times sufficient

for real-world implementation. In addition, we investigated the pros and cons of the flexible and

dedicated ORs policies. In particular, our results indicate that we schedule more elective surgeries

under the dedicated policy. However, the dedicated policy yield longer overtime and lower utiliza-

tion (when emergency cases do not materialize). In contrast, under the flexible policy, we schedule

fewer elective surgeries and observe less overtime and better utilization of OR time. Finally, we

show that our proposed W-DABA model for the surgical block allocation problem has superior

out-of-sample performance over the SP model for this problem.

Overall, our results demonstrate that our proposed DRO approach can effectively learn dis-

tributional information even from a small amount of data (e.g., 5 and 10 scenarios). Thus, the

proposed approach is advantageous in ORs with scarce data on surgery duration.

We suggest the following areas for future research. First, we want to extend our approach

by incorporating other multi-modal sources of uncertainty. Second, our model can be considered

as the first step toward building data-driven and robust OR and surgery planning. We aim to

extend our model and build more comprehensive OR and surgery planning models, which consider

all relevant organizational and technical constraints and various sources of uncertainties. Finally,

we aim to incorporate other metrics such as surgery waiting time and model the probability of

canceling surgery and unexpected ORs or surgical teams’ unavailability.
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Appendix A. Proof of Proposition 1

Proof. Recall that P̂Nξ = 1
N

∑N
n=1 δξ̂N . The definition of of Wasserstein distance indicates that

there exist a joint distribution Π of (ξ, ξ̂) such that EΠ[||ξ − ξ̂||] ≤ ε. In other words, for any

Pξ ∈ P(S), we can rewrite any joint distribution Π ∈ P(Pξ, P̂Nξ ) by the conditional distribution of

ξ given ξ̂ = ξ̂n for n = 1, . . . , N , denoted as Qn
ξ . That is, Π = 1

N

∑N
n=1(Qn

ξ × δnξ̂ ). Notice that if we

find one joint distribution Π ∈ P(Pξ, P̂Nξ ) such that
∫
||ξ− ξ̂|| dΠ ≤ ε, then dist(Pξ, P̂Nξ ) ≤ ε. Hence,

we can drop the infimum operator in Wasserstein distance and arrive at the following equivalent

problem.

sup
Qnξ∈P(S),n∈[N ]

1

N

N∑
n=1

∫
S
f(yyy, ξ) dQn

ξ (A.1a)

s.t.
1

N

N∑
n=1

∫
S
||ξ − ξ̂n|| dQn

ξ ≤ ε (A.1b)

Using a standard strong duality argument and letting ρ ≥ 0 be the dual multiplier, we can refor-

mulate problem (A.1) by its dual, i.e.

inf
ρ≥0

sup
Qnξ∈P(S),n∈[N ]

{
1

N

N∑
n=1

∫
S
f(yyy, ξ) dQn

ξ + ρ

[
ε− 1

N

N∑
n=1

∫
S
||ξ − ξ̂n|| dQn

ξ

]}

= inf
ρ≥0

{
ερ+

1

N

N∑
n=1

sup
Qnξ∈P(S)

∫
S

[
f(yyy, ξ)− ρ||ξ − ξ̂n||

]
dQn

ξ

}

= inf
ρ≥0

{
ερ+

1

N

N∑
n=1

sup
ξ∈S
{f(yyy, ξ)− ρ||ξ − ξ̂n||}

}
. (A.2)
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Appendix B. Proof of Lemma 1 Adapted from Jiang et al. (2019) and Theorem 2 in

Fournier and Guillin (2015)

Lemma 1. (Adapted from Jiang et al. (2019) and Theorem 2 in Fournier and Guillin (2015)).

Suppose that Assumption A6 holds. Then there exist none-negative constants c1 and c2 such that,

for all N ≥ 1 and β ∈ (0,min{1, c1}),

PN
{

dist(Pξ, P̂Nξ ) ≤ εN (β)} ≥ 1− β

where Pnξ represents the product measure of N copies of Pξ and εN (β) =
[

log(c1β−1)
c2N

] 1
max{3p,n}

Proof. For completeness, in what follows, we provide the proof of Lemma 1 of Jiang et al. (2019)

as detailed in their paper, which is adapted from Theorem 2 in Fournier and Guillin (2015).

First, given that the support is finite and compact (Assumption A6), then there exists α > p

and γ > 0 such that EPξ [exp{γ||ξ||αp }] <∞. By Theorem 2 of Fournier and Guillin (2015), for any

N ≥ 1 and ε ∈ (0,∞), there exists positive constants c and C depending only on p, n, α and γ

such that

PNξ
(

dist(Pξ, P̂Nξ ) ≥ ε1/p
)
≤ a(N, ε)1(ε≤1) + b(N, ε),

where

a(N, ε) = C


exp

{
−cNε2

}
if p > n/2

exp
{
−cN(ε/ log(2 + 1/ε))2

}
if p = n/2

exp
{
−cNεn/p

}
if p ∈ [1, n/2)

(B.1)

and b(N, ε) = C exp{−cNεα/p}1(ε>1), where n is the dimension of the random vector ξ. Second, to

derive bounds on a(N, ε) and b(N, ε), we discuss the following two cases based on the value of ε

Case 1. ε ∈ (0, 1]. Note that [
ε

log(2 + 1/ε)

]2

≥ ε3

[log(3)]2
,

It follows that ε[log(2 + 1/ε)]2 ≤ [log(3)]2. Thus, we can have the following upper bound on

a(N, ε)

a(N, ε) ≤ C exp

{
− c

[log(3)]2
Nεmax{3,n/p}

}
.

Case 2. ε > 1. Take α = max{3p, n} > p. It follows that

b(N, ε) ≤ C exp
{
−cNεmax{3,n/p}

}
.

Summarizing the above two cases and letting c1 = C and c2 = c/[log(3)]2, we derive

PNξ
(

dist(Pξ, P̂Nξ ) ≥ ε1/p
)
≤ c1 exp

{
−c2Nε

max{3,n/p}
}
,
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By equating the right hand side of the last inequality to β and solving for ε1/p, we obtain ε =

[(c2N)−1 log(c1β
−1)]−max{3,n/p}−1

. Plugging this expression to the last inequality, we get the desired

result. Note that in our ambiguity set p = 1.

Appendix C. Proof of Asymptotic Consistency

Theorem 1. (Asymptotic consistency, adapted from Jiang et al. (2019) and Theorem 3.6 of Moha-

jerin Esfahani and Kuhn (2018)). Suppose that Assumption A6 holds. Consider a sequence of con-

fidence levels {βN}N∈R such that
∑∞

N=1 βN <∞ and limN→∞ εN (βN ) = 0, and let (ŷ(N, εN (βN ))

represents an optimal solution to W-DRO with the ambiguity set F(P̂Nξ , εN (βN )). Then, P∞ξ - al-

most surely we have Ẑ(N, εN (βN )) → Z∗ as N → ∞. In addition, any accumulation points of

{ŷ(N, εN (βN )}N∈N is an optimal solution of (4) P∞ξ - almost surely

Proof. Recall the dual of f(y,ξξξ).

f(y,ξξξ) := max
β

{∑
b∈B

(∑
i∈I

diyi,b + eb − Lb
)
βb

}
s.t. β ∈ B = {−cgb ≤ βb ≤ c

o
b}

First, for fixed yyy ∈ Y, this is an LP in β. Note that B is bounded and Y is a bounded set, which

implies that f(y,ξξξ) is finite and bounded. It follows that we have |f(y,ξξξ)| ≤ M(1 + ‖ξξξ‖), where

M is an upper bound on f(·). Second, we claim that f(y,ξξξ) is continuous on Y. For simplicity,

write the objective function of the dual problem as b(y,ξξξ)>β, where the b-th entry of b(y,ξξξ) is the

coefficient associated to βb. By fundamental theorem of LP, instead of maximizing over the entire

B, we can maximize over the set of finite extreme points of B. Hence, f(y,ξξξ) is the maximum of

finite number of linear functions of y and ξξξ and the continuity follows. Indeed, we can show that

for fixed yyy ∈ Y, f(y,ξξξ) is Lipschitz in ξξξ. Let (ξξξ1, ξξξ2) ∈ S. Then,

f(y,ξξξ1)− f(yyy,ξξξ2) = max
β∈B

b(y,ξξξ1)>β −max
β∈B

b(y,ξξξ2)>β ≤ max
β∈B

[b(y,ξξξ1)− b(y,ξξξ2)]>β

≤ max
β∈B
||β||q||b(y,ξξξ1)− b(y,ξξξ2)||p, (C.2)

where the last inequality follows from Holder’s inequality. Notice that maxβ∈B ||β||q is bounded

since B is bounded. Since p ≥ 1, then for any b ∈ B, yyy ∈ Y and ξξξ1, ξξξ2 ∈ S

fb(y,ξξξ
1)− fb(y,ξξξ2) = max

β∈B

{(∑
i∈I

d1
i yi,b + e1

b − Lb
)
βb

}
−max

β∈B

{(∑
i∈I

d2
i yi,b + e2

b − Lb
)
βb

}

≤ max
β∈B

{(∑
i∈I

d1
i yi,b + e1

b − Lb
)
βb −

(∑
i∈I

d2
i yi,b + e2

b − Lb
)
βb

}
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= max
β∈B

βb[(ddd
1 − ddd2) + (e1

b − e2
b)]

≤ max
β∈B
||β||q||ξξξ1 − ξξξ2||p (C.3)

= C||ξξξ1 − ξξξ2||p (C.4)

(C.5)

where C = maxβ∈B βb and the last inequality follows from Holder’s inequality. This verifies that

f(y,ξξξ) is Lipschitz in ξξξ. Finally, the result follows directly with p = 1 from Theorem 3.6 of

Mohajerin Esfahani and Kuhn (2018), where the required conditions are shown.

Appendix D. Proof of Finite-data guarantee

Theorem 2. (Finite-data guarantee, adapted from Jiang et al. (2019) and Theorem 3.5 in Mo-

hajerin Esfahani and Kuhn (2018)). For any β ∈ (0, 1), let ŷ(N, εN (βN )), represent an optimal

solution of W-DRO with ambiguity set F(P̂Nξ , εN (βN )). Then,

PNξ
{
EPξ [f(ŷ(N, εN (βN ), ξ)] ≤ Ẑ(N, εN (βN ))

}
≥ 1− β.

Proof. (adapted from Jiang et al. (2019)). By Assumption A6 on the suppprt S and Lemma 1 all

conditions of Theorem 3.5 in Mohajerin Esfahani and Kuhn (2018) are satisfied. Therefore, the

conclusions of Theorem 2 hold valid.
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Appendix E. Moment Model (M-DRO)

In this section, we drive a DRO model for DSA based on the known mean and support (S) of

random parameters (we denote this model as M-DRO). The mean-support ambiguity set has been

extensively employed in the healthcare scheduling literature for the following two primary reasons.

First, from a clinical point of view and as reported in several studies, the mean µ, upper and

lower bounds of surgery duration are intuitive statistics that can be easily approximated based on

clinicians or OR manager experiences or from available data. Second, incorporating higher moments

often undermines the DRO model’s computational tractability, and therefore its applicability in

practice. We remark that there is no mean-support DRO model for the specific surgery planning in

flexible ORs problem that we study in this paper (see Section 2).

Let us introduce some additional notation defining our M-DRO model. First, we let µd and µe

represent the mean values of ddd and eee, respectively, and denote µ := EP[ξ] = [µd, µe]> for notational

brevity. Then, we consider the following mean-support ambiguity set F(S, µ):

F(S, µ) :=

{
P ∈ P(S)

∣∣∣∣∣
∫
S dP = 1

EP[ξ] = µ

}
, (E.1)

where P(S) in F(S, µ) represents the set of probability distributions supported on S with mean

µ. Using the ambiguity set F(S, µ), we formulate M-DRO as the following min-max problem:

min
yyy∈Y

{∑
i∈I

∑
b∈[B]∪{b′}

ci,byi,b + sup
P∈F(S,µ)

EP[f(yyy, ξ)]

}
. (E.2)

Next, we derive an equivalent reformulation of problem (E.2) that is solvable. We first consider

the inner maximization problem sup
P∈F(S,µ)

EP[f(yyy, ξ)] for a fixed first-stage decision yyy ∈ Y, where P is

the decision variable, i.e., we are choosing the distribution that maximizes EP[f(x, ξ)]. For a fixed

yyy ∈ Y, we can formulate this problem as the following linear functional optimization problem.

max
P≥0

∫
S
f(yyy, ξ) dP (E.3a)

s.t.

∫
S
di dP = µdi , ∀i ∈ [I], (E.3b)∫

S
eb dP = µeb, ∀b ∈ [B], (E.3c)∫

S
dP = 1. (E.3d)

Letting ρρρ = [ρ1, . . . , ρI ]
>, ααα = [α1, . . . , αB]>, and θ be the dual variable associated with con-

straints (E.3b), (E.3c), and (E.3d), respectively, we present problem (E.3) in its dual form:

min
(ρρρ,ααα),θ∈R

{∑
i∈I

µdi ρi +
∑
b∈B

µebαb + θ

}
(E.4a)
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s.t.
∑
i∈I

diρi +
∑
b∈B

ebαb + θ ≥ f(yyy,ddd,eee), ∀(ddd,eee) ∈ S, (E.4b)

where ρρρ, ααα, and θ are unrestricted in sign, and constraint (E.4b) is associated with the primal

variable P, and strong duality hold between (E.3) and (E.4) (see Bertsimas and Popescu (2005);

Shapiro et al. (2014)).

Note that for fixed (ρρρ,ααα, θ), constraints (E.4b) are equivalent to θ ≥ max
(d,ed,ed,e)∈S

{f(yyy,ddd,eee)−(
∑P

i=1 diρi+∑
b∈B ebαb)}. Since we are minimizing θ in (E.4), the dual formulation of (E.3) is equivalent to:

min
(ρ,α)

{∑
i∈I

µdi ρi +
∑
b∈B

µebαb + max
(d,e)∈S

{
f(y, d, e)− (

∑
i∈I

diρi +
∑
b∈B

ebαb)
}}

(E.5)

Using the dual formulation of f(y, d, e) in (11) and the same techniques we used to derive (14), we

derive the following equivalent reformulation of (E.5).

min
(ρ,αρ,αρ,α)

{∑
i∈I

µdi ρiyi,b +
∑
b∈B

µebαb +
∑
b∈B

ηb

}
(E.6a)

s.t. ηb ≥
[∑
i∈I

diyi,b + eb − Lb
]
(cob)− (

∑
i∈I

diρiyi,b + ebαb), ∀b ∈ [B], (E.6b)

ηb ≥
[∑
i∈I

diyi,b + eb − Lb
]
(cob)− (

∑
i∈I

diρiyi,b + ebαb) ∀b ∈ [B], (E.6c)

ηb ≥
[∑
i∈I

diyi,b + eb − Lb
]
(−cgb)− (

∑
i∈I

diρiyi,b + ebαb), ∀b ∈ [B], (E.6d)

ηb ≥
[∑
i∈I

diyi,b + eb − Lb
]
(−cgb)− (

∑
i∈I

diρiyi,b + ebαb), ∀b ∈ [B], (E.6e)

ηb ≥
[∑
i∈I

diyi,b + eb − Lb
]
(cob)− (

∑
i∈I

diρiyi,b + ebαb), ∀b ∈ [B], (E.6f)

ηb ≥
[∑
i∈I

diyi,b + eb − Lb
]
(cob)− (

∑
i∈I

diρiyi,b + ebαb), ∀b ∈ [B], (E.6g)

ηb ≥
[∑
i∈I

diyi,b + eb − Lb
]
(−cgb)− (

∑
i∈I

diρiyi,b + ebαb), ∀b ∈ [B], (E.6h)

ηb ≥
[∑
i∈I

diyi,b + eb − Lb
]
(−cgb)− (

∑
i∈I

diρiyi,b + ebαb), ∀b ∈ [B]. (E.6i)

Combining the inner maximization problem in the form of (E.6) with the outer minimization

problem in (E.2), we derive the following equivalent reformulation of the M-DRO model in (E.2)

as follow

min

{∑
i∈I

∑
b∈B∪{b′}

ci,byi,b +
∑
i∈I

µdi ρiyi,b +
∑
b∈B

µebαb +
∑
b∈B

ηb

}
(E.7a)

s.t. yyy ∈ Y, (E.6b)− (E.6i) (E.7b)
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Note that the objective function (E.7a) and constraints (E.6b)–(E.6i) contains the interaction

terms ρiyi,b with binary variables yi,b and continuous variables ρi. To linearize, we define ki,b = ρiyi,b

and introduce the following McCormick inequalities for variables ki,b, for all i ∈ [I] and b ∈ [B]

ki,b ≥ ρiyi,b ki,b ≥ ρi(yi,b − 1) + ρi (E.8a)

ki,b ≤ ρiyi,b ki,b ≤ ρi(yi,b − 1) + ρi (E.8b)

where ρ
i

and ρi are respectively valid lower and upper bounds on variables ρi, for all i ∈ [I].

Accordingly, formulation (E.7) is equivalent to the following MILP:

min

{∑
i∈I

∑
b∈B∪{b′}

ci,byi,b +
I∑
i=1

µdi ki,b +
∑
b∈B

µebαb +
∑
b∈B

ηb

}
(E.9a)

s.t. yyy ∈ Y, (E.6b)− (E.6i), (E.8a)− (E.8b) (E.9b)
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Appendix F. The Sample Average Approximation (SAA) Formulation

min
yyy∈Y

{∑
i∈I

∑
b∈B∪{b′}

ci,byi,b +
N∑
n=1

1

N

[∑
b∈B

(
cobo

n
b + cgbo

n
g

)]}
(F.1a)

s.t. onb − gnb =
∑
i∈I

dni yi,b + enb − Lb, ∀b ∈ B, ∀n ∈ [N ], (F.1b)

(onb , g
n
b ) ≥ 0, ∀b ∈ B, ∀n ∈ [N ]. (F.1c)

Appendix G. Effect of ε, I = 80 Surgeries

(a) N = 5 (b) N = 10

(c) N = 50

Figure G.8: Out-of-sample performance as a function of the Wasserstein radius for an instance of I = 80 under Cost1
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(a) N = 5 (b) N = 10

(c) N = 50 (d) N = 100

Figure G.9: Out-of-sample performance as a function of the Wasserstein radius for an instance of I = 80 under Cost2
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