University of Antwerp
u I Faculty of Business
and Economics

DEPARTMENT OF ENGINEERING MANAGEMENT

Scattered storage assignment: mathematical model and valid
inequalities to optimize the intra-order item distances

Harol Mauricio Gamez Alban, Trijntje Cornelissens & Kenneth Sérensen

UNIVERSITY OF ANTWERP

Faculty of Business and Economics
City Campus

Prinsstraat 13, B.226

B-2000 Antwerp

Tel. +32 (0)3 265 40 32

www.uantwerpen.be

AACSB

ACCREDITED

http://www.uantwerpen.be/

FACULTY OF BUSINESS AND ECONOMICS

DEPARTMENT OF ENGINEERING MANAGEMENT

Scattered storage assignment: mathematical model and valid
inequalities to optimize the intra-order item distances

Harol Mauricio Gamez Alban, Trijntje Cornelissens & Kenneth Sérensen

RESEARCH PAPER 2020-008
NOVEMBER 2020

University of Antwerp, City Campus, Prinsstraat 13, B-2000 Antwerp, Belgium
Research Administration — room B.226
phone: (32) 3 265 40 32
e-mail: joeri.nys@uantwerpen.be

The research papers from the Faculty of Business and Economics
are also available at www.repec.org
(Research Papers in Economics - RePEc)

D/2020/1169/008

mailto:joeri.nys@uantwerpen.be
http://www.repec.org/

Scattered storage assignment: mathematical model and
valid inequalities to optimize the intra-order item
distances

Harol Mauricio Gadmez Alban*, Trijntje Cornelissens, Kenneth Sérensen

ANT/OR - Operations Research Group, Department of Engineering Management,
University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium

Abstract

Under a scattered storage policy, a single stock-keeping unit is stored in dif-
ferent locations throughout the warechouse. This policy aims to reduce travel
times during order picking since it increases the probability of finding items
belonging to the same order in nearby locations. Such type of storage policy
is adequate for a typical e-commerce environment where a large variety of
products are ordered in small quantities. The assignment of single items to
different storage locations in the warehouse results in the scattered storage
assignment problem. This paper proposes an exact algorithm for this prob-
lem that minimizes the sum of pairwise distances between the locations of
the items belonging to the same order. We develop a mixed-integer model
with different sets of valid inequalities (cuts) and test their performance on a
set of data instances. Computational results show that the valid inequalities
improve our model’s objective function value by 32% compared to the ini-
tial formulation. Finally, we prove that the pairwise distance between items
of the same order and the picker routing distances are better for our stor-
age allocation policy than a more traditional storage allocation and random
storage policy.

Keywords: Logistics, scattered storage, e-commerce, mathematical
optimization, valid inequalities

*Corresponding author
Email addresses: mauricio.gamezalban@Quantwerpen.be (Harol Mauricio Gdmez
Albén), trijntje.cornelissens@uantwerpen.be (Trijntje Cornelissens),
kenneth.sorensen@uantwerpen.be (Kenneth Sérensen)

Preprint submitted to Elsevier November 23, 2020

1. Introduction

E-commerce has been growing considerably in recent years. By 2021 on-
line sales will have grown more than 40% compared to projected sales for
2019 (Beeketing (2019))). This forces companies to be attentive to the needs
of this e-commerce market and to synchronize and optimize their logistics
processes. Some of the most important challenges are the small order quan-
tities, large assortment, scalability, and tight delivery schedule that charac-
terize the e-commerce supply chain (Weidinger| (2018b)). Consequently, the
challenges in the warehouse management processes (receiving, storage, order
picking, and shipping) are increasingly relevant. According to Bartholdi IIT
and Hackman| (2019)), order picking is responsible for about 55% of warehouse
operating costs.

Because order picking is the most expensive process in a warehouse, the
storage allocation process must be considered (Bartholdi III and Hackman
(2019)). Indeed, one of the most critical warehouse management activities is
defining the products’ positions (slotting). Historically, slotting aims to max-
imize the use of available space within a warehouse while reducing handling
costs (any expenditure of moving the goods into or out of the warehouse)
(Bureau (2011)). However, due to the rise of e-commerce, it is expected
that new storage strategies may be more useful than conventional methods.
To face these new challenges, the concept of scattered storage appears as a
possible alternative solution. Scattered storage consists of unbundling unit
loads in the receiving area and storing single stock-keeping units (SKU) at
different positions within the warehouse to increase the probability of finding
an item close by during order picking (Weidinger (2018b)).

The optimization problem that aims to assign a single item type to dif-
ferent storage locations in the warehouse is called the scattered storage as-
signment problem (SSA). The first formulation for the SSA is introduced by
Weidinger and Boysen| (2018) to reduce walking time. The authors propose
a mathematical formulation that defines the positions of the products (single
items) around the warehouse, such that the maximum distances of SKUs
to some measuring point are minimized. The concept of measuring point
(introduced by the authors) is a predetermined location in the warehouse,
from which the distances to the closest item of each SKU are determined.
They prove that their SSA algorithm outperforms random storage assign-

ments (which are the most typical assignments in real-world situations) in
terms of the picking effort.

Although there are not many references that study the concept of SSA
itself, some study a similar concept, e.g., random storage, where the prod-
ucts are randomly allocated in the warehouse. In this case, the products
can be scattered throughout the warehouse. [Scholz et al.| (2016) emphasize
that storage allocation methods have a significant impact on the tour lengths
during order picking. Theys et al.| (2010) and [Pansart et al. (2018)) compare
their picker-routing algorithms in two types of storage policies, "random” and
"volume-based”. Under a volume-based policy, twenty percent of the most
demanded items are located near the first cross aisle. Both articles conclude
that the volume storage policy improves the picking walking time. Con-
cerning SSA, Weidinger| (2018al) shows that scattered storage helps minimize
travel distance when the pick list is more heterogeneous, and the quantities
requested by each item are not too high. |Weidinger et al.| (2019) analyze how
much the size of orders affects the travel times of the pickers in a scattered
storage policy. The authors identify the turning points (percentage of items
demanded by online orders) where scattered storage may be more convenient
over dedicated storage or vice versa.

Notwithstanding the papers mentioned above, there is still a lack of re-
search on the SSA problem. In their survey, Boysen et al. (2019) address
the issue of mixed-shelves (different types of items are stored in the same
position) as a scattered storage strategy. They find that scientific decision
support for mixed-shelves warehouses, e.g., on how to position mixed-shelves,
is non-existent. [Van Gils et al| (2018), on the other hand, present an ex-
haustive literature review on the integration of the different processes in a
warehouse. They identify that the interrelationships to define storage loca-
tion assignments, batching, and routing policies have not received sufficient
research attention.

This paper aims to introduce a new scattered storage assignment policy
that seeks to minimize the sum of the pairwise distances (SPD) between the
positions of items belonging to the same order. We will refer to this problem
as the scattered storage assignment problem with pairwise distances (SSA-
SPD).

The contributions of this paper are the following:

1. the SSA policy based on the SPD is introduced;
2. a mathematical programming formulation for the SSA-SPD problem is

developed;

3. different classes of valid inequalities are introduced to strengthen the
initial formulation;

4. benchmark instances are generated to test the solution method’s per-
formance with different combinations of valid inequality classes;

5. the SSA-SPD policy is compared to a standard storage policy in which
products of the same type are stored in close positions.

This paper is organized as follows: In Section 2, we describe the SSA-SPD
problem and introduce the initial mathematical formulation. In Section 3,
we present our valid inequalities. In Section 4, we describe the instances and
compare the mixed integer linear programming solver results for the different
models. Section 5 concludes the paper.

2. Problem description

2.1. Problem definition

In this paper, the SSA-SPD is defined as follows: Given a set of available
storage positions and a set of orders containing multiple products in different
quantities, what should be the storage location for each product of each order
to minimize the SPD between the products of the same order? Additionally,
the SSA-SPD takes into account the following characteristics:

e Only one type of product can be assigned to each storage position.

e Every single storage position has a predefined capacity for each type of
product.

e The shortest pairwise distances between positions are known.

e For each product, the quantity requested by a single order must be
retrieved from a single position.

Each item of each order has to be assigned to a position in the warehouse,
taking into account the constraints mentioned above. We assume that the
orders taken into account in the SSA-SPD problem are created based on
historical analogy, and represent combinations of items (product type and
quantity) frequently ordered. The SPD is expected to be larger than the
walking picker distance since SPD compares the distances between all pos-
sible connections between positions of the same order. In contrast, in the

4

walking picker distance, each position is only compared with one position
instead of all positions of the same order. We can say the SPD is only an
approximation of the pickers’ actual walking distance.

2.2. Initial formulation

Let K be a set of orders, where K = {1,...,n}. The set I refers to the
type of products, where I = {1,...,m}. Finally, let S be the set of storage
positions, where S = {1,...,p}.

Three parameter sets are included in this formulation. The first one, wu;,
defines the quantity requested by order k for product i. The second is Q);s,
which defines the capacity of position s when it is used to store product .
The third one is 7., which represents the distance between storage positions
s and r.

Decision variable x;4 is equal to 1 if product 7 is stored in position s, and
0 otherwise. Variable y;s is equal to 1, if an item ¢ is assigned to storage
position s to meet the demand of order k, and 0 otherwise. Finally, to identify
if the storage positions s and r are assigned to order k, the binary variable
Ve 18 equal to 1 if both storage positions belong to the same order, and 0
otherwise. Using these definitions, the SSA-SPD problem can be defined as
follows:

z = min Z szrk%r (1)

(s,r)eS keK
» mi <1 Vs e S 2)
i€l
Zyiskzl Viel, ke K, uy >0 (3)
seS
Z YiskUik < TisQis Viel,selS (4)
keK
Z(yzsk + yzrk) -1 S Vsrk V<S7T) < S|S >, ke K (5)
iel
Yisk, Tis, sk € {0, 1} Viel, (s,r)eS,ke K (6)

The objective function (/1)) minimizes the SPD. Constraints (2f) allow stor-
ing only one type of product in each position. Restrictions guarantee that
all products demanded by each order are stored in a single position. Con-
straints guarantee that the storage capacity of every position is never

5

exceeded. Constraints define whether the pair of positions s and r is
used by order k. Finally, binary variables are defined in constraints @

3. Valid inequalities

In this Section, two groups of valid inequalities are proposed to enhance
the previous formulation when relaxing some of the binary variables. The
first group of valid inequalities concerns the possible values that each binary
variable can take. The second group of inequalities is derived from the lifted
cover inequalities developed for different 0-1 linear programs (Balas| (1975))).

In addition to the inclusion of valid inequalities, the variables v, and
become unrestricted to take any value between 0 and 1. The fact of keeping
the variable y;4; as an integer, guarantees that the variable vy, is integer too,
due to the restriction . However, variable x;4, although also restricted by
the variable y;s in the restriction (4]), could still take non-integer values.

In general, this method is quite useful since it is not necessary to solve the
integer problem, but instead, by relaxing certain variables, solutions can be
reached more efficiently. The complication of this method is that non-feasible
solutions can be chosen, so it is necessary to add some valid inequalities
that facilitate the elimination of non-integer solutions. The sets of valid
inequalities are meant to face this problem.

3.1. Initial valid inequalities

A valid inequality for a mixed-integer program is any constraint that tries
to remove parts of the LP feasible region but does not eliminate any feasible
integer solutions. It is also called a cutting plane or cut.

In this section, we construct the valid inequalities that represent the char-
acteristics of complete graphs. Indeed each order can be represented by a
complete graph, in which each node symbolizes the position of the items
requested.

Complete graphs have some properties that can be used to create a set
of valid inequalities for the SSA-SPD problem. For example, in each graph,
the total number of edges (F) can be computed using the following formula:
@ = FE, where n is the total number of nodes (positions) in each graph
(order). Considering the previous property and the number of positions that
each order needs (which is known), we can define four parameter sets that
can be used to create new valid inequalities.

We define parameter mif,, to be the total number of edges (F) in each
order k. Parameter min, represents the number of product types that an
order k requests. Parameter mu; is defined as the number of orders request-
ing product type i. Parameter muis; is defined as the minimum number of
positions that the product type i requires.

Using the parameters defined above, the next constraints are valid for the
initial formulation:

SN yisk = min Vk e K (7)

i€l seS
Z Z Yisk = MU; Viel (8)
seS keK
ins > muis; Viel 9)
SES
(ming — 1)

DD Uk =y D D Yk VREK (10)
SES res icl seS

Z (Usrk + Ursk) = (man - 1) Zyzsk \V/S - S,]{I - K (11)
resS|s#r i€l
SN v = mifi Vk e K (12)
seS resS
Yisk < Tis Viel,seSke K (13)

Restrictions establish a minimum number of positions for each order.
Constraints and @D force to strictly comply with the number of positions
required for each type of product. Constraints — relate variables x;
and v, and force them to take specific values according to the number of
type of products requested by each order. Constraints result from the
graph-theoretical property mentioned above. Finally, constraints impose
on the variable x;; to take integer values. This constraint is important since
;s 15 relaxed and has the freedom to take fractional values but will not
do so since y;q is an integer variable. In the end, when solving the initial
formulation with this type of inequalities, restrictions — and @—
are applied together.

3.2. Knapsack cover inequalities
Our second group of inequalities derives from the knapsack problem. A
set of items, each with a weight and a profit, must be selected to maximize

7

the total benefit of the chosen items while respecting the knapsack’s total
capacity. The SSA-SPD has a similar structure to the knapsack problem
since the product type, and associated order quantities must be assigned to
each position while respecting its capacity.

The set of valid inequalities proposed in this section are related to the
new lifting procedure developed by [Letchford and Souli (2019b) for the knap-
sack problem. In the SSA-SPD, we generate cover constraints for each pair
location-product (s,7) to check whether product i can be stored in slot s.
These cuts aim to define at least one facet of the polytope generated by this
problem’s knapsack restrictions.

In the SSA-SPD, we define the concept of minimal cover C;, as the set
of orders k that can store their product ¢ in position s without exceeding
its capacity. For example, suppose orders 1, 2, 3, and 4 demand product
1 quantities 2, 1, 2, and 3, and the capacity of position s for product i is
4. According to this information, a maximum of two orders can be stored
in that position, which implies that |Cjs] = 2. In short, the most robust
cover inequalities are obtained when C' is minimal (see Letchford and Souli
(2019a)).

Let C;s be a minimal cover if product 7 is stored in position s. The valid
knapsack inequality that can be applied is the following:

Y ik <|Ci| Vielses (14)
keCis
For w ={1,...,|Cil|}, let G(w) be the sum of the w smallest u;; values over

the members of Cj,, then the next constraint is also valid for the SSA-SPD:

Z QiskYisk + Z Yisk S ‘Czs‘ Vi € [7 s € S (15>
k‘EK\CiS kec’is

Where «;g, is a parameter calculated as follows: if u;, + G(w) > Qs Vi €
I,k € K\Cjs then, ayp = |Cis| — w. On the other hand, if uy > Q;s Vi €
I,k € K\Cjs then, ay = 0.

This second set of valid inequalities works quite well for the SSA-SPD.
This performance is because the products that are outside the minimal cover
can be affected by a much larger parameter, making the selection space for
the y;sx variable more bounded.

On the other hand, if for a certain pair of different orders k£ and j, position
s, and product i the following codifications are met: gz, + as; < |Cis| and

8

Wik + Ui > Qis, then increase by one both parameters oy, and o, and the
minimal cover |Cys|. This resulting inequality is also valid for the SSA-SPD,
and it is at least as strong as :

Z)\iskyisk + Z Yisk S |Czs| + 1 Vi € Ia s € S (16)
keK\Cis keCis

where \;;x = a4+ 1 for all those products, orders and positions that met the
previous condition. When applying these types of inequalities, restrictions

and [15H{16] are applied together.

4. Numerical experiments

In this section, we describe the numerical experiments. Section 4.1 de-
scribes the instance generation, while Section 4.2 is dedicated to the main
results obtained by applying the different set of cuts developed in Section 3.

4.1. Instances generation

Unfortunately, no established testbed for the SSA-SPD exists. This Sec-
tion explains how our test instances have been generated. The process to
create the set of instances is as follows: The products that each order will
request are selected with a probability of 50%. The quantity demanded per
product is discrete uniformly distributed over [0,5], where 0 means that the
order does not require the item ¢. The storage capacity of each position for
the different types of products is generated discrete uniformly over [0,10],
where 0 means that the position cannot store the item.

After generating all the orders, it is verified which orders request more
than 60% of the product types. If this is the case, the products with the
highest demand are eliminated until no order contains more than 60% of
the types of the product. For example, suppose there is a portfolio of ten
products. For a specific order, the product quantities are 2, 1, 2, 3, 0, 7,
5, 6, 0, and 4, meaning 80% of the types of products are requested. In this
case, the types of products numbers 6 and 8 are eliminated for that specific
order. Due to the complexity of the SSA-SPD and the difficulty of achieving
the optimal solution, only small data sets are included in the experiments.
Table [1f shows the parameters used for the 20 instances tested in this paper.

The experiments executed in this article are carried out, taking into ac-
count a traditional parallel aisles warehouse layout (Figure . This type of
layout has the following characteristics:

9

Instance | # Positions # Orders +# Type of products | Total demand
1 56
2 140
3 20 10 10 130
4 125
5 143
6 110
7 163
8 130
9 20 15 10 96
10 155
11 157
12 154
13 176
14 203
15 30 15 10 161
16 228
17 242
18 183
19 80 25 15 392
20 455

Table 1: Instances description

e Picking aisles are straight and parallel to each other.

o [f present, cross aisles are straight and meet the picking aisles at right
angles.

e Positions are unique in terms of geographic location, which implies no
positions on top of each other.

In total, we generated 20 instances, which vary between 20, 30, and 80
positions; 10, 15, and 25 orders, and finally, between 10 and 15 types of
products.

4.2. Results

The experiments described in this section aim to test the impact of the
valid inequalities on the instances solved.

10

{ross 558

[rogs

Figure 1: Warehouse layout

First, we use the solver Cplex in its standard configuration on the initial
model without valid inequalities. Then, we solve for the same instances, the
other models with different combinations of valid inequalities. We evaluated
the following models:

Model I: Initial formulation (constraints: ([I)-(6]))

Model II: Initial formulation including only the first set of valid in-

equalities (constraints: (T1))-(L3)))

Model III: Initial formulation including the second set of valid inequal-

ities (constraints: (I))-(6), and (L5)-(16))

Model IV: Initial formulation including both sets of valid inequalities

(constraints: ([I)-(13), and (15)-(16))

Model V: Initial formulation, relaxing the variables x;; and vy, and
including the first set of valid inequalities (constraints: —, and

@-([3))

Model VI: Initial formulation, relaxing the variables ;s and vy, and
including the second set of valid inequalities (constraints: —, and

(19)-(13))

11

e Model VII: Initial formulation, relaxing the variables z;; and v, and
including both sets of valid inequalities (constraints: (I)-(5), (7)-(?7?),

and ([15)-(16))

The experiments have been performed on an Intel(R) Core(TM) i7-8850H,
2.60 GHz, 16.00 GB of RAM. The mathematical formulation has been coded
in C++ using Cplex 12.9 with the default settings, and maximum computing
time of one hour.

4.2.1. Comparison of valid inequalities

Instance I II 11 1Y A% VI* VII

1 37 37 37 37 37 37 37

2 311 303 294 295 245 179 241

3 212 235 274 210 177 144 181

4 163 176 182 151 159 148 157

5 298 243 297 243 237 154 237

6 113 93 104 93 93 88 93

7 315 279 N/sln 271 271 251 271

8 201 146 181 160 147 96 123

9 87 90 86 90 72 66 70
10 313 288 274 350 290 242 271
11 230 227 230 227 227 141 227
12 N/sln 313 412 309 303 189 315
13 334 365 398 352 274 236 256
14 756 569 647 554 428 315 451
15 415 303 239 273 219 174 203
16 1072 723 1001 1041 679 517 496
17 N/sln 996 N/sln N/sln 893 777 888
18 253 249 280 262 191 177 183
19 4427 N/sln 4132 5816 5863 1690 5471
20 3279 N/sln 3842 N/sln N/sln 1302 4153
Avg. 318 270 302 289 232 181 215
Imprv(%). - 15.1 5.0 9.1 27.0 43.1 324

Table 2: Sum of the pairwise intra-order item distances obtained after calculation time (<
1 hour)

12

Table [2l shows the initial results for each instance in terms of the SPD.
The last row of the table is the SPD average of the solutions obtained using
each model. This value is calculated, taking into account only instances that
have feasible solutions for all the models. So the results of instances 7, 12, 17,
19, and 20 are not considered in the average because not all models resulted
in a feasible solution for those instances. Model VI does not yield any feasible
solutions since the results of the variables are fractional. The reason is that
only the cuts related to the second group of valid inequalities do not force
the variables z;, to strictly take integer values, as it happens when using the
first group of valid inequalities.

Model VII is most effective since it obtained an average value of 215, a
smaller value than the other models. Model V gets the second-best result
with an average value of 232. The results for models 1T and IV (without
relaxing variables) show the first group of valid inequalities’ effectiveness.
These valid inequalities help to reduce the polyhedral structure of the initial
formulation and, therefore, are much more effective in finding good solutions.
However, by including the valid inequalities in models II, ITI, and IV, the
results improve considerably compared to the initial formulation.

Moreover, the combination of both sets of valid inequalities works much
better when the variables are relaxed. When the integer variables are not
relaxed, the combination of both sets of inequalities is not as effective in
comparison with only using a single set of valid inequalities, as seen in the
average solutions obtained by models II and IV. The opposite happens when
the variables are relaxed (models V and VII). In this case, the combination
of both sets of inequalities does help to improve the results.

We notice that in the case of the largest instances (19 and 20), some
models struggled to find feasible solutions. Models I-IV failed in 2 out of 20
instances in obtaining at least one feasible solution, while model V failed in
only one instance, and model VII solved all instances. We also see that the
results obtained by the models that include relaxation of variables are better
compared to those that do not include it. These results imply that relaxing
variables and then forcing their values to binary (0-1) with valid inequalities
is a useful strategy to improve the tested instances. Finally, the last row of
the table shows that all models (except VI, not feasible) improved the initial
formulation results between 5% and 32%.

Table [3| shows the optimality gap reported by Cplex, which is the differ-
ence between the solution reached after the maximum computation time and
the linear relaxation. Models V and VII had the lowest average optimality

13

Instance I II IIT v Vv VI* VII

1 56.76 0 59.46 0 0 48.65 0

2 68.72 40.90 72.01 39.53 29.16 4548 24.42
3 71.44 39.60 73.33 31.75 21.41 51.51 22.55
4 48.08 19.98 51.77 540 13.78 36.55 10.83
) 67.50 13.20 68.58 12.10 0 23.37 0
6

7

8

63.98 0 62.50 0 0 4318 0
93.75 993 N/sln 997 7.09 97.56 6.65
98.51 3596 99.45 41.27 39.53 88.02 27.28
9 95.40 29.53 97.09 2991 23.82 79.55 9.75
10 73.63 45.11 70.57 55.81 46.30 95.46 41.20
11 59.77 0 41.47 0 0 93.74 1.81
12 N/sln 28.08 81.92 26.08 21.08 62.30 30.72
13 96.86 42.55 100 40.26 27.94 96.61 23.18
14 99.17 55.72 100 54.51 44.64 96.30 47.36
15 98.19 44.15 100 38.24 29.61 97.70 24.09
16 99.30 62.44 100 73.89 62.33 99.23 48.01
17 N/sln 69.95 N/sln N/sln 67.97 98.46 67.74
18 97.23 3739 9839 40.61 25.34 9590 22.33
19 100 N/sln 100 85.14 84.80 100 90.55
20 100 N/sln 100 N/sln N/sln 100 90.13
Avg. 79.64 31.10 79.64 30.89 2426 74.75 20.18

Table 3: Optimality Gap (%)

gap. Both models managed to obtain better lower bounds and better results
in terms of the final solution. In the case of models II and IV, the latter
obtained better lower bounds than model II, despite not having achieved the
best results in terms of the final solution. Finally, the optimality gap does
not drop below 20.18%, which implies that trying to reach the optimum in
most instances is challenging to solve. The models V and VII were the only
ones that managed to solve 4 out of 20 instances to optimality, while models
IT and IV did it in only three instances.

4.2.2. SPD comparison with traditional and random storage allocation

To analyze the SPD savings results, we will compare the SSA-SPD (re-
sults of model VII) policy with a traditional and random storage policy. The
traditional storage allocation (TSA) assigns products of the same type to

14

[ross aisle

Lross aisle

[ross aisle

[ross aisle

Lross aigle

Lross aisle

SPO (Drder 13) = I

Figure 2: Example of SPD for Order 13 for traditional storage (upper part) and scattered
storage (lower part)

warehouse positions close to each other. A procedure in two stages is per-
formed to face this policy. In the first stage, an optimization model is used to
minimize the SPD between items of the same type of product. The structure
of this optimization model is similar to the original model proposed in this
paper (constraints: ([I)-(6)), but instead of variable v, (which is 1 if order &
uses positions s and), we define vg,; as 1 if type of product ¢ uses positions
s and r. Another modification is constraint . In this case, we use the
following constraint:

Tis+ Tip — 1 <y V(s,7)ES|s#riel (17)

This model returns the values for the variable z;, that represent the po-
sitions for all product types. In the second stage, our SSA-SPD model is
solved (constraints: [146]), taking into account the fixed values of variable
x;s defined in the first stage.

In the random storage allocation (RSA) policy, the items are assigned

15

randomly through the warehouse. Once items have been assigned and we
already know how many items are in each position (like the first phase of
TSA), we perform the model using again (constraints: [1H6]), taking into
account the fixed values of variable x;; defined in the random stage.

Figure [2| shows an example for Order 13 of instance number 15. The
upper part of the figure shows the TSA, where the same products are stored
together. The middle part shows RSA where the items are randomly allo-
cated, while in the lower part of the figure, the items are assigned via our
SSA-SPD strategy. FEach position’s color represents the type of product,
while the numbers are the positions’ labels. Suppose that Order 13 needs
the following products: one red, one green, one orange, and one gray. If
the TSA is used, the products located in positions 6, 11, 14, and 17 would
be required. In that hypothetical scenario, the SPD for Order 13 would be
28. If RSA had been the storage allocation policy, the products located in
positions 6, 13, 15, and 23 would be required. In that case, the SPD would
be 47. Finally, if SSA-SPD would be the situation, the products located in
positions 1, 6, 7, and 8 would be required. The SPD, in this case, would be
10. In this sense, the savings in terms of the SPD are quite significant.

Table 4] shows the total SPD of the different instances for the SSA-SPD,
TSA, and RSA policy. The last two columns represent the SPD savings in
percentage between (SSA-SPD and TSA), and (SSA-SPD, and RSA). We can
see that the average difference in total SPD is remarkable and exceeds 40% in
both cases. We can also notice that RSA is sightly better than TSA in terms
of SPD. Although RSA items are randomly allocated, there are always a few
probabilities of finding an item close when orders require different types of
items.

5. Conclusions

This paper has investigated a scattered storage assignment strategy that
spreads a single SKU all around the warehouse. The scatteredness of items
aims to reduce unproductive picker travel because, for any order, there is
probably some item close by at the time of picking. Our approach seeks
to minimize the SPD of the expected orders, meaning the total sum of the
distance between the locations of the items of each order. We have presented
a mathematical formulation of the problem together with different classes of
valid inequalities.

16

Instance | SSA-SPD TSA RSA | S-TSA (%) S-RSA (%)
1 37 185 144 80.0 74.3
2 245 631 520 61.2 52.9
3 185 515 443 64.1 58.2
4 157 447 398 64.9 60.6
5 237 463 348 48.8 31.9
6 93 345 268 73.0 65.3
7 271 431 337 37.1 19.6
8 123 352 312 65.1 60.6
9 75 267 181 71.9 58.6
10 291 439 331 33.7 12.1
11 227 286 272 20.6 16.5
12 318 498 473 36.1 32.8
13 288 1028 721 72.0 60.1
14 496 1123 733 55.8 32.3
15 240 868 649 72.4 63.0
16 583 1294 883 54.9 34.0
17 888 1366 989 35.0 10.2
18 183 758 601 75.9 69.6
19 3902 6118 5051 4.0 22.7
20 3279 4251 3720 22.9 11.9

Avg. 606 1083 869 52.5 42.4

Table 4: Total SPD savings between TSA, RSA and SSA-SPD

We studied the effectiveness of those valid inequalities by performing
tests with different problem formulations. Computational results show that
valid inequalities improve the performance of the solution method. However,
the most significant effect is found when both sets of valid inequalities are
included in the relaxed model, improving the objective by 32% compared to
the initial formulation. We also examined the benefit of scattered storage
over traditional and random storage policies. The advantage of applying
SSA-SPD results in a reduction of 44% in the total SPD compared to the
TSA and 30% compared to the RSA policy.

Lastly, there remains the challenge of deriving scattered storage assign-
ments in massive warehouses where vast assortments of SKUs are stored. For
these cases, further algorithmic developments (heuristics or meta-heuristics)

17

are necessary to successfully face the assignment of thousands of SKUs in
multiple storage positions.

References

Balas E. Facets of the knapsack polytope. Mathematical programming
1975;8(1):146-64.

Bartholdi IIT JJ, Hackman ST. WAREHOUSE & DISTRIBUTION SCI-
ENCE Release 0.98.1, 2019.

Beeketing . Future of Ecommerce 10 international growth trends. https://
beeketing.com/blog/future-ecommerce-2019/; 2019. Accessed: 2020-
04-08.

Boysen N, de Koster R, Weidinger F. Warehousing in the e-commerce era: A
survey. European Journal of Operational Research 2019;277(2):396-411.

Bureau L. What is slotting and why is it an impor-
tant productivity tool? https://logisticsbureau.com/
what-is-slotting-and-why-is-it-an-important-productivity-tool/;
2011. Accessed: 2019-10-18.

Letchford AN, Souli G. New valid inequalities for the fixed-charge and single-
node flow polytopes. Operations Research Letters 2019a;47(5):353-7.

Letchford AN, Souli G. On lifted cover inequalities: A new lifting procedure
with unusual properties. Operations Research Letters 2019b;47(2):83-7.

Pansart L, Catusse N, Cambazard H. Exact algorithms for the order picking
problem. Computers & Operations Research 2018;100:117-27.

Scholz A, Henn S, Stuhlmann M, Wascher G. A new mathematical program-
ming formulation for the single-picker routing problem. European Journal
of Operational Research 2016;253(1):68-84.

Theys C, Braysy O, Dullaert W, Raa B. Using a TSP heuristic for routing
order pickers in warehouses. European Journal of Operational Research
2010;200(3):755-63.

18

https://beeketing.com/blog/future-ecommerce-2019/
https://beeketing.com/blog/future-ecommerce-2019/
https://logisticsbureau.com/what-is-slotting-and-why-is-it-an-important-productivity-tool/
https://logisticsbureau.com/what-is-slotting-and-why-is-it-an-important-productivity-tool/

Van Gils T, Ramaekers K, Caris A, de Koster RB. Designing efficient
order picking systems by combining planning problems: State-of-the-art
classification and review. European Journal of Operational Research
2018;267(1):1-15.

Weidinger F. Picker routing in rectangular mixed shelves warehouses. Com-
puters & Operations Research 2018a;95:139-50.

Weidinger F. A precious mess: On the scattered storage assignment problem.
In: Operations Research Proceedings 2016. Springer; 2018b. p. 31-6.

Weidinger F, Boysen N. Scattered storage: How to distribute stock keep-
ing units all around a mixed-shelves warehouse. Transportation Science
2018;52(6):1412-27.

Weidinger F, Boysen N, Schneider M. Picker routing in the mixed-shelves
warehouses of e-commerce retailers. European Journal of Operational Re-
search 2019;274(2):501-15.

19

	Introduction
	Problem description
	Problem definition
	Initial formulation

	Valid inequalities
	Initial valid inequalities
	Knapsack cover inequalities

	Numerical experiments
	Instances generation
	Results
	Comparison of valid inequalities
	SPD comparison with traditional and random storage allocation

	Conclusions

