
Evaluation of the Quantiles and Superquantiles
of the Makespan in Interval Valued Activity Networks

Carlo Meloni1

Dipartimento di Ingegneria Informatica Automatica e Gestionale “Antonio Ruberti”,
Sapienza Università di Roma, Roma (I)
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Abstract

This paper deals with the evaluation of quantile-based risk measures for the

makespan in scheduling problems represented as temporal networks with uncer-

tainties on the activity durations. More specifically, for each activity only the

interval for its possible duration values is known in advance to both the sched-

uler and the risk analyst. Given a feasible schedule, we calculate the quantiles

and the superquantiles of the makespan which are of interest as risk indicators

in various applications.

To this aim we propose and test a set of novel algorithms to determine rapid

and accurate numerical estimations based on the calculation of theoretically

proven lower and upper bounds. An extensive experimental campaign compu-

tationally shows the validity of the proposed methods, and allows to highlight

their performances through the comparison with respect to the state-of-the-art

algorithms.
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1. Introduction

The reliability of a scheduling solution is important for practitioners to take

informed decisions, and a tool able to quantify the risk associated to a schedule

offers a practical support in the decision process. Therefore, the adoption of a

suitable risk measure is an issue in the modeling scheduling problems arising

in different applications including: task or project bidding [25], risk evaluation

and mitigation [67, 68], due date setting or acceptance [5, 64], orders proposal

and acceptance [34], robust planning or scheduling [2, 13, 19, 44], and solution

ranking and selection [8].

Temporal activity networks are extensively adopted in various domains to

model planning and scheduling problems with analysis and optimization pur-

poses. In these contexts, considering the evaluation of the quantile and the

superquantile of a performance index appears to be of interest to control both

its expected value and variability [8, 10] while keeping into account the decision

maker risk attitude. These risk indicators are called Value-at-Risk and Condi-

tional Value-at-Risk or Expected Shortfall in different domains, but following

[8, 59] we adopt an application-independent terminology.

In this paper we consider the makespan as the relevant performance index

associated to the risk. Therefore we focus on the computational evaluation

of the quantile (indicated as q) and the superquantile (denoted as Q) of the

makespan. They are two popular risk indices which refer to a probability level

α (e.g., see [8, 10, 59, 62]), hereinafter indicate as qα and Qα, respectively.

The quantile qα can be defined informally as the maximum possible loss (e.g.,

representing a delay in manufacturing, transportation or supply services) for all

α100% best outcomes, i.e., it does not assess the magnitude of possible losses.

Differently, Qα measures the average loss in the worst (1−α)100% of outcomes

and emphasizes the contribution of the worst-case outcomes under the index

performance of interest [8, 10, 59].

This research study proposes a set of new algorithms to evaluate both qα

and Qα of the makespan of a given feasible solution for a scheduling problem
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represented by a temporal activity network [24, 61, 69] and given a probability

level α. In this way the assessment of the risk for a given solution (in whatever

way it is obtained) is performed. More specifically, according to [27, 49, 70, 71],

we consider the class of scheduling models with a fixed and given set of prece-

dence relations, but (independent) uncertain integer processing times belonging

to known intervals of equally possible values.

The computation of both qα and Qα when the performance index is the

makespan for a given activity network representing a schedule in general is

known to be NP-complete [31]. To obtain an accurate and rapid evaluation,

extending the approach recently proposed by [49], we develop a set of heuristic

computational methods which are pseudo-polynomial in the general case. They

are based on the calculation of two tight theoretical bounds for the considered

risk indicators.

The main contributions of this paper can be schematically summarized in

the following: i) it introduces a set of graph-based transformations and ap-

proximations as main components of the proposed computational methodology;

ii) it proposes new accurate and rapid methods to calculate qα and Qα of the

makespan (on the basis of theoretically proven lower and upper bounds) of a

temporal network when the activity durations are represented by integer inter-

vals of possible values; iii) it reports on a campaign of computational experi-

ments conducted on an extensive set of benchmark instances and a comparison

to state-of-the art algorithm known in the literature showing the effectiveness of

the proposed algorithms; iv) it offers an experimental analysis to address also

the algorithmic flexibility issues, and to investigate challenging instances.

The rest of the paper is structured as follows. Section 2 offers a literature

review, while Section 3 introduces the considered temporal networks models for

scheduling problems under uncertainty. In Section 4 the proposed algorithms for

qα and Qα of the makespan are described also using an illustrative example. The

extensive computational experiments are introduced and discussed in Section 5.

Finally, conclusions and future research are drawn in Section 6.
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2. Literature review

Scheduling problems involve the execution of a given set of activities on a

finite number of resources with the aim to optimize given performance measures

[11]. The latter are usually in the form of a scalar function of activities comple-

tion times, and the makespan is the most popular of these measures [11, 63].

Typically, scheduling issues are modelled as deterministic problems and

therefore the resulting mathematical model may not be an adequate representa-

tion of an uncertain reality [6]. Even if this assumption may be valid when the

effects of uncertainties are limited [40], it is not valid or acceptable for all real

contexts. A typical consequence of disregarding activity duration uncertainties

is the underestimation of the expected makespan frequently observed in prac-

tice. This phenomenon has been the subject of extensive research in services

and manufacturing under both the operations research (e.g., see [33, 39, 53])

and the industrial management (e.g., see [41, 42, 46]) perspectives.

In the literature there is no universally accepted single risk measure consid-

ering that each of them has its own pros and cons [8, 10, 59].

Indeed, operation times may vary due to a change in a dynamic environment

or to an information update, and one way to address this concern is to use

stochastic models [6]. They are usually introduced for uncertain scheduling

problems, where model elements such as specific operation times are assumed

to be random variables with known probability distribution functions. However,

these models typically require higher computational times that are not always

compatible with stringent operational or real-time requirements [41, 61].

In these contexts, the evaluation of the risk associated to a performance in-

dex for a given schedule can be obtained taking advantage of a real-time (or at

least updated) forecasting of duration times, assuming that they are represented

by prediction intervals [47, 49]. In other real situations time intervals may repre-

sent a partial knowledge of the duration of the operations and a distributionally

robust analysis is conducted [1, 4], or they represent an imprecise indication of

their equally possible values [27, 52, 70, 71]. This makes the risk assessment par-
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ticularly useful as in many scheduling applications the decision makers may be

risk-averse and may prefer solutions that do not just perform well “on average”,

but that also perform satisfactorily “in most cases” [19, 25, 26].

The variance of the makespan has been widely used in the literature as a

risk measure [20, 61, 69]. However, this may not be always appropriate for opti-

mization problems in temporal networks. Since when the goal is to minimize the

makespan downward deviations are indeed desirable [10, 26], and may therefore

prefer to consider one-sided quantile-based measures of the objective for stochas-

tic optimization (e.g., see [10, 57], and [3, 62] for scheduling problems) as for

instance qα and Qα. Usually, some scenario-based (or sample-based) method

is adopted to estimate these risk measures for scheduling problems, and this

approach can require a relevant computational effort and expose to estimation

accuracy issues [3, 62, 65].

Assuming the index P (uncertain quantities are hereinafter represented in

bold) is to be minimized, they can be more formally described:

• Quantile of P at probability level α (qα(P)):

qα(P) = inf{t : prob(P ≤ t) ≥ α} (1)

It is a threshold that is exceeded in (1−α)100% of all cases. It represents

the so called Value-at-Risk of P at probability level α.

• Superquantile of P at probability level α (Qα(P)):

Qα(P) = E(P|P ≥ qα(P)) (2)

Qα(P) is the expected value of all cases exceeding the threshold qα(P),

and corresponds to the Expected Shortfall or the Conditional-Value-at-

Risk at level α of P [10, 58]:

Qα(P) =
1

1− α

∫ 1

α

qβ(P) dβ (3)
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Considering these assumptions and definitions, qα(P) ≤ Qα(P) holds for all

α ∈ [0, 1].

Our analysis focuses on both these quantile-based risk measures which pro-

vide in general enough flexibility to design decision methods that are more

discerning than procedures that use the expected values [8]. Nevertheless, when

a decision maker is not only concerned with the frequency of undesirable out-

comes, but also with their severity, Qα is recommended instead of qα [10, 62].

In this case higher values of α are chosen by decision makers who are more risk-

averse, and α = 0 represents the risk-neutral choice. In fact, as α tends to 1 (i.e.,

its upper extremum), both qα(P) and Qα(P) tend to the worst or pessimistic

case value P ; while when α tends to 0, qα(P) tends to the best or optimistic

value P , whereas Qα(P) tends to the expected value of the performance index

E(P).

Although the use of quantile-based measures to take into account uncer-

tainty in scheduling problems seems a promising topic, only few relevant papers

appeared in the literature. They are mainly related to some specific application

[14, 30, 35, 60], or limited to some specific scheduling environment [3, 17, 62].

Compared to other sectors, where both quantiles and superquantiles are more

used, their restricted diffusion in scheduling is perhaps due to the computational

difficulties connected to the adopted approaches that are often based on scenar-

ios and sampling methods [8, 40, 61, 62], which lead to limiting the analysis to

scheduling cases with simple layout configurations, offering as output statistical

estimates of the indicators of interest [12, 43, 62].

The computation of the expected shortfall of the makespan in scheduling

problems represented by activity networks where a reliable prior knowledge of

random processing times is not available has been recently addressed in [49]

considering cases in which the processing times are integers and their equally

possible values belong to known intervals (i.e., only a given number of integer

values are possible for each duration time). These cases can be considered

as scheduling problems with incomplete or imperfect information [15, 16, 27,

39, 70, 71], assuming that the realized duration of an activity is only known
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when the execution of the activity is completed, and the uncertainty on these

parameters implies that the objective value is also uncertain. These quantile-

based risk assessment issues can arise in different real contexts including project

management [49], industrial scheduling [51] and transportation [50] requiring

fast and accurate computation methods. On the basis of the availability of

these methods, different application schemes can be considered enabling further

studies and researches, the main being:

• Solution risk assessment. In this case the considered methods are used

to evaluate the risk associated with a known schedule represented by a

specific activity network. This schedule represents the result of a previous

selection or optimization process and the risk assessment could be part

of a validation or pre-implementation phase, or even of a final (possible

multi-criteria) selection among several candidate schedules [25]. In this

case there are, in general, no severe computation time restrictions and the

methods can pursue exact or very accurate calculations.

• Constructive scheduling algorithms. In this case the methods can be used

to implement a score function to guide either heuristic or exact construc-

tive scheduling algorithms [54, 55] which can also be structured in a meta-

heuristic scheme [48, 56]. These optimization approaches require, in gen-

eral, fast scoring functions.

• Iterative or improving scheduling algorithms. In exact and heuristic (or

metaheuristic) iterative algorithms [28, 54] the methods can be used as

main (or secondary) score functions or as constraints to take into account

the decision maker’s preferences. These schemes are usually (yet not al-

ways) based on the local search paradigm, and also in this case fast scoring

functions are in general preferred.

• Simulation-optimization scheduling algorithms. Approaches that offer ac-

curate estimates of quantile-based measures of the makespan and that

are faster than simulation or scenario-sampling methods ([61, 62]) can be
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advantageously employed in simulation-optimization scheduling schemes

[45].

• Risk monitoring and re-scheduling. The methods can be also used to

monitor the risk during the execution of the activities. In fact, the actual

value of the duration of an activity is known only at the end of it. Thus, the

risk assessment for a schedule can be updated at the end of an activity or at

a significant event (i.e., considered as a milestone). This updating activity

can be limited to a monitoring service or more usefully can trigger a re-

scheduling [40, 66] of the activities not yet executed. Though computation

time is not always a hard constraint for monitoring, however, generally,

the faster the better.

3. Integer Interval-Valued Activity Networks

Temporal activity networks (TANs) are a widely used modeling tool for time

management of complex systems or projects [24, 69]. In its basic form, a TAN is

assumed to have deterministic activity durations (or times), and can be referred

to as a deterministic temporal activity network (DTAN). These networks are in

general relatively easy to analyze with respect to the makespan often involving

some longest path problem [24, 36]. However, for real problems, activity dura-

tions are unlikely to be deterministic and their values can be affected by several

factors. Stochastic temporal activity networks (STANs) extend these models in

presence of uncertainties, and are a suitable modelling tool for problems that

could not be adequately represented by deterministic networks.

According to [24, 69], we represent the precedence constraints by a directed

acyclic graph (DAG)G = (N,A), called the precedence graph. More specifically,

we adopt the so called Activity-on-Arcs (AoA)[22] representation having nodes

N = {1, . . . , n} representing events, and arcs A ⊆ {(i, j) : i, j = 1, . . . , n}

representing both activities and precedence constraints. An arc (i, j) ∈ A means

that the event associated to node j can occur only after event i. Without loss of
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generality, we consider networks having one initial node (source) and one ending

node (sink). The nodes in N are topologically labeled in such a way that i < j

for each arc (i, j) ∈ A. Thus, initial and end nodes have labels 1 and n = |N |,

respectively.

A DTAN is a DAG along with a duration for each arc, i.e., a pair (G, d),

where d contains all the deterministic values d(i, j) ≥ 0, where an arc represent-

ing a generalized logic precedence could have associated a null duration [23].

We assume, as usual in scheduling problems [6, 11], that the durations have

integer values, i.e., they represent an integer number of a suitable elementary

time unit.

A STAN is an activity network with random activity durations, and can be

described by the pair (G,D), where G = (N,A) is the precedence DAG, and

D = (D1, . . . ,Dm) is the vector of m = |A| random durations associated to

the arcs. In a STAN, all quantities that depend on the activity durations are

random variables. Therefore, the starting and completion time of any activity,

and the makespan are all random variables. We denote the makespan (random

variable) as Cmax.

Following [49] we consider particular STANs referred to as Integer Interval-

Valued Activity Networks (IIN) in which interval activity integers times Ti =

[ti, ti] for i = 1, . . . ,m are assigned to the activity durations D = (D1, . . . ,Dm)

in the network and represent the equally possible durations expressed in terms

of the number of a specific time units. The values ti and ti are integers with

ti ≥ 0, and ti ≤ ti for all i. In other words, Ti contains all the ∆i = ti − ti + 1

integers from ti to ti. When a duration value of an activity i is known with

certainty, we have the deterministic case represented by an interval Ti where

ti = ti.

According to [27, 49, 70, 71], we denote by T a configuration of the activity

duration times in a given IIN S, and by DT the related realization of a specific

integer value from the interval activity time [ti, ti] for i = 1, . . . ,m, whereas

the dependence of the makespan from the configuration T is indicated with

Cmax(T ).
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Hereinafter —by extension— we refer to T as a configuration of the network,

and we indicate with UT (S) the set of all the configurations of an IIN S, which

are obtained through the Cartesian product of the integer intervals associated

with the durations of the activities [27, 49, 70, 71]. The total number of all

possible configurations |UT (S)| of a network S can be determined as follows:

|UT (S)| =
m∏
i=1

∆i. (4)

The IINs have an intrinsically discrete nature, and for a given IIN S, the

makespan is finite and bounded keeping values in [Cmax, Cmax], where Cmax

(Cmax) refers to the configuration T (T ) of S in which all durations are at their

minimum (maximum) value. The finite length Γ = Cmax − Cmax + 1 of the

interval values for the makespan Cmax represents a measure of the amount of

uncertainty of the IIN. The quantiles and superquantiles of the makespan are

also finite and bounded holding the following:

Cmax ≤ qα(Cmax) ≤ Qα(Cmax) ≤ Cmax,∀α ∈ [0, 1] (5)

Furthermore, some other simple bounds can be considered. Let Cmax(E(D))

be the deterministic counterpart of the expected makespan, i.e., the completion

time obtained when each activity duration Di assumes exactly its expected

value E(Di), it is well known (e.g., see [10, 29]) that:

Cmax(E(D)) ≤ E(Cmax) ≤ Qα(Cmax),∀α ∈ [0, 1] (6)

Considering a configuration T of a given IIN S, let lT (i, j) be the length of

the longest path (assuming that the length of a path is the sum of the durations

of the arcs belonging to it) from node i to node j. With this notation, the

makespan Cmax(T ) can be computed as lT (1, n). The earliest and the latest

starting time of an event i can be computed as lT (1, i), and Cmax(T )− lT (i, n),

respectively [24].

10



Table 1: Summary of notations used for IINs

Notation Description

G = (N,A) precedence DAG with N nodes and A arcs

m = |A| number of arcs in G
D = (D1, . . . ,Dm) vector of random durations associated to the arcs

Cmax IIN makespan as random variable

E(Cmax) expected value of the makespan

E(Di) expected value of the random duration Di, i = 1, . . . ,m

Cmax(E(D)) makespan for the configuration in which each activity duration as-
sumes its expected value

Ti = [ti, ti] interval activity integers times, i = 1, . . . ,m

ti, ti integer values with ti ≥ 0, and ti ≤ ti, for all i = 1, . . . ,m

∆i = ti − ti + 1 length of Ti, i = 1, . . . ,m

T a specific configuration of the activity duration times

DT realization of an exact value from the interval activity time associ-
ated to the configuration T

Cmax(T ) makespan associated to the configuration T
UT (S) set of all the configurations of an IIN S

|UT (S)| number of all the configurations of an IIN S

T the configuration in which all the durations are at their minimum
value

T the configuration in which all the durations are at their maximum
value

Cmax makespan for the configuration T
Cmax makespan for the configuration T

Γ length of the interval [Cmax − Cmax]

α probability level used for the quantile risk measures

qα(Cmax) quantile of the makespan at level α

Qα(Cmax) superquantile of the makespan at level α

dT (i, j) duration of the activity a = (i, j) in the configuration T
lT (i, j) length of the longest path from node i to node j, in the configuration

T
sT (i, j) slack time of the activity a = (i, j) in the configuration T
Gξ ξ-critical subgraph of G, i.e., the graph containing all the activities

a ∈ A|sT (a) ≤ ξ.

A common measure of criticality of an activity a = (i, j) is its slack time

sT (a), which is the amount of time we can increase the activity duration dT (i, j)

without affecting Cmax(T ), thus:

sT (a) = sT (i, j) = Cmax(T )− lT (1, i)− dT (i, j)− lT (j, n). (7)

An activity is said to be critical if it is on a critical path and its slack time

sT (a) is zero [24]. Since all the activities have integer valued durations, all the
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slack times are also integers. The makespan and the slack of each activity can

be efficiently computed in a DAG G solving the related longest path problem

[7, 31, 36]. As a TAN can have more critical paths, the set of critical activities

forms a subgraph of G, and hereinafter we refer to it as critical subgraph. We

extend this concept introducing the ξ-critical subgraph Gξ of G as the graph

containing all the activities a ∈ A|sT (a) ≤ ξ.

The concept of ξ-critical subgraph can be applied to a IIN (G,D) by indi-

cating as Gξ the ξ-critical subgraph of G containing all the arcs a = (i, j) ∈

A|sT (a) ≤ ξ, where the slack sT (a) of the arc a refers to the worst (or pes-

simistic) configuration T obtained setting all the durations to their maximum

value. More formally:

sT (a) = sT (i, j) = Cmax − lT (1, i)− dT (i, j)− lT (j, n) (8)

in which dT (i, j) is the maximum duration of the activity (i, j).

Table 1 summarizes the parameters and the notation associated to a IIN

(G,D).

4. Computation of the Quantiles and Superquantiles of the Makespan

in IINs

The definitions of the quantile and the superquantile suggest a straightfor-

ward exact order statistics procedure to calculate the qα(Cmax) and Qα(Cmax)

in IINs [10, 62, 69]. In fact, considering a IIN S, the analyst can sort the con-

figurations in UT (S) in decreasing Cmax order, and check the CTα highest (i.e.,

worst) configurations, where CTα stands for counting target for the given value

of α:

CTα = d(1− α)|UT (S)|e (9)

and then determine the corresponding values of qα(Cmax) and Qα(Cmax) using

the set WCTα(S) of the worst CTα configurations of S.
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Unfortunately, these simple ordinal quantile and superquantile procedures

can be directly used only for very small cases and usually they are not viable

in practice due to the huge number of configurations IINs commonly admit.

In the literature, sampling or scenario based techniques are widely used to

produce statistical estimations of both qα(Cmax) and Qα(Cmax) [62]. However

these techniques are in general very time consuming to yield results with accept-

able confidence levels, and give results based on statistical prediction intervals

not always convenient for decision makers to use [61, 62]. These difficulties, to-

gether with the need for statistical validation of the results, have recently been

overcome with the introduction in [49] of an approach based on the calculation

of theoretical lower and upper bounds which form an interval certainly (i.e., by

construction) containing the exact value of the adopted risk indicator and which

appears to be very tight in practice. Thanks to this theoretical certification of

the obtained bounds, this approach can be also a useful tool to validate or guide

other sample or scenario based methods.

Although the seminal approach proposed in [49] offers good results, applica-

tions (e.g., see [21, 50, 51]) may require better performance on both computa-

tion time and solution quality, especially in real-time applications. Therefore,

in this paper we improve the counting based approach introduced in [49] for

the makespan of a IIN, and extend it by proposing and testing a set of new

algorithms to compute both qα(Cmax) and Qα(Cmax).

Given a IIN S represented by (G,D), and the probability level α ∈ [0, 1],

as the definition of qα(Cmax) and Qα(Cmax) involves the set WCTα(S) of the

worst (i.e., pessimistic) CTα configurations in UT (S), our counting approach

starts from the worst case (i.e., the configuration T ) and proceeds backwards

up to the CTα-th worst configuration indicated as wα.

Thus, the quantile qα(Cmax) corresponds to the makespan of the configura-

tion wα, i.e., qα(Cmax) = Cmax(wα), while the superquantile Qα(Cmax) is the
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mean over the set WCTα(S):

Qα(Cmax) =
∑

i∈WCTα (S)

Cmax(Ti)
CTα

. (10)

Initially, the counting procedure individuates T , calculates Cmax, determines

|UT (S)|, and computes the counting target CTα.

To start the counting process, the number of configurations |UT (S)| having

the worst makespan value Cmax can be obtained, referring to a specific (integer)

level of slack ξ, partitioning G in two subgraphs Gξ and G \Gξ as described at

the end of Section 3.

Then |UT (S)| can be calculated as the product of two terms F1ξ and F2ξ.

The first refers to the arcs in G \Gξ and can be determined as

F1ξ =
∏

i∈G\Gξ

∆i (11)

In fact, all the arcs belonging in G \Gξ have a slack value (i.e., a criticality)

greater of ξ and all their possible configurations (i.e., durations) do not affect

Cmax.

The second factor F2ξ represents the number of configurations having makespan

Cmax in Gξ and requires a specific counting function count(Cmax, Gξ) to be

evaluated (which will be illustrated in Section 4.3). Thus, the following holds:

|UT (S)| = F2ξF1ξ = count(Cmax, Gξ) ·
∏

i∈G\Gξ

∆i (12)

Similarly, let L ∈ (0, ξ) be an integer, we call F2ξL = count(Cmax − L,Gξ)

the number of configurations in the graph Gξ having makespan Cmax−L. Thus

the product F2ξLF1ξ provides the overall number of configurations in G having

makespan Cmax − L.

These concepts are the basis of the proposed algorithmic scheme.
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4.1. General algorithmic scheme

This subsection describes the general algorithmic scheme adopted for the set

of procedures we propose to calculate qα(Cmax) and Qα(Cmax) for a given IIN

and a certain probability level α. The general algorithmic scheme is illustrated in

Figure 1: General algorithmic scheme for the computation of the quantiles and superquantiles
of the makespan in IINs

Figure 1. It receives as input a IIN S represented by (G,D) and the probability

level α, and returns the corresponding evaluation of qα(Cmax) and Qα(Cmax).

The main blocks of this scheme are the Evaluation Procedure (EP) and the Level

Management (LM).

The EP block contains a Preliminary Procedure to determine the total num-

ber of possible configurations |UT (S)|, the target number of configurations CTα,

and the worst or pessimistic value Cmax from where to start the evaluation in

the Counting Procedure. implementing the functions F1ξ and F2ξL. The first

can be easily computed once Gξ is known, whereas F2ξL requires to be carefully
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designed.

The successive Counting Procedure uses the internal variables n config ,

sum config , and value config to register the overall number of configurations,

the cumulative sum of the related makespan, and the last makespan value con-

sidered in the numerical iterative process. The computation at each iteration

refers to a specific level M = (ξ, L) provided by the LM block, and proceeds

backwards considering the configurations leading to each possible makespan

value for that level. The overall Evaluation Procedure is implemented as an

iterative process which continues until sufficient information has been gathered

to compute the risk indices under study using the values of the internal variables

n config , sum config and value config .

The LM block implements the strategy for managing the values of ξ and L

employed in the Counting Procedure. More specifically LM initializes the level

to start the process, and updates it at each iteration as illustrated in Algorithm

1 where a pseudo-code of the General Algorithmic Procedure is reported.

The described algorithmic scheme is quite general, and for both LM and

EP different possible implementations can be considered leading to different

configurations of the algorithm.

4.2. Level Management Methods

The Level Management block provides the level M = (ξ, L) containing the

integer values of ξ and L used by the Evaluation Procedure. Iteratively, LM

fixes a value of ξ and generates a sequence of levels M = (ξ, L) where L is

updated by assuming all integer values from 0 to ξ. Then ξ is incremented by

∆ξ and the procedure is repeated. The level M = (ξ, L) is initialized with ξ = 0

and L = 0. As for the update mode of ξ we consider two cases on the basis of

the determination of the increment ∆ξ of the value of ξ: step-by-step (indicated

as St) and slack-by-slack (denoted as Sl).

In the first case (St), adopted also in [49], the increment ∆ξ is unitary. Thus

the sequence of values of ξ simply follows the natural integers.
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GENERAL ALGORITHMIC PROCEDURE
Data: IIN=(G,D), α
Result: Qα(Cmax), qα(Cmax)
Initialization phase:

determine Cmax, CTα;
LM sets M = (ξ = 0, L = 0);
set Qα = qα = 0;
set n config = sum config = value config = nL = δL = sL = 0;

while n config ≤ CTα do
LM updates M = (ξ, L)
nL = min(n config + F2ξLF1ξ, CTα);
δL = nL − n config;

value config = Cmax − L;
sL = δLvalue config;
sum config = sum config + sL;
n config = nL;

end
Output:

Qα = (sum config)
CTα

, qα = value config

Algorithm 1: Pseudo-code of the General Algorithmic Procedure

Whereas, in the second case (Sl) the ξ values follows the sequence (in in-

creasing order) of the slack values sT (a) of the arcs a referring to the worst

configuration T obtained setting all the durations to their maximum value.

Thus ∆ξ used in each iteration is the one needed to bring ξ to the next slack

value. Since some levels (values) are skipped this approach reduces the total

number of iterations of the algorithm.

4.3. Evaluation Procedure Methods

The Evaluation Procedure (EP) has been described in the general scheme

reported in Figure 1 and in the Algorithm 1. The F2ξL counting function devoted

to compute count(Cmax−L,Gξ) plays a fundamental role in EP, and this Section

is mainly devoted to describe in details its implementation.

Starting this section we introduce some further notations useful to describe

the implementation of the counting functions. For a given IIN, as described in

Section 3, the durations of its m activities are only known as the equally possible
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integer values included in a given interval Ti = [ti, ti] for i = 1, . . . ,m which

represents each possible realizations of the duration Di for the activity i. We

associate to each activity i (with i = 1, . . . ,m) a data structure IVi = (Di,Oi)

storing the relevant information about the interval values, namely two vectors

of length ∆i containing the integer time duration values Di, and the number of

possible configurations Oi for each time duration value in Ti.

The implementation of the function F2ξL is based on the idea that in the

graph Gξ some useful transformations can be iteratively applied to reduce Gξ to

a single final arc (i.e., from node i to n) carrying all the necessary information

IVfinal = (Dfinal,Ofinal). Therefore the function F2ξL can directly drawn its

counting result from IVfinal. In fact, the latter contains the number of possible

configurations (i.e., in Ofinal) for each possible makespan value associated to

Gξ reported in Dfinal.

To this aim, we have considered different possible transformations leading

to a set of configurations of the overall algorithm. They are divided into exact

transformations indicated as reduction procedures and heuristic transformations

denoted as approximation procedures. They are described in the following sec-

tions.

4.3.1. Reduction Procedures

Often in IINs there are activities planned to be executed in parallel or in

series which possibly induce series-parallel sub-structures in Gξ [7, 9], and for

this reason the following two reduction transformations are firstly considered.

Series Reduction . Let ah = (i, j) and ak = (u, v) two activities of Gξ. If

these activities are associated to arcs in Gξ connected in series [7], (i.e., j = u,

and j has unitary both its in-degree deg−(j) and out-degree deg+(j)), then they

can be replaced by an equivalent single arc (i, v) associated to the correspond-

ing series of activities named serhk. This transformation needs to associate to

serhk the IVserhk = (Dserhk ,Oserhk), in which Dserhk has an associated time

interval Tserhk = [tserhk , tserhk ], where tserhk = th + tk, and tserhk = th + tk;
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while Oserhk can be determined by the discrete convolution in which Oh and

Ok are considered as data samples displaced in time according to Dh and Dk,

respectively [18]. We indicate, in terms of interval value structures, this series

reduction operation as IVserhk = (IVh ∗ IVk).

Parallel Reduction . Let ah = (i, j) and ak = (u, v) two activities of Gξ.

In case the activities ah and ak are associated to arcs connected in parallel [7]

in Gξ, (i.e., i = u and j = v), then they can be replaced by an equivalent

single arc (i, j), representing the activity parhk. This transformation needs to

associate to parhk the IVparhk = (Dparhk ,Oparhk) in which Dparhk has an as-

sociated time interval Tparhk = [tparhk , tparhk ], where tparhk = max(th, tk), and

tparhk = max(th, tk); while Oparhk contains, for each element dparhk ∈ Dparhk ,

the correspondent number of possible configurations. The latter is combina-

torially determined by the overall number of possible configurations of the

original durations dh ∈ Dh and dk ∈ Dk of activities ah and ak, such that

max(dh, dk) = dparhk . Thus, we indicate, in terms of interval value structures,

the parallel reduction operation as IVparhk =MAX (IVh, IVk).

These two transformations can be repeatedly applied to try to completely reduce

a given directed subgraph Gξ to a single final arc (1, n) described by IVfinal.

In that case, IVfinal is independent from the specific adopted transformation

sequence. This tentative will be successful if Gξ is a series-parallel (SP) graph

[7], even if G is not necessarily SP. Therefore, if all Gξ are SP digraphs, the

function F2ξL returns exact evaluations. These transformations lead to the

definition of a reduction procedure [49] which we refer to as SP method. Given

a network S represented by (G,D), and α ∈ [0, 1], if all Gξ involved in the F2ξL

calls are SP digraphs, the General Algorithmic Scheme equipped with the SP

method returns the exact value of Qα and qα.

In general, in addition to the series and parallel transformations, other trans-

formations can be applied in particular cases contributing to the exact reduction

of a given directed subgraph Gξ. They are described below.
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Y-Reduction . Let v be a node of Gξ having in-degree deg−(v) = 1, and

ah = (u, v) be the activity associated to the unique arc ending in v. Each

successor i of the node v has associated an activity ak = (v, i) having its own

interval value structure IVk. In case the activity ah has a deterministic dura-

tion (i.e., Th = [th, th], where th = th), it has only one possible configuration.

Then, a transformation can be applied involving ah and the activities ak for

all successors i. This transformation consists of a contraction of the arc (u, v)

obtained collapsing nodes u and v, removing arc (u, v), and replacing each arc

(v, i) with an arc (u, i) = serhk locally applying the series transformation with

IVserhk = (IVh ∗ IVk). When v has a unique successor i, this reduction oper-

ation coincides with an ordinary series transformation, but in the other cases

neither the series nor the parallel transformation can be directly applied. A

similar transformation can be applied, changing as necessary, in the case of a

node v of Gξ having out-degree deg+(v) = 1.

D-Reduction . Let v be a node of Gξ having deg−(v) = p and deg+(v) = q.

Let ah = (h, v) with h = 1, . . . , p, be the activities associated to the arcs ending

in v. Each successor k of the node v has associated an activity ak = (v, k), with

k = 1, . . . , q. In case all activities ah and ak have a deterministic duration (i.e.,

Th = [th, th], where th = th, Tk = [tk, tk], with tk = tk), both of them have only

one possible configuration. Then, a transformation can be applied involving the

node v and all the activities ah and ak. This transformation consists of the

removal of node v and all arcs either starting or ending in it. Then a set of

new arcs (h, k) (i.e., with h and k predecessor and successor of v, respectively)

is added with arc (h, k) = serhk locally applying the series transformation with

IVserhk = (IVh ∗ IVk).

IG-Reduction . If previous exact reduction methods fails to complete their

reduction process, they return a residual directed subgraph G′ξ ⊆ Gξ, instead

of a single final arc. This means that Gξ contains a subgraph homeomorphic
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to the so called interdictive graph [7, 9] depicted in Figure 2. In order to im-

prove the reduction process of the graph Gξ, possibly to a single final arc, we

consider the application of a new reduction transformation called Interdictive

Graph reduction, indicated as IG-Reduction for short. The transformation is

Figure 2: The interdictive graph

applied to interdictive graphs as represented in Figure 2 when the nodes B and

C have no other entering or leaving edges in Gξ (whereas, nodes A and D pos-

sibly have). This transformation returns an arc (A,D) associated to an activity

IGijhkl with the IVIGijhkl equivalent to the interdictive graph which is there-

fore replaced with it by simplifying the graph Gξ. Alternatively considering

node B (having deg−(B) = 1) or node C (having deg+(C) = 1) the proce-

dure IG-Reduction obtains the IVIGijhkl of the equivalent arc A,D applying

the Y-Reduction and SP transformations previously introduced. Without loss

of generality, we describe the application of the procedure to node B in Figure 2.

We observe that if activity ai has a deterministic duration the Y-Reduction can

be applied obtaining two equivalent arcs (A,C) and (A,D) replacing activities

ai, ah, and ak. Then successive series-parallel transformations yield the final

equivalent arc (A,D) and its IVIGijhkl . In general, ai is not deterministic and
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has its own IVi = (Di,Oi). Nevertheless, for each value in Di the reduction

can be obtained as a case with a deterministic ai activity. Then the overall

equivalent IVIGijhkl = (Dijhkl,Oijhkl) is determined including all the configu-

rations obtained in the performed reductions.

The extension of the SP method with the Y-Reduction, D-Reduction, and

IG-Reduction transformations allows us to define a new and advanced reduction

procedure, hereinafter indicated as Adv method. Given a network S represented

by (G,D), and α ∈ [0, 1], if all Gξ involved in the F2ξL calls are fully reduced

by Adv method, the General Algorithmic Scheme returns exact values for Qα

and qα.

Nevertheless, the transformation process based on either SP or Adv reduc-

tion methods applied to Gξ can yield a (partially simplified) residual graph G′ξ

on which there are no other eligible arcs for further reductions. In this latter

case, in order to reduce Gξ to a single final arc, we have to apply also some

different transformations of G′ξ that, however, do not guarantee the exactness

of the counts of F2ξL. However the use of these approximation procedures can

produce useful lower and upper bounds of both Qα and qα.

4.3.2. Approximation procedures

When computing F2ξL, if the exact reduction methods fails to complete their

reduction process, they return a residual directed subgraph G′ξ ⊆ Gξ, instead of

a single final arc. This means that Gξ contains some subgraph homeomorphic to

the so called interdictive graph [7, 9]. It is worth noting that in general, even in

the case of D-Reduction or IG-Reduction application, not all interdictive graphs

can be reduced. In order to force the reduction of the residual digraph G′ξ to a

single final arc, we consider the application of the two following transformations.

Arc removal . This transformation removes from G′ξ one arc ah = (i, j)

with IVh in order to destroy an interdictive subgraph structure possibly al-

lowing the application of some transformation to further reduce the resulting
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graph. Thus, considering the structure of the interdictive graph, an arc (i, j)

is eligible to be removed if it satisfies the following two conditions: a) for node

i: deg + (i) ≥ 2, deg−(i) ≥ 1; and b) for node j: deg+(j) ≥ 1, deg−(j) ≥ 2.

The transformation consists in the cancellation of the arc ah from the current

subgraph G′ξ.

Arc replication . This transformation replicates in G′ξ one arc ah = (i, j)

with IVh so that the interdictive subgraph can be destroyed through the pos-

sible application of further transformations. Considering the structure of the

interdictive graph, an arc (i, j) is eligible to be replicated if satisfies one of the

following conditions: a) for node i: deg−(i) ≥ 2, deg+(i) = 1; or b) for node

j: deg−(j) = 1, deg+(j) ≥ 2. The transformation replaces, in the current sub-

graph G′ξ, the arc ah with its Rh replicas (each having the same IVh). In case a)

arc replication removes the original arc ah = (i, j) and introduces Rh = deg−(i)

new arcs having a common extreme in node j, while the other extreme nodes

are obtained splitting node i in Rh new nodes, each of which has exactly one

incoming arc between those that had the original node i. Similarly, in case b)

arc replication removes the original arc ah = (i, j) and introduces Rh = deg+(j)

new arcs having a common extreme in node i, while the other extreme nodes

are obtained splitting node j in Rh new nodes, each of which has exactly one

outgoing arc between those that had the original node j.

These approximations contrast the presence of interdictive graphs that prevent

the application of further reduction operations. We observe that an arc eligible

for their application always exists in G′ξ when it cannot be fully reduced. Thus,

once one of these approximations has been applied, the counting function F2ξL

starts a new exact reduction phase. This process is (possibly) repeated, and ter-

minates only when one single final arc is obtained. In general, the application of

either arc removal or arc replication can introduce an approximation in the final

arc data IVfinal thus affecting the results of F2ξL. Note that, the arc removal

transformation never adds configurations to those corresponding to the initial
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subgraph G′ξ, this induces the overall procedure to produce under-estimations in

IVfinal. On the other hand, the arc replication transformation never eliminates

configurations to those corresponding to G′ξ, this induces the overall procedure

to produce over-estimations in IVfinal.

These transformations can be exploited to obtain lower and upper bounds of

the overall evaluation of Qα and qα according to the following Propositions 1

and 2.

Proposition 1. Given a network S represented by (G,D), and α ∈ [0, 1], if

the graphs Gξ involved in the F2ξL calls are not all SP digraphs, and only SP

or Adv reductions and arc removal transformations are applied to obtain the

IVfinal representations, the General Algorithmic Scheme returns a lower bound

LBQα [LBqα] of the overall evaluation of Qα [qα].

Proof. Recall that Qα and qα are estimated by means of a counting procedure

to identify the set WCTα(S) of the worst CTα configurations in UT (S). Given an

initial subgraph G′ξ, the arc removal transformation never adds configurations

to the set of the worst configurations WCTα(S). On the other hand, the arc

removal transformation may eliminate configurations from WCTα(S) which will

be replaced in the counting procedure by configurations having a smaller Cmax,

thus leading to under-estimations in IVfinal and a lower bound estimation of

both Qα and qα.

Proposition 2. Given a network S represented by (G,D), and α ∈ [0, 1], if the

graphs Gξ involved in the F2ξL calls are not all SP digraphs, and only SP or Adv

reductions and arc replication transformations are applied to obtain the IVfinal

representations, the General Algorithmic Scheme returns an upper bound UBQα

[UBqα] of the overall evaluation of Qα [qα].

Proof. Recall that Qα and qα are estimated by means of a counting procedure

to identify the set WCTα(S) of the worst CTα configurations in UT (S). Given

an initial subgraph G′ξ, the arc replication transformation never removes config-

urations from the set of the worst configurations WCTα(S). On the other hand,
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the arc replication transformation may add configurations with higher Cmax to

WCTα(S) thus causing over-estimations in IVfinal and an upper bound estima-

tion of both Qα and qα.

If the procedure devoted to determine the final arc IVfinal associated to Gξ,

uses only arc removal (arc replication) transformations in addition to exact re-

duction methods SP or Adv, then F2ξL always under-estimates (over-estimates)

its counts, inducing the overall algorithm to yield a lower (upper) bound of Qα

and qα. However, they can coincide when, due to the particular structure of

the graphs Gξ, the structural perturbations introduced by the applied transfor-

mations do not lead to alterations of the counts.

According to the bounds considered in Equations (5) and (6), determining

a lower bound of Qα based on the arc removal approximation, the algorithm

gives in output the maximum between Cmax(E(D)) and the obtained counting

result. In some cases, the number of cancelled configurations may lead to an

insufficient configurations in the final arc data with respect to the counting

target CTα. Then, the algorithm associates to the missing configurations the

value Cmax in order to complete its computation ensuring to get a lower bound.

Both the considered approximation methods apply a transformation on an

arc to be selected in a set of eligible candidates. In our implementation we con-

sider two variants for these approximation methods. The differences between

them lie in the management of the set of eligible arcs for removal and replication

operations. The following two cases are considered: mS and mS2.

mS . The procedure finds all the eligible arcs in G′ξ and, in both LB and UB

cases, selects arc ae with the minimum sum S of elements in Oe. The rationale

being to introduce smaller perturbations in the graph structures and therefore

smaller approximations in the counts.

mS2 . The procedure finds all the eligible arcs in G′ξ. Then, in the LB

case selects arc ae with the minimum sum S of elements in Oe belonging to
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the critical path. Whereas in the UB case it selects arc ae with the minimum

sum S of elements in Oe multiplied by the replicas of the arc introduced by the

procedure. This setting represents a choice based on a more accurate evaluation

of the perturbation introduced by the approximations.

4.4. Algorithmic configurations to determine Qα and qα of the makespan

We adopt the General Algorithmic Scheme introduced in Section 4.1 and con-

sider all possible configurations for the methods dedicated to the level manage-

ment, reduction and approximation transformations introduced in Sections 4.2

and 4.3.

More specifically, eight configurations can be obtained combining the follow-

ing:

• level management methods: the step-based method (St), and the slack-

based method (Sl);

• reduction methods: the basic Series-Parallel (SP) method and the Ad-

vanced method (Adv);

• approximation methods: the basic method mS and its variant mS2.

Each of these configurations produces both a lower bound LBα and an upper

bound UBα for Qα and qα of the makespan which can be estimated as:

Q̂α =
(UBQα + LBQα)

2
. (13)

q̂α =
(UBqα + LBqα)

2
. (14)

When the obtained upper and lower bounds have the same value, the result

is exact, and we say that the algorithmic configuration has closed the instance.

Regarding the computational complexity of the proposed algorithmic ap-

proach we observe what follows.
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Firstly, we observe that the SP transformations are pseudo-polynomial since

they depend on the interval values of arcs (i.e., IV). In particular, their com-

plexity depend on the amount of uncertainty of the IIN represented by the

length Γ (in terms of number of integers) of the time interval [Cmax, Cmax]. In

fact, discrete convolution (series) and MAX (parallel) operations are executed

in O(Γ2) and O(Γ), respectively. Regarding Y, D and IG transformations, they

require at most O(n), O(n2) and O(Γ) series operations, respectively.

If the graph is fully reducible to a single arc by a sequence of reduction trans-

formations, the whole reduction process requires a number of transformations

which is linear [7, 9] with respect to the size of the graph (i.e., in the number of

arcs m). Furthermore, if the graph is irreducible the number of necessary ap-

proximations transformations (i.e. arc removal and arc replication) is at most

O(m). Therefore when the SP reduction is used, the different configurations of

this algorithm are all O(Γ2m2), whereas they are O(Γ3m2) adopting the Adv

method.

Each algorithm configuration is indicated with a three-field coding in which

the first field contains the description of the level management method, the

second indicates the type of reduction and the third the approximation method.

The state-of-the-art algorithm presented in [49] corresponds to the configuration

St/SP/mS, and is assumed as benchmark in this study, while all the others

present innovative aspects that are the subject of the experimental investigation.

All the eight algorithmic configurations have been implemented and tested

in a wide experimental campaign reported in the following Section.

4.5. Illustrative example

In this Section we discuss a small example to illustrate the proposed ap-

proach. For a given IIN, as described in Section 3, the durations of its m activ-

ities are only known as the equally possible integer values included in a given

interval Ti = [ti, ti] for i = 1, . . . ,m which represents each possible realizations

of the duration Di for the activity i.

Figure 3 shows a given IIN S for which we are interested in computing
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Figure 3: Illustrative example: IIN S.

qα(Cmax) and Qα(Cmax) risk measures at the probability level α = 0.5 using

the the St/SP/mS and St/Adv/mS algorithmic configurations.

The given network S has m = 9, and shows Cmax = 8, Cmax = 6 giving

Γ = 3, whereas the total number of configurations can be calculated using

Equation (4) as |UT (S)| = 360. Hence, in order to obtain the desired qα and

Qα of the makespan, the counting procedure will need to count a target obtained

applying Equation (9) as CTα = 180 configurations.

In the first iteration, the counting procedure starts from the level M =

(ξ, L) = (0, 0) associated with the worst makespan Cmax = 8. At this level the

critical graph Gξ is composed by two arcs, namely (1, 3) and (3, 6). It is clearly

a series-parallel graph, and F2ξ admits only one configuration with makespan

value 8. The overall configurations associated to this level are then F2ξF1ξ = 72,

which being lower than the target CTα requires the procedure to continue to

the next level ξ = 1 associated with Cmax = 7.
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In the new iteration, we can observe that all the arcs of the original graph

are critical, and the resulting critical graph Gξ is not series-parallel. Hence,

the SP procedure cannot successfully reduce that graph to a single arc. The

algorithm St/SP/mS presented in [49] invokes the approximation transforma-

tion mS to obtain the lower and upper bounds, counting a total of 69 and 288

configurations, respectively. Thus the upper bound on Qα(Cmax) can be com-

puted as 7.4, while the lower bound still does not count a sufficient number

of configurations and the algorithm needs to explore the successive level ξ = 2

associated with Cmax = 6 in which the counting target CTα is reached. At the

end of the run the St/SP/mS algorithm on the basis of the obtained bounds re-

turns for Q0.5(Cmax) the interval [7.183, 7.400], while for q0.5(Cmax) it returns

the interval [6, 7]. In this case the obtained solution is not exact, and the final

results can be calculated averaging the bounds yielding ̂Qα(Cmax) = 7.292, and̂qα(Cmax) = 6.5, respectively. In this case the algorithmic configuration is not

able to close the instance.

On the other hand, using the St/Adv/mS algorithmic configuration, Adv

reduction procedure, in addition to SP transformations, can further apply Y and

IG transformations counting exactly a total of 225 configurations already at the

level ξ = 1 associated with Cmax = 7. Hence, in this case Q0.5(Cmax) = 7.4, and

q0.5(Cmax) = 7, and in both cases the obtained solution is exact since lower and

upper bound have the same value, closing the instance. Thus, this algorithmic

configuration obtained a more accurate result by analyzing a smaller number of

levels.

5. Experimental Study

This experimental analysis is devoted to test eight algorithmic configurations

considering the procedures proposed in Sections 4-4.3. These configurations are

obtained combining the following:

• level management methods: St and Sl

• reduction methods: SP and Adv
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• approximation methods: mS and mS2

Each algorithm configuration is indicated with a three-field coding as introduced

in Section 4.4.

All the numerical experiments were conducted on a Intel Core i9-9920X

processor (4.4 GHz clock speed) operating under Linux with 32 GB of RAM.

The code has been written in Python 3.10 and run on a single thread.

5.1. Test instances

In this computational study four test-sets have been generated starting by

four PSPLIB’s sets: J30, J60, J90, and J120 [32, 37, 38]. PSPLIB is a widely

used instance library for resource-constrained project scheduling problems, con-

sidered to be representative of real scheduling problems. The considered sets

contain instances having 30, 60, 90, and 120 activities, respectively. Each set in-

cludes 480 cases, except J120 which has 600 instances. Therefore, the considered

test-sets contain a total of 2040 instances.

To obtain our test-sets, we adopt the same procedure proposed in [49] to

systematically modify the original PSPLIB’s instances to: (i) remove resources

limitations, (ii) obtain AoA networks and (iii) introduce uncertainties.

A preliminary analysis on the networks of all these cases shows that no in-

stance is associated to a simple series-parallel digraph. Since the overall amount

of uncertainty (i.e., in terms of Γ) may have a relevant impact on the compu-

tational effort required to evaluate the considered quantile-based measures, the

rationale for this design of experiments is to get a larger and more challeng-

ing set of test instances than the ones used in [49]. Therefore, we consider

different parameters. Regarding the relevance and the level of uncertainties

in the networks we adopt the parameter ρ representing the percentage of the

number of uncertain activities and we consider ρ ∈ {0.25, 0.5, 1}. The gener-

ation of the uncertain duration Da for an activity a is based on the value of

its deterministic duration da in the original PSPLIB’s instance. This value is

used as reference to randomly generate the time interval Ta = [ta, ta] as the

only necessary information associated with Da. In fact, as described in Section
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3, the activity durations are only known as the equally possible integer values

included in a given interval for each activity a. To this aim we assume the

first extreme of the interval as ta = da, then we generate the other extreme as

ta = random(U [d(1 + 0.5γ)dae, d(1 + γ)dae]), where 0 ≤ γ ≤ 1 is a parameter

for which we consider the values in the set {0.25, 0.5, 1}. The settings obtained

combining these parameters provide nine scenarios characterized by different

degrees of uncertainty. Summing up, considering the original PSPLIB’s in-

stances and all the settings (i.e., for ρ and γ), the whole number of instances

included in our experimental campaign is 18360. Note that, the larger instance

in terms of Γ admits 6.4× 1062 configurations. Moreover, we consider three dif-

ferent values for the probability level α of the quantile-based measures, namely:

α ∈ {0.90, 0.95, 0.99}. This triples the total number of analyzed cases to 55080.

5.2. Results

We have tested the eight algorithms proposed in Section 4 on the test-sets

described in Section 5.1. We have run all the algorithms on each of the 55080

risk evaluations requiring in the worst case a maximum computation time of

12.27 s.

Table 2: Computational results: general overview of evaluations (in %).

Sets Closed Open SP-closed Adv-closed H-closed
J30 96.75 3.25 87.14 95.42 1.33
J60 92.69 7.31 79.21 90.89 1.80
J90 90.04 9.96 75.73 88.24 1.80
J120 86.77 13.23 72.33 84.62 2.15
ALL 91.28 8.72 78.23 89.49 1.79

A first aggregate analysis of the obtained results refers to the whole data

set and is summarized in Table 2 which reports a general overview of evalua-

tions (in %). The first column reports the sets of instances, while the successive

two columns report the percentage of Closed and Open instances, respectively.

After the computational experiments, an instance is Closed if it is possible to

determine the exact value of qα(Cmax) and Qα(Cmax), i.e., for at least one

algorithm, the corresponding lower and upper bounds coincide. Otherwise the
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instance is considered Open as these bounds define an interval of possible values

of the risk index of interest. In these cases, only heuristic estimations of the

quantile-based measures are available, and they are obtained averaging the val-

ues of the bounds. This situation is due to the presence in the IIN of structures

that the algorithms are unable to simplify such as general subgraphs homeo-

morphic to the interdictive graph. Then, successive approximation procedures

can introduce changes of such importance as to preclude the possibility of ob-

taining an exact computation. On the other hand, when this perturbation is

slight and the configurations to be counted do not change, exact results can

still be achieved. The results reported highlight that larger instances are more

difficult to solve exactly. Nevertheless, the overall results reported in the last

row indicate that for 91.28% of the evaluations exact results were obtained.

In the other columns, we report for each group of instances the percentages

of instances exactly solved using the SP and Adv reduction method (indicated

as SP-closed and Adv-closed); and, finally, the percentage of further instances

closed by the heuristic approach (H-closed).

Recalling that even if no graph is series-parallel (as discussed in Section

5.1) in the test sets, the considered Gξ may be, we call SP-closed instances

those (78.23% in total) for which the algorithms applying only series-parallel

reductions on Gξ (regardless of whether G is a series-parallel graph) are able

to reach their counting target CTα. In other words, regardless of whether the

whole network G is a series-parallel graph, all the critical graph structures Gξ

processed by the algorithms are series-parallel. Similarly, Adv-closed cases are

those solved exactly by algorithms that use the Adv reduction method. They

achieve the 89.49% and include the SP-closed cases. The remaining 10.51% of

cases is not completely solved using Adv reductions, and calls for the application

of an approximation method to completely reduce the graph to a single arc

as discussed in Section 4.4. These approximations are performed by heuristic

reduction methods able to close the instances in the 17.05% of cases they are

used, and 1.79% of the overall instances were closed only after the use of the

heuristics.
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We complete the general overview of the aggregated results considering the

behavior of the considered eight algorithm configurations. This analysis is sum-

marized in Tables 3 and 4 for algorithms adopting the Step-based and the Slack-

based level management, respectively.

The first row in these tables reports the percentage of instances closed by

each algorithm (in columns).

Table 3: General overview of results for algorithms using the Step-based level management.

Index St/Adv/mS St/Adv/mS2 St/SP/mS St/SP/mS2
%Closed 91.22 90.96 82.15 81.54
IQ% (avg.) 2.68 2.82 6.43 6.71
IQ% (st.d.) 12.01 12.33 18.65 18.97
MREQ% (avg.) 0.26 0.27 0.58 0.6
MREQ% (st.d.) 1.22 1.24 1.77 1.8
Iq% (avg.) 5.45 5.75 12.41 12.95
Iq% (st.d.) 23.7 24.42 35.05 35.7
MREq% (mean) 0.57 0.6 1.19 1.23
MREq% (st.d.) 2.61 2.67 3.64 3.7
Time (mean) 0.11 0.11 0.1 0.11
Time (st.d) 0.56 0.58 0.4 0.41

Table 4: General overview of results for algorithms using the Slack-based level management.

Index Sl/Adv/mS Sl/Adv/mS2 Sl/SP/mS Sl/SP/mS2
%Closed 91.22 91.1 82.15 81.85
IQ% (avg.) 2.68 2.77 6.43 6.61
IQ% (st.d.) 12.01 12.25 18.65 18.88
MREQ% (avg.) 0.26 0.27 0.58 0.59
MREQ% (st.d.) 1.22 1.24 1.77 1.79
Iq% (avg.) 5.45 5.66 12.41 12.77
Iq% (st.d.) 23.7 24.23 35.05 35.51
MREq% (mean) 0.57 0.59 1.19 1.22
MREq% (st.d.) 2.61 2.65 3.64 3.68
Time (mean) 0.08 0.08 0.07 0.08
Time (st.d) 0.47 0.49 0.33 0.34

Each configuration of the algorithm is able to close a high percentage (rang-

ing from 81.54% to 91.22%) of instances showing in general a slight better

performance when the Slack-based level management is used. Moreover, the

configurations adopting the Adv reduction method and mS approximation per-
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form better than others with everything else being equal.

The successive four rows report the mean and the standard deviation of two

indicators we adopt to assess the quality of the results obtained for Qα averaged

on the instances. The first indicator is the quality index IQ which is defined as

follows:

IQ =

0 if Cmax − Cmax(E(D)) = 0

UBQα−LBQα
Cmax−Cmax(E(D))

otherwise

(15)

IQ compares the gap between the bounds (UBQα and LBQα) on Qα obtained

by the algorithm and the distance between the worst case and the deterministic

counterpart of the makespan (which are considered as the initial knowledge on

those bounds). In other words, IQ represents a measure of the relative reduction

of the uncertainty on the knowledge of Qα obtained by the application of the

algorithms.

The second indicator is the estimated maximum relative error MREQ which

is determined considering that the approximation adopted when the algorithm

is not able to find the exact evaluation, can cause an absolute error of at most

UBQα (Cmax)−LBQα (Cmax)
2 , and therefore guarantees a maximum relative error

MREQ on the specific solution evaluation quantified as follows:

MREQ =
UBQα(Cmax)− LBQα(Cmax)

UBQα(Cmax) + LBQα(Cmax)
(16)

Both indicators reveal a good overall behavior of the algorithms which, on

average, present 4.64% and 0.43% for IQ and MREQ, respectively. Tables 3

and 4 report also their standard deviations for each configuration. These quality

measures on Qα show a better behavior of St/Adv/mS and Sl/Adv/mS, while

highlight St/SP/mS2 as the worst performing algorithm on average.

Similarly, the following block of four rows in Tables 3 and 4 report the mean

and the standard deviation of the two indicators adopted to assess the quality

of the results for qα. The Iq and MREq indicators are conceptually similar to
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those previously described but are adapted to the case of qα considering the

related bounds and a different reference interval:

Iq =

0 if Cmax − Cmax) = 0

UBqα−LBqα
Cmax−Cmax)

otherwise
(17)

MREq =
UBqα(Cmax)− LBqα(Cmax)

UBqα(Cmax) + LBqα(Cmax)
(18)

The relative behavior of the algorithms substantially confirms what was ob-

served for Qα.

The last rows of Tables 3 and 4 show the computation times (in seconds) of

each algorithm, averaged on all the instances and the related standard devia-

tions. The algorithms required on average 0.093 seconds, and configurations us-

ing the Slack-based level management result faster. More specifically Sl/SP/mS

is the fastest configuration but it is not the best in terms of quality of the

solutions for both the quantile-based measures.

We can observe that on the average the state-of-the-art algorithm proposed

in [49] turns out to be outperformed by all configurations adopting the Adv

reduction method. Among these, those that use slack-based level management

are the fastest, while the best performing configuration on average, considering

both results quality and computation time, is Sl/Adv/mS.

Table 5: Methods Comparison for Qα over all the experimental cases

Index Methods Comparison
St 0.51 97.72 1.78 Sl Level management
SP 0.07 82.55 17.38 Adv ReductionIQ
mS 4.44 93.13 2.43 mS2 Approximation
St 0.51 97.72 1.78 Sl Level management
SP 0.07 82.55 17.38 Adv ReductionMREQ
mS 4.45 93.13 2.43 mS2 Approximation
St 28.47 0.00 71.53 Sl Level management
SP 6.88 0.00 93.12 Adv ReductionTime
mS 49.27 0.14 50.58 mS2 Approximation

To better analyze the contribute of each single method both to the quality
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Table 6: Methods Comparison for qα over all the experimental cases

Index Methods Comparison
St 0.30 98.54 1.15 Sl Level management
SP 0.07 83.55 16.38 Adv ReductionIq
mS 3.17 94.92 1.91 mS2 Approximation
St 0.30 98.54 1.15 Sl Level management
SP 0.07 83.55 16.38 Adv ReductionMREq
mS 3.20 94.89 1.91 mS2 Approximation
St 28.47 0.00 71.53 Sl Level management
SP 6.88 0.00 93.12 Adv ReductionTime
mS 49.27 0.14 50.58 mS2 Approximation

Table 7: Methods Comparison for Qα over the open cases

Index Methods Comparison
St 3.12 86.00 10.88 Sl Level management
SP 0.59 7.31 92.10 Adv ReductionIQ
mS 29.78 49.92 20.30 mS2 Approximation
St 3.12 86.00 10.88 Sl Level management
SP 0.59 7.31 92.10 Adv ReductionMREQ
mS 29.83 49.92 20.25 mS2 Approximation
St 4.71 0.00 95.29 Sl Level management
SP 53.29 0.00 46.71 Adv ReductionTime
mS 57.48 0.02 42.50 mS2 Approximation

Table 8: Methods Comparison for qα over the open cases

Index Methods Comparison
St 1.78 91.39 6.83 Sl Level management
SP 0.62 15.93 83.46 Adv ReductionIq
mS 20.90 62.85 16.25 mS2 Approximation
St 1.78 91.39 6.83 Sl Level management
SP 0.64 15.90 83.47 Adv ReductionMREq
mS 21.12 62.65 16.23 mS2 Approximation
St 4.71 0.00 95.29 Sl Level management
SP 53.29 0.00 46.71 Adv ReductionTime
mS 57.48 0.02 42.50 mS2 Approximation

and the efficiency of the overall procedure Tables 5 and 6 report the compar-

ison conducted for Qα and qα, respectively. For each performance index (i.e.,

quality, relative error, and computation time) all pairs of methods for Level

management (St vs Sl), Reduction (SP vs Adv), and Approximation (mS vs
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mS2) are compared over all the 55080 computational experiments when the re-

maining algorithm’s configuration is equal. For all comparisons the tables report

the percentage of cases each method performs better (by rows, in the first and

the third numerical entry, respectively), while in the central column is reported

the percentage of cases in which the compared methods offer the same level of

performance.

On the basis of these results we can observe in general that no method is

fully outperformed by its competitor. In fact, there are cases in which each

method is preferable.

Concerning both quality indicators (IQ and Iq) and relative errors (MREQ

and MREq), in most of the cases the behavior of the compared methods is

similar. Nevertheless, Adv achieves a percentage of success clearly higher than

SP. The differences among the other compared methods are more limited, in

particular in the qα risk measure.

The comparison on the computation times shows better results for the new

methods introduced in this paper (i.e., Sl, Adv, and mS2), however, also in this

case the general observation holds as no method performs better in all the cases.

A similar comparative analysis is conducted on the set of open cases, and

the results are summarized in Tables 7 and 8. For these more difficult instances

to solve, a greater difference is observed in the behavior and contribution of the

different methods. Among the Reduction methods, Adv remains, in percentage

terms, by far the best. The successful behavior of Sl in terms of Level man-

agement is less marked. As for the Approximation methods, mS and mS2 both

offer a valid contribution, in many cases being complementary in finding better

solutions, and in about 50% of cases they offer solutions with the same quality.

As regards the computation times, only on Level management there is a marked

better behavior of Sl with respect to St. In the other two cases, a substantially

complementary behavior of the compared methods is observed.

The results obtained show that the proposed methods for Qα and qα of the

makespan of IINs have a very good behavior in terms of quality of solutions and

measured relative errors. We also observe that in the overall behaviors of the
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algorithm configurations there is a correlation between the average results for

the two indicators. This can be explained by the fact that configurations that

perform comparatively well on average under one performance indicator tend

to perform well also on the other measure.

The analysis of these results shows that the proposed procedures allows the

method to significantly improve the quality of the risk assessment with respect to

the state-of-the art algorithm (corresponding to the configuration St/SP/mS).

While they reduce the required computation time, thus improving over the

state-of-the-art algorithm. More specifically, while the prevalence of Sl for the

Level management and Adv for the reduction technique is quite marked, the

prevalence of mS2 as approximation method is rather slight.

6. Conclusions

This paper deals with scheduling problems represented by temporal networks

with incomplete and uncertain activity durations. More precisely, it considers

the case of Integer Interval-Valued Activity Networks where durations can as-

sume, as in different pratical contexts, only equally possible integer values be-

longing to a known interval.

Given a IIN representing a feasible solution for a scheduling problem, we devel-

oped a set of methods to be used in a counting algorithmic scheme to evaluate

the quantile and the superquantile of the makespan as risk indicators. The

evaluation gives as result theoretically proven lower and upper bounds.

The counting procedure, starting from the pessimistic makespan (i.e., the

worst possible makespan), counts backwards how many configurations lead to

each considered makespan value. This counting process is iterated until suffi-

cient information has been gathered to compute the quantile based risk measures

at a desired probability level α.

The computation at each step is done by exploiting the contribution of three

methods devoted to level management, graph reduction and counting approxi-

mation, respectively. For each method two different procedures are considered
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and tested in an extensive experimental campaign carried out on the basis of

classic project scheduling benchmarks.

More precisely, these methods allow us to configure eight overall algorithms

extending the state-of-the-art and providing fast computation of the quantile

and superquantile indicators yielding extremely good results. They highlight

an algorithm with great possibilities of application in real-time or massive and

repetitive scheduling activities.

The proposed approach can enable to exploit the benefits and effectiveness

of using the quantile based risk indicators as optimization criteria for a wide

classes of scheduling problems considering the risk attitude of the scheduler in

different practical contexts.

Given the short computation times requirements and the offered quality of the

evaluations, one possible research direction is to embed this approach in an op-

timization algorithm. In optimization algorithmic schemes the proposed evalu-

ation of the risk could be done at every step of an iterative algorithm (i.e., for

example in a local search) or it could be carried out only on selected solutions

for a validation or ex-post assessment of the risk associated to a given solution.

Different, yet interesting, research directions to consider, include possible

extensions of the proposed approach. They could aim at developing further al-

gorithmic improvements or more effective exact or heuristic schemes; considering

more general uncertainty representations such as general probability functions

and fuzzy sets [21] also aimed to a distributionally robust analysis; applying or

adapting the proposed approach to the case of different risk indicators or utility

functions.
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[50] Meloni C, Pranzo M, Samà M (2021) Risk of delay evaluation in real-time

train scheduling with uncertain dwell times. Transportation Research Part E:

Logistics and Transportation Review, 152, 102366.
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[71] Zieliński P (2005) On computing the latest starting times and floats of

activities in a network with imprecise durations. Fuzzy Sets and Systems,

150, 53-76.

46


	Introduction
	Literature review
	Integer Interval-Valued Activity Networks
	Computation of the Quantiles and Superquantiles of the Makespan in IINs
	General algorithmic scheme
	Level Management Methods
	Evaluation Procedure Methods
	Reduction Procedures
	Approximation procedures

	Algorithmic configurations to determine Q and q of the makespan
	Illustrative example

	Experimental Study
	Test instances
	Results

	Conclusions

