
SSL/TLS Session-Aware User Authentication
Revisited

Rolf Oppliger1, Ralf Hauser2, and David Basin3

1 eSECURITY Technologies Rolf Oppliger
Beethovenstrasse 10, CH-3073 Gümligen, Switzerland

Phone/Fax: +41 79 654 8437
E-mail: rolf.oppliger@esecurity.ch

2 PrivaSphere AG
Fichtenstrasse 61, CH-8032 Zürich, Switzerland
Phone: +41 43 299 5588, Fax: +41 44 382 7762

E-mail: hauser@privasphere.com
3 Department of Computer Science, ETH Zurich
Haldeneggsteig 4, CH-8092 Zürich, Switzerland
Phone: +41 44 632 7245, Fax: +41 44 632 1172

E-Mail: basin@inf.ethz.ch

Abstract. Man-in-the-middle (MITM) attacks pose a serious threat to
SSL/TLS-based e-commerce applications. In [OHB06], we introduced the
notion of SSL/TLS session-aware user authentication to protect SSL/TLS-
based e-commerce applications against MITM attacks and we proposed
an implementation based on impersonal authentication tokens. In this
paper, we present a number of extensions of the basic idea. These in-
clude multi-institution tokens, possibilities for changing the PIN, and,
most importantly, different ways of making several popular and widely
deployed user authentication systems SSL/TLS session-aware.

Keywords. Electronic commerce, security, phishing, man-in-the-middle
attack, SSL/TLS protocol, SSL/TLS session-aware user authentication

1 Introduction

Man-in-the-middle (MITM) attacks [Bur02] pose a serious threat to SSL/TLS-
based e-commerce applications, such as Internet banking. In [OHB06], we in-
troduced the notion of SSL/TLS session-aware user authentication (TLS-SA)
to protect SSL/TLS-based e-commerce applications against MITM attacks. The
main idea behind TLS-SA is to make user authentication depend not only on
the user’s credentials, such as his password or personal identification number,
but also on state information related to the SSL/TLS session in which the cre-
dentials are transferred to the server. The rationale is that the server should
have the possibility to determine whether the SSL/TLS session in which it re-
ceives the credentials is the same as the one the user employed when he sent
out the credentials in the first place. If the two sessions are the same, then the

session is directly established between the user and the server, whereas if they
are different, then a MITM attack is likely taking place.

Using TLS-SA, the user authenticates himself by providing a user authentica-
tion code (UAC) that depends on both his credentials and the SSL/TLS session,
in particular, on information from the SSL/TLS session state. A MITM may still
be able to acquire the UAC, but he can no longer misuse it simply by retransmit-
ting it. The key point is that the UAC is bound to a particular SSL/TLS session
and if the UAC is submitted on another SSL/TLS session, then the server can
recognize this and drop the session.

As outlined in [OHB06], there are a number of possibilities to implement
TLS-SA and we distinguish between hardware-based and software-based im-
plementations. The former employ hardware tokens, which may be physically
connected to the client.4 The latter utilize some form of software tokens. Inde-
pendent of whether a token is a hard-token or a soft-token, it can be personal or
impersonal, and it may support a cryptographic token interface standard, such
as the public key cryptography standard (PKCS) #11 [RSA04] or Microsoft’s
cryptographic application programming interface (CAPI).

In the remainder of this paper, we present a number of extensions and vari-
ations of TLS-SA. To make the paper self-contained, we summarize our original
token-based proposal in Section 2. In Sections 3–5, we address multi-institution
tokens, possibilities for changing the personal identification number (PIN), and,
most importantly, different ways of making several popular and widely deployed
user authentication systems SSL/TLS session-aware. In Section 6, we draw con-
clusions and provide an outlook. For the purpose of this paper, we assume that
the reader is familiar with the SSL/TLS protocol [DR06].

2 Token-Based Approach

The implementation of TLS-SA originally proposed in [OHB06] is based on im-
personal authentication tokens. The following entities play a role:

– A user U ;
– An impersonal authentication token T with a (small) display;
– A client (i.e., browser) C that is used by U to access an SSL/TLS-based

application;
– An SSL/TLS-enabled server S that hosts the application. Note that we do

not differentiate between S and the application it hosts. Conceptually, one
may think of S as a dedicated server, i.e., a server that exclusively hosts only
the application under consideration.

The user U is identified with IDU and holds PINU , a secret PIN that U
shares with S. T is identified by a publicly-known serial number SNT that may,

4 We say that a token is physically connected, or just connected, if there is a direct com-
munication path in place between the token and the client system. This includes, for
example, galvanic connections, as well as connections based on wireless technologies,
such as Bluetooth or infrared.

for example, be imprinted on the back side of the token. Furthermore, T is
equipped with both a public key pair5 (k, k−1) and a secret token key KT that
is shared with S. The keys k and k−1 are the same for all tokens (which is
why the tokens are impersonal), whereas KT is unique and specific to T . Note,
however, that KT is not specific to the user, and hence the tokens need not be
personalized. This is the main advantage of using impersonal tokens in the first
place. KT can be generated randomly, or pseudorandomly, using a master key
MK, which is typically held exclusively by S:6

KT = EMK(SNT)

In order to access S, U directs C to S. C and S then try to establish an SSL/TLS
session using the SSL/TLS handshake protocol. As part of this protocol, S au-
thenticates itself using a public key certificate (note that this certificate is seldom
verified and validated by the user). S is configured in a way that it always re-
quires certificate-based client authentication by sending out a CertificateRequest

message to C. When C receives this message, it knows that it must authenticate
itself by returning a Certificate and a properly signed CertificateVerify message
to S. The CertificateVerify message comprises a digitally signed hash value of all
messages previously exchanged during the execution of the SSL/TLS handshake
protocol (this hash value is further referred to as Hash). Part of these messages
is the server’s Certificate message, which comprises the server’s public key certifi-
cate and hence the server’s public key, included in this certificate. Consequently,
the CertificateVerify message is logically bound to the server’s public key. The
digital signature is generated by T using its private key k−1. Since T is an im-
personal token, the CertificateVerify message neither authenticates the token nor
the client. It only ensures that C uses a token to establish an SSL/TLS session
with S and that the token can access Hash. Alternatively speaking, the token
represents a trusted observer for Hash and for enforcing a proper execution of
the TLS-SA.

In addition to providing a properly signed CertificateVerify message to S, the
token T also renders a shortened version of

NT = EKT
(Hash) (1)

on its display, for example, in decimal notation. In this case, E represents an
encryption function that is keyed with KT . Alternatively, NT may also represent
a message authentication code (MAC) computed with a keyed one-way hash
function, where KT is again the key.7 For example, the HMAC construction

5 It is possible to have the token only hold the private key.
6 In the first case (where KT is generated randomly), all token keys must be stored

on the server S. In the second case (where KT is derived from SNT), however, there
is no need to centrally store all token keys on S. Instead, KT can be generated
dynamically from SNT and MK.

7 In some circumstances, the use of a MAC is advantageous because keyed one-way
hash functions are generally more efficient than symmetric encryption systems and
because there are usually no regulations restricting the use of (keyed) one-way hash
functions, in contrast to the use of encryption systems.

[KBC97] can be used to generate

NT = HMACKT
(Hash). (2)

In either case, NT can be shortened to the length of PINU (e.g., 8 decimal
digits) by truncating it. Care must be taken so that collisions occur sufficiently
seldom. Note, however, that an adversary would have to know KT to actively look
for colliding values of Hash. Anyway, NT must then be combined with PINU

to generate a UAC that is valid for exactly one SSL/TLS session initiated by
U . If f represents a function that combines NT and PINU in some appropriate
way, then the UAC can be expressed as

UAC = f(NT , P INU) . (3)

In general, there are many ways to define an appropriate function f . One
possibility, adopted from [MT93], is digit-wise addition, modulo 10. In this case,
the UAC is the digit-wise sum, modulo 10, of NT and PINU , which is a function
simple enough for users to compute themselves, in their heads. Another possi-
bility is to use PINU to select specific digits of NT . This construction is, for
example, employed by PINsafe of Swivel.8 If the token comprises a keypad for
entering PINU , then the token can also be used to compute f . Of course, in this
case, f can then be more complex.

After a server-authenticated SSL/TLS session is successfully established be-
tween C and S, S authenticates U by asking him to provide IDU , SNT , and a
valid UAC for the SSL/TLS session in current use. Note that the user need not
enter SNT if this value is included in the public key certificate for T ’s private
key k−1. In this case, S can retrieve SNT from the certificate, but the certifi-
cate is then token-specific. Alternatively, one could also provide for the user to
temporarily register with a specific token. In this case, S can retrieve IDU from
its registration database and set it as a default value in the user authentication
process. Note, however, that the binding between SNT and IDU is still weak.
On the server side, S can verify the UAC because it knows f and PINU , and be-
cause it can reconstruct NT (since it knows Hash and the master key MK that
is used to dynamically generate KT). There is nothing fundamentally different if
the server knows only a one-way hash value of PINU (instead of PINU). This is
a well-known security mechanism to protect PINs (or passwords) from malicious
system administrators or users that have gained access to the file that comprises
the PINs [MT79]. In either case, the server authentication module must have
access to the SSL/TLS session cache in order to retrieve Hash.

Note that it is technically feasible to transfer the UAC as part of the SSL/TLS
CertificateVerify message so that the user authentication can be handled entirely
by the token. This would free the user from entering anything into a Web form.
There are at least three possibilities here.

1. T can digitally sign both the Hash value and the UAC.

8 In Swivel’s terminology, PINU refers to the user PIN, NT refers to the security
string, and UAC refers to the one-time code.

2. T can digitally sign a keyed hash value (instead of the hash value Hash),
where the UAC represents the key, Hash represents the argument, and the
HMAC construction is used to key the hash function.

3. T can only send the keyed hash value (instead of the digital signature). This
is similar to the second possibility; the only difference is that the keyed hash
value is not digitally signed. Consequently, there is no need to have a private
signing key on the token.

All of these possibilities require changes to the server side of the SSL/TLS
handshake protocol and the way the SSL/TLS CertificateVerify message is used
in the protocol. However, this is less disadvantageous than it appears at first
sight because the browser (and all other application clients layered on top of
SSL/TLS) remains unaffected and hence need not be altered.

3 Multi-institution Tokens

Multi-institution tokens are briefly mentioned in [OHB06]. As the name suggests,
the idea is to allow multiple institutions to use the same token T for user au-
thentication. The rationale behind multi-institution tokens is an economic one:
it may be cost effective for multiple institutions to share a single token.

A simple and straightforward possibility for implementing multi-institution
tokens is to replace the master key MK with a set of institution-specific master
keys MKI , one for each institution I. The token key is also then replaced with a
set of institution-specific token keys KIT that can be generated pseudorandomly
by

KIT = EMKI
(SNT).

Furthermore, each such key can be used to generate institution-specific values
for

NIT = EKIT
(Hash)

and

UAC = f(NIT , P INIU).

The personal identification code PINIU is used to authenticate the user U to
the institution I, i.e., PINIU is user-specific and also institution-specific. The
resulting UAC can be employed by the user U to authenticate to (the server of)
the institution I.

There is another possibility for implementing multi-institution tokens. This
possibility does not require the token to store KIT for each institution I. Instead,
the token only stores a master key MKT that is shared with an authentication
server (AS). If the token T is used to authenticate user U to institution I, then
T randomly generates a nonce NT and generates the following pair of UACs:

UACI = f ′(NT , P INIU)

UACAS = EMKT
(NT)

The pair of UACs is then submitted to I. I, in turn, forwards UACAS to AS
for decryption and AS sends back NT to I. Here, all communications between
I and AS must take place over a secure channel, e.g., over a SSL/TLS session.
Finally, I can use NT to verify PINIU . In this scheme, the function f ′ must be
designed in such a way that it is computationally infeasible to recover PINIU

from UACI and UACAS .

Both approaches to implementing multi-institution tokens are useful in a
practical setting. If the set of institutions is more-or-less static, then the first
possibility is advantageous since it does not require an authentication server. If,
however, the set of institutions changes often, then the second possibility seems
more appropriate.

4 Changing the PIN

The security of a token-based implementation of TLS-SA largely depends on
the fact that users never enter their PIN into the client system, for example, in
a Web form. Instead, they either use their PIN to compute the UAC in their
head or they directly enter their PIN in the authentication token in use. If one
weakens this constraint, then users are vulnerable to a doppelganger window
attack [JM05]. In this attack, the adversary pops up a fake window to request
user credentials. Since users cannot typically distinguish between original and
fake windows, they are likely to enter their credentials into any window that asks
for them. As of this writing, there is no technology that fully protects against this
type of attack—this includes, for example, Delayed Password Disclosure (DPD)
proposed in [JM05].

Ideally users are taught to never to enter their PIN into a client system. But
this then complicates changing their PIN. Normally, one would implement a Web
form in which a user can change his PIN interactively. Since we discourage, or
even disallow, users from entering PINs into Web forms, we must provide other
means to allow PIN changes. In either case, there must be some mechanism in
place that allows a user to signal to the server that he wants to change his PIN
and to protect the new PIN PINnew

U with the old PIN PINold
U .

Let us assume that the user has authenticated himself using TLS-SA and that
he has signaled to the server that he wants to change his PIN (using, for example,
a Web form, or another mechanism for other application protocols layered on
top of SSL/TLS). The server can then establish an auxiliary SSL/TLS session
and send back to the browser a Web form in which the user is requested to
enter a PIN change code (PCC). Again, the token displays NT for the auxiliary
SSL/TLS session and the user (or token) computes a PCC (instead of a UAC)
as

PCC = f ′(NT , P INold
U , P INnew

U).

Here, f ′ represents an arbitrary (but appropriately chosen) function that allows
the server to recover PINnew

U from the PCC. This excludes, for example, the

use of hash functions. In the reference example of [OHB06], f represents the
digit-wise addition modulo 10 and hence f ′ can be defined as

f ′(NT , P INold
U , P INnew

U) = f(f(NT , P INold
U), P INnew

U).

Let, for example, NT = 123, PINold
U = 345, and PINnew

U = 781. In this case,
f(NT , P INold

U) = 468 and f(f(NT , P INold
U), P INnew

U) = 149. Consequently, the
server can retrieve PINnew

U from the PCC 149 submitted by the user. Note that
the PCC can also be transferred as part of the SSL/TLS CertificateVerify message
as discussed at the end of Section 2 (again, this requires the server to properly
interpret this SSL/TLS protocol message). Also note that the PCC is sent over
an SSL/TLS session. Since the SSL/TLS protocol protects the integrity of all
messages (by sending a MAC at the end of each SSL/TLS record), it is infeasible
for an adversary to modify the PCC, e.g., by flipping bits.

5 Making User Authentication Systems SSL/TLS
Session-aware

There are many user authentication systems that can be employed in an SSL/TLS
setting and almost all of them are susceptible to MITM attacks. In the remainder
of this paper, we elaborate on how to make some popular and widely deployed
user authentication systems SSL/TLS session-aware in a way that provides pro-
tection against MITM attacks. We distinguish between challenge-response (C/R)
and one-time password (OTP) systems.

5.1 C/R Systems

A C/R system is an authentication system in which the entity that is authenti-
cated (typically the client) is provided with a challenge for which it must return
an appropriate response to the entity that is authenticating it (typically the
server). C/R systems are often implemented in hardware and the corresponding
(hardware) tokens may be connected to the client systems using some crypto-
graphic token interface standard, such as PKCS #11 or CAPI.

On the conceptual level, there is a simple and straightforward possibility to
make a C/R system SSL/TLS session-aware: instead of having the server provide
a challenge to the client, the client and the server simultaneously employ NT as
a challenge. Note that NT is cryptographically protected using the token key
KT as a shared secret. The formula (3) can be used to compute the UAC that
then represents the response. We distinguish between two cases, depending on
whether or not the token is connected to the client system.

1. If the token is connected, then it is straightforward to make the user au-
thentication SSL/TLS session-aware. In this case, Hash is sent to the token
and the token can use it to compute NT according to the formula (1) or (2).
NT can either be displayed so that the user can compute the UAC from it

or the user must additionally input PINU , so that the token can compute
the UAC (this is the preferred choice). In either case, this protects against
visual spoofing of the locally calculated challenge by a MITM and has the
advantage that human copying errors can be excluded. The response can
be copied by the user from a device display as is common practice. Alter-
natively, the response can also be directly returned by the device interface
inside a pseudo-signature that will be put into the CertificateVerify message
by the authenticating client.

2. If the token is not connected, then the situation is more involved. In this
case, there is no direct communication path between the client and the token
and hence there must be another possibility to communicate SSL/TLS state
information from the browser to the token. We sketch one such possibility
below.

The main advantages of the first case, where the token is connected, are that
the user interaction is simple and that one can use NT and possibly the UAC
in its entire length and thereby provide better security. The main disadvantage
is the necessity of having a free port available to connect the device to and to
install a token driver on the client system.

The main advantage of the second case, where tokens are not connected, is
that there is no need for a physical token interface, and hence, a token driver
need not be installed. The main disadvantage is that one must have another
possibility to communicate SSL/TLS state information from the browser to the
token. One possibility is to employ the user as an active communication medium:
the browser displays9 Hash and the user enters the displayed value into the
token. This possibility has the disadvantage that Hash is quite long (i.e., 36
bytes), and that it is unacceptable for the user to enter it into the token. So we
need a way of shortening Hash to only a few bits. This step is tricky. If we work
with a deterministically shortened version of Hash, then we are vulnerable to
a specific MITM attack. The MITM can wait for a first SSL/TLS session to be
established by the client system. He can then set up a second SSL/TLS session
to the origin server and modify the ServerHello message to be returned in the
first session in a way that the compressed or truncated Hash value matches
the Hash value of the second session (more specifically, the MITM looks for a
second-preimage of the Hash value for the shortening function in use). Since the
challenge is determined by this value, the MITM can simply forward the user’s
response to authenticate to the origin server.

Due to the feasibility of this attack, one must be very careful to properly use
the Hash value. Instead of working with the entire Hash value, for example, the
browser can pseudorandomly select and work with only a subset of its bits to
form the challenge. More specifically, the browser can pseudorandomly select a
few position indices and bit sequences that begin at these positions from Hash.

9 A problem here is how to make browsers display the needed information without
having to alter them. In the short term, one may employ browser extensions, such as
plugins. In the long term, however, it should not be necessary to extend the browser
and the browser should have the possibility to access the information natively.

The values can be concatenated to form a challenge and thereby to add the
requirement that the MITM needs to contact the server to validate the guesses
for the pre-image or compressed hash respectively. The number and lengths of
the bit sequences depend on the maximum length of the challenge (and it is a
challenging engineering task to find optimal solutions). Anyway, the challenge
can be displayed by the browser and the user can enter it into his token. The
token can then generate an appropriate response for the challenge. If the token
implements a block cipher and holds a token key KT , then this key can be used
to encrypt the challenge according to

Response = EKT
(Challenge||Padding). (4)

Note that Challenge is typically shorter than the block length of the block cipher
and hence one can introduce some padding. Also note that the block length is
important because one must avoid the case in which the output of the block
cipher is too long (since the user must manually enter this value into a Web
form).

In a typical setting, Challenge may comprise 4 to 8 decimal characters,
whereas Response may comprise up to 13 alphanumerical characters (e.g., up-
percase letters and decimal characters). If lChallenge is the maximum length of
the challenge (in decimal digits), then one requires

b = ⌊log2(10lChallenge − 1)⌋

bits to represent the challenge. For lChallenge = 4, this corresponds to b = 13,
and for lChallenge = 8, this corresponds to b = 26. So if the challenge is 8 decimal
digits long, then one can employ 26 bits to encode the challenge.

According to equation (4), the response of the C/R system refers to one
ciphertext block. This basically means that the length of the response is equal to
the block length of the symmetric encryption system in use. For DES and 3DES,
for example, this is 64 bits. If we employ the Base-32 encoding scheme [Jos03]
that comprises 32 characters encoded in 5 bits each, then we need ⌈64/5⌉ = 13
alphanumeric characters to encode the response. If, however, we employ the
Base-64 encoding scheme [Jos03] that comprises 64 characters encoded in 6 bits
each, then we can reduce the length of the response to the more realistic size of
⌈64/6⌉ = 11 characters.

Figure 1 illustrates the situation for lChallenge = 8 and b = 26 with two 8-bit
position indices (i.e., r1 and r2) and two corresponding 5-bit sequences starting
at these positions. In this case, 2 · 5 = 10 out of 26 bits are taken to form the
subset of the Hash value’s bits. The bit utilization rate (BUR) is 10/26 ≈ 0.38.

As illustrated in Figure 2, the BUR can be improved by only considering 1
position index and one bit sequence of 26 − 8 = 18 bits. In this case, the BUR
is 18/26 ≈ 0.69. Furthermore, it may be possible to code the position index in
less than one byte (by reducing, for example, the number of possible position
indices). The goal is to have the BUR approach 1 as close as possible. Another
possibility is to use a pseudorandom bit generator (PRBG) seeded with the

r1 r2

Hash (36 bytes)

Challenge (26 bits)
8 bits 5 bits 8 bits 5 bits

Figure 1 The construction of the challenge with two position indices

r1

Hash (36 bytes)

Challenge (26 bits)

8 bits 18 bits

Figure 2 The construction of the challenge with only one position index

Hash value to generate a bit sequence from which the challenge is constructed.
We do not, however, consider this possibility further.

Last but not least, we note that connectivity may be seen as an added value
for C/R tokens. It is possible to build C/R tokens that are not connected by
default, but can be connected to provide better security.

5.2 OTP Systems

In contrast to C/R systems, OTP systems do not work with challenges. Instead,
the entity that is authenticated provides an OTP to the entity that is authen-
ticating it. No interaction or handshake takes place between the client and the
server. Roughly speaking, there are three classes of OTP systems.

1. Physical lists of OTPs: Examples include scratch lists and access cards,
as well as lists of transaction authentication numbers (TANs) and indexed
TANs (iTANs).

2. Software-based OTP systems: Examples include Lamport-style [Lam81] OTP
systems, such as Bellcore’s S/Key [Hal95] and the one-time passwords in
everything (OPIE) system [HM96].

3. Hardware-based OTP systems: Examples include SecurID, SafeWord, and
SecOVID tokens, as well as integrated tokens, such as ICT Tokens of InCard
Technologies. Note that most hardware-based OTP systems are not con-
nected to the client systems. This simplifies the deployment of the tokens
and makes them resistant to many malware attacks.

In [OHB06], we briefly mentioned how to use impersonal authentication to-
kens to complement hardware-based OTP systems in the sense that the resulting
(combined) authentication system is SSL/TLS session-aware. In short, U em-
ploys the OTP as input for f (instead of PINU) in formula (3). Consequently,
the UAC computed is

UAC = f(NT , OTP).

Everything else (including, for example, the construction of NT) remains un-
changed. The disadvantage of this approach is that the user must have two
tokens—the original OTP token and the impersonal authentication token—or
the tokens must be integrated into one. The first possibility is likely to be un-
acceptable in practice, whereas the second possibility requires some time before
integrated tokens appear on the marketplace. Consequently, the use of software-
based OTP systems seems to be more promising, at least in the short term.

Among the classes of OTP systems enumerated above, the first class is defini-
tively the most difficult one to make SSL/TLS session-aware. If we only have a
physical (paper) list of OTPs, then a technique similar to the one used to make
C/R systems SSL/TLS session-aware may be employed. If a SSL/TLS session
between the browser and the server is established, then the user selects the next
OTP not yet used and enters it into the browser. The browser, in turn, interprets
this value as an index into the Hash value. A specific number of bits is then
extracted from the Hash value and this bit sequence represents the UAC. The
browser may display the UAC and the user enters it in a Web form, or it can be
transferred as part of the SSL/TLS CertificateVerify message as discussed at the
end of Section 2. In either case, the user must be taught to never enter an OTP
directly into a Web form.

6 Conclusions and Outlook

Man-in-the-middle (MITM) attacks pose a serious threat to SSL/TLS-based e-
commerce applications, such as Internet banking. In [OHB06], we introduced the
notion of SSL/TLS session-aware user authentication (TLS-SA) and we proposed
an implementation based on impersonal authentication tokens. In this paper, we
presented a number of extensions and variations, which we believe are important
for implementing TLS-SA and deploying it in practice. This is particularly true
for soft-tokens and hard-tokens that are not physically connected to the client
systems. These tend to be less secure, but they are much simpler to deploy than
their connected counterparts. Again, we note that it is possible to design tokens
that can either be connected or not, depending on the security requirements of
the application one has in mind.

We believe that TLS-SA provides a lightweight alternative to the deploy-
ment and rollout of a public key infrastructure (PKI). In the short term, we
are developing a TLS-SA proof of concept implementation for demonstration
purposes. On the client side, we employ unconnected C/R tokens and a plugin
for Microsoft Internet Explorer. On the server side, we employ (and adapt) a

Web portal that comprises a secure reverse proxy and an authentication server.
The results we have achieved so far are promising and are reported elsewhere
[O+07]. In the medium and long term, we plan to develop turnkey solutions
that can be used to secure e-commerce applications against MITM attacks. For
some authentication systems, this requires the cooperation of browser manufac-
turers. Nevertheless, we hope that we will be ready by the time the first wave of
large-scale MITM attacks occur on the Internet. Initial, small-scale attacks are
already taking place.

References

[Bur02] Burkholder, P., “SSL Man-in-the-Middle Attacks,” SANS Reading Room,
February 2002.

[DR06] Dierks, T., and E. Rescorla, “The TLS Protocol Version 1.1,” RFC 4346,
April 2006.

[Hal95] Haller, N., The S/KEY One-Time Password System, Request for Comments
1760, February 1995.

[HM96] Haller, N., and C. Metz, A One-Time Password System, Request for Com-
ments 1938, May 1996.

[JM05] Jakobsson, M., and S. Myers, “Stealth Attacks and Delayed Password Disclo-
sure,” http://www.informatics.indiana.edu/markus/stealth-attacks.htm.

[Jos03] Josefsson, S., Ed., The Base16, Base32, and Base64 Data Encodings, Request
for Comments 3548, July 2003.

[KBC97] Krawczyk, H., M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Mes-
sage Authentication, Request for Comments 2104, February 1997.

[Lam81] Lamport, L., “Password Authentication with Insecure Communication,” Com-
munications of the ACM, Vol. 24, 1981, pp. 770–772.

[MT79] Morris, R., and K. Thompson, “Password security: a case history,” Commu-
nications of the ACM, Vol. 22, Issue 11, November 1979, pp. 594–597.

[MT93] Molva, R., and G. Tsudik, “Authentication Method with Impersonal Token
Cards,” Proceedings of IEEE Symposium on Research in Security and Privacy,
IEEE Press, May 1993.

[OHB06] Oppliger, R., Hauser, R., and D. Basin, “SSL/TLS Session-Aware User
Authentication—Or How to Effectively Thwart the Man-in-the-Middle,” Computer
Communications, Vol. 29, Issue 12, August 2006, pp. 2238–2246.

[O+07] Oppliger, R., et al., “A Proof of concept Implementation of SSL/TLS Session-
Aware User Authentication,” Proceedings of the 15th GI/ITG Conference on “Kom-
munikation in Verteilten Systemen” (KiVS ’07), Berne (Switzerland), Springer-
Verlag, Berlin, LNCS, February 26 - March 2, 2007, pp. 225–236.

[RSA04] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Stan-
dard,” June 28, 2004.

