
Specifying authentication using signal
events in CSP
Shaikh, S.A. , Bush, V.J. and Schneider, S.A.
Author post-print (accepted) deposited in CURVE September 2012

Original citation & hyperlink:
Shaikh, S.A. , Bush, V.J. and Schneider, S.A. (2009) Specifying authentication using signal
events in CSP. Computers and Security, volume 28 (5): 310-324.
http://dx.doi.org/10.1016/j.cose.2008.10.001

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

CURVE is the Institutional Repository for Coventry University
http://curve.coventry.ac.uk/open

http://dx.doi.org/10.1016/j.cose.2008.10.001
http://curve.coventry.ac.uk/open

1

Specifying authentication using signal events in CSP

Siraj A. Shaikh (first and corresponding author)
Department of Information Systems, Cranfield University, Defence Academy of the United
Kingdom, Shrivenham, SN6 8LA, UK, email: siraj.shaikh@gmail.com

Vicky J. Bush
Department of Computing, UGBS, University of Gloucestershire, Park Campus, Cheltenham
Spa, GL50 2RH, UK

Steve A. Schneider
Department of Computing, SEPS, University of Surrey, Guilford, Surrey, GU2 7XH, UK

Abstract. The formal analysis of cryptographic protocols has developed into a comprehensive
body of knowledge, building on a wide variety of formalisms and treating a diverse range of
security properties, foremost of which is authentication. The formal specification of
authentication has long been a subject of examination. In this paper, we discuss the use of
correspondence to formally specify authentication and focus on Schneider’s use of signal events
in the process algebra Communicating Sequential Processes (CSP) to specify authentication.
The purpose of this effort is to strengthen this formalism further. We develop a formal structure
for these events and use them to specify a general authentication property. We then develop
specifications for recentness and injectivity as sub-properties, and use them to refine
authentication further. Finally, we use signal events to specify a range of authentication
definitions and protocol examples to clarify their use and make explicit related theoretical
issues. Our work is motivated by the desire to effectively analyse and express security properties
in formal terms, so as to make them precise and clear.

Keywords: authentication, security protocols, CSP, formal specification, Kerberos

1. Introduction

Schneider [1] uses Communicating Sequential Processes (CSP) [2] to model cryptographic
protocols. The protocol participants are modelled as independent processes, interacting with
each other by exchanging messages. Different roles are modelled as different processes, for
example, initiator, responder and server. Schneider (1998) attributes CSP to be effective for
modelling protocols as “it is close to the level we think of them”. The use of CSP to model this
type of parallel message-passing distributed system captures the precise specification of a
cryptographic protocol and is extensible as different aspects of protocol modelling can be
included. Schneider [1] takes advantage of this feature and introduces additional control events
to help in the analysis. These events, called signals, are introduced in the model in terms of
protocol participants and messages. Signals are used to express security properties, especially
authentication, which is central to our discussion.

The purpose of this paper is to investigate further into this formalism and strengthen it. We
develop a structure for these events and use them to specify a general authentication property.
We then develop specifications for recentness and injectivity as sub-properties, and use them to

2

refine authentication further. Finally, we demonstrate our use of signal events in modelling a
variety of authentication specifications and show how signal events can bring out subtle
differences in them, that is, to clarify their use and make explicit related theoretical issues. A
preliminary version of this paper has appeared earlier [3]. This paper develops these ideas
further by, firstly, making explicit related theoretical issues, particularly with regards to
Roscoe’s intensional and extensional specifications [4] and, secondly, clarifying the use of
signal events by using them to specify selected authentication properties (including those by
Lowe [5] and Gollmann [6]). We also examine some related approaches to formal specification
of authentication by Bugliesi et al [7], and by Gordon and Jeffrey [8], [9]. Furthermore, as in our
earlier work [10], we specify authentication properties for a basic version of the Kerberos
protocol [11] as an example to demonstrate the use of signal events.

Our work is motivated by the desire to effectively analyse and express authentication properties
in formal terms, so as to make them more precise and clear [12]. Further motivation is provided
by Meadows [13], who notes the significance of the specification of requirements for formal
cryptographic protocol analysis, and suggests three important characteristics for expressing such
requirements: they must be first, expressive enough to specify useful security properties,
secondly, unambiguous and finally, “easy to read and write” [13]. Our approach attempts to
satisfy these characteristics.

The rest of this paper is organised as follows. In Section 2 we introduce the relevant CSP
notation and briefly go over the trace semantics in CSP, along with the message space used for
specifying protocols in Section 2.1. In Section 3 we discuss correspondence with respect to
authentication. In Section 4 we present our main contribution where we formalise a structure for
signal events to specify properties such as authentication, with recentness and injectivity.
Section 5 demonstrates the use of signal events in modelling a variety of authentication
specifications and Section 6 uses a basic version of the Kerberos protocol [11] as an example. In
Section 7 we discuss some related work and we conclude the paper in Section 8.

2. CSP

In this section we introduce the relevant CSP notation and briefly go over the trace semantics in
CSP. While we discuss this notation in detail relevant to our usage in this paper, we refer the
reader to more in-depth treatments of CSP provided by Hoare [2], Roscoe [14], Schneider [15]
and, more relevantly, by Ryan et al [16].

A CSP system is modelled in terms of processes and events that these processes can perform,
which are essentially instances of communication, usually involving a channel and some data
value. Events may be atomic in structure or may consist of distinct components.

The CSP expression a → P describes a process that initially performs event a and then behaves
as process P. For example, consider a process PRINT_ONE that only accepts one document and
prints it off, represented by events accept and print

PRINT_ONE = accept → print → STOP

The above CSP expression describes a process that can perform the event accept and then print,
after which it simply stops. The process STOP is the simplest CSP process that can be described;
it has no event transitions and does not engage in any events. The process PRINT_ONE would
simply make no further progress once it reaches STOP. We develop the process further to
describe PRINTER recursively as

3

PRINTER = accept → print → PRINTER

This allows PRINTER to accept documents, print them off and return to the original state to
accept more documents.

For the purpose of communication, a process may be described using compound events such as
c.m which describes a message m being communicated on channel c. Channels are also assigned
types, so if T is the type of channel c then {c.t ⏐ t ∈ T} describes the set of events associated with
channel c. The communication of a process can be described as input or output, where c!v → P
describes a process that will output value v on channel c and then behaves as P. The expression
c?x → P(x) describes a process P accepting input x on channel c where the behaviour of P after
the input is described as P(x), determined by input x.

The external choice operator , provides the option of running either of the two processes P or

Q when put together as P , Q, where the choice between these two processes is determined by
the environment. This operator can also be used in an indexed form where for an indexing set I,
, i∈I Pi describes the option of running any one of the indexed processes Pi.

The parallel operator

A

|| is used to force P and Q to run in parallel and synchronise on events in

the set of events A. This is written as P
A

||Q. P and Q may perform any events that are not in A

independently, without the need for any synchronisation. A process P may be restricted on
certain events in A, expressed as P

A

||STOP which prevents P from being able to perform any

event in A.

The interleaving operator ||| is used to allow P and Q to run in parallel but not interact with each
other at all. This is written as P|||Q and is equivalent to parallel composition over the empty set.
For a larger number of processes, an indexed form of the interleaving operator can be used. For
a finite indexing set I and process Pi defined for each i ∈ I, |||i∈I Pi describes the interleaving of
all processes Pi.

The trace semantics in CSP allows us to capture the sequence of events performed by a
communicating process as a trace and then use the trace to model the behaviour of the process.

A trace of a process is a finite sequence of events that it may perform. A sequence of events tr is
a trace of a process P if some execution of P performs exactly that sequence of events. This is
denoted as tr ∈ traces(P), where traces(P) is the set of all possible traces of P. Every process
has an empty trace and therefore the set of its traces is always non-empty. Also, for every
process, the set of its traces is prefix-closed, that is to say, if tr is a possible trace of P, then so is
any prefix of tr. The only trace of the simple process STOP is an empty sequence 〈〉

traces(STOP) = {〈〉}

For the process PRINTER described above we have

 traces(PRINTER) = {〈〉, 〈accept〉, 〈accept, print〉,
 〈accept, print, accept〉, …}

4

A concatenation of two traces tr1 and tr2 is written as tr1 ^ tr2, which is the sequence of events in
tr1 followed by the sequence of events in tr2. A trace tr of the form 〈a〉^tr′ expresses event a

followed by the remainder of the trace tr′. A prefix tr′ of tr is denoted tr′ tr. A non-contiguous

subsequence of a trace is denoted by the symbol for example 〈a,c,e〉 〈a,b,c,d,e〉. The length

#tr of a trace is the number of elements that it contains so that for example #〈a,b,d〉 = 3. The set

of events appearing in a trace tr is denoted as σ(tr); the operator extends to processes where

σ(P) = ∪ tr∈traces(P) σ(tr) is the set of all events appearing in all traces of P.

For a set of events A, the projection operation tr b A describes the maximal subsequence of tr, all
of whose events are drawn from A. Another form of projection is on the set of channel names
where tr ⇓ C describes the sequence of messages passed on a set of channels C.

Trace semantics are used by Schneider [17,1] to specify security properties for protocols as
trace specifications. This is done by defining a predicate on traces and checking whether every
trace of a process satisfies the trace specification. For a process P and a predicate S, P satisfies S
if S(tr) holds for every trace tr of P, that is, P sat S ⇔ ∀ tr ∈ traces(P) • S(tr).

In this paper we use trace specifications to express causal precedence on events. For some
events a and b, we describe a predicate ‘a precedes b’ where

P sat a precedes b ⇔ ∀ tr ∈ traces(P) • (tr' ^ 〈b〉 tr ⇒ 〈a〉 in tr')

This means that any occurrence of b in any trace tr of P is preceded by an occurrence of a in tr.
We also use trace specifications to express properties in terms of the number of occurrences of
events. For some events a and b, we describe a predicate ‘a is injective to b’ where

P sat a is injective to b ⇔ ∀ tr ∈ traces(P) • #(trb a) #(trb b)

This means that the number of occurrences of a in any trace tr of P is equal to or more than the
number of occurrences of b in tr.

2.1 Message space

We describe a set of all atoms that could ever appear in a message of a protocol. Consider the
set of all participant identities that may take part in a protocol as U, the set of nonces used by
participants in protocol runs as N, the set of timestamps used by participants as T and a set of
encryption keys used as K, which may include different types of keys such as public keys and
private keys (denoted pkA and skA for a participant A). The set of all such atoms A is defined as

A ::= U ⏐ N ⏐ T ⏐ K

We use A to define a message space M that contains all the messages that may ever appear
during a protocol’s execution

5

M ::= A
 ⏐ {M}k encryption of message M with key k (∈ K)
 ⏐ M.M concatenation of messages

3. Authentication by correspondence

This section describes the notion of correspondence and its relationship with the property of
authentication. We explore the use of correspondence by Woo and Lam [18] to specify
authentication.

We define the notion of correspondence as, for some A and B, if a participant A attempts to
communicate with a corresponding participant B then the correspondence property requires B to
have apparently taken part in the communication. While A certainly attempts to communicate
with B, B may have attempted to communicate with a participant other than A. The underlying
idea is used to make explicit a participant’s involvement (role) in their run of the protocol with
respect to the involvement of a corresponding participant and, therefore, a basis on which the
“authenticated-to-authenticator” relationship between the two participants of an authentication
protocol is formally expressed.

Authentication is an important security property provided by a family of cryptographic
protocols, aptly named authentication protocols. The goal of such protocols is to allow
communicating parties to confirm (to varying extent) each other’s identities over a public
network. There are many attempts at formally defining authentication protocols and expressing
their goals in various terms [5,6,19]. Over the years, correspondence has emerged as “the
concept of choice” [20] for analysing and verifying such authentication goals.

If the goal of an authentication protocol is for A to authenticate B, then B is required to play its
intended role in the protocol. While we use correspondence to formally express A and B’s
involvement in a protocol run, it merely serves as a means to establish the involvement of
participants in protocol runs. For the purpose of authentication, however, we need to formally
express the often subtle requirements such as a participant’s engagement in the correct sequence
of events, i.e. message-exchanges, along with an agreement on a set of data values and/or the
number of executed runs between the participants.

The use of correspondence to specify authentication was first attempted by Woo and Lam [18].
They describe correspondence in terms of the participants in an authentication protocol as
“when an authenticating principal finishes its part of the protocol, the authenticated principal
must have been present and participated in its part of the protocol”. Woo and Lam [18]
introduced the notion of correspondence assertions as formal instruments to express
authentication, defined with respect to protocol executions. A correspondence assertion, using
the operator ‘ ’ which is read as “is preceded by”, is expressed as

(B, EndRespond(A)) (A, BeginInit(B))

The above assertion states the requirement for a protocol with two participants A (initiator) and
B (responder), where the construct (B, EndRespond(A)) represents a successful end of B’s
response with A and (A, BeginInit(B)) represents A’s beginning of initiating a protocol run with
B. The assertion effectively states that B’s successful response to A has to be preceded by A’s
corresponding intent to run the protocol with B. These constructs can be used to specify further
details of a protocol, such as any cryptographic keys or data being used or communicated,
providing a very simple basis for specifying authentication goals of a protocol.

6

4. Signal events in CSP

Schneider [1] makes use of correspondence while formally expressing authentication in terms of
trace specifications. The style of expression is very similar to that of Woo and Lam’s
correspondence assertions above. In this section, we introduce Schneider’s [1] use of signal
events and demonstrate their use to specify authentication by correspondence. We then proceed
to develop the structure of these events and their use within the protocol modelling in CSP.

For an authentication protocol, Schneider [1] uses signal events of the form Running and
Commit to express the progressive stages of the protocol on behalf of the participants. If two
protocol participants A and B are running in parallel, where A is trying to authenticate B, the
signal Commit.A.B indicates a stage when A is convinced of B’s participation in the run and
Running.B.A indicates B’s involvement in the run with A. The authentication property is then
expressed as whenever Commit.A.B appears in a trace tr of this system, the corresponding
Running.B.A signal appears beforehand. We define authentication as a trace specification. We
assume a network NET that comprises of a protocol with two participants A and B running in
parallel

NET = A||B

where tr is some trace of NET, tr ∈ traces(NET). A’s authentication of B is then defined as
follows

Definition 1.0

A authenticates B = Running.B.A precedes Commit.A.B

To express B’s authentication of A, we simply use Commit.B.A to indicate B’s authentication of
A and Running.A.B to indicate A’s involvement in the run with B. The network NET is said to
satisfy A authenticates B if all its traces satisfy the trace specification above. That is to say,
NET sat A authenticates B.

4.1 Developing signal structure

A signal event is introduced within a participant’s modelled protocol run; the information
articulated by the signal is with respect to that participant. In terms of concurrent processes, a
signal is strictly local to a process; so it cannot include any information that a participant has not
observed or engaged in up to the point the signal is introduced. We divide a signal event into
two distinct parts, Event and the Data, and express it as

Event.Data

where Event is a member of a set EVENT = {Running, Commit, Begin_Run}. Each of these
signal types is used to indicate a particular stage in a protocol run

 A Running signal indicates that a participant is in a state of execution with perhaps further

parameters relevant to that execution defined in the Data part of the signal,

 a Commit signal indicates the participant’s state of agreement regarding some particular

execution, details of which are defined in the Data part, and

7

 a Begin_Run signal indicates the start of a protocol run.

The set EVENT is not limited to these three events and more events could be added if required
for the purpose of analysis. While the Event part of the signal signifies the type of occurrence of
the signal, the Data part simply states the information that is strictly relevant to that occurrence.
We write the Data part as u1.u2.d and divide it into two distinct parts. The first part u1.u2 is the
indication of the identities of the participants involved in the protocol run where u1, u2 ∈ U. The
order of elements u1 and u2 is such that the identity of the process executing the signal is listed
first, as u1, followed by the identity of the process it is attempting to correspond with, as u2.

The second part d includes data such as nonces or timestamps that distinguish protocol uniquely
and provide recentness. We specify d as a set of data of type N or T, and restricted to only those
elements that the process executing the signal can generate (under the ‘A’ relation). For a
process P executing the signal, data(P) represents all such possible data for P

data(P) = {m | m ∈ N ∪ T ∧ σ(P) A m}

The set d is then written as a concatenation of elements d1.d2…dn, where 0 n and for ∀ i,

1 i n, di ∈ data(P). The structure of the entire signal can now be unfolded to

Event.u1.u2.d1.d2…dn .

We may use variables in the data part of a signal to specify values that are used in the protocol
run but are not known to the participant executing it. So, for example, we use Running.B.u to
indicate B’s run with a participant whose identity B is not aware of. We use u to indicate a
variable of type U, n to indicate a variable of type N and t to indicate a variable of type T . This
convention is used throughout the thesis, unless otherwise stated.

4.2 Signals to specify recentness

Recentness is an important property often discussed in the context of authentication (and key
establishment) protocols. This property is critical to cryptographic protocols as the use of
cryptography serves as means of providing some form of trust between protocol participants.
This trust, however, may be valid for some limited time after which it may not hold. Consider
the one-step protocol shown in Figure 1.0 for example. The protocol involves no nonce
challenges and allows a participant B to authenticate itself to A by signing A’s identity and
sending it to A. The signal Running.B.A indicates B’s intention of running the protocol with A
prior to the message sent to A. The Commit.A.B signal indicates A’s authentication of B after it
has received the message. Figure 1.0 shows such a run of the protocol followed by an intruder
replaying the message to A at a later stage to convince it of B’s authenticity. A is misled into
authenticating B since the protocol provides no indication of recentness of B’s run. The intruder
can continue to use this message several times defeating the goal of the protocol each time. Due
to the very nature of such a trust between protocol participants (subject to deception and
manipulation by an intruder in an open environment), it needs to be inextricably tied with some
notion of time in the sense of being old or recent. In this section, we use signal events to specify
recentness and express recentness in the context of authentication.

8

Figure 1.0 The problem of recentness

For a protocol to satisfy the property of recentness, we assume that it already satisfies Definition
1.0, that is to say, for every Commit event that occurs a corresponding Running event precedes
it. We consider the entire protocol sequence from the perspective of the current run (a complete
single run as intended by the protocol designer) and any signals that are modelled are only
meaningful for this run; any Running or Commit events for example occur in this current run.
We consider a run to be previous to a current run if it has started before the current run has
started. It may or may not have finished before the current has started (so they may overlap).

We introduce an extra signal event Begin_Run to mark the start of a current run and use it
differentiate between the previous and current runs of a protocol. The data part of this signal
includes the names of the participants such as A, B, etc. and data values used during the run such
as a nonce or a timestamp that act as indicators of recentness.

We build on the general definition of authentication in Definition 1.0 and define A’s recent
authentication of B using a recentness indicator N in Definition 1.1 as

Definition 1.1

A recently_authenticates B = Running.B.A.N precedes Commit.A.B.N

 ∧ Begin_Run.A.B.N precedes Running.B.A.N

In Definition 1.1, the corresponding Running.B.A.N event precedes every Commit.A.B.N event
and a corresponding Begin_Run.A.B.N event precedes every Running.B.A.N event, indicating
that the Running.B.A.N event occurs after the start of the current run. The recentness indicator N
is generated by the authenticating participant, in this case by A. In this paper, we will denote the
identity of the participant generating the indicator by adding it as a subscript. So, for example,
NA and TA denote a nonce and a timestamp generated by A respectively.

To demonstrate our modelling of recentness, consider the simple protocol shown in Figure 2
below. The protocol allows an initiator A to send a fresh nonce NA to B, who responds by
signing the nonce along with A’s identity and sending it back to A. A is assured that B has only
responded after A has sent NA out to B. We place a Begin_Run.A.B.NA signal to indicate the start
of this run by A. For A, it acts as a recentness indicator for B’s response, as B could not have
possibly replied before this event.

Commit.A.B

Running.B.A

A B

{A}sigB

{A}sigB

I
Old

Recent

Commit.A.B

9

Figure 2 Modelling recentness using the Begin_Run event

Note that Definition 2 can also be expressed for protocols using timestamps to provide recent
authentication. In this case the data part of the signal can specify a timestamp instead of a nonce;
an example of such a property could be found in Section 6.3. The use of timestamps, however,
do not restrict the Commit event to appear only once for every Running event prior to it. So it is
possible for A to authenticate B more than once while B has only run the protocol once (we deal
with this issue in Section 4.3). Recentness provided by using timestamps is still useful. Due to
the use of a Begin_Run event, if A does authenticate B more than once, A is still assured that B
has run the protocol recently. This models precisely the nature of authentication provided by
protocols that use timestamps to serve as a measure of recentness. Such protocols are designed
so that an authenticator accepts a message (containing a timestamp) within an acceptable
window (length of time during which the message is deemed to be recent). If so, then it is
possible that an authenticating message from the authenticatee is replayed to the authenticator
several times during the acceptable window. As soon as the window expires, however, the
authenticator declines any such message to be recent.

Our approach to recentness here is comparable to Lowe’s earlier work [5] on specifying
recentness. Our modelling of recentness is straightforward in that we focus on a single protocol
run and use a signal event to mark the start of a recent run. Lowe [5], on the other hand, uses a
unique signal Begin.ds to mark the start of every run between two participants, where ds
indicates the involved participants such as A and B, along with an extra field for a run identifier.
The run identifier (assigned α, β, etc.) is used to associate the corresponding Begin and Commit
signals with every run. Lowe uses this signal to specify the runs of the involved participants. If
the runs of the participants overlap, then the recentness of a participant’s run is verified. This
approach of overlapping runs however may not always hold true; a participant may finish its run
of the protocol while the other participant may not even have started by that stage, which is
possible in protocols that use trusted servers. Lowe gets around this by suggesting that a server’s
run may overlap both participants’ run, one followed by another; there may still be limitations
where more than one server is involved as Lowe highlights [5].

4.3 Signals to specify injectivity

The notion of injectivity, as described by Lowe [5], requires every run of an authenticator to
correspond to a unique run of the authenticatee. This implies a one-to-one relationship between
the runs of the protocol participants. This property is particularly useful for key distribution and
establishment as fresh session keys are attributed to each run of the protocol.

Observe that Definitions 1.0 and 1.1 require a Commit event to be preceded by a Running event
but they do not require every Commit event to be preceded by a unique Running event.

A

Running.B.A.NA

{A,NA}sigB

NA

Commit.A.B.NA

Begin_Run.A.B.NA Old

Recent

B

10

Consequently, we may have more than one Commit event for a single Running event. An
authenticatee may run the protocol only once but the authenticator may authenticate that run
more than once. This is true for the example protocol shown in Figure 1. The use of a nonce,
however, addresses this problem and provides injectivity due to its uniqueness, as in Figure 2.
To specify injectivity in trace specifications, we require each Commit signal to be preceded by a
unique Running signal. The number of Running signals is strictly equal to or more than the
number of corresponding Commit signals. We build further on Definition 1.0 and formalise
injective authentication in Definition 1.2 as

Definition 1.2

A injectively_authenticates B = Running.B.A.NA precedes Commit.A.B.NA

∧ Running.B.A.NA is injective to Commit.A.B.NA

where the second clause implies a unique Running event preceding every Commit event. The
property ‘Running.B.A.NA is injective to Commit.A.B.NA’ (as described in Section 2) ensures
that every time A authenticates B, B has taken part in a run with A. The uniqueness of runs is
ensured by the use of nonces (in this case NA). Note from the definition that the converse is not
true, that is to say, B may have attempted to run the protocol with A more times than A has
successfully authenticated B.

4.4 Placing signals

Constructing and placing a signal within a protocol model depends on the nature of the
relationship that is being analysed. Authentication protocols are built on top of challenge-
response exercises, which is central to the idea of confirming a participant’s identity. Most such
protocols are designed so that an authenticator is allowed to issue a challenge to an
authenticatee. The stage at which the authenticatee receives the challenge is marked by a
Running signal to indicate its participation. The authenticatee is then expected to respond to the
challenge as per the rules of the protocol, which may involve sending the challenge back (in the
desired form) directly to the authenticator, or further interaction with a third party who relay the
response to the authenticator. At the satisfactory receipt of this response, the authenticator is
assured of the authenticatee’s identity and the stage is marked by a Commit signal. The
authentication property is formulated for this Commit event to be preceded by the corresponding
Running event, where the data parts specify the challenge used in the run. We demonstrate this
by using a challenge-response exercise in Figure 3 below.

Figure 3 Placing signals in a challenge-response protocol

A Running signal is placed in B’s run after it receives the challenge NA from A. The data part of
the signal shows B.A as the participant identifiers where B followed by A indicates B’s

NA

{NA}KAB

Running.B.A.NA

Commit.A.B.NA

A B

11

involvement in a run with A. The data value NA refers to the specific nonce as the challenge
received. This comes together to form Running.B.A.NA. A Commit signal is placed in A’s run of
the protocol right after it receives the response from B. The participant identifiers show A.B
indicating A’s satisfactory completion of the run with B, and the data value shows NA as the
nonce used in this run. The entire signal is formed as Commit.A.B.NA.

We introduce rules that guide the placing of signals in protocols using nonce-based challenge
and response

1) The Running signal is executed by the authenticatee and placed immediately after the
nonce challenge is received, and

2) the corresponding Commit signal is executed by the authenticator and placed

immediately after the desired response (containing the nonce) is received.

We incorporate a third rule for the Begin_Run event, introduced in Section 4.2, and note that it
is always placed at the start of a protocol run to indicate recentness of the run. Since (the
uniqueness of) nonces used in challenge-response exercises also provide recentness we state the
rule

3) The Begin_Run signal is executed by the authenticator and placed immediately before
the nonce challenge is issued.

We describe three further rules to place corresponding signals in protocols that use timestamps.
Such protocols use a single message containing the timestamp to provide both authentication
and recentness. The message, referred to as the authenticating message, allows the authenticator
to authenticate the authenticatee

4) The Running signal is executed by the authenticatee and placed immediately before the
authenticating message is sent,

5) the corresponding Commit signal is executed by the authenticator and placed

immediately after the authenticating message is received, and

6) the corresponding Begin_Run signal is executed by the authenticatee and placed

immediately before the Running signal is executed.

There are also other mechanisms that provide guarantees about the prior occurrence of an event
during a protocol execution. If a participant receives a message encrypted with a secret key that
it shares with another participant then it is guaranteed that the other participant has sent the
message. A digitally signed message is also an example of such an occurrence, where the public
key of a participant could be used to check whether the participant has used its private key to
sign the received message. Such mechanisms, however, do not provide any guarantees about the
recentness of messages, as the key could have been used at any time in the past. We describe
two further rules to guide the placement of Running and Commit signals for such mechanisms.
We focus on the message that is sent by the authenticatee and received by the authenticator
allowing it to derive the guarantee about its sender. The message received by the authenticator
may not be in the same form as sent by the authenticatee, as it may pass through a third
participant and may also go through a transformation

7) The Running signal is executed by the authenticatee and placed immediately before the
concerned message is sent, and

12

8) the corresponding Commit signal is executed by the authenticator and placed

immediately after the received message which allows it to guarantee the transmission of
the authenticatee’s message.

We leave the data part of the two signals blank as such mechanisms do not use any recentness
indicator relevant to the authentication property. Any data values agreed as a result of such
mechanisms are outside the scope of signals. An example property that demonstrates Rules 7
and 8 is given in Section 6.2.

We now proceed to use our rules to place signal events in protocol models and use the
Needham-Schroeder-Lowe (NSL) protocol as an example to demonstrate some of these rules. It
is a good example as it provides authentication along with both recentness and injectivity to both
participants. The NSL protocol originally presented by Needham and Schroeder [21], was later
found to have a flaw by Lowe [22] who suggested an amendment of including B’s name in the
second message, hence the name. A shortened version of the amended protocol is shown in
Figure 4 below

Figure 4 Needham-Schroeder-Lowe protocol

The goal of the protocol is to authenticate A to B and B to A. A initiates the protocol by sending
to B its own identity concatenated with a nonce NA and encrypted with B’s public key. Once B
receives the message, it is aware of A and its nonce NA. B responds by generating a nonce NB,
concatenating it with NA and its own identity, encrypting it under A’s public key and sending it
back to A. Once A finds the nonce NA in B’s response, it successfully authenticates B. A finally
sends back B’s nonce NB encrypted under B’s public key. Upon receipt of this, B successfully
authenticates A. The complete execution of the protocol is shown in Figure 5 below

Figure 5 Complete execution of the NSL protocol

We follow Rules 1, 2 and 3 that are to do with protocols using nonces, and use six signal events
each of which is explained in detail below in the order they appear. Figure 5 above illustrates the
signals for a complete execution of the protocol.

Begin_Run.A.B.NA
The signal indicates the initiation of the protocol on behalf of A with B. We use nonce NA to
identify this particular run on A’s behalf and also to act as a recentness indicator for A’s

(1) A → B : {A,NA}pkB
(2) B → A : {NA,NB,B}pkA
(3) A → B : {NB}pkB

{A,NA}pkB

{NA,NB,B}pkA

{NB}pkB

Running.A.B.NB

Running.B.A.NA

Commit. A.B.NA

Commit.B.A.NB

A B
Begin_Run.A.B.NA

Begin_Run.B.A.NB

13

authentication of B.

Begin_Run.B.A.NB
The signal indicates the start of the response from B to A, after it receives the first message from
A. The nonce NB is not only mentioned as a unique identifier for this run of B, but also as a
recentness indicator for B’s authentication of A.

Running.B.A.NA
This signal is important for A’s authentication of B. At this stage, B is in possession of all the
information that it needs to respond to A: A’s identity and A’s nonce NA. The data part of the
signal includes NA to represent the unique run B is taking part in.

Commit.A.B.NA
B’s response also allows A to authenticate B: this signal indicates the successful authentication
event. A is assured that B has received its nonce NA and responded.

Running.A.B.NB
This signal corresponds to the Running signal in B’s run. It is only after receiving B’s response
to the first message that A reaches a stage where it has all the information it needs for this
protocol, particularly B’s nonce NB.

Note that the Commit.A.B.NB signal is placed before the Running.A.B.NB signal in Figure 3.4.
The order of these two signals in this instance is not important. Once A receives the response
from B, it both authenticates B to execute Commit.A.B.NB and also reaches a stage where it can
execute the Running.A.B.NB event.

Commit.B.A.NB
The protocol run is completed by A sending the last message to B. Once B receives the last
message, it is assured that A is in possession of the nonce NB and has agreed upon it, allowing B
to authenticate A: this signal indicates the successful authentication event and corresponds to A’s
Commit event.

Note that the Commit events mention the corresponding nonces NA and NB used by A and B to
authenticate each other. This is significant for injectivity as we assume both participants use
fresh nonces and therefore both A and B would always take part in a unique run to authenticate
each other every time they do so. The protocol has two authentication goals and we will now use
these signals to specify each of the goals as separate trace specifications.

Definition 1.3

NSL_A_authenticates_B = Running.B.A.NA precedes Commit.A.B.NA

 ∧ Begin_Run.A.B.NA precedes Running.B.A.NA

∧ Running.B.A.NA is injective to Commit.A.B.NA

Definition 1.3 specifies A’s authentication of B. The first line specifies the actual authentication
of B to A, where the signals provide useful detail in terms of the data agreed by both. Note that
the Running signal shows B’s awareness of the identity of the initiator A. The following line
specifies the recentness of this authentication where B could have only used the nonce NA after A
had sent out the nonce to B, hence B’s response could not possibly have been sent out any
earlier. The final line insists on the one-to-one relationship between A and B’s protocol runs
such that the number of Running events have to be at least as many as the number of Commit

14

events – the uniqueness of each of the nonces used by A and B, provide this one-to-one
relationship.

Definition 1.4

NSL_B_authenticates_A = Running.A.B.NB precedes Commit.B.A.NB

∧ Begin_Run.B.A.NB precedes Running.A.B.NB

∧ Running.A.B.NB is injective to Commit.B.A.NB

Definition 1.4 specifies B’s authentication of A. The first line specifies the actual authentication
of A to B, followed by the recentness and injectivity conditions. This property is entirely
symmetrical to A’s authentication of B.

The NSL protocol is a good example where authentication is achieved in a strong form, that is, it
provides recentness and injectivity to both participants. Note that the use of a fresh nonce by
each participant to provide these properties inherently provides agreement on data (nonces) as
well, making this protocol feasible for key derivation.

In terms of authentication goals, observe how signals demonstrate the progressive nature of such
a protocol. Every step of a protocol is crucial as it allows participants to develop trust in each
other. This also demonstrates the vulnerability of protocol design to manipulation and deception
by an attacker on a network.

4.5 Intensional and extensional specifications

Observe that describing the use of signal events occurring in a specific order as a property,
requires protocols not only to execute and arrive at a final authentication goal but also behave in
a specific causal order. It is possible for a protocol to satisfy a goal set out by a certain
specification, but may not necessarily run as per the specification. Roscoe [4] clarifies this
distinction by introducing the notion of intensional and extensional specifications and highlights
“extensional specifications, which seek to establish what is achieved by the protocol without
making detailed analyses of the actual communications nodes have sent, and intensional
specifications which concentrate on checking that the designer’s expectations about these
communications are justified” [4].

The CSP trace specifications (in Definitions 1.0 and so forth) combine both aspects of
intensional and extensional specifications. Whereas the use of a Commit event in a trace
specification allows an extensional goal to be expressed, the ordering of two or more signal
events is essentially intensional nature. We demonstrate this by examining Lowe’s [5] weak
agreement property as an example.

Lowe [5] introduces weak agreement and is defined for a protocol that “guarantees to an
initiator A weak agreement with another agent B if, whenever A (acting as initiator) completes a
run of the protocol, apparently with responder B, then B has previously been running the
protocol, apparently with A. B may not necessarily have been acting as responder”. An example
protocol with just such a property (and no more) is described in Figure 6.

15

Figure 6 An example weak agreement protocol

A sends out a message with its own identity concatenated with B’s identity who it wishes to
authenticate, to B. The message is signed by A’s private key. At this stage B is assured that A
wishes to talk to B. B responds with sending its own identity, concatenated with A’s identity in a
similar fashion. Upon receipt of a response from B, A is assured that it is talking to B and also
that B is aware that it is talking to A. Hence A is in weak agreement with B.

When B receives the first message from A, it is assured that A indeed intended to talk to B.
When B replies to A, A checks for the identities of B and A, and verifies B’s digital signature.
Once the response is verified, A is assured that B is aware of A’s presence, indicated by
Running.B.A in B’s run, and forms weak agreement with B, indicated by Commit.A.B in A’s run.
We formalise this in Definition 1.5 and illustrate a run of the protocol in Figure 7 below

Figure 7 Complete execution of the example weak agreement protocol

Definition 1.5

A in_weak_agreement_with B = Running.B.A precedes Commit.A.B

Note that Definition 1.5 provides the same authentication guarantee as our original property of
authentication in Definition 1.0. Both A and B authenticate each other, and both are aware that
they are being authenticated as such. Both do not require any recentness indicators, nor do they
require any agreement on protocol runs.

The example protocol in Figure 7 provides no guarantees on the recentness of either of the
messages. This allows an intruder to replay either of the old messages to A or B thereby
misleading them to commit to runs with each other, or a situation where A and B may both
initiate a run with each other allowing A to believe that it has successfully authenticated B, an
example of such a run is shown in Figure 8 below

Figure 8 A possible run of the example weak agreement protocol

B’s initiating attempt to A is identical to B’s response to A’s initiating attempt. A mistakes B’s
initiating attempt as the response to A’s initiating attempt earlier, allowing it to commit to a run

(1) A → B : {A,B}skA
(2) B → A : {B,A}skB

(1.1) A → B : {A,B}skA
(2.1) B → A : {B,A}skB

{A,B}skA

{B,A}skB

A B

Commit.A.B

Running.B.A

16

with B. This allows A to Commit.A.B without a preceding Running.B.A on B’s behalf and
therefore means that the protocol does not satisfy Definition 1.5. Observe how Definition 1.5
encapsulates both intensional and extensional specifications. In terms of signals, the possible
run shown in Figure 8 implies that for every Commit.A.B there may not be a Running.B.A event.
This would satisfy the extensional specification of weak agreement but not the intensional
specification, which requires a corresponding Running.B.A to precede every Commit.A.B event;
the possible run shown above does not satisfy Definition 1.5.

Gollmann [19] notes that such a violation does not necessarily constitute an attack on a protocol.
This is true in this case as weak agreement allows this by definition, that is, “B may not
necessarily have been acting as responder”. This means that the violation of the intensional
specification does not lead to the violation of extensional specification for this protocol.

5 Authentication Definitions

Over the years there have been numerous attempts at defining and expounding authentication,
particularly in the context of designing authentication protocols. It is interesting that many of
these definitions have added to the ambiguity of the notion rather than clarifying it, as Gollmann
[12] discusses. Our effort intends not to add to these definitions but present a notation that can
capture the precise terms of these definitions and highlight subtle differences between them. In
this section, we examine some selected definitions of authentication that have appeared in the
literature and specify them using signal events. We highlight any differences between them and
discuss relevant modelling issues.

5.1 Lowe’s Aliveness

Lowe [5] presents a range of authentication specifications with varying degrees of strictness. We
examine the weakest of these definitions called aliveness. Lowe [5] defines aliveness for a
protocol that “guarantees to an initiator A aliveness of another agent B if, whenever A acting as
initiator completes a run of the protocol, apparently with responder B, then B has previously
been running the protocol. B may not necessarily have believed that he was running the protocol
with A. Also, B may not have been running the protocol recently”. We formalise aliveness in
Definition 1.6.

Definition 1.6

A confirms_aliveness_of B = Running.B.u precedes Commit.A.B

Observe that aliveness in this form only guarantees that agent B was once alive. Since there is
no nonce or timestamp defined for recentness, it is possible that A may authenticate B for
aliveness from an old run. This definition is not very strict and does not even require B to be
aware of A. We compare this with a similar definition by Gollmann and highlight some
interesting differences.

5.2 Gollmann’s G3

Gollmann [6] presents four related authentication goals, one of which is the authenticated
recipient goal, G3. Assuming A and B are participants in a protocol, G3 states “A cryptographic
key associated with B was used during the protocol run. It is not necessary for A to receive a
message where this key had been used. The protocol run is defined by A’s challenge or a current
timestamp”.

17

Compared with Lowe’s aliveness, G3 provides an assurance of B’s involvement in the protocol
run but in a different way. The aliveness property requires B to be simply running the protocol
while G3 specifically states the use of a cryptographic key associated with B, hence B’s
involvement in the run. G3 also requires that the key is used “during” the protocol run, requiring
a recent involvement on behalf of B, as opposed to aliveness, an observation also made by Lowe
[5]. Both properties, however, do not require B to be involved in a run necessarily with A, which
makes them similar.

Consider KB to represent a key associated with B and a challenge CA, where CA ∈ N ∪ T, to
represent A’s challenge. The Running.B.u.CA signal would then indicate B is running the
protocol run, uniquely defined by CA. Since CA represents A’s challenge, we include it in the
data part of the Commit.A.B.CA signal. We define G3 in Definition 1.7 as

Definition 1.7

A confirms_G3_with B = Running.B.u.CA precedes Commit.A.B.CA

∧ Begin_Run.A.B.CA precedes Running.B.u.CA

Interestingly, the G3 definition is not explicit about precisely what assurances A derives from
this property such as whether A is assured of B’s use of the key KB.

5.3 Dead Peer Detection in IKEv2

More recently Gollmann [20] has compared Lowe’s aliveness with a high-level definition of
entity authentication from the international standard ISO/IEC 9798-1 [23] which states “entity
authentication mechanisms allow the verification, of an entity’s claimed identity, by another
identity. The authenticity of the entity can be ascertained only for the instance of the
authentication exchange.”

Gollmann [20] observes that the ISO definition is weaker than aliveness, as it provides no hints
of the entities being connected or even wanting to establish a connection and only provides a
guarantee that the “authenticated entity was alive during the protocol run” whereas aliveness
actually requires the responder to run the protocol – a stricter requirement for the responder. The
ISO definition, as opposed to aliveness, insists on recentness – confined to “the instance of the
authentication exchange” – of the authenticity.

Gollmann [20] nevertheless finds the ISO definition useful as it serve a similar purpose to the
dead peer detection (DPD) scheme Huang et al [24] of the IKEv2 protocol [25]. The IKE
protocol allows two communicating parties to establish Security Associations (SAs) for
subsequent secure communication and thus become IKE peers for the duration of the session. In
a situation where the connectivity between the two established peers goes down (for example
due to one of the hosts rebooting) and/or there is no communication between the two, it becomes
imperative for the parties to detect a dead peer so as to perform failover. We consider one of the
proposals that deal with this problem, known as heartbeat Huang et al [24], and examine it
further. Consider A and B to be some IKE peers both of which desire to confirm each other’s
online status. The heartbeat scheme requires both peers to send periodic HELLO messages to
each other as shown in Figure 9 below

18

10 seconds → A’s timer fires

A → B : HELLO(Seq_Num)

10 seconds → B’s timer fires

B → A : HELLO(Seq_Num)

Figure 9 The heartbeat scheme

The scheme requires both peers to maintain a timer. When A’s timer fires (after an agreed
interval of, say, 10 seconds) it sends a HELLO to B and also expects a reciprocal HELLO from B.
Once B receives A’s HELLO – sent as an authenticated payload – it is assured that A is not dead
and waits a similar interval before it sends a HELLO to A; assuring A that B is not dead. The
HELLO message from A contains a sequence number which B uses in the response HELLO
message to A, preventing replay of old responses from B. In case of B failing to respond, A
retransmits the message after the interval and, after a certain number of retries, A assumes B is
dead and deletes any SAs formed with the peer. Both peers carry out this routine periodically
irrespective of whether any peer is interested in their online status.

Note that the purpose of the scheme is not to authenticate the participants but to provide them
with an assurance that their IKE peer is not dead. This certainly brings it closer to the ISO
definition and justifies why Gollmann [20] sets it apart from Lowe’s aliveness. One may
maintain, however, that the periodic nature of the DPD scheme – the exchange of HELLOs –
locks A and B in a sequence similar to any other protocol run and would therefore imply that
they are running a protocol. We specify the goal of the DPD scheme in terms of signal events in
Figure 10 and formalise it in Definition 1.8.

Figure 10 Complete execution of heartbeat scheme

Definition 1.8

A dead_peer_detects B =

Running.B.A.Seq_Num precedes Commit.A.B.Seq_Num

∧ Begin_Run.A.B.Seq_Num precedes Running.B.A.Seq_Num

We use Begin_Run.A.B.Seq_Num at the start of this run, where sequence number Seq_Num
identifies this unique run and provides recentness to A. We use the signal event
Running.B.A.Seq_Num to indicate that B has responded to A’s HELLO with the same sequence
number and use the Commit.A.B.Seq_Num event to indicate the assurance that A receives
regarding B. Note that for the purpose of placing signals in the above definition, we treat all
sequence numbers as nonces with the only exception that they are predictable.

HELLO(Seq_Num)

A B

Running.B.A.Seq_Num

10s elapse

Begin_Run.A.B.Seq_Num

Commit.A.B.Seq_Num
HELLO(Seq_Num)

19

6 Kerberos Authentication protocol

The Kerberos system provides a distributed authentication service developed as part of a project
Athena [26] at MIT. The system is based on a timestamp version of the Needham-Schroeder
protocol [21] and the current version, known as Version 5 [27], of the protocol is part of the
Microsoft Windows 2000 network authentication service. For the sake of simplicity, we use a
basic version of the Kerberos protocol [11] which essentially provides entity authentication
along with key transport using symmetric encryption.

Figure 11 The basic Kerberos protocol

The protocol, shown in Figure 11 above, involves a client, A, a network service, B and a trusted
authentication server, S, which shares a long-term secret key with all clients and services. The
purpose of the protocol is two-fold: first, to provide recent authentication of A to B and secondly,
to allow S to establish a session key kAB between A and B with a lifetime L; S is also
authenticated to both A and B in the process. The protocol step marked 3* shows A’s repeated
authentication to B and establishment of key kAB between the two, as long as the lifetime L is
valid and the timestamp TA is recent. We do not consider here an optional fourth protocol step
that allows B to be authenticated to A [11]. The complete execution therefore of the protocol is
shown in Figure 12 below

 where ticketB = {kAB,A,L}KBS

Figure 12 Complete execution of the basic Kerberos protocol

6.1 A’s authentication of S

The Kerberos protocol, as shown in Figure 12, is divided in two phases. In the first phase, A
initiates the protocol and sends a request to S to establish a session key with B along with a
nonce NA. S responds by generating a fresh session key kAB, concatenated with the nonce NA, the
lifetime L of key kAB and the identity of B. It encrypts all this with KAS and sends it to A. This
message provides A with the key kAB and also ensures A of S’s recent involvement in the

(1) A → S : A,B,NA
(2) S → A : ticketB,{kAB,NA,L,B}KAS
(3) A → B : ticketB,{A,TA}kAB
(3*) A → B : ticketB,{A,TA′}kAB

where ticketB = {kAB,A,L}KBS

Running.S.A.NA

ticketB,{kAB,NA ,L,B}KA
Commit.A.S.NA

L

Phase 1

Phase 2

A S

Commit.B.A.TA

B

A,B,NA

ticketB,{A,TA}kAB

Begin_Run.A.S.NA

Begin_Run.A.B.TA

Running.A.B.TA

Commit.B.S

Running.S.B

20

protocol by the presence of NA. It also provides A with ticketB that allows S and A to be
authenticated to B and establish the key kAB with B. We formalise A’s authentication of S in
Definition 1.9.

Definition 1.9

Kerberos_A_authenticates_S = Running.S.A.NA precedes Commit.A.S.NA

 ∧ Begin_Run.A.S.NA precedes Running.S.A.NA

∧ Running.S.A.NA is injective to Commit.A.S.NA

To indicate A’s authentication of S, we follow Rule 2 (from Section 4.4) and use a
Commit.A.S.NA event. The data part of the event specifies A’s runs with S, along with NA. We
follow Rule 1 (from Section 4.4) and use a Running.S.A.NA event to show the corresponding
event for S. This signal indicates S’s involvement with A using the nonce NA. We also use a
Begin_Run.A.S.NA signal as per Rule 3 (from Section 4.4) to mark the beginning of this run by A,
using the nonce NA. The nonce NA is important as it allows A to judge the recentness of S’s
response with respect to this nonce; the use of NA in this case provides A with recent
authentication of S. Moreover, the final condition of Definition 1.9 specifies injectivity between
S’s and A’s run. The use of a unique nonce in every run by A allows this phase to provide
injectivity between A and S.

6.2 B’s authentication of S

The use of ticketB in the second phase of the protocol is important as it provides B with the key
kAB to be used between A and B. We use Rules 7 and 8 (from Section 4.4) to place appropriate
signals to specify B’s authentication of S.

B is assured of S’s participation in the protocol every time it receives ticketB from A. Although S
does not engage with B directly, B is assured that the ticket is issued by S as it is encrypted with
KBS and also of the validity of kAB by the lifetime L in ticketB. We indicate S’s participation in the
run by using Rule 7 and place a Running.S.B signal just before S distributes ticketB to A in Phase
1. The data part of the signal is empty as there is no agreement on recentness between S and B;
the signal merely indicates that S took part in the run and issued a ticket for B.

To show B’s authentication of S we use Rule 8 and use a Commit.B.S signal. The signal appears
every time B receives A’s message in Phase 2. We formalise this property in Definition 1.10.

Definition 1.10

Kerberos_B_authenticates_S = Running.S.B precedes Commit.B.S

Observe that Definition 1.10 does not allow B to authenticate a recent run of the server S, as
ticketB provides no such guarantees to B. Indeed S could generate ticketB well in advance of the
time that the key kAB could be used. So although B is guaranteed that ticketB (={kAB,A,L}KBS)
comes from S, it does not authenticate S recently, neither does it have an injective relationship
with S, as B could accept ticketB (={kAB,A,L}KBS) many times from A, only subject to the validity
of kAB as defined by lifetime L.

Compared to A’s authentication of S, therefore, B’s authentication of S is relatively weaker, as
Definitions 1.9 and 1.10 show. On a technical note, the use of signal events and the

21

corresponding Rules 7 and 8 prove to be effective here in refining (and distinguishing between)
the degrees of authentication.

6.3 B’s repeated authentication of A

Along with ticketB, A sends a message, known as the authenticator, encrypted with kAB, which
contains A’s identity along with a fresh timestamp, TA. The ticketB allows A to authenticate itself
repeatedly to B as long as the lifetime L of kAB is valid. A simply regenerates a fresh
authenticator, and sends it to B along with ticketB (indicated by 3* in Figure 11). The use of the
authenticator therefore provides recent authentication of A to B as it includes a fresh timestamp
TA every time A sends it to B; in case of replay of an authenticator, B would reject it. This
feature provides an injective relationship between A and B; every time B accepts an
authenticator, it is assured of A’s recent and distinct involvement. Moreover, A combines a fresh
authenticator together with a ticketB (={kAB,A,L}KBS) to send to B, providing B with
authenticated key establishment, as it is assured of A’s possession (and therefore validity) of kAB
as well.

To specify the property between A and B, we use three different signals as per Rules 4, 5 and 6
(from Section 4.4). We use the Commit.B.A.TA signal to indicate B’s authentication of A. The
use of timestamp TA by A adds to this to provide recentness to B. We use a Begin_Run.A.B.TA
signal as per Rule 6 to mark the beginning of this run, where TA serves as the measure of
recentness for B.

To indicate A’s involvement in this phase of the protocol, we use a Running.A.B.TA signal which
specifies A’s intention to run with B and its use of the timestamp TA marking in time the precise
moment of A’s participation. We formalise B’s authentication of A in Definition 1.11.

Definition 1.11

Kerberos_A_authenticates_B = Begin_Run.A.B.TA precedes Running.A.B.TA

 ∧ Running.A.B.TA precedes Commit.B.A.TA

∧ Running.A.B.TA is injective to Commit.B.A.TA

Observe that our specification of recentness in this case is different to the one in Definition 3.9.
Due to the use of timestamp TA, B’s judgement of A’s recentness is not relative (with respect to a
nonce), but rather in absolute terms of clock time. This allows B to be sure of both A’s
participation and the recentness of this instance of participation. This fine peculiarity is clearly
distinguished in our specifications.

7 Related work

Our use of signal events in CSP trace specifications to specify authentication is not the first.
Earlier work by Lowe presents a hierarchy of authentication properties using signal events in
such specifications [5]. Lowe’s work [5] is important in relating different properties to each
other, particularly in terms of trace refinements. Our main contribution is to rigorously define
the actual structure of a signal event. We specify a Event and Data part for a signal and
emphasise on the relationship between these values and the authentication property being
modelled. We hope such an effort would allow an expressive yet consistent framework to
specify authentication properties for protocols.

22

In hindsight, the use of signals within CSP to express authentication is not very different from
the use of correspondence assertions in the Woo-Lam [18] model introduced in Section 3. Both
correspondence assertions and the CSP signals represent similar notions of rendering the state
of protocol involvement from a participant’s point of view. These notions are brought closer as
both models use them to express authentication. A good example is the type-checking approach
by Gordon and Jeffrey [9], who use Woo and Lam’s correspondence assertions to specify
authentication properties for cryptographic protocols [8]. The assertions are introduced in
protocol runs which are modelled using spi-calculus [28]. They are modelled as events labelled
with messages, where a begin L is a begin-event labelled with message L representing the
beginning of a correspondence, while an end L is an end-event labelled with message L
representing the end of a correspondence. The labels are used to specify the precise terms of
correspondence, that is, the identity of participants involved and the use of data such as nonces
or keys. A type-checking approach [9] is then used to identify the types of messages that are
used in the protocol; as a way to prove whether a protocol satisfies the correspondence
assertions. Protocol participants are modelled as processes in spi-calculus, where the
transmission and reception of messages is modelled as events that the process may take part in.
Similar to CSP, a sequence of events which a process may perform is captured by a trace. A
trace of a process P is defined using a trace-labelled transition system, P s⎯⎯→ P′, meaning P
performs trace s and becomes P′. The correspondence assertions are used within these traces of
a process to characterise it. A trace of process(es) is defined as a correspondence if its
beginnings dominate its endings, that is, for each end-event labelled L, there is a corresponding
begin-event labelled L.

Gordon and Jeffrey introduce their notion of safety such that a process is considered safe if for
every end-event there is a distinct corresponding begin-event. Gordon and Jeffrey [9] go further
to present a safety theorem to prove authentication for protocols, such that, a process P is safe if
and only if for all traces s and processes P′, if P s⎯⎯→ P′ then s is a correspondence. A process P
is described as robustly safe if and only if for all intruder processes O, P│O is safe; P│O
implies P and O running in parallel where O represents the intruder process that cannot assert
any events and follows no typing rules. If the processes involved in a protocol are robustly safe,
then the protocol is deemed correct.

While the labelled events are used to specify the terms of correspondence (similar to the data
part in signal events), it is interesting to observe that Gordon and Jeffrey’s notion of safety
entails a corresponding begin-event for every end-event. This provides a one-to-one relationship
between the runs of the protocol participants, which makes their notion of safety rather stricter
than our Definition 1.0; Gordon and Jeffrey [29] distinguish between injective and non-injective
correspondences by using type-checking.

More recently, Bugliesi et al [7] adopt a similar approach of using correspondence to specify
authentication for protocols. Their approach uses a trace-based model, similar to that of CSP,
and introduces marker actions described in terms of protocol participants: the marker run(A,B),
similar to signal Running.A.B, indicates the start of a run by A to authenticate itself to B whereas
the marker commit(B,A), similar to signal Commit.B.A, indicates the completion of an
authentication session where B authenticates A. Bugliesi et al [7] then proceed to present their
notion of safety that effectively uses correspondence to express authentication in formal terms.
Their notion of safety is similar to that of Gordon and Jeffrey [9] in terms of checking for
correspondence and insisting on injectivity. A trace is deemed to be safe if for every commit(B,A)
marker there is a corresponding run(A,B) marker that precedes it. It is interesting to note that,
unlike Schneider’s signal events, these marker actions do not assert any nonces used in protocol
runs; nonces are expressed separately.

23

8. Conclusion

Our main contribution is the development of a precise and expressive notation that is capable of
embracing variations of authentication and makes our understanding of the property clearer,
while satisfying the three characteristics set out by Meadows [13] for such an approach (see
Section 1). We have developed the structure of the signal events in the trace semantics of CSP
so they are flexible to accommodate finer notions of authentication in protocols. We have given
rules to guide the precise placement of signals in protocol specifications. These are important in
determining what signals are to be placed where (in relation to the challenge and response). We
also demonstrate the usefulness of signal events as instruments to express the different flavours
of authentication in precise terms, including recentness and injectivity. It is interesting to see
how the expressive notation brings to the surface the subtle variations that exist between related
concepts of authentication. We have attempted to highlight some of these diversities using
signal events by various examples and comparing with other definitions of authentication. This
work is important in helping protocol designers to precisely model authentication and specify
the subtle variations that exists within the concept.

References

[1] Schneider, S.A. (1998) Verifying Authentication Protocols in CSP. IEEE Transactions on

 Software Engineering, 24 (9), pp.741-758

[2] Hoare, C. A. R. (1985) Communicating Sequential Processes, Prentice-Hall International

[3] Shaikh, S.A., Bush, V.J. and Schneider, S.A. (2005) Specifying authentication using
 signals events in CSP. In: D. Feng, D. Lin, and M. Yung, (eds.) Conference on
 Information Security and Cryptology (CISC’2005), Beijing, China, volume 3822
 of LNCS, Berlin: Springer-Verlag, pp.63-74

[4] Roscoe, A.W. (1996) Intensional specification of security protocols. Proceedings of the
 Ninth IEEE Computer Security Foundations Workshop, Washington: IEEE
 Computer Society Press, pp.28-38

[5] Lowe, G. (1997c) A hierarchy of authentication specifications. Proceedings of the 10th
 Computer Security Foundations Workshop (CSFW '97), Washington: IEEE
 Computer Society Press, pp.31-44

[6] Gollmann, D. (1996) What do we mean by entity authentication? Proceedings of the
 1996 IEEE Symposium on Security and Privacy, Washington: IEEE Computer
 Society Press, 1996, pp.46-54

[7] Bugliesi, M., Focardi, R. and Maffei, M. (2003) Principles for Entity Authentication. In:
 M. Broy and A.V. Zamulin (eds.) Perspectives of System Informatics, volume
 2890 of LNCS, Berlin: Springer-Verlag, pp.294-306

24

[8] Gordon, A.D. and Jeffrey, A. (2001a) Typing correspondence assertions for
 communication protocols. Electronic Notes in Theoretical Computer Science
 (ENTCS), 45, pp.1-22

[9] Gordon, A.D. and Jeffrey, A. (2001b) Authenticity by typing for security protocols. 14th
 IEEE Computer Security Foundations Workshop (CSFW'01), Washington: IEEE
 Computer Society Press, pp.145-159

[10] Shaikh, S.A., Bush, V.J. and Schneider, S.A. (2005) Kerberos – specifying authenticity
 properties using signal events. Proceedings of Indonesia Cryptology and
 Information Security Conference 2005, (INA-CISC2005), Jakarta, Indonesia,
 Jakarta: INFORMATIKA Press, pp.87-93

[11] Menezes, A.J., van Oorschot, P.C. and Vanstone, S.A. (1997) Handbook of Applied
 Cryptography. Boca Raton: CRC Press

[12] Gollmann, D. (2002) Analysing Security Protocols. In: A.E. Abdallah, P. Ryan and S.A.
 Schneider (eds.) BCS-FACS Formal Aspects of Security, volume 2629 of LNCS,
 Berlin: Springer-Verlag, pp.71-80

[13] Meadows, C. (2004) Ordering from Satan’s menu: a survey of requirements specification
 for formal analysis of cryptographic protocols. Science of Computer
 Programming, 50 (1-3), pp.3-22

[14] Roscoe, A.W. (1997) The Theory and Practice of Concurrency. Prentice-Hall
 International

[15] Schneider, S.A. (1999) Concurrent and Real-time Systems: the CSP Approach. London:
 Addison-Wesley

[16] Ryan, P., Schneider, S.A., Goldsmith, M., Lowe, G. and Roscoe, A.W. (2001) Modelling
 and Analysis of Security Protocols. London: Addison-Wesley

[17] Schneider, S.A. (1996) Security Properties and CSP. Proceedings of the 1996 IEEE
 Symposium on Security and Privacy, Washington: IEEE Computer Society Press,
 pp.174-189

[18] Woo, T.Y.C. and Lam, S.S. (1993) A semantic model for Authentication Protocols.
 Proceedings of the 1993 IEEE Symposium on Security and Privacy, Washington:
 IEEE Computer Society Press, pp.178-194

[19] Gollmann, D. (2000) On the Verification of Cryptographic Protocols - A Tale of Two
 Committees. Electronic Notes in Theoretical Computer Science (ENTCS), 32,
 pp.42-58

[20] Gollmann, D. (2003) Authentication by Correspondence. IEEE Journal on Selected
 Areas in Communication, Special Issue on Formal Methods for Security, 21 (1),
 pp.88-95

[21] Needham, R. and Schroeder, M. (1978) Using encryption for Authentication in Large
 Networks. Communications of the ACM, 21 (12), pp.993-999

25

[22] Lowe, G. (1995) An attack on the Needham-Schroeder public key protocol. Information
 Processing Letters, 56 (3), pp.131-133

[23] ISO/IEC - International Organisation for Standards (1991) Information technology –
 Security techniques – Entity Authentication Mechanisms; Part 1: General
 Model. ISO/IEC 9798-1, Second Edition, September 1991. International Standard

[24] Huang, G., Beaulieu, S. and Rochefort, D. (2004) A Traffic-Based Method of Detecting
 Dead Internet Key Exchange (IKE) Peers [online], Internet Engineering Task
 Force (IETF), Available from: http://www.ietf.org/rfc/rfc3706.txt [Accessed on
 21/06/2006]

[25] Kaufman, C. (2005) Internet Key Exchange (IKEv2) Protocol [online], Internet
 Engineering Task Force (IETF), Available from:
 http://www.ietf.org/rfc/rfc4306.txt [Accessed on 19/06/2006]

[26] Miller, S.P., Neuman, C., Schiller, J.I. and Saltzer, J.H. (1987) Kerberos authentication
 and authorization system. Project Athena Technical Plan Section E.2.1, MIT
 Project Athena, Cambridge, Massachusetts, USA

[27] Neuman, B.C. and Ts’o, T. (1994) Kerberos: An Authentication Service for Computer
 Networks. IEEE Communications, 32(9), pp.33-38

[28] Abadi, M. and Gordon, A.D. (1999) A calculus for cryptographic protocols: The spi
 calculus. Information and Computation, 148 (1), pp.1-70

[29] Gordon, A.D. and Jeffrey, A. (2002) Typing one-to-one and one-to-many
 correspondences in security protocols. In: Software Security - Theories and
 Systems: Mext-NSF-JSPS International Symposium, ISSS 2002 Tokyo, Japan,
 November 8-10, 2002 Revised Papers, volume 2609 of LNCS, Berlin: Springer-
 Verlag, pp.263-282

	cover2
	paper2

