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Abstract

Statistical Disclosure Control (SDC) is an active research area in the re-
cent years. The goal is to transform an original dataset X into a protected
one X ′, such that X ′ does not reveal any relation between confidential and
(quasi-)identifier attributes and such that X ′ can be used to compute reliable
statistical information about X.

Many specific protection methods have been proposed and analyzed, with
respect to the levels of privacy and utility that they offer. However, when
measuring utility, only differences between the statistical values of X and X ′

are considered. This would indicate that datasets protected by SDC methods
can be used only for statistical purposes.

We show in this paper that this is not the case, because a protected
dataset X ′ can be used to construct good classifiers for future data. To
do so, we describe an extensive set of experiments that we have run with



different SDC protection methods and different (real) datasets. In general,
the resulting classifiers are very good, which is good news for both the SDC
and the Privacy-preserving Data Mining communities. In particular, our
results question the necessity of some specific protection methods that have
appeared in the privacy-preserving data mining (PPDM) literature with the
clear goal of providing good classification.

Keywords: Statistical Disclosure Control, Classification methods,
Disclosure Risk, Information Loss

1. Introduction

The amount of digital data that is collected and stored increases every
day [21]. This leads to the development of many new applications, with
different requirements concerning the use of the data. We consider one such
a situation, which is attracting a lot of attention from researchers in different
domains. It can be informally described as follows.

An entity has some data which may contain confidential information
about individuals. This entity wants to allow other users to use this data
to meet their particular needs in data mining, data analysis and / or model
building. An important assumption is that the entity does not know how the
other users will use the data. They may want to classify or predict future
values of some attribute, to obtain association rules, or to compute statis-
tical information about the data. At the same time, the entity wants to
protect the privacy of the individuals who contributed the data. There is an
obvious trade-off between the achieved level of protection (privacy) and the
correctness of the results that the users could obtain (utility).

Depending on the way in which the information transfer from the owner
entity to the users is done, we can distinguish two situations.

• In interactive protocols, the owner entity does not initially publish any
information. An interested user can send some queries to the owner
entity, depending on the desired (and possibly private) result he wants
to obtain from the data. The owner entity processes these queries by
using his secret original data, and sends back some answers. Ideally,
the users must obtain no additional information on the original data,
apart from the requested result.
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• In non-interactive protocols, the owner entity transforms the original
data X into some protected data X ′, and then releases X ′ to the public.
In this way, anybody can use X ′ to try to obtain some (more or less
reliable) result on X.

In this work we focus on the non-interactive scenario. Different methods
have been proposed to protect original data X in such a way that reliable
results on X can be obtained from protected data X ′, while the privacy of
the confidential information is preserved. Two different research groups have
addressed this scenario: the Statistical Disclosure Control (SDC) community
and the Privacy-preserving Data Mining (PPDM) community. On the one
hand, PPDM solutions [39] are usually designed (and analyzed) having in
mind that the protected data X ′ will be used for some specific data mining
operation (such as classifier learning [2, 15, 17, 40]). On the other hand,
SDC solutions [9] are typically designed (and analyzed) from a statistical
perspective: one assumes that the protected dataset X ′ is going to be used
only (or mostly) to compute statistical information about the original data
X. Although the two approaches may seem different, the main goal of the
two communities is basically the same: to perturb a (numerical) dataset X
in some way, to produce X ′, such that X ′ is:

• similar enough to X so that useful information about X can be ob-
tained from X ′, and

• different enough to X so that confidential information appearing in X
cannot be obtained by observing X ′.

For this reason, it is not surprising that the particular perturbation meth-
ods proposed by the two communities are very similar. For instance, SDC
noise addition [4, 35] has been developed independently of PPDM data per-
turbation [2], and SDC microaggregation [8] has been proposed indepen-
dently of PPDM k-anonymity [33, 36].

1.1. Our Contribution

The previous paragraphs raise the following natural question: what hap-
pens if SDC (respectively, PPDM) perturbation methods are analyzed from
a PPDM (respectively, SDC) point of view? For example, could a protected
dataset X ′ that has been obtained from an original dataset X by applying
a SDC perturbation process be used not only to compute reliable statistical
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information on X, but also to successfully perform some data mining task
such as learning a classifier?

In this paper, we try to answer this last question. We could have con-
sidered the analogous problem of taking a PPDM perturbation method and
analyzing the statistical quality of the results obtained from X ′. But we
have preferred to study SDC methods for different reasons. First of all, pub-
licly available implementations of SDC perturbation methods are much easier
to find than implementations of PPDM methods. Furthermore, the privacy
level offered by SDC methods is easier to measure and tune, because the SDC
community has developed its own tools, e.g. record linkage analysis [43], to
analyze the privacy level provided by its perturbation methods.

The experiments that we have run to answer the question raised above can
be described as follows. We consider an original dataset X which contains
a class attribute. The records in X are partitioned in a training dataset X1

and a testing dataset X2, such that X = X1 ∪ X2. A SDC perturbation
method is applied to X1, resulting in X ′1 (the class attribute is not altered,
however). Then, different classifiers are learned using X ′1 as the training set
and X2 as the testing set, with respect to the class attribute. We finally
analyze the performance of the whole process, in terms of its classification
quality (accuracy and Area Under Curve, to be defined later). At the same
time, we can easily analyze the privacy level of the whole process (measured
by the disclosure risk), because it is exactly the privacy level offered by the
employed SDC protection method, and privacy of SDC methods has been
widely studied and tested for the last years.

We have experimented with different datasets and SDC perturbation
methods. We have restricted ourselves to numerical datasets, because most
of the SDC and PPDM methods work with this type of data. The obtained
results depend on the methods but are in general very good, in the sense that
the protected datasets lead to robust classifiers, essentially as good as those
that could be constructed from the original dataset. These results are good
news for practitioners in both SDC and PPDM communities. People using
SDC methods are assured not only that their protection methods achieve
good results for statistically-oriented operations, but also that they provide
a good accuracy level for other tasks, such as classification. People in PPDM
learn that there exist protection methods widely analyzed in SDC (in par-
ticular with respect to the privacy level they offer) that can be safely used
to protect data that will be used to build very good classifiers. In particular
this last conclusion can lead someone to debate the contribution of certain
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papers in the PPDM literature that propose very specific protection methods
that are designed with the sole goal of achieving very good classification re-
sults. We exemplify this argument by comparing the results obtained by SDC
methods and the results obtained by a specific PPDM protection method [6].

Our results can be interpreted in a different (less positive, more preven-
tive) way. If a confidential attribute in a dataset has few possible values,
such attribute could be used as class attribute if it is not protected, and then
our results imply that an adversary could guess with high success probability
the value of this confidential attribute, breaking in this way the privacy of
the whole system. Therefore, our results could potentially lead to a revisit of
the classical SDC paradigm in which the protection method is not applied to
confidential attributes. In any case, data owners should take this point into
account before deciding which parts of their datasets can be released (with
and/or without SDC protection).

1.2. Organization of the Paper

The rest of this paper is organized as follows. In Section 2 we describe
the basic concepts of Statistical Disclosure Control; this includes the data
protection scenario, measures for data protection quality and disclosure risk,
and the specific SDC protection methods that we will experiment with. In
Section 3 we explain the topic of classifier induction, in particular the mea-
sures that are used to decide if a classification method is good. Section 4
contains the description of our experiments, which are the main contribu-
tion of this paper, and a discussion of the obtained results. We conclude by
summarizing our results and suggesting further work in Section 5.

2. Statistical Disclosure Control

Our description of statistical disclosure control is embedded in a very
practical data use scenario. The original dataset X contains many records
(rows), each of them consisting of some numerical values for different at-
tributes (columns). There are three different categories of attributes in
X: identifiers (Xid) which unambiguously identify one individual, quasi-
identifiers (Xnc) which can identify an individual when some of them are
combined, and confidential attributes (Xc) which may potentially contain
sensitive information about the individual, and which are typically unknown
to external users.
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To preserve the privacy of the confidential data stored in X, but keeping
at the same time as much statistical utility of the original data as possible,
the following protection protocol is usually applied: (i) identifier attributes
in X are either removed or encrypted, (ii) confidential attributes Xc are not
modified (because they are assumed to contain the most interesting statistical
information); (iii) a protection method ρ is applied to non-confidential quasi-
identifier attributes (i.e., X ′nc = ρ(Xnc)). Therefore, the protected dataset
that is released to the public is X ′ = X ′nc||Xc.

2.1. Information Loss vs. Disclosure Risk

A good SDC protection method must achieve a good trade-off between
utility and privacy. In other words, the protected dataset X ′ must be:

• Close enough to X such that statistical values computed on X ′ are very
similar to those that would be obtained by computing directly on X.
In other words, the (statistical) information loss that appears in the
transition from X to X ′ must be small.

• Different enough from X such that an attacker has a (very) small prob-
ability to obtain any correct relation between a protected record in X ′

with the quasi-identifier attributes corresponding to this record. This
probability is denoted as the disclosure risk.

Information loss (IL) measures the statistical utility of the protected
dataset X ′, comparing its usefulness with respect to the one of the origi-
nal dataset X. A few different approaches are used in the SDC community
to calculate the information loss. In [12] the authors calculate the average
divergence of some statistical values when they are computed on both the
original and the protected datasets. A probabilistic variation of these mea-
sures (PIL) was presented in [26] to ensure that the information loss value
is always within the interval [0,1]. The standard PIL takes into account five
specific statistical values: mean, variance, covariance, correlation coefficient
and quantiles. In this paper we will use this standard PIL for computing the
information loss of different SDC perturbation methods.

Regarding privacy, two types of disclosure risk measures can be considered
depending on the intention and the resources of the intruder. Firstly, an
intruder who observes the protected X ′ may know the values of some original
attributes of X, that he has obtained from an external data source. The goal
of this intruder is to link a protected record in X ′ with its correct original
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attributes (record linkage). The percentage of correct links established by the
intruder between the original and protected datasets is therefore a measure
of risk. This Linkage Disclosure (LD) risk measure depends on the number
of attributes that the intruder is assumed to know. In our experiments, we
have assumed that the intruder knowledge varies from one to all attributes.
The final LD value is computed as the average percentage of correctly linked
records in each case.

Secondly, if the intruder cannot obtain any information from an external
data source, he can still try to get an approximation of the original values.
Interval Disclosure (ID) is one of the approaches to model this scenario. In
our experiments, the ID risk is computed as the average percentage of original
values falling into an interval defined around the corresponding protected
value. The interval is defined as a percentage, between 1% and 10% of the
values. This measure is very similar to the measure presented in [2], where
authors quantify disclosure risk measuring how closely the original values of a
protected attribute can be estimated. The final disclosure risk (DR) measure
is computed as DR = 0.5 LD +0.5 ID.

2.2. Some SDC Protection Methods

In the rest of this section we describe the specific SDC protection methods
that we are going to consider in this work (to see if they can be successfully
combined with classification techniques). We can distinguish three main
families of SDC protection procedures [37]: (i) perturbative methods which
introduce some kind of error into the original data, (ii) non-perturbative
methods which construct the new dataset reducing its quality (e.g., it is
less specific) but without introducing new values, and (iii) synthetic data
generators, which produce synthetic data that resembles the original one.
For an overview of the methods see e.g. [1, 13, 42].

In our experiments we will consider some perturbative methods (additive
and multiplicative noise, rank swapping, microaggregation) and a synthetic
data generator (IPSO). They are described in detail below using the following
generic notation: X represents the original dataset, with n instances (or
records) and m columns (or attributes). Therefore, xij represents the value
of instance (individual) i for attribute j.

2.2.1. Additive and Multiplicative Noise

This is perhaps the simplest and most intuitive data perturbation method.
In additive noise [19], each value xij of the original dataset X is replaced with
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x′ij = xij + ε, where ε is the noise.
In the literature, the simplest approach is that ε is a normally distributed

error drawn from a random variable ε ∼ N(0, σ2
ε ), and that the variance of ε

is proportional to those of the original attributes. Thus, if σ2
j is the variance

of an attribute j, then σ2
ε = ασ2

j for some α. When Cov(εj1 , εj2) = 0 for all
attributes j1 6= j2 (this is the case of uncorrelated noise), X and X ′ have the
same means and covariances, but not the same variances (σ2

j = (σ′)2j/(1+α))
nor correlation coefficients.

In contrast to that, correlated noise addition preserves correlation coef-
ficients and means. In this case, ε ∼ N(0, kΣ), where Σ is the covariance
matrix of X. A good survey on additive noise is given in [4], where the author
presents the basic methods as well as some more elaborated ones.

A very related approach is multiplicative noise [20, 24]: now each original
value xij is replaced with x′ij = xij · ε, where the noise ε follows a specific
distribution which depends on the original values for attribute j.

2.2.2. Rank Swapping

Rank swapping [7] with parameter p and with respect to an attribute j can
be defined as follows. Firstly, the records of X are sorted in increasing order
of the values xij of the attribute j. To simplify notation, let us assume that
the records are already sorted, that is xij ≤ x`j for all 1 ≤ i < ` ≤ n. Then,
each value xij is swapped with another value x`j, randomly and uniformly
chosen from the limited range i < ` ≤ i+ p. When rank swapping is applied
to a dataset, the algorithm explained above is run for each attribute to be
protected, in a sequential way.

The parameter p is used to control the swap range. Normally, p is defined
as a percentage of the total number of records in X. Therefore, when p
increases, the difference between xij and x`j may increase accordingly. This
fact increases privacy, but of course the differences between the original and
the protected dataset are higher, thereby decreasing the statistical utility
of the data. As noted in [30], the fact that each value is swapped with a
value in a fixed, closed (and possibly public) rank makes this basic rank
swapping method more prone to re-identification attacks, decreasing privacy
protection offered by this method. To mitigate this drawback, two variants
of rank swapping are proposed in [30], where some values (with a small but
still non-negligible probability) are swapped with values out of the theoretical
rank. In the experiments performed in this paper we will use one of these
variants of rank swapping, called rank swapping p-distribution. It defines
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the swap interval using a normal probability distribution defined by µ = σ =
0.5 ·p. This modification makes possible that any value in the dataset can be
potentially selected for a swap with a given element, with a probability that
decreases with the distance to the given element. In this way, the close swap
interval is replaced by an open one, solving the privacy issues of classical
rank swapping.

The advantages of rank swapping and its variants are their simplicity,
their low computation cost and the fact that these methods preserve the
univariate attribute distributions and, therefore, the average and variance
vectors of the original data.

2.2.3. Microaggregation

Microaggregation is one of the most common methods used to obtain k-
anonymity for numerical data: groups of k close records are identified and
substituted by their centroid. In this way, an original record is protected
against disclosure risk in the sense that k protected records have exactly the
same probability to correspond to that original record. To achieve minimum
information loss, the goal is to find an optimal microaggregation that min-
imizes the sum of distances between original records and protected records
(centroids). Since the optimal solution to this problem is NP-hard [31] (for
the general multivariate case), many effective heuristic algorithms have been
proposed to provide good quality results.

Among these methods, we can list the Maximum Distance to Average
Vector (MDAV) algorithm [10] or the similar (but more efficient) Centroid-
based fixed-size (CBFS) algorithm [22]. We will use CBFS for our experi-
ments. It works as follows. Firstly, the average record x̄ of all records in X is
computed. The most distant record xr to the average record x̄ is considered,
and a cluster around xr is formed, containing xr together with the k − 1
closest records to xr. All records belonging to this cluster are removed from
X. Among the remaining records, the most distant record to x̄ is considered,
a cluster is formed, etc. The process is repeated until all the records are as-
signed to one cluster. Finally, the protected dataset X ′ is built by replacing
each original record in X with the centroid of the cluster to which the record
belongs.

In the last years, some researchers have pointed out that k-anonymity
may not be enough to ensure privacy. For example, consider our scenario for
data protection, where confidential attributes Xc are not modified in X ′, and
suppose that all the protected records in a cluster have exactly the same confi-
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dential values. Then, even if an intruder cannot know which exact protected
record corresponds to a given original record, he will know for sure what
are the confidential values for this record. The notions of p-sensitivity [38], l-
diversity [25] and t-closeness [23] have been proposed to address this weakness
of k-anonymity. The goal is to ensure that the distribution of the confiden-
tial values in each of the final clusters satisfies some properties (a minimum
number of different values, a minimum entropy value, a distribution very
close to the distribution of the confidential values in the entire dataset X,
etc.). In the literature we can find some MDAV variants that provide pro-
tected datasets X ′ satisfying these notions (see, for instance [11, 34]). In
our experiments, we have tuned CBFS (without worrying about efficiency
optimizations) in several ways to provide either p-sensitivity or l-diversity.
These modifications, of course, lead to a decrease of the statistical utility,
with respect to standard CBFS.

2.2.4. The IPSO Synthetic Data Generators

In this method the original dataset is used to produce from it another
dataset with different attribute values, but with certain identical statistical
characteristics. The original idea [5] assumes that data can be partitioned
into a single non-confidential attribute Xnc and a single confidential attribute
Xc, dependent on Xnc. A linear regression model is fit to this data, and this
model is used to generate synthetic values of X ′c from the original values Xnc.
Random, normally distributed noise is added to X ′c yielding Y ′c . Finally, the
values Xnc and Y ′c are released. This is easily extended to the case of multiple
non-confidential and confidential attributes.

This idea is extended in [28], so that besides preserving the mean vector
and the covariance matrix as [5] does, the method also guarantees similarity
of the synthetic confidential values to the original confidential values. This
variant assumes first that the quasi-identifier attributes Xnc follow a multi-
variate normal distribution with covariance matrix Σ and mean vector xiB,
where B is the matrix of regression coefficients.

Let B̂ and Σ̂ be the maximum likelihood estimates of B and Σ derived
from the original dataset (Xnc, Xc). If a user fits a multiple regression model
to (X ′nc, Xc), he will get estimates B̂′ and Σ̂′ which, in general, are different
from the estimates B̂ and Σ̂ obtained when fitting the model to the original
data (Xnc, Xc) Therefore, an extension in [28] changes X ′nc into X ′′nc in such
a way that the estimate B̂′′, obtained by multiple linear regression from
(X ′′nc, Xc), satisfies B̂′′ = B.
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Another extension produces a dataset X ′′′nc such that when a multivariate
multiple regression model is fitted to (X ′′′nc, Xc), both statistics B̂ and Σ̂
obtained on the original data (Xnc, Xc) are preserved. This last variant,
known as IPSO, will be the one we will use later in our experiments.

For these variants of IPSO based on multiple linear regression, there is a
degree of freedom to choice the number g of attributes that are considered
to build the regression model. For example, if g = 2, then the first two
attributes are considered to built the regression model for the third and
fourth attributes, which are considered to build the model for the fifth and
sixth attributes, and so on.

3. Classifier Induction

The goal of this paper is to investigate if one can perform good classifier
induction starting from a protected dataset X ′ that has been output by a
SDC perturbation method. The task of classifier induction is to learn from
specific examples of instances, each represented by a vector of attribute values
and labeled by class values, a general mapping from the attribute space to
classes that allows to classify or predict future instances. More precisely,
we can describe classifier induction as follows: data are given as vectors
of attribute values, where the domain of possible values for attribute j is
denoted as Aj, for 1 ≤ j ≤ N . Moreover, a set C = {c1, ..., ck} of k classes is
given; this can be seen as a special attribute or label for each record. Often
k = 2, in which case we are learning a binary classifier. Inducing, or learning
a classifier, means finding a mapping F : A1×A2×...×AN → C, given a finite
training set X1 = {< xij, ci >, 1 ≤ j ≤ N, ci ∈ C, 1 ≤ i ≤ M } of M labeled
examples. In general we want F to be expressed in a certain language, e.g.
F can be a set of n-1 dimensional hyperplanes partitioning an n-dimensional
space into k subspaces, or a decision tree with leaves belonging to C, or a set
of rules with consequents in C. We also want F to perform well, in terms of
its predictive power, on (future) data not belonging to X1.

3.1. Measuring the Quality of Classifiers

Predictive power of a classifier is its ability to produce correct labels on
unseen data. While we cannot measure the performance of a classifier on
future data, we can estimate this performance by evaluating the behavior of
the classifier on a testing dataset X2 ⊆ A1 × A2 × ...× AN × C, on purpose
withheld from the learning process (i.e. X1 ∩X2 = ∅).
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The most simple and common measure of classifier performance is ob-
viously the percentage of records in the testing dataset that are correctly
classified. This percentage is called the accuracy (ACC). However, the accu-
racy is inadequate for imbalanced datasets. For instance if the distribution
of two classes is 90%-10%, then a trivial classifier always predicting the ma-
jority class has accuracy 90%. Therefore, performance evaluation measures
that are not sensitive to class distribution are also desirable; the Area Under
Curve (AUC) is one such measure.

To define AUC, let us first consider the binary classification case, that
we extend later to a k-class classification, with k > 2. For a binary classifier
with classes T and F , the four possible situations when a label is assigned
to a new record can be represented in a confusion matrix

label assigned=T assigned=F
true=T TP FN
true=F FP TN

TP and TN represent the situations where the correct label is assigned.
From the confusion matrix, we can also compute two useful measures of clas-
sifier performance, the True Positive Rate TPR = TP

TP+FN
and the False

Positive Rate FPR = FP
FP+TN

. We can observe that since these rates are de-
fined using only information about one class (a row in the above table), they
are independent of the class distribution. The confusion matrix can be ex-
tended from a square table for a binary classification task to a k-dimensional
table for the k-class task. Similarly, the ratios FPR and TPR generalize
to the k-class setting, by summing up k − 1-dimensional slices of the table
for the denominator of these ratios. Fawcett [16] showed how the AUC can
be computed from these TPR and the FPR rates. The AUC measures the
quality of separation between classes. Both the ACC and AUC measures are
embedded in the WEKA [44] system, that we will use in our experiments.

3.2. Some Well-Known Classifiers

While many classifiers have been defined in the literature, none is univer-
sally better than the others in terms of their predictive power. The choice of
the classifier depends therefore on the characteristics of the data and on the
requirements of the classification task and the model built (computational
cost, stability, interpretability etc.) The main classifiers used in data mining
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practice are Decision Trees, Naive Bayes, k-Nearest Neighbor (k-NN), and
the Support Vector Machine (SVM).

The Decision Tree classifier [32] builds tests of single attribute values that
lead to subsets of instances with highly predictable class label. Decision trees
are highly popular due to their interpretability: the learned classifier can be
logically interpreted and reasoned with by the user of the model.

The SVM classifier [41] lifts the classification task from its original data
space to a much more high-dimensional feature space, and then learns a
linear classifier in that space using the so called kernel trick that performs the
computation in the data space. SVM often (but not always) produces higher
performance than other classifiers, but suffers from lack of interpretability.

The Naive Bayes classifier [14] predicts a class by combining, in a simple
manner, prior probabilities of a class value as determined by values of each
individual attribute. Naive Bayes is highly efficient to learn and to apply.

The k-nearest neighbor classifier [3] determines the class of an instance
by choosing the most common class of its k closest neighbors. The method is
often chosen due to understandability of its underlying principle by the users.
Furthermore, different pruning techniques can be applied to dramatically
improve the efficiency of this method, which makes it suitable for classifying
over very large datasets.

The last two classifiers are lazy, i.e. no explicit, intensional classifier is
built in the learning process, and the class of a test instance is determined
by using the training data itself. All the classifiers have certain internal
parameters (e.g. degree of pruning for Decision Trees, value of k for k-NN,
or kernel function for SVM) that need to be decided when a classifier is used.

4. Classifying from SDC Protected Datasets

This section contains the central part of our work. Our goal is to show,
through various experiments with different datasets and SDC protection
methods, that a dataset that has been protected with a SDC method can be
used to construct a reliable classifier for future (original) data.

4.1. The Scenario

Our experiments are designed to model the following scenario. An entity
(e.g. a statistical agency, or a medical research establishment) has a dataset
X which contains information obtained from a number of individuals, and
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some of this information is confidential (e.g. income levels, medical condi-
tions, etc.). The entity wants to release some protected version X ′ of the
dataset to the public, so that external parties (e.g. researchers, media, etc.)
can use the data for their purposes. In order to be able to securely release
the data, the entity must take steps to protect the privacy of individuals who
provided the data.

Suppose that the dataset X contains numerical information, and the en-
tity thinks that most of the external parties that will use X ′ will be interested
in statistical analysis on the data in X. For this reason, the entity decides to
protect X with a SDC perturbation method, releasing the resulting protected
dataset X ′ to the public. Now, assume that one of the external parties is
not interested in statistical analysis, but he would like to use X to build a
classifier, in order to predict the class (a special attribute) of future records,
out of X but with the same attributes. The question is: could this party
use X ′ to build a reliable classifier, similar to the one that he would have
obtained by using X? We hope the answer to this question to be ‘yes’. Oth-
erwise, the entity should help this specific external party by computing a
different protected version of X, maybe using a PPDM technique, specifi-
cally designed for classification. Furthermore, in this case the external party
would be forced to tell to the entity which kind of use he is going to make of
the data, which can be by itself a privacy breach for this party.

In order to run experiments that will allow us to empirically answer the
above-mentioned question, we first have to decide on the datasets used, the
classifiers studied, and the measures applied to evaluate the quality of the
whole process (privacy, quality of the resulting classifiers, etc.).

4.2. Selected Classifiers, Datasets and SDC Methods

We have used the implementations available in WEKA [44], for the four
classifiers: Decision Trees (DT), Naive Bayes (NB), k-Nearest Neighbors (k-
NN), and Support Vector Machines (SVM), which are the most popular and
effective classifiers used in everyday data mining practice.

Regarding the datasets X, we have selected two datasets from the UCI
repository [29] and one dataset extracted from the U. S. Census [27] using
the Data Extraction System (DES). These three data sets have the following
properties: (i) the attributes are numerical (because the SDC protection
methods that we will apply are designed to work with numerical data); (ii)
there is an attribute with a few (and uniformly distributed) values - this
attribute can be chosen as the class attribute. The description of these
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Abalone Vehicle Census

Records 4177 846 13518

Attributes 9 19 13

Classes M(36%) opel(25%) L (20%)
F(31%) saab(25%) VL (20%)
I(33%) bus(25%) M (20%)

van(24%) H (20%)
VH (20%)

Table 1: Datasets description.

datasets can be found in Table 1. For the class attribute, we have noted the
percentage of records in the dataset that belong to each class; in this way,
we will be able to compare the performance (accuracy, in particular) of the
selected classifiers with a trivial classifier that simply assigns the majority
class to each new record (from the testing dataset).

Finally, we have considered the Statistical Disclosure Control protection
methods described in Section 2: additive and multiplicative noise addition,
rank swapping, microaggregation (with extensions to achieve p-sensitivity or
l-diversity) and IPSO. These are quite representative of SDC perturbative
protection techniques, because: (i) noise addition is applied individually to
each value in the database; (ii) rank swapping is applied at the same time to
all the values of an attribute; (iii) microaggregation takes into account all the
values of some block of attributes (likely, all the attributes, and therefore the
whole dataset is processed at the same time); and (iv) IPSO is a synthetic
data generator.

4.3. Experiments and Results

In order to test the four classifiers, we have followed the standard pro-
cedure of 10-fold cross validation, adapted to the situation that we are con-
sidering. Recall that the owner of a dataset X1 wants to release a protected
version X ′1 of X1 to the public, in order to allow for data analysis. If an
external analyst is interested in classification, his goal will be to predict the
value of some class attribute for some new records, out of X1, using a clas-
sifier learned from X ′1. Of course, these new records (that form a different
dataset X2) are assumed to be given in their original form, without any pro-
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tection. The SDC method will not be applied to the class attribute, and so
the original values for this class attribute will be publicly released.

To simulate this situation, we take our selected datasets X (Abalone,
Vehicle or Census) and we split them into two parts, the training and the
testing datasets, following the standard 10-fold cross-validation protocol. To
do so, we select at random 10% of the records in X: this will be the testing
dataset X2. The remaining records (90%) will be the training dataset, X1,
which will be protected with the corresponding SDC method. Note that we
have to repeat this process 10 times ensuring that all original records are
included once in the testing dataset X2. Then, each of the four classifiers
is run on the protected training dataset X ′1, and tested with each record
in the (non-protected) testing dataset X2. We will use two performance
measures: the accuracy (ACC) and the Area Under Curve (AUC), which are
defined in Section 3. For each combination dataset - SDC method, we run
ten independent executions of this 10-fold cross validation routine, and then
we average the results (such average is needed because noise addition and
rank swapping are non-deterministic protection methods).

We have applied many different parameterizations for each of the tested
SDC methods, from weak protection to a strong protection. For additive
noise addition, we have used the following values for the variance modifi-
cation, α ∈ {1, 2, 3, 5, 10, 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 750,
1000}. For multiplicative noise addition, we have used α ∈ {2.5, 5, 7.5, 10, 12.5,
15, 20, 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500}. For rank swapping p-
distribution, we have considered the values p ∈ {1, 3, 5, 12, 25, 35, 50}. Recall
that p determines the average of the normal distribution which defines the
length of the interval where swapping is done. This swap interval is com-
puted as a percentage of the total number of records in the dataset. For
k-microaggregation, we have used CBFS with different values for the pa-
rameter k ∈ {5, 10, 15, 20, 25, 50, 75, 100, 125, 150}. Regarding our versions
of CBFS which ensure p-sensitivity or l-diversity, we have used the same ten
values for parameter k, and then values p ∈ {2, 3} and l ∈ {2, 3} for the
parameters related to sensitivity and diversity of the chosen class attribute.
Note that the values of p, l make sense only when they are smaller than the
number of possible values for the class attribute (which is 3,4 or 5 in the
considered datasets). Finally, for the IPSO synthetic method, we have con-
sidered different values for the number g of attributes that are taken to build
the regression models.

The classifier method k-NN depends on a parameter k. For each dataset,
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Accuracy, ACC Area Under Curve, AUC
PIL DR DT NB k-NN SVM DT NB k-NN SVM

Original 0.00% 100.00% 54.22% 54.78% 53.93% 54.56% 71.60% 73.30% 71.60% 70.30%
Noise, α = 3 7.90% 74.56% 54.39% 51.81% 53.36% 54.49% 73.09% 73.41% 71.48% 70.50%
Noise, α = 10 24.65% 38.95% 53.67% 51.88% 51.62% 54.37% 73.24% 73.42% 70.55% 70.49%
Noise, α = 100 73.94% 4.10% 51.04% 52.21% 48.17% 53.20% 72.06% 73.98% 66.47% 69.50%
MultNoise, α = 5 13.50% 50.81% 54.44% 51.90% 52.36% 54.39% 73.51% 73.42% 71.22% 70.50%
MultNoise, α = 10 24.81% 24.75% 54.20% 51.76% 54.20% 54.32% 73.15% 73.42% 72.67% 70.41%
MultNoise, α = 100 74.29% 0.00% 50.73% 52.12% 50.90% 53.27% 71.00% 73.90% 68.10% 69.52%
RS p-dist, p = 2 22.12% 51.12% 53.19% 51.23% 53.99% 54.37% 70.95% 73.24% 74.15% 70.57%
RS p-dist, p = 10 29.00% 23.49% 53.55% 51.85% 54.35% 54.18% 71.84% 73.52% 73.17% 70.40%
RS p-dist, p = 50 39.96% 7.80% 40.63% 50.56% 37.32% 53.20% 59.24% 73.17% 57.75% 69.50%
CBFS, k = 5 39.05% 13.73% 54.56% 51.64% 54.01% 54.54% 74.10% 73.29% 73.26% 70.62%
CBFS, k = 25 58.08% 6.65% 53.31% 51.95% 53.05% 54.01% 73.48% 73.10% 74.22% 70.23%
CBFS, k = 100 63.55% 4.32% 51.30% 51.59% 53.53% 54.10% 71.16% 73.24% 74.56% 70.31%
CBFS 2-sen, k = 25 58.08% 0.55% 53.31% 52.00% 53.05% 54.13% 73.44% 73.10% 74.22% 70.30%
CBFS 3-sen, k = 25 73.00% 0.00% 45.00% 42.00% 43.00% 41.00% 62.00% 61.00% 63.00% 60.00%
CBFS 2-div, k = 25 61.55% 0.40% 52.72% 51.57% 52.84% 54.37% 72.13% 73.24% 73.09% 70.36%
CBFS 3-div, k = 25 86.00% 0.00% 38.00% 39.00% 38.00% 40.00% 60.00% 61.00% 62.00% 63.00%
IPSO g = 2 65.09% 1.66% 52.81% 51.52% 50.11% 53.39% 72.36% 73.61% 68.06% 69.66%
IPSO g = 3 58.93% 4.93% 51.45% 51.09% 49.87% 52.41% 69.58% 73.22% 68.24% 68.81%
IPSO g = 4 58.56% 1.81% 52.05% 51.23% 50.68% 52.52% 70.41% 73.22% 68.52% 69.00%

Table 2: Results obtained with the database Abalone and different SDC perturbation
methods.

we have done a 10-fold cross validation experiment with k-NN for different
values of k, between 2 and 20, without protecting the training dataset this
time, and we have selected the value of k which gives the best results.

To illustrate the outcome of our executions, we include in Tables 2, 3 and
4 the results obtained with some of these parameterizations of SDC methods,
and datasets Abalone, Census and Vehicle, respectively. We have included in
these tables three different but significative parameterizations for each SDC
method, reflecting weak protection, medium protection and high protection
levels.

The tables must be analyzed as follows. The first row corresponds to
the results obtained on the original dataset X, without any protection. Of
course, the disclosure risk DR when releasing the original dataset is 100,
and the information loss PIL is 0. The rest of columns give the classifica-
tion results (both ACC and AUC) obtained on the original dataset X when
running the five different classifiers. Then, in the remaining rows, the speci-
fied parameterization of the specified SDC method is applied to the dataset
X1 ⊂ X, to produce X ′1; the DR and PIL columns give the disclosure risk
and information loss produced by this protection, and the rest of columns
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Accuracy, ACC Area Under Curve, AUC
PIL DR DT NB k-NN SVM DT NB k-NN SVM

Original 0.00% 100.00% 92.75% 76.95% 83.79% 87.75% 97.60% 94.40% 95.20% 95.80%
Noise, α = 3 10.65% 79.34% 92.02% 76.82% 84.15% 87.87% 97.69% 94.45% 95.61% 95.93%
Noise, α = 10 27.47% 41.17% 90.17% 76.28% 82.85% 87.34% 97.46% 94.28% 95.43% 95.77%
Noise, α = 100 77.59% 0.12% 59.43% 63.25% 52.29% 73.53% 80.97% 90.07% 81.98% 91.59%
MultNoise, α = 5 14.85% 68.59% 91.77% 76.73% 83.37% 87.83% 97.68% 94.42% 95.53% 95.91%
MultNoise, α = 10 28.00% 41.30% 89.97% 76.29% 82.95% 87.39% 97.38% 94.29% 95.41% 95.77%
MultNoise, α = 100 77.18% 0.10% 60.14% 64.17% 53.71% 73.95% 82.29% 90.15% 82.39% 91.71%
RS p-dist, p = 2 27.82% 58.60% 91.85% 76.49% 83.55% 87.45% 97.56% 94.61% 95.55% 95.81%
RS p-dist, p = 10 38.68% 2.47% 81.62% 73.98% 76.62% 83.20% 94.87% 93.93% 93.78% 94.71%
RS p-dist, p = 50 40.35% 0.00% 42.68% 35.69% 39.30% 50.61% 72.60% 75.23% 70.88% 78.63%
CBFS, k = 5 44.01% 8.38% 91.11% 76.53% 82.42% 88.99% 97.55% 94.25% 95.44% 96.16%
CBFS, k = 25 59.48% 1.10% 90.01% 74.58% 78.65% 88.12% 97.10% 93.79% 94.72% 95.86%
CBFS, k = 100 67.14% 0.00% 86.23% 72.40% 76.62% 84.12% 96.59% 92.87% 94.50% 94.58%
CBFS 2-sen, k = 25 77.99% 0.85% 89.69% 73.21% 78.17% 86.41% 96.91% 93.36% 94.54% 95.27%
CBFS 3-sen, k = 25 86.58% 0.29% 77.92% 59.68% 72.06% 74.55% 94.47% 88.82% 92.25% 90.98%
CBFS 2-div, k = 25 88.00% 0.41% 76.62% 50.16% 69.20% 69.97% 93.33% 85.04% 91.24% 89.65%
CBFS 3-div, k = 25 92.73% 0.00% 53.58% 31.95% 52.94% 48.74% 81.45% 70.63% 84.02% 78.41%
IPSO g = 2 58.39% 1.19% 83.87% 72.24% 68.36% 80.02% 96.04% 93.23% 91.08% 93.72%
IPSO g = 3 58.22% 0.99% 57.53% 59.51% 52.83% 53.38% 82.31% 89.02% 81.76% 81.34%
IPSO g = 6 39.60% 6.37% 82.35% 70.22% 67.99% 75.88% 94.60% 92.05% 89.48% 91.62%

Table 3: Results obtained with the database Census and different SDC perturbation meth-
ods.

give the results obtained by the different classification methods, executed
over the training dataset X ′1 and testing dataset X2 = X −X1.

Recall that the values DR and PIL are independent from the classification
tasks. The information loss (PIL) value obviously increases with the protec-
tion parameter; on the other hand, the disclosure risk (DR) value always
decreases when the protection is higher.

Regarding the values describing the performance of the classifiers (ACC
and AUC), we have a clear expectation that these values should decrease as
the level of protection applied to a dataset increases. Let us observe that
this trend holds generally in Tables 2 and 3: the AUC and ACC values
decrease for each protection technique as its parameters increase, ensuring
stronger protection. We can also observe that there are exceptions from this
expected behavior for the lower levels of protection, e.g. in Table 3, the ACC
values for the datasets protected with CBFS, k = 5, 25 are higher than the
ACC values for the unperturbed data (the same happens for other values
of ACC and AUC, and some lower protection levels for all methods except
rank swapping). We want to emphasize that these small differences in favor
of the protected data do not necessarily mean that the performance on this
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Accuracy, ACC Area Under Curve, AUC
PIL DR DT NB k-NN SVM DT NB k-NN SVM

Original 0.00% 100.00% 71.98% 44.79% 71.93% 73.35% 87.50% 76.75% 89.75% 87.25%
Noise, α = 3 21.16% 84.65% 68.67% 44.43% 70.57% 73.51% 86.53% 77.42% 89.76% 86.42%
Noise, α = 10 30.82% 65.02% 68.67% 43.96% 70.34% 73.16% 86.57% 77.27% 90.15% 86.35%
Noise, α = 100 80.15% 5.62% 45.28% 41.47% 50.24% 63.82% 72.15% 76.60% 76.95% 80.73%
MultNoise, α = 5 23.55% 89.41% 68.15% 44.95% 71.27% 73.74% 84.35% 76.12% 89.25% 86.48%
MultNoise, α = 10 30.62% 82.07% 67.73% 45.02% 70.63% 73.12% 83.71% 73.47% 89.08% 86.23%
MultNoise, α = 100 80.26% 2.24% 44.88% 39.68% 50.36% 62.47% 71.32% 73.85% 76.21% 86.12%
RS p-dist, p = 2 21.14% 69.03% 68.79% 45.25% 70.93% 73.29% 84.95% 75.99% 89.74% 85.95%
RS p-dist, p = 10 34.44% 41.18% 66.77% 45.03% 62.89% 66.69% 85.74% 75.64% 85.53% 82.36%
RS p-dist, p = 50 47.49% 6.69% 42.42% 41.59% 36.54% 47.52% 65.53% 72.97% 65.04% 72.63%
CBFS, k = 5 53.25% 14.56% 62.76% 44.43% 65.94% 71.75% 83.07% 75.80% 87.30% 85.77%
CBFS, k = 25 69.82% 5.63% 49.64% 42.30% 54.13% 64.43% 73.02% 72.02% 82.00% 81.36%
CBFS, k = 100 76.39% 2.75% 28.60% 32.72% 42.44% 29.66% 55.08% 58.58% 70.48% 59.48%
CBFS 2-sen, k = 25 70.02% 1.14% 51.05% 42.06% 54.24% 65.26% 72.60% 71.92% 82.04% 81.63%
CBFS 3-sen, k = 25 70.48% 1.13% 51.18% 42.89% 53.42% 64.43% 74.13% 71.77% 81.70% 81.43%
CBFS 2-div, k = 25 70.83% 1.08% 48.11% 40.65% 55.07% 63.48% 69.33% 70.22% 81.25% 80.82%
CBFS 3-div, k = 25 74.14% 1.01% 42.79% 38.76% 54.74% 58.53% 69.88% 69.90% 79.21% 79.81%
IPSO g = 2 62.49% 4.28% 46.34% 36.64% 37.23% 41.72% 66.21% 59.21% 64.63% 65.27%
IPSO g = 3 57.69% 4.19% 53.43% 37.93% 44.21% 54.25% 71.30% 64.06% 69.34% 70.70%
IPSO g = 9 37.35% 9.77% 58.05% 38.99% 60.65% 64.31% 80.13% 71.03% 84.30% 81.16%

Table 4: Results obtained with the database Vehicle and different SDC perturbation
methods.

data is better: they may well be the artefact of cross-validation in the case
when the differences in performance are not statistically significant. More
precisely, for these lower levels of protection there are no differences between
the performance on protected and non-protected data due to the protection
applied, but only due to the random partition into the training and testing
sets in cross-validation.

Results of experiments in Tables 2, 3 and 4 confirm the expectations: the
performance remains essentially unchanged for the lower levels of protection,
and it degrades as the level of protection grows. The surprising (and positive)
fact is that the degradation measured in the decrease of ACC and AUC is
fairly slow.

4.4. Discussion of the Results

There are two different ways of analyzing the results included in the three
tables. The first one is by looking at the columns of the tables, to see which
classification methods perform better. This analysis does not lead to very
revealing results, because the behavior of the different classification meth-
ods seems to depend on the specific dataset. For example, for the Abalone
dataset, all five classifiers give very similar results; for the Census dataset,
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the Decision Tree (DT) classifier seems to give the best accuracy (ACC);
finally, for the Vehicle dataset, the best ACC results are mostly obtained by
Support Vector Machines (SVM). In all cases, there are not significant differ-
ences among the AUC (Area Under Curve) results obtained by the different
classification methods.

As we have mentioned at the end of previous section, the most interesting
(and maybe surprising) conclusions of our experiments are obtained when
looking at the rows of the tables. It is very easy to see that, while the values
in the DR and PIL columns change a lot from one row to the following
one (corresponding to a higher protection with the same SDC method), the
values in the columns corresponding to the classification measures ACC and
AUC change very smoothly. This means that the SDC protection methods
are more robust with respect to classification purposes than with respect
to statistical analysis, which is surprising because these methods have been
initially designed with the aim to preserve statistical values of the original
data as much as possible.

This fact, i.e. the different evolution of PIL on the one hand and ACC,AUC
on the other hand, when the level of protection applied to a dataset increases,
is illustrated through some additional figures where we have included the re-
sults obtained with all the considered parameterizations of the SDC methods.
There is one figure for each SDC method: Figure 1 for additive noise addi-
tion, Figure 2 for multiplicative noise addition, Figure 3 for rank swapping,
Figure 4 for CBFS, Figure 5 for CBFS with 3-sensitivity and Figure 6 for
CBFS with 3-diversity.

Each of the figures contains three graphics, one for each of the datasets
(Abalone, Census and Vehicle). In each graphic, the x-axis contains the val-
ues of the parameter of each method (α, p and k for noise addition, rank
swapping and CBFS, respectively). We have then drawn four curves to mea-
sure the results of our experiments. The curves measure how the disclosure
risk (DR), information loss (PIL), accuracy (ACC) and area under curve
(AUC) behave while the level of data protection increases, with respect to
the results obtained on the original dataset (without any protection). That
is, since the disclosure risk DR(0) of releasing the original dataset is 100, the
curve DR for the disclosure risk variation represents the function 100-DR(x).
Analogously, the curve PIL for the information loss represents the function
PIL(x). Regarding the values related to classification, the curve for accuracy
represents the normalized degradation of ACC as 100 · (ACC(0)- ACC(x))
/ ACC(0), where ACC(x) is the accuracy obtained by the best classification
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Figure 1: Graphic representation of the results obtained using the additive noise protection
method on the (a) Abalone, (b) Census and (c) Vehicle datasets.

method when applied to a dataset protected with parameter x; in particu-
lar, ACC(0) is the accuracy obtained by the best classification method when
applied to the original (not protected) dataset. The same ideas apply to the
curve for area under curve (AUC).

The conclusions that can be drawn from these figures are significant. In
particular, for all the SDC protection methods (excluding CBFS with 3-
sensitivity or 3-diversity, in Figures 5 and 6), the quality of the classification
stays very close to the classification results obtained with the original dataset,
even when the protection level is very high. In detail, when the disclosure
risk of the SDC methods reaches 10% (which is considered as a very good
level of protection by statistical agencies), the relative variation between
classifying through original data and classifying through protected data is
very small, always less than 10%. In contrast, at these levels of protection,
the information loss (PIL) value has typically increased to levels around 40%
or 50%.

Later, for even higher levels of protection, the results of ACC and AUC
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Figure 2: Graphic representation of the results obtained using the multiplicative noise
protection method on the (a) Abalone, (b) Census and (c) Vehicle datasets.

start to get worse. But these extreme levels of protection are rarely used
by statistical agencies, because the information loss that they produce is too
high, as well.

Let us illustrate this with a specific example. Consider the rank swap-
ping p-distribution protection method, when applied to the Abalone dataset
(Figure 3 (a)). For p = 12, the disclosure risk (DR) is already under 10%,
which means that releasing the protected dataset X ′1 is quite safe. While this
protected dataset leads to a (statistical) information loss (PIL) around 40%,
with respect to the original data, the results obtained on classification are
almost the same as when classifying using the original data. The classifica-
tion results start to be bad only when the level of protection reaches p = 40
or p = 50, which are very extreme cases that will never be implemented in
practice.

The results for other combinations of dataset and SDC method are very
similar, although there are of course some differences. Regarding the datasets,
the Abalone dataset seems to be the one which gives the best results, followed
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Figure 3: Graphic representation of the results obtained using the rank swapping p-
distribution protection method on the (a) Abalone, (b) Census and (c) Vehicle datasets.

by Census and then Vehicle. This can be due to the fact that classification
results for the original Abalone dataset are not very good (ACC around 53%
and AUC around 72%), and so it is “not difficult” to maintain these results
when protection is introduced to the data. Therefore, even if the figures cor-
responding to Census and Vehicle may seem to give a bit worse results (in
terms of the slope of the ACC and AUC curves), one has to notice that the
values ACC(0) and AUC(0) are higher in these two cases, and so the slow
degradation of ACC(x) and AUC(x) is maybe more noticeable therein.

Regarding the different SDC methods, some differences can be found
among the obtained results. The two methods with noise addition (either
additive or multiplicative) seem to lead to the best classification results in
general, followed by microaggregation (CBFS), rank swapping and IPSO.
Some instances of the IPSO protection method lead to very good classifica-
tion results, as well. Note that the values for the quality of classification are
not always correlated with the values of PIL. Therefore, depending on the
desired level of protection, an entity releasing a protected dataset may decide
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Figure 4: Graphic representation of the results obtained using the CBFS microaggregation
protection method on the (a) Abalone, (b) Census and (c) Vehicle datasets.

which SDC method to apply by taking into account the most plausible use
of the data that analysts will do. If the entity suspects that analysts will
compute statistics on the existing data, then some methods (with an appro-
priate parameterization) that lead to lower values of PIL will be fine. If the
entity suspects that analysts will be interested mostly in predicting values
for future instances, then other methods or parameterizations that achieve
very good classification results can be a better choice. Anyway, we want to
stress that all the SDC methods considered here are surprisingly robust with
respect to classification.

Finally, the results for microaggregation (CBFS) achieving 3-sensitivity
or 3-diversity deserve some comments. These are the only considered SDC
methods that lead to quite bad classification results, already at weak levels
of protection. This is not surprising at all, because the p-sensitivity and
l-diversity requirements are in general so strong that final clusters resulting
from microaggregation contain very distant records. Of course, this effect is
more evident for small values of k, that is, for small clusters: the initial clus-
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Figure 5: Graphic representation of the results obtained using the CBFS 3-sensitive pro-
tection method on the (a) Abalone, (b) Census and (c) Vehicle datasets.

ters resulting from CBFS for k = 2, 3, 4 are not likely to achieve 3-sensitivity
or 3-diversity, and so they have to be modified. This means that the infor-
mation loss (PIL) increases a lot; it is easy to check the difference PIL values
between standard CBFS and CBFS achieving some of these additional prop-
erties. As our experiments show, the poor quality of the resulting clusters
also affect the quality of the classification tasks that can be performed on
the protected datasets. Still, the degradation of the classification results in
these cases is smaller than the degradation of PIL.

4.4.1. Positive News

The surprising results that we have obtained with our experiments are
good news, for both the statistical and the classification communities:

• From the statistical point of view, statistical agencies usually choose the
protection parameters for the SDC methods in a specific area: where
both the information loss (PIL) and the disclosure risk (DR) are under
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Figure 6: Graphic representation of the results obtained using the CBFS 3-diversity pro-
tection method on the (a) Abalone, (b) Census and (c) Vehicle datasets.

30%, or where the disclosure risk is under 10% (in case privacy is a more
critical concern). Our experiments show that in this area of protection
the quality of the classifiers is very good, almost as good as classifying
with non-protected data. Therefore, when a statistical agency releases
the protected dataset to the public, it can announce that this (secured)
data is useful not only for statistical analysis, but also for classification
purposes.

• Imagine a longitudinal study in which a data owner periodically releases
the data in order to allow other users to do classification/prediction
tasks on it. At some point, this owner realizes that his data contains
sensitive information, and starts to worry about privacy. Supported by
the results of our experiments, at some point in time he could take a
SDC protection method (which is easy to use, to implement, to under-
stand, and it is freely available), with a very high level of protection
(e.g. noise addition with α ≈ 50 or rank swapping p-distribution with
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p ≈ 10), and apply it to his data before making it public. In this
way, he will be sure that the future classification tasks will be almost
as successful as the previous ones (from non-protected data), whereas
now the privacy of the original data is preserved.

4.4.2. Preventive News

Although the results of our experiments are mainly good news, they can
be interpreted in a different way. Remember that in the typical SDC sce-
nario, the protection method is applied to some attributes only, whereas
other (non-identifier) attributes are published in their original form, without
being altered. Now imagine that one of these non-altered attributes contain
sensitive information, and furthermore it allows only a few values, with a
skewed distribution. For example, we can think of a binary attribute telling
if a patient (record) suffers from a specific illness or not. This attribute can
be thought as the class attribute of our experiments.

If there is a strong correlation between the protected attributes and this
attribute, then a classifier built from the publicly released protected dataset
X ′ will be very successful in guessing the value of the class attribute not only
for future records (out of X) but also for records that are inside X. This
means that an attacker who knows some quasi-identifier attributes of some
patient (his age, height, weight, data of entrance to the hospital...) can use
the public dataset X ′ to guess with high probability if this patient suffers
from the illness. This would be a serious privacy breach of the whole system.

Note that this problem is related to the well-known trade-off between
data mining and privacy (see [18], for example). The solution is to consider
each situation separately, because the solution will depend on the attributes
that are publicly released, on the attributes that are known only by some
agents, on the attributes that are considered to be sensitive, etc. In any
case, data owners in general (and statistical agencies in particular) should
be very careful when releasing some datasets to the public, specially if they
contain sensitive attributes with a skewed distribution and only a few possible
values. Before doing so, they should analyze the behavior of a classifier that
an attacker could build from the published data, in order to know what is
the risk that such attackers successfully damage the privacy of the system.
Put in different words, the quality of these classifiers could be considered as
another way to measure the risk of a SDC protection method, as it is usually
done with linkage disclosure and interval disclosure risks (see Section 2.1).

Of course, this potential privacy problem does not avoid the application
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of the positive conclusions of our work to other scenarios. For example, a
hospital A that trusts a different hospital B can privately send (e.g. using
cryptography) a protected dataset X ′ containing sensitive information about
patients in A, in such a way that analysts of hospital B can do data min-
ing, for example to predict the probability that some patients in hospital
B suffer from some illness. In this example, if access to this information is
securely restricted to the trusted agents (scientists of hospitals A and B),
then intruders will never be able to build any classifier to obtain confidential
information about patients in hospitals A or B.

4.5. Comparison with a Specific PPDM Protection Method

Our experiments show that the considered SDC protection methods give
quite good classification results. However, in the privacy-preserving data
mining (PPDM) literature, one can easily find papers proposing specific pro-
tection methods which are designed with the clear (and unique) goal of ob-
taining good data mining (in particular, classification) results. We want
to compare the results obtained by generic SDC methods with the results
obtained by such a specific PPDM method. We have chosen the rotation
perturbation method [6], that was designed with the goal of achieving very
good results for k-NN and SVM classifiers.

This method works as follows. The dataset X to be protected must be
thought as a matrix with n rows (records) and d columns (attributes). Firstly,
X is normalized into the [0, 1] interval. A random orthonormal d× d matrix
R = {rij}1≤i,j≤d is generated; since it is orthonormal, it satisfies RTR = Id.
Then, the protected dataset (or matrix) X ′ is obtained as X ′ = X ·R. Note
that different orderings of the attributes lead to different results and privacy
levels. A local optimization through attribute-swapping is applied to find the
best attribute ordering. The whole process is repeated a number v of times,
selecting at the end the best rotation matrix R and attribute ordering. Here
the quality is measured with respect to some predefined privacy metric or
parameter. In the simpler case (that we have considered in our experiments)
where all the attributes are assumed to be equally important from the privacy
point of view, the privacy parameter is limited to a real value p. Experimental
results in [6] show that v = 50 repetitions of the process are enough to
obtain the best R and attribute ordering; we have thus used v = 50 in our
experiments.

Table 5 contains the results concerning this rotation protection method.
Among the classifiers used in the previous experiments, k-NN and SVM are

28



Accuracy, ACC Area Under Curve, AUC
PIL DR DT NB k-NN SVM DT NB k-NN SVM

A
b
a
lo
n
e Rotation, p = 0.05 86.12% 9.15% 54.95% 52.94% 52.94% 54.05% 63.56% 64.47% 63.18% 63.05%

Rotation, p = 0.10 87.46% 8.59% 54.70% 52.17% 52.10% 54.06% 64.49% 64.08% 62.55% 62.77%
Rotation, p = 0.15 87.23% 8.15% 53.83% 52.52% 52.23% 54.04% 63.17% 64.56% 62.71% 63.03%
Rotation, p = 0.20 89.43% 7.93% 52.77% 52.80% 52.02% 54.07% 63.21% 64.02% 62.16% 62.37%

C
en

su
s Rotation, p = 0.05 92.79% 4.32% 84.60% 63.42% 83.76% 84.83% 92.91% 94.45% 95.00% 95.99%

Rotation, p = 0.10 92.15% 4.27% 81.23% 65.14% 83.82% 85.28% 92.01% 94.00% 94.93% 95.05%
Rotation, p = 0.15 95.63% 3.15% 81.66% 63.90% 82.23% 84.95% 91.21% 93.79% 94.53% 95.83%
Rotation, p = 0.20 96.38% 2.21% 81.08% 67.79% 82.27% 81.08% 92.12% 93.47% 94.33% 94.17%

V
eh

ic
le

Rotation, p = 0.05 91.88% 5.67% 62.67% 42.94% 72.02% 73.75% 72.14% 71.98% 83.09% 78.24%
Rotation, p = 0.10 91.63% 5.90% 63.33% 42.39% 70.04% 73.23% 72.28% 71.36% 82.01% 77.66%
Rotation, p = 0.15 92.15% 6.33% 66.18% 41.36% 70.53% 72.88% 72.25% 71.24% 80.96% 77.09%
Rotation, p = 0.20 92.37% 6.55% 62.86% 41.37% 70.12% 72.39% 69.01% 71.31% 80.42% 76.31%

Table 5: Results obtained by the rotation PPDM method.

rotation-invariant, while NB and DT are not. Thus, it is not surprising that
the best classification results obtained by rotation are those concerning these
two classifiers k-NN and SVM. However, these results are not significantly
better (maybe excepting the results for the dataset Vehicle) than the results
obtained by some parameterizations of generic SDC methods. The rotation
protection technique achieves quite good privacy results. However, the main
drawback of this method is that it leads to very poor PIL results. In other
words, releasing a dataset X ′ that has been produced from X through rota-
tion is useful only for clients who are interested in performing classification
tasks, and in particular k-NN or SVM. If a client is interested in computing
other kind of (statistical) information on X, then X ′ will not help him at all;
a different protected version of X should be released, in this case.

In contrast, using a generic SDC protection method leads to a perturbed
dataset X ′ which can be used for both tasks: inducing a classifier from X
and obtaining statistical information on X. Therefore, we believe that the
approach considered in this work is more useful and replicable than the use
of very specific PPDM protection methods.

5. Conclusions and Future Work

In this paper we have experimentally shown that well-known SDC pro-
tection methods behave very well when used for classification purposes. In
other words, the classifiers that are built from a protected dataset are essen-
tially as good as those built from the original dataset, even if the protection
level is reasonably high.
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In some way, our results may lead people to question the necessity of
certain papers that have appeared in the privacy-preserving data mining
(PPDM) literature, proposing specific protection methods with the clear goal
of providing good classification. If general-purpose SDC methods already
provide a good level of privacy and very good classification, results, then
what else is needed?

However, our work is not closed at all. For example, our experiments
consider numerical databases only; there are SDC methods which work with
categorical attributes, so it will be interesting to see if similar results can
be obtained in that case. As well, we have concentrated in this work on
the possible use of generically protected data for learning a classifier. Other
specific data mining tasks (regression, association rule learning, etc.) could
be considered as well, in this scenario, to see if the good results that we have
got here for classification are also obtained for other tasks.

In the SDC community, when different protection methods are compared
or ranked, one usually considers the score measure [12], which is simply the
average between PIL and DR. Since the conclusion of our work is that SDC
protected datasets can be used also for other (non-statistical) tasks such as
classification, we believe that other measures such as ACC, AUC or measures
related to other mining tasks should be considered as well when analyzing
the quality of SDC protection methods.
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