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Abstract

Reputation systems make the users of a distributed application accountable for
their behavior. The reputation of a user is computed as an aggregate of the
feedback provided by other users in the system. Truthful feedback is clearly
a prerequisite for computing a reputation score that accurately represents the
behavior of a user. However, it has been observed that users often hesitate in
providing truthful feedback, mainly due to the fear of retaliation. We present
a decentralized privacy preserving reputation protocol that enables users to
provide feedback in a private and thus uninhibited manner. The protocol has
linear message complexity, which is an improvement over comparable decentral-
ized reputation protocols. Moreover, the protocol allows users to quantify and
maximize the probability that their privacy will be preserved.
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1. Introduction

In recent years, reputation systems have gained popularity as a solution for
securing distributed applications from misuse by dishonest users. A reputation
system computes the reputation score of a user as an aggregate of the feedback
provided by fellow users. Good behavior is rewarded by positive feedback and
consequently a high reputation score. On the contrary, bad behavior results
in negative feedback and a low reputation score, which can lead to isolation or
exclusion from the application. Some examples of applications of reputation
systems are as follows:

• According to a survey on fraud in e-commerce [1], fraud accounted for a
total loss of US$ 2.7 billion in the United States and Canada in 2010.
Reputation systems used by e-commerce websites (such as ebay.com,
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amazon.com) mitigate the risk that a seller would turn out to be fraudu-
lent.

• Several cases have been reported where fake online persona have hijacked
the identity of professionals and then succeeded in connecting to their
real network of acquaintances [2]. Reputation systems that root out fake
profiles on social networks include Unvarnished [3] and Duedil [4].

• There is a risk in peer-to-peer file sharing networks (such as BitTorrent)
that a file uploaded by a seeder is fake. Reputation systems for defeating
fake content in peer-to-peer file sharing networks have been proposed by
Costa and Almeida [5], Yu [6], and Kamvar et al. (EigenTrust) [7].

• Nodes in Mobile Ad-hoc Networks (MANETs) depend on neighbors to
route their messages. However, neighbors may be selfish and may drop
messages to conserve their resources. Reputation systems for discourag-
ing selfish behavior in mobile ad-hoc networks include those by Hu and
Burmester [8], and Buchegger et al. [9, 10].

Reputation score is an aggregate of the feedback, therefore an accurate rep-
utation score is possible only if the feedback is accurate. However, it has been
observed that the users of a reputation system often avoid providing truthful
feedback [11]. This is particularly true about negative feedback. The reasons
for such behavior include fear of retaliation from the target entity or mutual
understanding that a feedback value would be reciprocated.

A solution to the problem of lack of truthful feedback is computing reputa-
tion scores in a privacy preserving manner. A privacy preserving protocol for
computing reputation scores operates such that the individual feedback of any
user is not revealed. The implication is that the feedback provider is rendered
uninhibited to provide truthful feedback.

Decentralized environments include decentralized social networks, peer-to-
peer networks, and mobile ad-hoc networks. These environments are character-
ized by the absence of a trusted central authority. In Section 5, we observe that
existing decentralized privacy preserving reputation protocols are either ineffi-
cient or depend on constructs such as Trusted Third Parties (TTPs), trusted
hardware modules, or anonymous routing, which are often not feasible.

In this article, we propose a novel privacy preserving reputation protocol
called the k-shares protocol, which is decentralized as well as efficient. The pro-
tocol requires only O(n) number of messages for the computation of a reputation
score, where n is the number of feedback providers. The protocol is secure under
the standard semi-honest adversarial model (described in Section 2.2) and does
not require TTPs, trusted hardware modules, or anonymous routing. Another
novel aspect of our protocol is that a feedback provider is able to quantify and
minimize the risk to its privacy before submitting feedback.
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2. Framework

2.1. Agents, Trust, and Reputation

We model our environment as a multi-agent environment. An agent repre-
sents a user. Let A denote the set of all agents in the environment. |A| = N .

We subscribe to the definition of trust by sociologist Diego Gambetta [12],
which characterizes trust as binary-relational, directional, contextual, and quan-
tifiable as subjective probability. Our formal definition of trust attempts to
capture each of these characteristics.

Let D denote an asymmetric binary relation on the set A. Let T ⊆ D be
the set of all existing trust relationships between agents. (a, b) ∈ T, where
a, b ∈ A, implies that an agent a has a trust relationship towards an agent b.
The asymmetric binary relation D captures the directional and binary-relational
characteristics of trust.

Let Ψ denote the set of all actions. Examples of actions include: “prescribe
correct medicine”, “repair car”, “deliver product sold online”, “upload authentic
content”, “route a message for a neighbor”, etc.

Let perform denote a function, such that perform : T×Ψ → {true, false}.
The function perform(a, b, ψ) outputs true if agent b performs the action ψ
anticipated by agent a, or it outputs false if b does not perform the anticipated
action. Let the subjective probability P (perform(a, b, ψ) = true) denote agent
a ’s belief that agent b will perform the action ψ.

Definition 1. Trust. The trust of an agent a in an agent b is given as the
triple 〈aTb, ψ, P (perform(a, b, ψ) = true)〉, where a, b ∈ A, (a, b) ∈ T, ψ ∈ Ψ,
and P (perform(a, b, ψ) = true) ∈ [0, 1].

In Definition 1, action ψ is the context of trust, and the subjective probability
P (perform(a, b, ψ) = true) is the quantification of trust. When the context of
trust is clear, we adopt the simplified notation lab for P (perform(a, b, ψ) = true).
Table 1 summarizes the various elements of the definition of trust.

An agent a is said to be a source agent of an agent b in the context of an
action ψ if a has trust in b in the context ψ. The set of all source agents of an
agent b in context ψ is given as Sb,ψ. The simplified notation Sb is used instead
of Sb,ψ when the context is clear. We also refer to the quantification of a source
agent a ’s trust in agent b as feedback.

Definition 2. Reputation. Let St = {a1 . . . an} be the set of source agents
of an agent t in context ψ. Let rep denote a function, such that rep : [0, 1]1 ×
. . . × [0, 1]n → R. Then the reputation of agent t in context ψ is given as:
rep(P (perform(a1, t, ψ) = true), . . . , P (perform(an, t, ψ) = true)), or in simpli-
fied notation: rep(la1t, . . . , lant).

We have defined the reputation of an agent as any function that aggregates
the feedback of its source agents. The reputation of an agent t is denoted by
rt,ψ, or rt when the context is clear.

Let a function rep⊕ be an implementation of the reputation of an agent t in
context ψ.

rep⊕(la1t . . . lant) =

∑n
i=1 lait
n

(1)
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Table 1: Elements of the definition of trust.

Element Description

a T b Agent a has a directional trust relationship towards
agent b. Relation T ⊆ D, where D is an asymmetric
binary relation on set A, the set of all agents in the
environment.

ψ An action, which is the context of agent a ’s trust in
agent b.

perform(a, b, ψ) perform : T × Ψ → {true, false}. ψ ∈ Ψ. The
function perform(a, b, ψ) outputs true if agent b per-
forms the action ψ anticipated by agent a, otherwise
it outputs false.

P (perform(a, b, ψ) = true) The subjective probability (according to agent a)
that agent b will perform the action ψ. It is the
quantification of agent a ’s trust in agent b. It is
abbreviated as lab when the context of trust is clear.

The function rep⊕ implements the reputation of an agent t as the mean
of the feedback values of its source agents. The reason for this choice is that
mean is a statistic which is intuitive and easy to understand for human users.
The eBay reputation system (ebay.com), which is one of the most successful
reputation systems, represents reputation as the simple sum of all feedback. We
derive the mean from the sum in order to normalize the reputation values.

Definition 3. Reputation Protocol. Let Π be a multi-party protocol. Then Π
is defined as a Reputation Protocol, if 1) the participants of the protocol include:
a querying agent q, a target agent t, and all n source agents of t in the context
ψ, 2) the inputs include: the feedback of the source agents in context ψ, and 3)
the output of the protocol is: agent q learns the reputation rt,ψ of agent t.

2.2. Adversary

We refer to the coalition of dishonest agents as the adversary. In this paper,
we propose a solution for the semi-honest adversarial model. The agents in this
model always execute the protocol according to the specification. The adver-
sary abstains from wiretapping and tampering of the communication channels.
However, within these constraints, the adversary passively attempts to learn the
inputs of honest agents by using intermediate information gleaned during the
execution of the protocol.

2.3. Privacy

Definition 4. Private Data. Let x be some data and an agent a be the owner
of x. Then x is agent a’s private data if agent a desires that no other agent
learns x. An exception is those agents to whom a reveals x herself. However,
if a reveals x to an agent b, then a desires that b does not use x to infer more
information. Moreover, a desires that b does not reveal x to any third party.
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Definition 5. Preservation of Privacy (by an Agent). Let x be an agent
a’s private data that agent a reveals to an agent b. Then agent b is said to
preserve the privacy of agent a w.r.t. x, if 1) b does not use x to infer more
information, and 2) b does not reveal x to any third party.

Let action ρ = “preserve privacy”. The action ρ is synonymous with the
action “be honest”, since an agent preserves privacy only if it is honest, and an
honest agent always preserves privacy since it has no ulterior motives.

Definition 6. Trusted Third Party (TTP). Let S ⊆ A be a set of n agents,
and TTPS ∈ A be an agent. Then TTPS is a Trusted Third Party (TTP) for
the set of agents S if for each a ∈ S, P (perform(a, TTPS , ρ) = true) = 1.

We define security threshold as a parameter that can be assigned a value in
[0, 1] according to the security needs of an application. A value of the security
threshold closer to 1 indicates a stricter security requirement. We consider as
high any probability greater than or equal to the security threshold, and as low
any probability less than 1− security threshold.

We adopt the Ideal-Real approach [13] to define privacy preserving reputa-
tion protocols.

Definition 7. Ideal Privacy Preserving Reputation Protocol. Let Π be
a reputation protocol (Definition 3). Then Π is an ideal privacy preserving
reputation protocol under a given adversarial model, if: 1) the inputs of all n
source agents of t are private, 2) TTPSt is a participant, where St = St,ψ is
the set of all source agents, 3) m < n of the source agents (given as set M)
and agents q and t are considered to be dishonest, however, q wishes to learn
the correct output, 4) agents St −M and TTPSt are honest, 5) as part of the
protocol, TTPSt receives the private inputs from the source agents and outputs
the reputation rt,ψ to agent q, and 6) over the course of the protocol, the private
input of each agent a ∈ St −M may be revealed only to the TTPSt .

In an ideal privacy preserving reputation protocol, it is assumed that for
each agent a ∈ St−M , the adversary does not gain any more information about
the private input of agent a from the protocol other than what he can deduce
from what he knows before the execution of the protocol and the output, with
probability P (perform(a, TTPSt , ρ) = true) = 1.

Definition 8. Real Privacy Preserving Reputation Protocol. Let I be
an ideal privacy preserving reputation protocol (Definition 7). Then R is a real
privacy preserving reputation protocol w.r.t. I, if: 1) R has the same parameters
(participants, private inputs, output, adversary, etc.) as I, except that there is
no TTPSt as a participant 2) with high probability, the adversary learns no more
information about the private input of any agent a than it can learn in protocol
I.

2.4. Problem Definition

Let St,ψ = {a1 . . . an} be the set of all source agents of agent t in the context
of action ψ. Find a reputation protocol Π, which takes private input lat ≡
P (perform(a, t, ψ) = true) from each agent a ∈ St, and outputs the reputation
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rt,ψ of the target agent t to a querying agent q. Reputation is realized as rep⊕.
Agents q, t, and m of the source agents are considered to be dishonest, where
m < n. However, q wishes to learn the correct output and therefore does not
take any actions that alter the output. The reputation protocol Π is required
to be decentralized and secure under the semi-honest model.

3. The k-Shares Reputation Protocol

The k-shares protocol is inspired in part by Pavlov et al. [14, Section 5.2].
However, our protocol has a lower message complexity of O(n) as opposed to
O(n2) of the protocol in [14]. Moreover, our protocol allows agents to quantify
and maximize the probability that their privacy will be preserved before they
submit their feedback. The important steps of the protocol are outlined below.

1. Initiate. The protocol is initiated by a querying agent q to determine the
reputation rt,ψ of a target agent t. Agent q retrieves St ≡ St,ψ, the set of
source agents of agent t. Agent q then sends St to each agent a ∈ St.

2. Select Trustworthy Agents. Each agent a ∈ St selects up to k other
agents in St. Let’s refer to these agents selected by a as the set Ua =
{ua,1 . . . ua,ka}, where 1 ≤ ka ≤ k. Agent a selects these agents such that:
P (perform(a, ua,1, ρ) = false)× . . .×P (perform(a, ua,ka , ρ) = false) is
low. That is, the probability that all of the selected agents will collude to
break agent a ’s privacy is low. k is a constant, such that k � n.

3. Prepare Shares. Agent a then prepares ka + 1 shares of its secret
feedback value lat. The shares, given as: xa,1 . . .xa,ka+1, are prepared
as follows: The first ka shares are random numbers uniformly distributed
over a large interval. The last share is selected such that:

∑ka+1
i=1 xa,i = lat.

That is, such that the sum of the shares is equal to the feedback value.

4. Send Shares. Agent a sends the set Ua = {ua,1 . . . ua,ka} to agent q.
Agent a sends each share xa,i to agent ua,i, where i ∈ {1 . . . ka}.

5. Receive Shares. Agent q receives Ua from each agent a ∈ St. Then, for
each agent a, agent q: 1) compiles the list of agents from whom a should
expect to receive shares, and 2) sends this list to agent a. Agent a then
proceeds to receive shares from the agents on the list provided by q.

6. Compute Sums. Agent a computes σa, the sum all shares received and
its own final share xa,ka+1. Agent a sends the sum σa to q.

7. Compute Reputation. Agent q receives the sum σa from each agent
a ∈ St. q computes rt,ψ = (

∑
a∈St σa)/n.

3.1. Protocol Specification

The protocol is specified in Figure 1. The function set of trustworthy(a, S)
returns a set of agents Ua = {ua,1 . . . ua,ka}, where 1 ≤ ka ≤ k, and Ua ⊆
S. The set Ua is selected such that: P (perform(a, ua,1, ρ) = false) × . . . ×
P (perform(a, ua,ka , ρ) = false) is low, with the minimum possible ka.
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3.2. Security Analysis

3.2.1. Correctness

Each agent a ∈ St prepares the shares xa,1 . . . xa,ka+1 of its feedback value

lat, such that:
∑ka+1
j=1 xa,j = lat. The sum of the feedback values of all agents

in St = {a1 . . . an} is given as:
∑n
i=1 lait. Thus, the sum of the feedback values

of all agents in St can be stated as:
∑n
i=1(

∑kai+1

j=1 xai,j). That is, the sum of
all shares of all agents.

Each agent a ∈ St provides agent q the set Ua, which is the set of agents
whom a is going to send its shares. After q has received this set from all agents
in St, it compiles and sends to each agent a, the set Ja, which is the set of agents
who are in the process of sending a share to agent a. Thus, each agent a knows
exactly which and how many agents, it will receive a share from. When agent a
has received all of those shares, it sends σa, the sum of all shares received and
its final share, to agent q. Previously, each agent a ∈ St sends each of his shares
xa,1 . . . xa,ka , once to only one other agent, and adds the final share xa,ka+1 once
to his own σa. It follows that the sums σa1 . . . σan include all shares of all agents
and that they include each share only once.

The final value of r in the protocol is: r =
∑n
i=1 σai =

∑n
i=1(

∑kai+1

j=1 xai,j) =∑n
i=1 lait. From Definition 2 and Equation 1, we can infer that rt,ψ = r/n

computed by q is the correct reputation of agent t in context ψ.

3.2.2. Privacy of Feedback Values

Let’s consider an agent a ∈ St. Agent a prepares the shares xa,1 . . . xa,ka+1

of its secret feedback value lat. The first ka shares xa,1 . . . xa,ka are random
numbers uniformly distributed over a large interval [−X,X]. The final share,

xa,ka+1 = lat −
∑ka
i=1 xa,i, is also a number uniformly distributed over a large

interval since it is a function of the first ka shares which are random numbers.
Thus, individually each of the shares does not reveal any information about lat.
The only case in which information can be gained about lat is if all ka+1 shares
are known. Then, lat =

∑ka+1
i=1 xa,i. We now analyze if the adversary can learn

the ka + 1 shares of an agent a from the protocol.
Agent a sends each share xa,i only to agent ua,i, where i ∈ {1 . . . ka}. Each

ua,i then computes σua,i , which is the sum of all shares that it receives and its
own final share xua,i,kua,i+1. Even if agent a is the only agent to send agent ua,i
a share, σua,i = xa,i+xua,i,kua,i+1. That is, the sum of agent a ’s share and agent

ua,i’s final share. σua,i is a number uniformly distributed over a large interval.
Thus, when agent ua,i sends this number to agent q, it is impossible for q to
distinguish the individual shares from the number. Therefore, each share xa,i
that agent a sends to agent ua,i will only be known to agent ua,i. Unless, agent
ua,i is dishonest. The probability that agent ua,i is dishonest, that is, it will
attempt to breach agent a ’s privacy is given as: P (perform(a, ua,i, ρ) = false).

To learn the first ka shares of agent a, all agents ua,1 . . . ua,ka would have to
be dishonest. The probability of this scenario is given as: P (perform(a, ua,1, ρ) =
false)× . . .× P (perform(a, ua,ka , ρ) = false).
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Even in the above scenario, the adversary does not gain information about
lat, without the knowledge of agent a ’s final share xa,ka+1. However, agent
a has to send σa = xa,ka+1 +

∑
v∈Ja xv, and agent a has no control over the∑

v∈Ja xv portion of the equation. Therefore, we assume that agent q learns the
final share of agent a.

Thus the probability that the protocol will not preserve agent a ’s privacy can
be stated as: P (perform(a, ua,1, ρ) = false) × . . . × P (perform(a, ua,ka , ρ) =
false). If we consider that each agent a ∈ St selects the agents ua,1 . . . ua,ka
such that this probability is low, then with high probability, the adversary learns
no more information about lat than it can learn in the ideal protocol with what
it knows before the execution of the protocol and the outcome. From Definition
7 and Definition 8, we can infer that the k-shares reputation protocol is a real
privacy preserving reputation protocol.

3.2.3. Notes on the Cardinality of the Sets St, Ja, and Ua
The set St is the set of source agents who provide feedback about a target

agent t. The protocol requires that k � n, where n = |St|. That is, the constant
k is significantly less than the cardinality of the set St. As we observe in Section
3.3, the condition k � n serves to limit the complexity of the protocol to O(n)
in terms of the number of messages exchanged. However, this implies that the
protocol is suitable only for determining reputation of target agents with a large
number of feedback providers in relation to k. This may not be a disadvantage
since the low complexity of the protocol would be most advantageous for higher
values of n in comparison to protocols such as the one by Pavlov et al. which
has a complexity greater than O(n2).

The adversary can ascertain the interval of the submitted feedback values
from publicly available information, which includes the output of the proto-
col (the reputation rt computed as the mean of the feedback values) and the
cardinality n of the set St. The interval of the submitted feedback values,
[mina∈St lat,maxa∈St lat], can be computed as follows:[

1− ((1− rt)× n) if 1− ((1− rt)× n) ≥ 0
0 if 1− ((1− rt)× n) < 0

,
rt × n if rt × n ≤ 1

1 if rt × n > 1

]
(2)

A combination of higher values of n and values of rt closer to the center of
[0, 1] increases the size of the interval, thus reducing the amount of information
gleaned by the adversary. When the interval determined by the adversary is
[0, 1], the adversary gains no additional information about the submitted feed-
back values since [0, 1] is the universal interval for all feedback values. Some
examples of the effects of the values of rt and n are given in Table 2.

We note that the above information can be ascertained by the adversary in
the real privacy preserving reputation protocol as well as in the ideal protocol
since the adversary uses only the publicly available information. The cardinality
of the set St therefore does not have an effect specifically on the k-shares protocol
in terms of preserving the privacy of the feedback values. In fact, since the k-
shares protocol is not meant to be used for low values of n, the adversary is
unlikely to learn a small interval, unless rt ≈ 0 or rt ≈ 1.

8



Table 2: Interval of the submitted feedback values.

rt n Interval

0 5 [0, 0]

0.2 2 [0, 0.4]

0.2 5 [0, 1]

0.6 2 [0.2, 1]

0.6 5 [0, 1]

0.8 2 [0.6, 1]

0.8 5 [0, 1]

1 5 [1, 1]

The set Ja is the set of fellow source agents in the protocol from whom an
agent a receives shares. The cardinality of the set Ja determines whether agent
q learns the final share xa,ka+1 of agent a or not. Agent a is required to send
σa = xa,ka+1 +

∑
v∈Ja xv to q. If the set Ja is not empty then σa is the sum

of xa,ka+1 and the shares received. This implies that q cannot distinguish the
value of the share xa,ka+1. However, if the set Ja is empty then σa = xa,ka+1

and q learns its value.
As we note in the previous section, the revelation of the final share xa,ka+1 of

agent a has no bearing on the privacy of a ’s feedback value. The share xa,ka+1

serves to hide the value of the share received, in case only one share is received,
that is, |Ja| = 1.

The set Ua is the set of agents selected by an agent a to send shares of
private feedback. We discuss the implications of the cardinality of the set Ua in
the following section.

3.2.4. Privacy of Trust Relationships

In the protocol specified in Figure 1, an agent must send Ua to agent q, where
Ua is the set of agents whom a considers trustworthy. Although this step does
not disclose any information about agent a ’s private feedback, it does reveal a ’s
preferences in terms of trustworthy agents. To counter this issue we propose the
following extension to the protocol: If |Ua| < k, then a can add k − |Ua| more
agents to Ua. These additional agents are selected randomly from the remaining
source agents in St. The consequence of this extension is that the set Ua no
longer consists exclusively of agents whom agent a considers trustworthy. Thus
agent q cannot ascertain whether an agent in Ua is agent a ’s trustworthy agent
or an agent that has been randomly selected. Adding the random potentially
untrustworthy agents to the set Ua does not weaken the security of agent a since
all agents in the set Ua must collude to learn its private feedback value.

An adversary may attempt repeated queries to determine the agents that
occur most frequently in Ua, thus revealing a ’s trustworthy agents. However,
this attack can be countered if agent a selects an identical set of agents for each
repeated query.
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It is possible that an agent a ’s security threshold is satisfied with as low as
one trustworthy agent in Ua. This implies that the adversary can only make a
random guess with a probability 1/k of being correct that a given agent in the
set Ua is one of a ’s trustworthy agents.

3.2.5. Abstaining when Risk to Privacy is High

The privacy of the k-shares protocol depends on the assumption that each
agent a ∈ St will find trustworthy agents in St. However, the protocol may
be extended such that agents are allowed to abstain when they do not find
trustworthy agents. In that case, an agent would generate two shares whose
sum equals zero. One of the shares would be sent to a random source agent
and the other to the querying agent along with any shares received added to
it. The abstaining source agent would also notify the querying agent that it
has abstained. The querying agent would compute reputation as the sum of
all shares divided by the number of non-abstaining agents. In section 4.2, we
observe that the protocol computes sufficiently accurate reputation scores even
if a large number of agents abstain.

It can be inferred about an abstaining agent that it does not sufficiently
trust any of the fellow source agents in the protocol. To prevent such inference,
an agent can adopt a policy of permanently abstaining for a certain percent-
age of target agents even if their set of sources contains trustworthy agents.
This prevents the adversary from deterministically learning whether the agent
is abstaining because it did not find trustworthy agents or because it is taking
privacy preserving measures.

3.2.6. An Attack on the Ideal Protocol

We describe an attack in which the adversary attempts to determine the
private feedback of a source agent over the course of two reputation queries.
Consider the scenario when a new agent a is added to the set of source agents
St. Let S

′

t = St ∪ {a}. Let the reputation of the target agent t be rt and r
′

t for
the set of source agents St and S

′

t respectively. A querying agent q that queries
the reputation of the target agent t with both sets of source agents can compute
the private feedback of agent a as lat = (r

′

t× (n+ 1))− (rt×n), where n = |St|.
A similar attack can also determine the private feedback of an existing source
agent that drops out from the set of source agents.

The ideal protocol (Definition 7) is vulnerable to this attack. Consequently,
the k-shares protocol is also vulnerable as it emulates the ideal protocol. We
note that this is a general issue for all protocols that can produce the sum of the
feedback values of the following sets of source agents: St, and St∪{a} or St/{b},
where a 6∈ St and b ∈ St. We discuss three different strategies for countering
this attack and list their individual tradeoffs.

Random Number Generator. We have previously presented an additive pri-
vacy preserving reputation protocol [15] based on secure sum [16], for
which we addressed this attack using the data perturbation technique.
The interval for feedback is [−1, 1]. A trusted random number genera-
tor generates a random number x ∈ [−Y, Y ]. It then generates random
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numbers x1, x2, . . . xn−1, and computes xn such that x =
∑n
i=1 xi, where

Y > 1. It delivers each number xi to source agent ai. Each source agent
ai adds the random number to its feedback before submitting it to the
protocol. The sum of the feedback values is perturbed by a new random
number in [−Y, Y ] for each query. Thus, the adversary cannot use this
attack to deterministically measure the difference between any two sums,
introduced due to the addition or subtraction of the feedback of a certain
source agent. The tradeoff is the need for a random number generator
that is trusted by the source agents in the context of preserving privacy.

Trusted Subset. A new source agent abstains from submitting feedback until
it becomes a member of a trusted subset. A trusted subset is formed by
two or more new source agents who trust each other in the context of
preserving privacy. The agents in a trusted subset submit feedback in
tandem, that is, they either all submit their feedback or none of them
does. If one of the members of the subset leaves the set of source agents,
then all the other members of the subset leave as well. A leaving member
may re-enter and form a new trusted subset. Membership in a trusted
subset is mutually exclusive to other trusted subsets, that is, one agent
belongs to only one trusted subset.

The effect achieved is that the attack can reveal only the sum of the
feedback of the agents in a trusted subset. The adversary can no longer
learn individual feedback of an agent through this attack as long as the
fellow members in its trusted subset are honest. The absence or presence
of the feedback of one honest agent would imply the same for the feedback
of the other agents in its trusted subset. Thus, if one honest agent is added
or dropped from the set of source agents, the difference in the before and
after reputation scores would equal the sum of the feedback of all the
agents in its trusted subset. A drawback of this approach is that the
members of a trusted subset have to reveal that they trust their fellow
members in terms of preserving privacy.

The given attack is addressed by Kerschbaum [17] as follows: A central
reputation manager (termed the service provider) updates the score of
a target agent only after a certain number of new individual feedback
values have been submitted. The solution by Kerschbaum achieves an
effect which is similar to that in our solution. However, as recognized
by Kerschbaum, their solution is vulnerable to intentional new feedback
submitted by dishonest colluding agents. On the contrary, our solution
does not suffer from this issue since an agent relies only on other agents
that it trusts.

Probabilistic Participation. A system wide probability threshold p is de-
fined. Each honest source agent submits his feedback if the value of a local
random variable is within p, otherwise he abstains. The effect achieved is
that for each query only a random p% (on average) of the source agents will
submit their feedback. Let’s consider the probability that after the com-
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putation of reputation with a set of non-abstaining honest source agents
St, the set St ∪ {a} or St/{b} (where a 6∈ St and b ∈ St) will occur as the
set of non-abstaining honest source agents in a subsequent query. This
probability can be quiet low depending on the value of p, the cardinality
of St, and the number of subsequent queries permitted. We propose to
analyze this probability in our future work on a protocol for the malicious
adversarial model (discussed in Section 6.1). We can imagine a protocol
that lowers this probability, for example, by choosing a favorable value of
p and by limiting the queries permitted per querying / target agent pair.
Additionally, the protocol could place a cost on each query such that run-
ning multiple queries (even by multiple colluding agents) to mount this
attack becomes an expensive proposition. The tradeoff of probabilistic
participation is the accuracy of the reputation score. However, we have
previously observed in [18, Section 4.8.3](using the Advogato.org dataset)
that if reputation is computed as mean, then a significant percentage of
source agents can abstain without significantly compromising accuracy.

To the best of our knowledge, other decentralized additive reputation sys-
tems in the literature (for example, Pavlov et al. [14] and Gudes et al. [19])
have not addressed the described attack.

3.3. Complexity Analysis

A detailed analysis of the number of messages and the amount of informa-
tion exchanged in the k-shares protocol is given in Table 3. Considering the
assumption that k � n, the protocol requires up to 4n + kn + 2 messages to
be exchanged (complexity: O(n)). In terms of bandwidth used, the protocol re-
quires transmission of up to the following amount of information: 2n2+5n+3kn
agent IDs (complexity: O(n2)), and n+ kn numbers (complexity: O(n)).

Table 3: Complexity analysis.

Tuple Occurrences IDs Numbers
REQUEST FOR SOURCES 1
SOURCES 1 n
PREP n n(n + 1) = n2 + 2n
RECIPIENTS n n(k + 2) = kn + 2n
SHARE kn kn(2) = 2kn kn(1) = kn
SENDERS n n(n) = n2

SUM n n(1) = n
Total 4n + kn + 2 2n2 + 5n + 3kn n + kn
Complexity O(n), for k � n O(n2), for k � n O(n), for k � n

3.4. Discussion

The protocol by Pavlov et al. [14] requires each agent to send shares to all
other n − 1 source agents in the protocol. The result is O(n2) messages. We
argue that sending shares to n−1 potentially unknown agents is not productive
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since they can all turn out to be dishonest. Instead, in the k-shares protocol,
each agent a relies on at most k agents who are selected based on a ’s knowledge
of their trustworthiness. The advantages are twofold. Firstly, an agent is able to
quantify and maximize the probability that its privacy will be preserved. This
also allows us to extend the protocol such that an agent can abstain from pro-
viding feedback if the risk to its privacy is high. Secondly, limiting the number
of shares to k � n, results in a protocol that requires only O(n) messages. We
observe in the next section that the privacy of a high majority of agents can be
assured with k as small as 2. Increasing k to n−1 gives no significant advantage.

4. Experiments

4.1. The Dataset: Advogato.org

We use the real web of trust of Advogato.org as the dataset for our experi-
ments. The members of Advogato rate each other in the context of being active
and responsible members of the open source software developer community. The
choice of feedback values are master, journeyer, apprentice, and observer, with
master being the highest level in that order. The result of these ratings is a
rich web of trust, which comprises of 13, 904 users and 57, 114 trust ratings
(November 20, 2009). The distribution of ratings is as follows: master : 31.7%,
journeyer : 40.3%, apprentice: 18.7%, and observer : 9.3%.

The members of Advogato are expected to not post spam, not attack the
Advogato trust metric, etc. We therefore argue that the context “be a re-
sponsible member of the open source software developer community” comprises
of the context “be honest”. We substitute the four feedback values of Ad-
vogato as follows: master = 0.99, journeyer = 0.70, apprentice = 0.40, and
observer = 0.10. These substitutions are made heuristically based on our expe-
rience with Advogato.

For the experiments, we define the lowest acceptable probability that privacy
will be preserved as 0.90. This means that a set of two trustworthy agents must
include either one master rated agent or two journeyer rated agents for this
security threshold to be satisfied.

4.2. Experiment 1

Objective: In the protocol Semi-Honest-k-Shares, the following assumption
must hold for an agent a ’s privacy to be preserved: P (perform(a, ua,1, ρ) =
false) × . . . × P (perform(a, ua,ka , ρ) = false) is low. That is, the probability
that the agents to whom agent a sends shares, are all dishonest must be low.
We would like to know the percentage of instances of source agents
for whom this assumption holds true.

Algorithm: A randomly selected querying agent queries the reputation
of every other agent who has at least min source agents. Over the course of
all queries, we observe the probability P (perform(a, ua,1, ρ) = false) × . . . ×
P (perform(a, ua,ka , ρ) = false), for each source agent a. The experiment is
run for each value of min in {5, 10, 15, 20, 25, 50, 75, 100, 500}.

Results: For min = 25, we observe that the assumption holds for 81.7%
of instances of source agents. Additionally, 85.8% for min = 50, 87.0% for
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min = 75, 87.4% for min = 100, and 87.5% for min = 500. We note that the
increase in the percentage is significant up to min = 100. This is due to the
greater choice of trustworthy agents available for each agent when the protocol
has more source agents. At min = 5, the percentage is 72.5%, which implies
that approximately 30% of the source agents will have to abstain. However,
in a separate experiment (full details not included due to space limitation), we
observed that at min = 25, even if only around 40% of agents participate, over
95% of the computed reputation scores have an error of at most 0.1 compared to
the true scores. Additionally, over 85% at min = 10, and over 90% at min = 15.
Thus, even a significant portion of agents abstaining does not pose an issue.

4.3. Experiment 2

Objective: We would like to know the effect of increasing k on the
percentage of instances of source agents whose privacy is preserved
in the protocol Semi-Honest-k-Shares.

Algorithm: A randomly selected querying agent queries the reputation of
every other agent who has at least min source agents. We vary k and observe
the percentage of instances of source agents whose privacy is preserved. The set
of experiments is run with min = 50.

Results: For min = 50, and k = 1, we observe that the percentage is 75.4%,
and at k = 2, the percentage is 85.8%. The rise is due to the possibility with
k = 2 to rely on two journeyer agents. With k = 1, the only possibility is to
rely on one master agent. Increasing k over 2, even up to 500, does not result
in a significant advantage (86.3% at k = 500). Thus, in this dataset, privacy
can be preserved for a high percentage of source agents with k as small as 2.

5. Related Work

Secure sum [16] is a well-known secure multi-party computation protocol
[13], which computes the sum of inputs from distributed sites while preserv-
ing their privacy. The secure sum protocol is suitable as a privacy preserving
reputation protocol because inputs can be considered as feedback values about
a certain target entity and the output sum can be considered as the entity’s
reputation. The weakness of the secure sum protocol is that it cannot preserve
privacy if the sites collude with each other. In contrast, our k-shares protocol
is secure under the standard semi-honest adversarial model, that is, it preserves
privacy even if sites collude. Both secure sum and k-shares require O(n) number
of messages, where n is the number of entities with inputs.

Pavlov et al. [14] propose a decentralized privacy preserving reputation pro-
tocol for the semi-honest adversarial model. The protocol comprises of two
steps: 1) The first step is the execution of a witness (feedback provider) se-
lection scheme, which guarantees the inclusion of a certain number of honest
witnesses as participants. 2) The second step is the decentralized computation
of the reputation as the sum of the feedback values. According to our analysis,
the protocol for the semi-honest model requires an exchange of O(N) + O(n2)
number of messages, where N is the number of potential witnesses and n is the
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number of witnesses selected. The witness selection scheme requires O(N) mes-
sages. The decentralized computation of the reputation uses a secret sharing
scheme in which every witness sends a message to all other n− 1 participating
witnesses thus resulting in a total exchange of O(n2) messages. Our k-shares
protocol is inspired in part by the protocol by Pavlov et al. However, our proto-
col requires only O(n) messages as opposed to O(N)+O(n2) required by Pavlov
et al. The reason for the lower complexity is that each entity in our protocol
selects up to k (where k � n) fellow entities based on subjective trust (thus
eliminating the need for a costly witness selection scheme) and sends messages
to only those k entities (thus requiring only a linear number of messages in-
stead of quadratic). Another key difference is that our protocol allows entities
to quantify and minimize the risk to their privacy before feedback is submitted.

Gudes et al. [19] present three protocols that augment their Knots reputation
system [20] with privacy preserving features for security under the semi-honest
adversarial model. The Knots reputation system is a personalized reputation
system, which implies that feedback is collected only from the entities whom
the querying entity trusts. The complexity of the first two privacy preserving
protocols is O(t), where t is the number of querying entity’s trusted entities who
have feedback about the target. Our k-shares protocol requires O(n) messages,
where n is the number of all entities who have feedback about the target. The
performance of the protocols by Gudes et al. can be better since t ≤ n. However,
a property of their protocols is that they rely on TTPs, which our protocol does
not. The third protocol runs a version of the protocol by Pavlov et al. and
requires at least O(t2) messages.

Androulaki et al. [21] propose a reputation scheme for pseudonymous peer-
to-peer systems in anonymous networks. Users in such systems interact only
through disposable pseudonyms such that their true identity is not revealed. The
reputation protocol has two key objectives: 1) unlinkability between pseudonyms
and true identities, and 2) unforgeability, that is, users are unable to forge good
reputation. These objectives are achieved primarily by using e-cash [22, 23], a
cryptographic digital currency that offers anonymity and unforgeability. Rep-
utation is awarded in the form of e-coins called repcoins. According to the
authors, the querying of reputation requires a constant number of messages.
The weakness of the system is that it requires the presence of a centralized
entity called the bank, which implies that the system is not truly decentralized.
Additionally, the system also requires that all communication take place over an
anonymous network, such as a network using Onion routing [24]. The system by
Androulaki et al. [21] achieves stronger privacy with fewer messages required for
querying reputation than our k-shares protocol. However, our protocol is truly
decentralized and does not require computationally expensive cryptography or
anonymous networks to operate. Ismail et al. [25, 26] also present privacy
preserving reputation protocols based on e-cash, however, they rely on TTPs,
which our protocol does not.

The decentralized reputation system proposed by Kinateder and Pearson
[27] requires a Trusted Platform Module (TPM) chip at each agent. The TPM
enables an agent to demonstrate that it is a valid agent and a legitimate member
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of the reputation system without disclosing its true identity. This permits the
agent to provide feedback anonymously. Voss et al. [28] and Bo et al. [29]
also present decentralized systems that are based on similar lines. They both
suggest using smart cards as the trusted hardware modules. A later system
by Kinateder et al. [30] avoids the hardware modules, however, it requires
an anonymous routing infrastructure at the network level. Our approach does
not mandate hardware modules or specialized platforms such as anonymous
networks.

Our work may also be compared with some schemes for privacy preserving
routing in structured Peer-to-Peer (P2P) networks based on Distributed Hash
Tables (DHTs), such as a recent algorithm by Mittal et al. [31] (X-Vine). DHT-
based structured P2P networks guarantee that a node can route a message
to any other node in the network in a bounded number of hops (generally
O(log N) hops, where N is the total number of nodes). Privacy preserving
DHT-based structured P2P networks have the additional goal that messages
can be routed in the network without revealing the true identities (for example,
IP addresses) of the source and the destination nodes. Mittal et al. [31] propose
a privacy preserving DHT routing algorithm that relies on an overlay network
of social relationships between nodes to preserve their anonymity. Similar to
our protocol, a node in X-Vine depends on its trusted fellow nodes to help
it preserve its privacy. In X-Vine, a node reveals its IP address only to its
trusted nodes. Its true identity remains private as long as those trusted nodes
are honest. In our k-shares protocol, the privacy of a node’s feedback is also
preserved as long as its trusted nodes are honest. However, a main difference
in our protocol is that all trusted nodes must be dishonest to reveal the node’s
private data, whereas in the protocol by Mittal et al. only one of the trusted
nodes can breach privacy by revealing the IP address of the node.

6. Future Work

6.1. Privacy under the Malicious Adversarial Model

Agents under the malicious adversarial model may deviate from the protocol
as and when they deem necessary. They may attempt to learn private inputs as
well as to disrupt the protocol for honest agents. Two of the most problematic
actions that malicious agents may take are as follows: 1) drop messages that
they are supposed to send, and 2) provide out of range values as their inputs.

We would like to extend our k-shares protocol by using cryptographic tech-
niques for security under the malicious adversarial model. To counter the first
action, we propose that messages between source agents are encrypted with an
additive homomorphic public key cryptosystem and relayed through the query-
ing agent en route to the destination source agent. The encryption would pre-
vent the querying agent from learning the contents of the message, however,
the querying agent would learn the identity of an agent if it drops an expected
message. The querying agent can then exclude the identified malicious agents
and restart the protocol with the remaining source agents. The issue of out of
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range values can be countered as follows: each source agent provides a zero-
knowledge proof of set membership (such as the one described by Baudron et
al.[32]) to the querying agent demonstrating that the sum of the prepared shares
lies in the correct range. Encryption of the prepared shares with an additive
homomorphic cryptosystem (such as the Paillier cryptosystem [33]) and the
said zero-knowledge proof would allow the querying agent to confirm that the
feedback value lies in the correct range without being able to learn the value.

The extended protocol retains the novel properties of the k-shares protocol
that allow an agent to rely on fellow agents that it considers trustworthy and to
be able to quantify the risk to privacy before submitting feedback. We propose a
detailed specification and analysis of this extended protocol as future work. The
decentralized privacy preserving reputation protocol for the malicious adversar-
ial model by Pavlov et al. requires O(n3) messages primarily due to a costly
witness selection scheme. We believe that the number of messages required by
our protocol would be much lower as we utilize trust between agents to achieve
security instead of an expensive witness selection scheme.

6.2. Privacy in Conjunction with Solutions for other Challenges

In addition to lack of privacy, there are a number of other challenges that
are faced by reputation systems. Two of these challenges are as follows: 1) Sybil
attack : an attacker creates multiple pseudonyms in the system and may use
these pseudonyms for malicious actions such as self-promotion or slandering.
For example, all the fake pseudonyms could assign the highest feedback to the
attacker to achieve self-promotion. Alternatively, the fake pseudonyms could
assign the lowest possible feedback to an honest agent to accomplish slandering.
2) Subjectivity : different users submit feedback with different bias. For example,
one user always submits relatively high feedback and another user always sub-
mits relatively low feedback. The feedback of the users is thus not normalized.
As future work, we would like to address the issue of privacy in conjunction
with other challenges.

Let’s consider the issue of sybil attack. One possible solution is to require
each source agent in the k-shares protocol to digitally sign the messages that
it sends to the querying agent. The querying agent verifies that each source
agent uses a unique private-public key pair to sign the messages. Assuming
that the certificate authority is trustworthy and it issues no more than one
private-public key pair to a single user, any user would not be able to submit
feedback through multiple source agents without detection. We would also like
to explore solutions that do not require restrictive cryptographic tools.

Let’s now consider the problem of subjectivity. In a previous article [34],
we proposed the following non-privacy preserving solution to the issue of sub-
jectivity: Instead of reporting the feedback value, a source agent reports the
percentile of the value in relation to all his other feedback. The querying agent
looks up the value at the corresponding percentile in his own list of feedback
values and considers that as the feedback submitted by the source agent. This
approach normalizes the submitted feedback values to the bias of the querying
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agent. We would like to update the k-shares protocol to utilize this technique
in order to address the issue of subjectivity in conjunction with privacy.

7. Conclusion

In this article, we have presented the k-shares privacy preserving reputation
protocol. The foundation of the protocol is a formal framework that unifies the
concepts of trust, reputation, and privacy.

A defining characteristic of the protocol is that an agent a himself selects
the agents that are critical for preserving its privacy. The selection is based on
a ’s knowledge of the trustworthiness of those agents in the context of preserving
privacy. The consequence is that agent a is able to quantify and maximize the
probability that its privacy will be preserved. This also enables an extension
that allows agents to abstain when their privacy is at risk.

Another key characteristic is that the number of agents that each agent sends
shares to is limited to k � n. This results in a protocol that is very efficient
and requires an exchange of only O(n) messages. This design choice is validated
by the experiment results, which show that the privacy of a high majority of
agents can be assured with k as small as 2. It is also observed that increasing
k to values approaching n− 1 provides no significant advantage.
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Protocol: Semi-Honest-k-Shares
Participants: Agents: q, t, St ≡ St,ψ = {a1 . . . an}. Agents q, t, and a subset of St,ψ of size m < n are
dishonest, however, q wishes to learn the correct output.
Input: Each source agent a has a private input lat ≡ P (perform(a, t, ψ) = true).
Output: Agent q learns rt,ψ , the reputation of agent t in context ψ.
Setup: Each agent a maintains Sa ≡ Sa,ψ , the set of its source agents in context ψ. k � n is a constant.

Events and Associated Actions (for an Agent a):

need arises to determine rt,ψ
� initiate query

1 send tuple (request for sources, ψ) to t
2 receive tuple (sources, ψ, St) from t
3 for each agent v ∈ St
4 do Jv ← φ
5 S′

t ← St
6 r ← 0
7 q ← a
8 s← timestamp()
9 send tuple (prep, q, t, s, St) to each agent v ∈ St
tuple (request for sources, ψ) received from agent q

1 send tuple (sources, ψ, Sa) to q

tuple (prep, q, t, s, St) received from agent q

1 I ← φ
2 J ← φ
3 σa ← 0
4 Ua ← set of trustworthy(a, St − a)
5 ka ← |Ua|
6 for i← 1 to ka
7 do xa,i ← random(−X,X)

8 xa,ka+1 ← lat −
∑ka
i=1 xa,i

9 send tuple (recipients, q, t, s, Ua) to agent q
10 for each agent ua,i ∈ Ua = {ua,1 . . . ua,ka}
11 do send tuple (share, q, t, s, xa,i) to agent ua,i

tuple (recipients, q, t, s, Uv) received from an agent v ∈ St
1 for each agent u ∈ Uv
2 do Ju ← Ju ∪ v
3 S′

t ← S′
t − v

4 if S′
t = φ

5 then S′
t ← St

6 for each agent w ∈ St
7 do send tuple (senders, q, t, s, Jw) to agent w

tuple (share, q, t, s, xv) received from an agent v ∈ St
1 I ← I ∪ v
2 σa ← σa + xv
3 if I = J
4 then σa ← σa + xa,ka+1

5 send tuple (sum, q, t, s, σa) to agent q

tuple (senders, q, t, s, Ja) received from agent q

1 J ← Ja
2 if I = J
3 then σa ← σa + xa,ka+1

4 send tuple (sum, q, t, s, σa) to agent q

tuple (sum, q, t, s, σv) received from an agent v ∈ St
1 S′

t ← S′
t − v

2 r ← r + σv
3 if S′

t = φ
4 then rt,ψ ← r/n

Figure 1: Protocol: Semi-Honest-k-Shares
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