
This is a preprint of the paper:

Daniel Lerch-Hostalot, David Megı́as, “LSB matching ste-
ganalysis based on patterns of pixel differences and random
embedding”, Computers & Security, Volume 32, Pages 192-
206. February 2013. ISSN: 0167-4048. http://dx.doi.
org/10.1016/j.cose.2012.11.005.

ar
X

iv
:1

70
3.

00
81

7v
1

 [
cs

.M
M

]
 2

 M
ar

 2
01

7

http://dx.doi.org/10.1016/j.cose.2012.11.005
http://dx.doi.org/10.1016/j.cose.2012.11.005

LSB Matching Steganalysis Based on Patterns of Pixel
Differences and Random Embedding

Daniel Lerch-Hostalot and David Megı́as (corresponding author)
Universitat Oberta de Catalunya,

Internet Interdisciplinary Institute (IN3),
Estudis d’Informàtica, Multimèdia i Telecomunicació,

Rambla del Poblenou, 156,
08018 Barcelona, Catalonia, Spain,
E-mail {dlerch,dmegias}@uoc.edu.

Abstract

This paper presents a novel method for detection of LSB matching steganogra-
phy in grayscale images. This method is based on the analysis of the differences
between neighboring pixels before and after random data embedding. In natu-
ral images, there is a strong correlation between adjacent pixels. This correla-
tion is disturbed by LSB matching generating new types of correlations. The pre-
sented method generates patterns from these correlations and analyzes their varia-
tion when random data are hidden. The experiments performed for two different
image databases show that the method yields better classification accuracy com-
pared to prior art for both LSB matching and HUGO steganography. In addition,
although the method is designed for the spatial domain, some experiments show its
applicability also for detecting JPEG steganography.

Keywords: Communication security, steganalysis, steganography, LSB matching,
Support Vector Machines.

1. Introduction

Data hiding is a collection of techniques to embed secret data into digital me-
dia such that its existence becomes undetectable by an attacking party. These tech-
niques can be used in many different application scenarios, such as secret com-
munications, copyright protection or authentication of digital contents, among oth-
ers. The most common carriers used for data hiding are images because of their
widespread use in the Internet.

Preprint submitted to Elsevier September 2012

Steganography is a major branch of data hiding in which the main goal is secret
communication. On the other hand, Steganalysis works in the detection of mes-
sages hidden using steganography. A popular steganography technique in spacial-
domain images is Least Significant Bit (LSB) replacement. This technique consists
of replacing the LSB of each pixel by the bit of the message to be inserted. The
LSB replacement technique introduces some anomalies in the histogram of the im-
age that makes it detectable (Westfeld and Pfitzmann, 2000). This anomaly has
been successfully exploited by the RS attack, capable to detect LSB steganogra-
phy even for bit rates as low as 0.03 (Fridrich et al., 2001). LSB matching, also
known as ±1 embedding, is a variation of LSB replacement where the pixel value
is increased or decreased randomly to match the bit of the message to be hidden
(Sharp, 2001). This technique is more difficult to detect and has become the basis
of most state of the art steganographic systems in the spatial domain.

More recently, Pevný et al. (2010) proposed the Highly Undetectable steGO
(HUGO) steganographic tool based on ±1 steganography. HUGO uses a high
dimensional model in order to choose between +1 and −1 when both possibilities
are valid. The choice is made such that the distortion from the cover to the stego
model is minimized according to the model. It also uses a Syndrome-Trellis Code
(STC) in order to reduce the number of modified pixels. This allows HUGO to
be much more undetectable than the standard LSB matching. HUGO can embed
up to seven times more data than LSB matching for the same detection accuracy.
Although the computational cost of HUGO is very high, it can be assumed that the
parties willing to have a secret communication will devote much effort in making
the message as undetectable as possible.

Different strategies have been proposed to detect LSB matching methods. Some
of these methods are based on analysing the features of the image histogram (Cai
et al., 2010; Zhang et al., 2009; Mankun et al., 2008). Cai et al. (2010) show that
the peak value of the histogram of the difference image (the differences of adja-
cent pixels) decreases after LSB matching embedding. However, the renormalized
histogram (the ratio of the histogram to the peak value) increases. The peak value
and the renormalized histogram are used as features for classification. Zhang et al.
(2009) propose a method that uses the fact that the values of local maxima of an
image histogram decrease and those of the local minima increase after embedding.
The resulting area, that can be seen as an envelope, is smaller than that of a cover
image. The authors combine this property with the fact that LSB matching embed-
ding corresponds to low-pass filtering of the histogram producing differences in
the higher order statistical moments of high frequencies of the histogram. Mankun
et al. (2008) model the LSB matching problem as a kind of image degradation with
additive pulse noise proportional to the embedding rate. This method obtains an
estimation of the cover image by wavelet denoising and extracts features from the

2

test images and the estimated ones.
In other methods, the LSB matching embedding is modeled in the context of

additive noise (Li et al., 2008; Harmsen and Pearlman, 2003; Ker, 2005). In (Harm-
sen and Pearlman, 2003), it is assumed that the histogram of the hidden message is
a convolution of the noise probability mass function (PMF) and the original func-
tion. In the frequency domain, this convolution can be viewed as a multiplication
of the histogram characteristic function (HCF) and the noise characteristic func-
tion. The method exploits the fact that embedding produces a decrease in the HCF
center of mass (HCF COM). Ker (2005) proposes two variations to the Harmsen
and Pearlman’s method: the calibration of the output using downsampled images
and the use of the adjacency histogram. These variations improve the classifica-
tion reliability substantially. Li et al. (2008) study the application of the method
to the difference image (the difference of the adjacent pixels) rather than using the
original image.

Other systems analyze the relationship between adjacent pixels (Zhang et al.,
2010; Zhao et al., 2010; Pevný et al., 2010). Zhang et al. (2010) propose a method
to estimate the number of zero different values using the non-zero difference values
according to the LSB matching steganography. The difference between the actual
and the estimated value can be used as a feature to detect stego images. On the
other hand, Zhao et al. (2010) use a median filter to remove noise and, after that,
propose a detector based on a 12-dimensional feature vector constructed counting
the different number of overlapping 3 × 3 blocks of the images formed by the
last 2, 3 and 4 bitplanes and the “horizontal sum” image. Currently, one of the
most successful methods for LSB matching steganalysis in the state-of-the-art is
the Steganalysis by Substractive Pixel Adjacency Matrix (SPAM) method proposed
by Pevný et al. (2010). The SPAM method uses first-order (SPAM-1) and second-
order (SPAM-2) Markov chains to create a model of the difference of adjacent
pixels in natural images. By analyzing the deviations between tested images and
these models, the system identifies stego images with the LSB matching technique
with very high accuracy: 0.167 error rate for an embedding bit rate of 0.25 bits per
pixel (bpp) in the Natural Resources Conservation Service (NRCS) image database
(NRCS, n.d) with SPAM-2.

Other successful approaches to detect LSB matching steganography are based
on Markov chains and/or discrete cosine transform (DCT) features. Shi et al.
(2007) use a Markov process to model the differences between JPEG 2-D arrays
along horizontal, vertical and diagonal directions and generate features for training
a Support Vector Machine (SVM). Fridrich (2005) introduces a new steganalytic
method based on DCT features and uses it for comparing JPEG steganography al-
gorithms and evaluating its embedding mechanisms. Pevný and Fridrich (2007)
combine these two methods (DCT and Markov chains features) to create a 274-

3

dimensional feature vector that is used to train an SVM. The resulting method pro-
vides significantly more reliable results compared to previous works. Kodovský
and Fridrich (2009) propose a modified calibration procedure that improves the
practical results of the steganalyzer in (Pevný and Fridrich, 2007).

Most of the methods reported above are of the “single-model” type. They ba-
sically compute a low-dimensional set of features (typically less than 1000) which
can be used to classify images as stego or cover using some classification tech-
nique, such as SVM. More recently, new steganalytic methods based on combin-
ing different models (rich models) have been proposed (Fridrich and Kodovský,
2012) and the efficient ensemble classifiers have been suggested to replace SVM
(Kodovský et al., 2012). Methods based on rich models built a high-dimensional
set of features (up to 34,761 features in (Fridrich and Kodovský, 2012)) from which
sub-models with less features (around 3000) can be selected to be used for classi-
fication much more efficiently. The objective of this paper is not to overcome the
results of these high-dimensional techniques, but to present a new low dimensional
set of features (a single model) that overcomes the results of other single-model ste-
ganalizers. The suggested features may be incorporated into these new rich models
to improve their performance. It must be remarked that the computational burden
associated to rich models’ methods are much higher than that of a single-model
technique and, thus, their use in real-time applications will require powerful hard-
ware. The main aim of this paper is to improve the current state-of-the-art of less
computationally demanding methods.

This paper proposes a new single-model steganalytic method based on the de-
tection and counting of patterns of pixel differences (PPD) before and after random
data embedding. Henceforth, the name PPD is used to refer to the proposed sys-
tem. The basic idea is to gather significant information about neighboring pixels
and use this information to create patterns. After that, the number of patterns of
the test image are counted and random data is embedded into the test image. Then,
the number of patterns after random embedding is counted again. This procedure
makes it possible to analyze the behavior of the patterns with different noise con-
ditions. The relation between the number of patterns in each case is significantly
different if the test image is cover or stego. Hence, the ratio in the number of pat-
terns before and after embedding can be used as a vector of features in an SVM
(Steinwart and Christmann, 2008) successfully. By training this SVM, it is possi-
ble to distinguish cover images from stego ones reliably. The performance of PPD
is shown for both standard LSB matching and for its more undetectable version
provided by HUGO. In addition, the system is shown to also detect steganography
in the transform domain, such as the block DCT used in JPEG.

The rest of the paper is organized as follows. Section 2 defines the concept of
patterns of pixel differences and shows the distribution of these patterns in typical

4

images. Section 3 analyzes the effect of random data embedding on the variation of
these patterns and shows that different behavior occurs for stego and cover images.
This result is the basis of the proposed method. Section 4 describes the proposed
algorithm for the extraction of the PPD features. Section 5 presents the experimen-
tal results obtained with the proposed PPD method and compares them with the
state-of-the-art SPAM method (Pevný et al., 2010) for LSB matching, HUGO and
JPEG steganography. In the latter case, the comparison is presented not only for
SPAM but also for the Merged features steganalyzer (Pevný and Fridrich, 2007).
Finally, the most relevant concluding remarks and directions for future research are
summarized in Section 6.

2. Patterns of Pixel Differences

The proposed method consists of analysing the different number of patterns of
pixel differences before and after random data embedding. Please note that this
random data embedding is part of the testing method to obtain the features used
in the SVM. This means that the test image, either stego or cover, is analysed
and an embedding step is applied. After this embedding, the PPD patterns are
obtained again and compared with those before embedding. Since the variation in
the number of PPD patterns is greater for cover than stego images, the proposed
method provides with a reliable system to detect LSB matching steganography.

2.1. Computation of Patterns of Pixel Differences

Given a block of 3× 3 pixels, we can arrange it into two horizontal pairs, two
vertical pairs and four diagonal pairs. Taking into account the pixel distribution
illustrated in Fig.1, the horizontal pairs are formed by (x22, x21) and (x22, x23),
the vertical pairs are formed by (x22, x12) and (x22, x32), and the diagonal pairs
by (x22, x11), (x22, x13), (x22, x31) and (x22, x33).

Creating patterns of pixels gathering all this information would be unpractical
due to its high dimensionality. If patterns of 9 pixels for grayscale images with a
color depth of 8 bpp are created, 2569 different patterns would be required, which
is an exceedingly high number. However, not all the combinations of pixels are
equally probable. For example, in an image, it is not usual to find a pixel with
intensity 255 next to (or even close to) a pixel with intensity 0, i.e. the neighboring
pixels tend to have similar values. If the difference between neighbors is used to
create patterns, values will be typically small. We can, thus, define a threshold or
limit for the difference between neighboring pixels similar to the one proposed in
(Pevný et al., 2010). Let d(x, y) be the limited difference between two neighboring

5

pixels x and y defined as follows:

d(x, y) =

{
S − 1, if |x− y| > S − 1,

|x− y|, if |x− y| ≤ S − 1,
(1)

where S represents the number of possible values of the pixel differences. This
way, all pixel differences are limited to the values 0, 1, . . . , S − 1 (i.e. S different
values).

Even in this case, the number of patterns obtained with most of the values
for S is still too large. For this reason, we need to reduce the number of pixels
involved in the patterns. At this point, we can exploit the fact that part of the pairs
contain redundant information because of their intrinsic symmetry. For example,
the pair (x22, x23) has similar information to (x22, x21), the pair (x22, x12) has
similar information to (x22, x32) and so on. It is thus possible to neglect part of
this redundant information and consider only one horizontal, one vertical and two
diagonals, as shown in Fig.2. This corresponds to the pairs (x22, x12), (x22, x13),
(x22, x23) and (x22, x33), yielding a reduced block B = {x12, x22, x13, x23, x33}.

If one of the pixels of the block is chosen as a reference, after this reduction and
the limited difference of Expression 1, the number of patterns is reduced from 2569

to S4, which is a significant decrease. This approach can provide more information
if more than one reference pixel is used for each block. For example, if the block
of pixels B = {110, 111, 110, 113, 112} is considered, we can use the minimum
value b = x12 = 110 and subtract it from the rest. In this case, the pattern generated
using x12 as a reference and S = 3 is the tuple (0, 1, 0, 2, 2). Similarly, we can use
the maximum value b = x23 = 113 as a reference to obtain the pattern (2, 2, 2, 0, 1)
by subtracting the pixel values of the block from 113 and limiting the difference to
S−1 = 2. Note that these tuples have always at least one zero (the reference pixel
corresponding to the maximum or minimum, denoted as b) which does not need to
be represented nor stored, whereas the remaining four values of pixel differences
are in the range [0, S − 1], yielding S4 possible patterns.

Since the reference pixel b can be chosen from any of the positions x12, x13,
x22, x23 and x33 in the block, a specific order must be defined for the other four
pixels of the block to construct the pattern. The chosen order is depicted in Fig.3
for all possible locations of the reference pixel b. The arrow pointing to the “center”
of the table is used to define the “left” (l), “upper left” (ul), “upper right” (ur), and
“right” (r) neighbors of the reference pixel. The pixel located to the left of the
arrow is chosen to be l, the one to the right is chosen to be r, and the remaining
pixels (ul and ur) are defined by considering the clockwise path from l to r. The
chosen order provides a unique form to obtain the four values of the tuple (pattern)
for each reference pixel.

6

The pattern P is finally obtained from the tuple (l, ul , ur , r) as depicted in
Fig.4. Let b be the value used as a reference, P [1..4] an array (or row vector, if
more formal language is used) that forms the pattern and N an array of neighbors
sorted such that the value used as a reference lies in the center (Fig.3), i.e. N [1] = l,
N [2] = ul , N [3] = ur and N [4] = r. Then the pattern array P can be obtained as
follows:

P [i] = d(b,N [i]), for i = 1, . . . , 4.

where d is the limited difference of neighboring pixels as defined by Expression 1
for some value of S.

With the same example values provided above, B = {x12 = 110, x13 =
111, x22 = 110, x23 = 113, x33 = 112}, using the maximum and minimum
pixel values as references, two different patterns can be obtained, namely, Pmin

for the minimum x12 = 110 and using the pixel positions shown in Fig.3(a):
(l, ul , ur , r) = (x13, x23, x33, x22), and Pmax for the maximum value x23 = 113
and using the pixel positions shown in Fig.3(d): (l, ul , ur , r) = (x33, x22, x12, x13).
This results in the patterns Pmin = [0, 2, 2, 1] and Pmax = [1, 2, 2, 2]. Note that
there are other three (or even four if the maximum and minimum pixel values are
identical) other possible selections of the reference pixel are possible. In the ex-
ample, the patterns obtained with x13, x22 and x33 are not considered. These other
patterns are discarded since they do not provide any improvement in the results
obtained with the proposed steganalytic method.

Choosing the pixel orders instead depicted in Fig.3 instead of using a fixed
sorting like

x12, x13, x22, x23, x33

and removing the zero in the reference point b is a convenient way to take advan-
tage of the symmetries and spatial properties of the patterns. For example, with
the values of pixels of Fig.5, the pattern obtained taking the minimum value (23)
as a reference is the same in both cases (a) and (b). For Fig.5(a), the pattern is
constructed using Fig.3(e), whereas for Fig.5(b), the pattern is built using Fig.3(b).
In both cases, the obtained pattern is identical Pmin = [1, 2, 2, 1]. This is consis-
tent with the fact that the 24 values are closer to the minimum (23) in both blocks,
whereas the 25 pixel values are further from the minimum (23). The block shown
in Fig.3(b) can be considered as a rotated version of the block of Fig.3(a), and
the steganalytic method suggested in the paper obtains better results if both blocks
produce the same pattern. Note that if the fixed order x12, x13, x22, x23, x33 was
used, two different patterns would be obtained: P ′min = [2, 2, 1, 1] for Fig.3(a) and
P ′min = [1, 2, 1, 2] for Fig.3(b). Hence, two spatially analogous situations would
produce two different patterns, which would not be convenient for classification
purposes.

7

Finally, the obtained patterns are arrays [P [1], P [2], P [3], P [4]], where each
component P [i] (for i = 1, 2, 3, 4) is in the range [0, S− 1]. Now, each pattern can
be uniquely mapped to an integer if the components of P are taken to be digits of
a number expressed in the basis S, with P [1] being the most significant digit and
P [4] the least significant one, as follows:

M(P, S) = P [1]S3 + P [2]S2 + P [3]S + P [4] + 1, (2)

where 1 is added in this definition to provide values strictly greater than 0 (between
1 and S4) in such a way that they can be directly used to select a component of
the array of features (T) in Algorithm 2 (Section 4). We assume that the first
component of an array is indexed by 1 (as in MATLAB) instead of 0 (as in C).

With this mapping function and S = 3, the patterns Pmin = [0, 2, 2, 1] and
Pmax = [1, 2, 2, 2] found for the previous example can be mapped to:

M([0, 2, 2, 1], 3) = 0 · 33 + 2 · 32 + 2 · 3 + 1 + 1 = 26,

M([1, 2, 2, 2], 3) = 1 · 33 + 2 · 32 + 2 · 3 + 2 + 1 = 54.

2.2. Pattern Distribution

Prior to discussing the idea of using these pattern counters as features to dis-
criminate stego and cover images, this section analyzes how these patterns are dis-
tributed in images. After that, Section 3 analyzes how these patterns behave when
random data are embedded in cover and stego images so that they can be used to
construct features to classify images in a steganalyzer.

Firstly, we analyze the distribution of patterns in a random situation where all
pixel values are uniformly distributed, which is not a realistic case, but may be
useful to understand the frequency of each pattern in real images. The pattern fre-
quencies obtained with S = 4 (256 different patterns) for a hypothetical image
containing all possible pixel blocks of Fig.2, where B = {x12, x22, x13, x23, x33}
are in the range [0, 7], is shown in Fig.6(a). Ideally, the pixel value range would
have to be [0, 255] for 8 bpp grayscale images. However, this would mean gener-
ating 2565 = 240 > 1012 different blocks, which is a extremely large number that
would require a very long CPU time. In addition, it is not likely that neighboring
pixels in the same block have all possible values. The differences between pixel
values within a block will mostly be limited to a much lower number, and the range
[0, 7] (which limits such differences to up to 7) is a more realistic model. By limit-
ing the pixel value range, the number of blocks is reduced to 85 = 32,768, which
makes it possible to obtain the ideal pattern frequencies with a much shorter CPU
time.

8

It can be seen that, for example, patterns with M(P, 4) ∈ {64, 128, 192, 256}
have higher values than others. These mapped values correspond to the patterns
[0, 3, 3, 3], [1, 3, 3, 3], [2, 3, 3, 3] and [3, 3, 3, 3]. Since pixel differences higher than
3 are limited to 3, it is obvious that, in the case that all pixel blocks appear with
the same frequency in the image, patterns having a greater number of components
equal to the limit (3) are more frequent than other patterns. In particular, the pat-
tern P256 = [3, 3, 3, 3] (with M(P256, 4) = 256) is the one showing the highest
frequency.

The frequency of patterns for the Lena 512× 512 grayscale image with a color
depth of 8 bpp, provided by the Image Communications Lab at UCLA (Wakin,
2003), is shown in Fig.6(b). The vertical axis of the plot has been clipped (the
value for the 256th pattern is larger than 4 · 104) to make it possible to see more
details in the figure. The peaks in patterns with M(P, 4) ∈ {64, 128, 192, 256} are
still noticed, but the behavior is not as regular as that of Fig.6(a) due to the use of
a real image with a non-uniform distribution of the pixel block values.

The main idea behind the use of the pattern counters introduced in this section
is that the variation of these counters after embedding random data is significantly
different in stego and cover images, as shown in Section 3.

3. Random Data Embedding

This section analyses the effect of random data embedding in the pattern coun-
ters of both cover and stego images. The following algorithm has been used for
random embedding. Consider the test image I = [pi,j] for i = 1, 2, . . . ,H and
j = 1, 2, . . . ,W , where pi,j are the pixel values, H is the image height and W
is the image width. LSB matching steganography with a bit rate of 1 bpp can be
implemented as follows:

Algorithm 1 (Random data embedding).
For i := 1 to H ,

For j := 1 to W ,
(a) Compute a pseudo-random number r1 with uniform distribution in

the interval [0, 1].
(b) If r1 < 0.5 then let bi,j := 0 and, otherwise, let bi,j := 1.
(c) If mod(pi,j , 2) = bi,j then let p′i,j := pi,j; else let r2 be another

pseudo-random number with uniform distribution in the interval
[0, 1]. If r2 < 0.5 then let p′i,j := pi,j + 1 else let p′i,j := pi,j − 1.

Where mod(·, ·) is the remainder of the integer division. This way, a stego image
I ′ = [p′i,j] is obtained, where each pixel of the stego image contains an embedded
bit using the ±1 technique.

9

The behavior of pattern counters is illustrated in Fig.7. The histogram of pat-
tern counters, with S = 4, for the grayscale cover image NRCSAK97001 of the
NRCS database (NRCS, n.d) is shown in Fig.7(a) and, after embedding random
data with a 1 bpp bit rate and±1 steganography (Algorithm 1), the patterns change
as shown in Fig.7(b). It can be seen that some of the patterns are less frequent after
embedding, especially those which have components with smaller values (some
components lower than the limit S − 1 = 3). The ratio between both histograms is
shown in Fig.8(a), where we notice that some of these ratios are quite greater than
1 (even around 3), specially for the first half of the patterns.

The experiment is repeated with different embedding information using, again,
Algorithm 1. Hence, Fig.7(c) is almost identical to Fig.7(b), since they correspond
to a similar situation. After a new data embedding (with the same settings as in
the other cases) the resulting histogram of patterns is shown in Fig.7(d), and the
ratio between them is shown in Fig.8(b). The values of these ratios are much more
regular around one than those obtained in Fig.8(a) for a cover image. In Fig.8(b),
the peak points are not as high and the valleys are not as deep as those in Fig.8(a).
Thus, this example illustrates how the PPD method can extract features which will
be used to discriminate cover and stego images.

3.1. Pattern Shift After Random Data Embedding

As introduced above, the key element of the proposed PPD scheme is the em-
bedding of a random message in the test image (using±1 steganography and 1 bpp
embedding rate) to detect an atypical behavior in the variation of the pattern coun-
ters which makes it possible to discriminate stego from cover images. This section
deepens this study by grouping the patterns in such a way that a more detailed
analysis is obtained.

Firstly, let us define the “maximum distance” concept for a pixel block or a
pattern. Given the parameter S, which limits the value of the pixel differences as
described above, the maximum distance D of a pixel block is defined as the max-
imum component (or infinity norm) of either Pmax or Pmin. It can be easily seen
that, for a block of pixels B = {x12, x22, x13, x23, x33}, the maximum distance D
satisfies

D = ‖Pmin‖∞ = ‖Pmax‖∞ = min(S − 1,max
x 6=y
{|x− y|, x, y ∈ B}),

where ‖ · ‖∞ is the maximum absolute value of the components of a vector. Given
S, this makes it possible to classify blocks of pixels (or patterns) in S classes
referred to as d-patterns: patterns with maximum distance D = d. For S = 4, we
have 0-patterns, 1-patterns, 2-patterns and 3-patterns.

10

Fig.9 shows an example of pixel blocks producing 1-patterns (a), 2-patterns
(b) and 3-patterns (c). For S = 4, the block pixel of Fig.9(a) produces Pmin =
[1, 1, 0, 0] and Pmax = [0, 1, 1, 1] (1-patterns), Fig.9(b) produces Pmin = [2, 1, 0, 2]
and Pmax = [1, 2, 0, 2] (2-patterns) and Fig.9(b) produces Pmin = [2, 2, 3, 1] and
Pmax = [2, 3, 1, 1] (3-patterns).

Now we can analyze how these patterns change in case of random embedding
using Algorithm 1. We have performed 1000 independent random bit insertions in
the blocks of pixels of Fig.9 and counted the resulting patterns. Note that the 1000
experiments are always carried out with the patterns of Fig.9, i.e. the 1000 random
embeddings are not subsequent.

Since each block of pixels produces two patterns, after 1000 embedding exper-
iments we obtain 2000 patterns which represent the different possibilities to shift
the patterns of Fig.9 to other patterns. The results are shown in Fig.10, where each
bar represents the number of 0-patterns, 1-patterns, 2-patterns and 3-patterns ob-
tained after 1000 random embeddings. Although these results are particular for
the patterns of Fig.9 , the same behavior has been observed for all patterns with
the same maximum difference. It can be seen that, after random embedding, the
highest probability for 1-patterns is to become 2-patterns or 3-patterns, although
some probability exists for them to remain as 1-patterns and a limited shift to a 0-
pattern also occurs. For 2-patterns, the highest probability is to shift to a 3-pattern,
although a significant chance of remaining as 2-pattern exists (and a smaller one to
become a 1-pattern). As 3-patterns are concerned, they most possibly remain as 3-
patterns, although some shifting occurs to 2-patterns or (less likely) to 1-patterns.
Hence, random embedding will tend to produce patterns with greater maximum
differences compared to cover images. When an image is already stego, some of
its patterns have already been shifted to higher differences and, thus, the pattern
shifting from lower maximum differences will be not so large as that of cover im-
ages. This is the basis of the detection method suggested in this paper.

The analysis is completed by applying random embedding to a real image,
the grayscale cover image NRCSAK97001 of the NRCS database (NRCS, n.d).
The results (again for S = 4) are shown in Fig.11. The black bar is used for
the cover image, and the gray bars represent random embedding to the previous
image. Hence, the white bar represents the results after three subsequent random
embeddings. It can be seen that the number of 1-patterns decreases abruptly after
the first data insertion. After subsequent data insertions the decrease continues,
but not so sharply. As the number of 2-patterns are concerned, after the first data
insertion, there is an increase (the second bar for 2-patterns is higher than the first
one) mostly produced by some 3-patterns that are shifted to 2-patterns. This effect
is relevant since the number of 3-patterns is much higher than those of 0, 1 and
2-patterns. In subsequent data embeddings, the number of 2-patterns decreases

11

instead of increasing. This means the number of 2-patterns that shift to 1 or 3-
patterns is greater than the number of 1 or 3-patterns that shift to 2-patterns. This
behavior is steady in successive data insertions. Finally, with regard to 3-patterns,
their number increases after each data insertion, though the increase is smaller as
more insertions occur.

In short, the behavior of patterns of pixel differences after random embedding
provides with much information which can be exploited in the form of features
by a classifier to detect stego images. For a cover image, the comparison between
the black and the dark gray bars indicates that 1-patterns will decrease sharply,
2-patterns may increase slightly and 3-patterns will show a large increase after
random data insertion. For a stego image, the comparison between the dark gray
and the light gray bars points out that 1-patterns will decrease, but not so sharply
as for a cover image, 2-patterns will most possibly decrease (although this depends
on the embedding rate of the stego image) and 3-patterns will increase, but to a
lesser extent compared to cover images.

4. Proposed Method

The algorithm to construct a vector of features to identify stego images with
the suggested PPD method using an SVM is as follows. Consider the test image
I = [pi,j] as defined in the previous section.

Algorithm 2 (Extraction of the PPD features).

1. Let T be an array to store the number of times that each pattern occurs in
the image I . First, initialize this array with zeroes as follows: for k := 1 to
S4 set T [k] := 0.

2. For i := 2 to H − 1,
(a) For j := 1 toW−1, build the block of neighbors {x12, x13, x22, x23, x33}

for x22 = pi,j as shown in Fig.2.
(b) Obtain the patterns of pixel differences Pmax and Pmin for this block

using its maximum and minimum pixel values as a reference b respec-
tively (limited to S − 1 as per Expression 1).

(c) Increase T [M(Pmax, S)] and T [M(Pmin, S)] by one using the pattern
array to integer mapping M(·, ·) defined in Expression 2.

3. Embed random data at the test image producing a modified image I ′ = [p′i,j]
for i = 1, 2, . . . ,H and j = 1, 2, . . . ,W using Algorithm 1.

4. Let T ′ be an array to store the number of times that each pattern occurs in
the image I ′. Initialize this array with zeroes as follows: for k := 1 to S4,
set T ′[k] := 0.

12

5. For i := 2 to H − 1,
(a) For j := 1 toW−1, build the block of neighbors {x12, x13, x22, x23, x33}

for x22 = p′i,j as shown in Fig.2.
(b) Obtain the patterns of pixel differences P ′max and P ′min for this block

using its maximum and minimum pixel values as a reference b respec-
tively (limited to S − 1 as per Expression 1).

(c) Increase T ′[M(P ′max), S] and T ′[M(P ′min, S)] by one using the pat-
tern array to integer mapping M(·, ·) defined in Expression 2.

6. For k := 1 to S4 the feature array F [k] is defined as the ratio between the
counters of patterns of pixel differences before and after embedding random
data, i.e.

F [k] := T [k]/T ′[k].

These features F [k] can be used in an SVM to discriminate between cover
and stego images.

7. Finally the feature array is normalized to produce values between 0 and
1. The maximum and minimum values of the feature array are obtained as
follows:

α := min
k=1,...,S4

{F [k]},

β := max
k=1,...,S4

{F [k]}.

Then the normalized features can be computed, for k := 1 to S4, as

F̃ [k] :=
F [k]− α
β − α

.

Note that the third step of the algorithm requires embedding random data into
the test image. We have observed that embedding data in stego images produces
significantly different patterns of pixel differences from those of cover images.
This is exploited by the proposed PPD steganalyzer to discriminate between stego
and cover images. In this step, ±1 steganography is used to embed random bits
in the test image with a 1 bpp embedding rate. This embedding process is, thus,
a step of the analysis of the test image in the suggested PPD method. It must
be noted that this step is always carried out with Algorithm 1 irrespective of the
steganographic method to be detected. Hence, the experiments shown to detect
HUGO and JPEG steganography in Section 5 also embed random data using LSB
matching steganography with 1 bpp of embedding rate.

In addition, it is worth pointing out that two normalization steps are carried
out in the feature array. The sixth step does not only compute the relationship

13

between the counters of patterns for the test I and the embedded I ′ images, but
it also normalizes the values of the features since the counters themselves are not
uniformly distributed in the space {0, 1, . . . , S4} (as shown in Fig.6). This ratio
makes it possible to compensate the different intrinsic frequencies obtained for
different patterns. The second normalization occurs in the last step, which produces
features in the interval [0, 1] for all images.

5. Experimental Results

5.1. Detection of LSB Matching Steganography

In this section, an experimental evaluation of the suggested PPD method for
two different databases is presented. The first database consists of 1000 grayscale
images with a fixed size of 2100×1500 pixels from the NRCS database (NRCS,
n.d). The second database consists of 1000 grayscale images with variable sizes
about 4000×2500 pixels from the Break Our Steganographic System! (BOSS)
(Filler et al., 2010) contest. Half of these images have been chosen randomly,
hiding data using LSB matching with different bit rates. The results are also com-
pared to those of the subtractive pixel adjacency matrix (SPAM) method (Pevný
et al., 2010), possibly the best available single-model steganalyzer for LSB match-
ing steganography.

We have used a classifier based on SVM with a Gaussian Kernel. This classifier
must be adjusted to provide optimal results. In particular, the values of the parame-
ters C and γ must be adjusted. These values should be chosen to give the classifier
the ability to generalize. In the comparison with other steganalyzers, these param-
eters have been fixed in a neutral manner using the LIBSVM tools (Chang and Lin,
2012) to choose the optimal values. The process has been performed as described
in (Hsu et al., 2010). For all the experiments of the paper, we have used cross-
validation on the training set using the following multiplicative grid for C and γ:

C ∈
{
2−5, 2−3, 2−1, 21, 23, . . . , 215

}
,

γ ∈
{
2−15, 2−13, 2−11, . . . , 2−1, 21, 23

}
.

This grid is even more exhaustive than the one used in (Pevný et al., 2010) for
SPAM (except some very small values for C).

Prior to the experiments, the two sets are divided into a training and a testing
set of equal sizes, with the same number of cover and stego images. Thus, it is
ensured that the images in the testing set were not used in any form during the
training process or conversely.

The results of the proposed PPD algorithm and those of the SPAM method
are shown in Tables 1 and 2 respectively. The SPAM method has been used with

14

Table 1: Results for the proposed PPD method with S = 4

PPD method (Proposed)
Database Bit rate Accuracy TP FP TN FN Training

NRCS 100% 99.00% 496 6 494 4 100.0%
NRCS 50% 90.90% 460 51 449 40 100.0%
NRCS 25% 79.10% 393 102 398 107 93.60%
BOSS 100% 100.0% 500 0 500 0 100.0%
BOSS 50% 99.90% 500 1 499 0 100.0%
BOSS 25% 98.90% 495 6 494 5 100.0%

Table 2: Results for the SPAM method (Pevný et al., 2010)

SPAM method
Database Bit rate Accuracy TP FP TN FN Training

NRCS 100% 95.90% 496 37 463 4 99.20%
NRCS 50% 83.20% 445 113 387 55 88.40%
NRCS 25% 68.00% 388 208 292 112 69.00%
BOSS 100% 99.60% 499 3 497 1 99.90%
BOSS 50% 98.80% 498 10 490 2 98.70%
BOSS 25% 96.90% 500 31 469 0 96.60%

15

Table 3: CPU time for the PPD (proposed) and SPAM (Pevný et al., 2010) methods

Method User time (s) System time (s) CPU time (s)
PPD (proposed) 18.373 0.872 19.245

SPAM 29.002 2.440 31.442

second order Markov chains (“2nd SPAM” as denoted in (Pevný et al., 2010)) and
T = 3 which is the optimum value, yielding 686 different features. On the other
hand, the PPD method has been implemented with S = 4 which produces 256
features.

The information provided in the different columns of these tables is the follow-
ing: name of the database, bit rate of data embedding, accuracy of the classification
(percentage of correctly classified images), true positives (TP), false positives (FP),
true negatives (TN), false negatives (FN) and classification accuracy with the train-
ing set. Logically, the accuracy obtained with the training set is always greater than
that obtained with the testing set. It can be seen, from the results of both tables, that
the proposed PPD algorithm performs better than SPAM in all the cases. Please
note that there are exactly 500 cover and 500 stego images in the experiments.
Hence, TP + FN = 500 and TN + FP = 500 always.

In Fig.12, we can see the Receiver Operating Characteristic (ROC) curves that
compare the proposed method with the SPAM method using the NRCS set with 1
bpp (a), 0.5 bpp (b) and 0.25 bpp (c). The curves obtained with the BOSS database
are too close to the ideal characteristic to compare both methods. It can be seen
that the ROC curves of the proposed method are better than those of the SPAM
method for all tested embedded bit rates. For the case of 1 bpp embedding bit rate,
the abscissa axis has been limited to [0, 0.25] to magnify the details of both curves.

Another key issue for comparison, apart from the quality of the classification,
is CPU time. The proposed PPD method needs 256 features (for S = 4), less than
half the 686 required by the SPAM method (2nd. order and T = 3). Table 3 shows
the “user”, “system” and total “CPU” times obtained for computing the features
of the same 20 images with both methods. It can be noticed that the CPU time
required by the SPAM method is more than 50% larger than that required by the
proposed PPD one. These results have been obtained with an Intel Core 2 Duo
CPU P8600 processor with 2.40 GHz and 4 Gb of RAM memory.

In short, these experiments show that the proposed PPD method outperforms
the SPAM method for LSB matching steganography using less CPU time, which
is quite remarkable since SPAM is possibly the best single-model steganalysis tool
for LSB matching steganography in the literature.

16

5.2. Tuning Analysis and Low Embedding Rates

The objective of this section is twofold. On the one hand an analysis of the
effect of the parameter S in the detection accuracy of the proposed method is pre-
sented. On the other hand the accuracy of the method for low embedding rates
(between 0.05 and 0.20 bpp) is discussed.

The results for 0.05, 0.1, 0.15, 0.20, 0.5 and 1 bpp are shown in Fig.13 for
S ∈ [2, 9]. All the experiments have been performed with the NRCS database. For
each embedding ratio, a training set of 1000 images, 500 of which are stego and
500 of which are cover, is created. The tests are carried out for a different set of
1000 images, again with 500 stego and 500 cover ones. It can be seen that the best
results are obtained for S = 3 (solid, ‘o’), S = 4 (solid, ‘*’), S = 5 (solid, ‘+’).
Among these three values of S, S = 4 performs better than the other two options
for low embedding ratios (lower than 0.2 bpp), and is always very close to the best
option for the other embedding ratios. Of all the tested values for the parameter S,
S = 4 is the one producing the best overall results.

It should be noted that increasing the value of S beyond 5 does not improve
the accuracy of the analysis. For S = 6 (dashed, O), S = 7 (dashed, �), S = 8
(dashed, M) and S = 9 (dashed, �) the accuracy results are worse than those for
S ∈ [3, 5], especially for low embedding ratios. The only exception is S = 6 for
1 bpp, which produces accuracy results nearly as good as the best one, which is
obtained for S = 5. It can be noticed that S = 9 is even the worse choice for bit
ratios of 0.15 bpp or less. This indicates that no advantage is obtained of using a
large number of patterns (94 = 6561) when the embedding ratio is low. Finally,
S = 2 (which leads only to 24 = 16 patterns) does not provide enough detection
accuracy, being the worst choice for relatively high embedding ratios (over 0.2
bpp).

This figure also shows that the detection accuracy (with S = 4 or S = 3) is
quite reliable even for embedding bit rates as low as 0.15 bpp. For 0.15 bpp the
detection accuracy with S = 4 is close to 70%, whereas an embedding ratio of
0.2 bpp can be detected with almost 75% accuracy. For bit rates of 0.1 bpp or
lower, the accuracy drops quite abruptly and more sophisticated techniques should
be used.

Obviously, as S increased, more features must be computed, but the number of
patterns is always the same (exactly two patterns for each pixel). As CPU times for
obtaining the feature vectors are concerned, the variation for different values of S is
really small. For obtaining the features of 2000 images (1000 for training and 1000
for testing), the CPU times vary just about a 10% from the best to the worst case:
the value of S producing the fastest results requires about 90% the CPU time of that
of the slowest results. Since, for each pixel, two patterns are obtained before and

17

Table 4: Results for the proposed PPD method and SPAM for HUGO

Bit rate (bpp) Analyzer Accuracy TP FP TN FN Training

1.00
SPAM 84.90% 443 94 406 57 87.00%
PPD 97.70% 489 12 488 11 99.80%

0.80
SPAM 64.10% 436 295 205 64 64.10%
PPD 82.40% 408 86 414 92 92.80%

0.65
SPAM 50.90% 138 129 371 362 51.00%
PPD 66.50% 345 180 320 155 78.40%

0.50
SPAM 50.50% 373 368 132 127 50.20%
PPD 50.10% 161 160 340 339 51.00%

after random embedding, the threshold S does not introduce significant variations
in the computations of the features. However, as more features are obtained, the
SVM classifier takes longer to complete a test. The test time for a kernel SVM
(as the ones used in this paper) is linear in the number of features. Hence, testing
an image with S = 6 (1296 features) takes roughly 5 times the testing time with
S = 4 (256 features).

5.3. Detection of HUGO Steganography

As mentioned in Section 1, the HUGO (Pevný et al., 2010) steganographic
system uses a complex model to reduce the success ratio of steganalyzers designed
for LSB matching. The accuracy of PPD (with S = 4) and SPAM-2 (with T = 3)
for images embedded with HUGO is analyzed in this section.

The results obtained for 1000 images in the NRCS database are shown in Table
4. A training set of 1000 images and a testing set of another 1000 images have been
created for each embedding bit rate. It can be seen that the suggested PPD method
outperforms SPAM for all the experiments and that the detection accuracy with the
suggested PPD analyzer is quite remarkable for large enough bit rates. For low bit
rates (0.5 bpp) or less, the HUGO steganographic tool is undetectable with PPD.

A graphical comparison for the PPD (with S = 4) and SPAM-2 (with T =
3) analyzers for both LSB matching (±1) and HUGO steganalysis with different
embedding ratios is given in Fig.14. It can be seen that the proposed PPD method
(‘*’) outperforms SPAM (‘o’) for all cases, and the difference in favor or PPD is
even more significant for HUGO. With SPAM, HUGO is already undetectable for
bit rates of 0.65 bpp, whereas PPD is able to detect it with more than 50% accuracy
for all tested bit rates larger than 0.5 bpp.

18

Table 5: Accuracy results for JPEG steganography for the PPD (proposed), SPAM (Pevný et al.,
2010) and Merged features (Pevný and Fridrich, 2007) methods

Embedding Bit PPD (proposed) SPAM Merged features
algorithm rate Accuracy Training Accuracy Training Accuracy Training
StegHide 20% 85.20% 94.80% 51.30% 56.80% 99.60% 100.0%
StegHide 10% 69.10% 94.00% 49.40% 51.40% 99.60% 99.90%

F5 20% 98.30% 100.0% 95.50% 95.00% 100.0% 100.0%
F5 10% 97.80% 99.90% 94.10% 94.70% 100.0% 100.0%

JP Hide&Seek 20% 94.00% 99.60% 81.40% 84.00% 99.50% 100.0%
JP Hide&Seek 10% 91.40% 93.80% 76.00% 80.40% 99.50% 99.80%

Perturbed Quant. 20% 99.80% 100.0% 100.0% 100.0% 99.60% 99.90%
Perturbed Quant. 10% 99.70% 100.0% 100.0% 100.0% 99.60% 99.80%

Table 6: True positive, false positive, true negative and false negative results for JPEG steganography
for the PPD (proposed), SPAM (Pevný et al., 2010) and Merged features (Pevný and Fridrich, 2007)
methods

Embedding Bit PPD (proposed) SPAM Merged features
algorithm rate TP FP TN FN TP FP TN FN TP FP TN FN

StegHide 20% 435 83 417 65 254 241 259 246 497 1 499 3
StegHide 10% 336 145 355 164 319 325 175 181 496 0 500 4
F5 20% 493 10 490 7 496 41 459 4 500 0 500 0
F5 10% 492 14 486 8 479 38 462 21 500 0 500 0
JP Hide&Seek 20% 480 40 460 20 496 182 318 4 498 3 497 2
JP Hide&Seek 10% 467 53 447 33 484 224 276 16 498 3 497 2
Perturbed Quant. 20% 499 1 499 1 500 0 500 0 499 3 497 1
Perturbed Quant. 10% 499 2 498 1 500 0 500 0 498 2 498 2

5.4. Detection of JPEG Steganography

Like SPAM (Pevný et al., 2010), the proposed PPD method has been conceived
to detect spatial domain steganography and, more precisely, LSB matching. How-
ever, SPAM is proved to be quite successful also for the detection of steganography
for JPEG images, i.e., steganography based on the transform domains, such as the
discrete cosine transform (DCT) which is the basis of the JPEG compression algo-
rithm.

This section is devoted to show the performance of PPD against different JPEG
steganographic tools, namely StegHide (Hetzl and Mutzel, 2005), F5 (Westfeld,
2001), JP Hide & Seek (Latham, 1999) and Perturbed Quantization (Fridrich et al.,
2004) for 10% and 20% embedding bit rates.

In order to test the performance of the proposed PPD algorithm for JPEG

19

steganography, classification experiments have been carried out using the BOSS
(Filler et al., 2010) database, with 1000 training images (500 stego and 500 cover)
and 1000 test images (500 stego and 500 cover). Tables 5 and 6 show the accuracy,
true positives, false positives, true negatives and false negatives results obtained
with three different steganalyzers, namely the proposed PPD method with S = 4,
SPAM-2 with T = 3 (Pevný et al., 2010) and Merged features (Pevný and Fridrich,
2007), which is the best performing state-of-the-art analyzer for JPEG images.
Unsurprisingly, the best accuracy results are obtained for the latter method, but it
can be seen that the proposed PPD algorithm outperforms SPAM for all embed-
ding strategies but Perturbed Quantization (Fridrich et al., 2004), for which SPAM
performs even better than the Merged features analyzer with a very small differ-
ence between all the tested tools. It can be seen that the suggested PPD approach
produces over 90% accuracy in all cases except the StegHide method (Hetzl and
Mutzel, 2005).

The reason why the suggested PPD method also detects JPEG steganography
is the fact that embedding data in the DCT domain (as JPEG steganography does)
also implies changes in the distribution of patterns in the spatial domain. This is
illustrated in Fig.15 for the NRCSAK97001 image. This figure shows the vari-
ation in 0, 1, 2 and 3-patterns after embedding random data with LSB matching
steganography for the cover image (JPEG-compressed with quality 85) and the
stego image (JPEG compression with quality 85 and 20% data insertion rate using
StegHide steganography). It can be seen that the sign of the variation are the same
in both cases: the number of 0-patterns decreases (negative variation), whereas
the number of 1, 2 and 3-patterns increases (positive variation). However, there
are subtle differences in the amount of these variations, which are more noticeable
for 1-patterns and 3-patterns. The increase of 3-patterns is somewhat lower for
the stego image compared to the cover one, whereas the increase in 1-patterns is
greater for the stego image. Although the differences are subtle in this aggregated
form, they provide the SVM classifier with enough information to detect JPEG
steganography. Note that the SVM uses 256 features, one per each pattern, and not
only the four groups shown in Fig.15.

6. Conclusions

This paper presents the PPD method to detect LSB matching steganography
using patterns of differences of neighboring pixels together with (additional) ran-
dom data embedding. The obtained results show that the proposed PPD method
is able to outperform SPAM which is possibly the most accurate state-of-the-art
single-model steganalytic tool for LSB matching detection in the literature. The

20

PPD method is also shown to yield better results than SPAM also for the HUGO
steganographic tool.

Furthermore, the proposed method stands out for its simplicity since it just uses
pixel differences and a specific order of pixels. In addition, the number of features
is quite small compared to other techniques. The key idea of the suggested method
is that the pattern distribution before and after random data embedding significantly
differs from cover and stego images, which is exploited for SVM classification.
This reduced number of features is also translated into reduced computation time
compared to SPAM (SPAM requires 50% more CPU time than the proposed PPD
approach). The PPD method, which was initially designed to detect LSB matching
steganography, is also illustrated to produce remarkable results for JPEG steganog-
raphy, outperforming SPAM for the tested embedding schemes, but still inferior to
the results of the state-of-the-art Merged features steganalyzer.

For future research, the inclusion of the PPD features into the recent rich-model
techniques is a possible continuation line. In addition, the idea of using the dif-
ference between the test image before and after random data embedding may be
extended to use it in the transform domain in order to improve the results of JPEG
steganography.

Acknowledgments

This work was partly funded by the Spanish Government through projects
TSI2007-65406-C03-03 “E-AEGIS”, TIN2011-27076-C03-02 “CO-PRIVACY”
and CONSOLIDER INGENIO 2010 CSD2007-0004 “ARES”.

We would like to thank the authors of SPAM, HUGO, JP Hide&Seek, StegHide,
F5, Perturbed quantization and the Merged features techniques for having the code
available for download.

References

References

Cai, K., Li, X., Zeng, T., Yang, B., Lu, X., 2010. Reliable histogram features for
detecting LSB matching. In: Image Processing (ICIP), 2010 17th IEEE Interna-
tional Conference on. pp. 1761–1764.

Chang, C.-C., Lin, C.-J., 2012. LIBSVM - A Library for Support Vector Ma-
chines. http://www.csie.ntu.edu.tw/˜cjlin/libsvm, accessed
on September 2012.

21

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Filler, T., Pevný, T., Bas., P., 2010. Break our steganographic system (boss).
http://exile.felk.cvut.cz/boss/.

Fridrich, J., 2005. Feature-based steganalysis for JPEG images and its implications
for future design of steganographic schemes. In: Fridrich, J. (Ed.), Information
Hiding. Vol. 3200 of Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg, pp. 67–81.

Fridrich, J., Goljan, M., Du, R., 2001. Detecting LSB steganography in color, and
gray-scale images. Multimedia, IEEE 8 (4), 22–28.

Fridrich, J., Goljan, M., Soukal, D., 2004. Perturbed quantization steganography
with wet paper codes. In: Proceedings of the 2004 workshop on Multimedia and
security. MM&Sec’04. ACM, New York, NY, USA, pp. 4–15.

Fridrich, J., Kodovský, J., 2012. Rich models for steganalysis of digital images.
Information Forensics and Security, IEEE Transactions on(To appear).

Harmsen, J., Pearlman, W. A., 2003. Steganalysis of additive noise modelable in-
formation hiding. In: Delp, E., Wong, P. (Eds.), SPIE, Electronic Imaging, Secu-
rity and Watermarking of Multimedia Contents V. Vol. 5020. SPIE, Santa Clara,
CA, pp. 131–142.

Hetzl, S., Mutzel, P., 2005. A graph-theoretic approach to steganography. In: Pro-
ceedings of the 9th IFIP TC-6 TC-11 international conference on Communica-
tions and Multimedia Security. CMS’05. Springer-Verlag, Berlin, Heidelberg,
pp. 119–128.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2010. A practical guide to support vec-
tor classification. http://www.csie.ntu.edu.tw/˜cjlin/papers/
guide/guide.pdf, accessed on September 2012.

Ker, A., 2005. Steganalysis of LSB matching in grayscale images. Signal Process-
ing Letters, IEEE 12 (6), 441–444.

Kodovský, J., Fridrich, J., 2009. Calibration revisited. In: Proceedings of the 11th
ACM workshop on Multimedia and security. MM&Sec ’09. ACM, New York,
NY, USA, pp. 63–74.

Kodovský, J., Fridrich, J., Holub, V., 2012. Ensemble classifiers for steganalysis of
digital media. Information Forensics and Security, IEEE Transactions on 7 (2),
432 –444.

22

http://exile.felk.cvut.cz/boss/
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Latham, A., 1999. JP Hide&Seek. http://linux01.gwdg.de/˜alatham/
stego.html, accessed on September 2012.

Li, X., Zeng, T., Yang, B., 2008. Detecting LSB matching by applying calibration
technique for difference image. In: Proceedings of the 10th ACM workshop on
Multimedia and security. MM&Sec ’08. New York, NY, USA, pp. 133–138.

Mankun, X., Tianyun, L., Xijian, P., 2008. Steganalysis of LSB matching based on
histogram features in grayscale image. In: Communication Technology, 2008.
ICCT 2008. 11th IEEE International Conference on. pp. 669–672.

NRCS, n.d. National Resource Conservation System (NRCS) Photo Gallery.
http://photogallery.nrcs.usda.gov, accessed on September 2012.

Pevný, T., Bas, P., Fridrich, J., 2010. Steganalysis by subtractive pixel adjacency
matrix. Information Forensics and Security, IEEE Transactions on 5 (2), 215–
224.

Pevný, T., Fridrich, J., 2007. Merging Markov and DCT features for multi-class
JPEG steganalysis. In: Delp, E., Wong, P. (Eds.), Proceedings SPIE, Electronic
Imaging, Security, Steganography, and Watermarking of Multimedia Contents
IX, San Jose, CA, January 29-February 1. Vol. 6505. pp. 03–14.

Pevný, T., Filler, T., Bas, P., 2010. Using high-dimensional image models to per-
form highly undetectable steganography. In: Böhme, R., Fong, P., Safavi-Naini,
R. (Eds.), Information Hiding. Vol. 6387 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, pp. 161–177.

Sharp, T., 2001. An implementation of key-based digital signal steganography. In:
Moskowitz, I. (Ed.), Information Hiding. Vol. 2137 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, pp. 13–26.

Shi, Y., Chen, C., Chen, W., 2007. A Markov process based approach to effective
attacking JPEG steganography. In: Camenisch, J., Collberg, C., Johnson, N.,
Sallee, P. (Eds.), Information Hiding. Vol. 4437 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, pp. 249–264.

Steinwart, I., Christmann, A., 2008. Support Vector Machines, 1st Edition.
Springer.

Wakin, M., 2003. Standard test images. http://www.ece.rice.edu/

˜wakin/images/, accessed on September 2012.

23

http://linux01.gwdg.de/~alatham/stego.html
http://linux01.gwdg.de/~alatham/stego.html
http://photogallery.nrcs.usda.gov
http://www.ece.rice.edu/~wakin/images/
http://www.ece.rice.edu/~wakin/images/

Westfeld, A., 2001. F5–a steganographic algorithm (high capacity despite better
steganalysis). In: Moskowitz, I. (Ed.), Information Hiding. Vol. 2137 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 289–302.

Westfeld, A., Pfitzmann, A., 2000. Attacks on steganographic systems - breaking
the steganographic utilities ezstego. In: Jsteg, Steganos, and S-Tools - and Some
Lessons Learned, Lecture Notes in Computer Science. Springer-Verlag, pp. 61–
75.

Zhang, J., Hu, Y., Yuan, Z., 2009. Detection of LSB matching steganography using
the envelope of histogram. Journal of Computers 4 (7).

Zhang, T., Li, W., Zhang, Y., Ping, X., 2010. Detection of LSB matching steganog-
raphy based on the laplacian model of pixel difference distributions. In: Image
Processing (ICIP), 2010 17th IEEE International Conference on. pp. 221–224.

Zhao, Y., Ping, X., Wang, R., Zheng, E., 2010. Steganalysis for LSB matching by
counting image blocks with the same gray level. In: Signal Processing (ICSP),
2010 IEEE 10th International Conference on. pp. 1845–1848.

24

x11 x12 x13
x21 x22 x23
x31 x32 x33

Figure 1: Block of 3× 3 pixels

25

x12 x13
x22 x23

x33

Figure 2: Block reduction

26

(a) x12 as a reference (b) x13 as a reference

(c) x22 as a reference (d) x23 as a reference

(e) x33 as a reference

Figure 3: Pattern positions generated from different reference points

27

Figure 4: Pattern structure

28

25 25
24 24

23
(a)

24 23
25 24

25
(b)

Figure 5: Example of symmetric patterns

29

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Pattern

F
re

q
u
e
n
c
y

Theoretical pattern distribution

(a) Theoretical uniform distribution

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Pattern

F
re

q
u
e
n
c
y

Pattern distribution for Lena

(b) Distribution for Lena

Figure 6: Pattern distribution for a “uniform” theoretical image and for Lena

30

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Pattern

F
re

qu
en

cy

Pattern distribution for a test image (cover)

(a) Cover image

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Pattern

F
re

qu
en

cy

Pattern distribution for a test image (embedded cover)

(b) Cover image after random embedding

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Pattern

F
re

qu
en

cy

Pattern distribution for a test image (stego)

(c) Stego image

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Pattern

F
re

qu
en

cy

Pattern distribution for a test image (embedded stego)

(d) Stego image after random embedding

Figure 7: Pattern distributions for a cover and a stego image (before and after random embedding)

31

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3

3.5

4

Pattern

R
at

io

Ratio of pattern counters before and after random data embedding (cover)

(a) Ratio of pattern counters (cover image)

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3

3.5

4

Pattern

R
at

io

Ratio of pattern counters before and after random data embedding (stego)

(b) Ratio of pattern counters (stego image)

Figure 8: Ratio of pattern counters for a cover and a stego image (before and after random embed-
ding)

32

100 101
100 101

100
(a) 1-pattern

100 102
102 101

100
(b) 2-pattern

102 103
102 101

100
(c) 3-pattern

Figure 9: Example of block pixels producing 1, 2 and 3-patterns

33

0 1 2 3
0

100

200

300

400

500

600

700

800

900

1000

Maximum difference

F
re

q
u
e

n
c
y

Pattern behavior after random embedding for distance=1

(a) 1-patterns

0 1 2 3
0

200

400

600

800

1000

1200

1400

Maximum difference

F
re

q
u

e
n

c
y

Pattern behavior after random embedding for distance=2

(b) 2-patterns

0 1 2 3
0

200

400

600

800

1000

1200

1400

1600

Maximum difference

F
re

q
u

e
n

c
y

Pattern behavior after random embedding for distance=3

(c) 3-patterns

Figure 10: Pattern shifting likelihood after random embedding

34

0 1 2 3
0

1

2

3

4

5

6

7
x 10

6

Maximum difference: d−patterns

F
re

qu
en

cy

Pattern behavior after subsequent random embeddings

Cover image
1st random embedding
2nd random embedding
3rd random embeddig

Figure 11: Pattern shifting after three subsequent random embeddings for the NRCSAK97001 image

35

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

PPD (solid, star) vs. SPAM (dashed, circle) for NRCS with 1 bpp

(a) Embedding bit rate 1 bpp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

PPD (solid, star) vs. SPAM (dashed, circle) for NRCS with 0.5 bpp

(b) Embedding bit rate 0.5 bpp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

PPD (solid, star) vs. SPAM (dashed, circle) for NRCS with 0.25 bpp

(c) Embedding bit rate 0.25 bpp

Figure 12: ROC curves for the proposed PPD (solid, star) and SPAM methods (dashed, circle)

36

0.05 0.1 0.15 0.2 0.5 1
40

50

60

70

80

90

100
Detection accuracy for different values of S

Embedding ratio (bpp)

D
e

te
c
ti
o

n
 a

c
c
u

ra
c
y
 (

%
)

S=2

S=3

S=4

S=5

S=6

S=7

S=8

S=9

Figure 13: Comparison of accuracy results for S ∈ [2, 9]

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
40

50

60

70

80

90

100

Embedding ratio (bpp)

D
et

ec
tio

n
ac

cu
ra

cy
 (

%
)

Detection accuracy for PPD and SPAM for +/−1 and HUGO

PPD, +/− 1
SPAM, +/− 1
PPD, HUGO
SPAM, HUGO

Figure 14: Comparison of accuracy results for PPD and SPAM against LSB matching and HUGO

38

0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

5

d−patterns

V
a
ri
a
ti
o
n

Pattern variation for a JPEG cover/stego image

Cover image

Stego image

Figure 15: Pattern variation for the JPEG NRCSAK97001 (cover and stego) image

39

	1 Introduction
	2 Patterns of Pixel Differences
	2.1 Computation of Patterns of Pixel Differences
	2.2 Pattern Distribution

	3 Random Data Embedding
	3.1 Pattern Shift After Random Data Embedding

	4 Proposed Method
	5 Experimental Results
	5.1 Detection of LSB Matching Steganography
	5.2 Tuning Analysis and Low Embedding Rates
	5.3 Detection of HUGO Steganography
	5.4 Detection of JPEG Steganography

	6 Conclusions

