
A Comprehensive Study of Multiple Deductions-based Algebraic Trace
Driven Cache Attacks on AES

Xinjie Zhaoa,∗, Shize Guob, Fan Zhangc,∗∗, Tao Wanga, Zhijie Shic, Zhe Liud, Jean-François Gallaisd

aDepartment of Computer Engineering, Ordnance Engineering College, Shijiazhuang 050003, China
bThe Institute of North Electronic Equipment, Beijing 100083,China

cDepartment of Computer Science and Engineering,University of Connecticut, Storrs 06269, USA
dLaboratory of Algorithmics, Cryptology and Security (LACS), University of Luxembourg, L-1359, Luxembourg.

Abstract

Existing trace driven cache attacks (TDCAs) can only analyze the cache events in the first two rounds or

the last round of AES, which limits the efficiency of the attacks. Recently, Zhao et al. proposed the multiple

deductions-based algebraic side-channel attack (MDASCA) to cope with the errors in leakage measurements

and to exploit new leakage models. Their preliminary results showed that MDASCA can improve TDCAs and

attack the AES implemented with a compact lookup table of 256 bytes. This paper performs a comprehensive

study of MDASCA-based TDCAs (MDATDCA) on most of the AES implementations that are widely used.

First, the key recovery in TDCA is depicted by an abstract model regardless of the specific attack techniques.

Then, the previous work of TDCAs on AES is classified into three types and its limitations are analyzed.

How to utilize the cache events with MDATDCA is presented and the overhead is also calculated. To evaluate

MDATDCA on AES, this paper constructs a mathematical model to estimate the maximal number of leakage

rounds that can be utilized and the minimal number of cache traces required for a successful MDATDCA.

Extensive experiments are conducted under different implementations, attack scenarios and key lengths of

AES. The experimental results are consistent with the theoretical analysis. Many improvements are achieved.

For the first time, we show that TDCAs on AES-192 and AES-256 become possible with the MDATDCA

technique. Our work attests that combining TDCAs with algebraic techniques is a very efficient way to

improve cache attacks.

Keywords: Multiple deductions, Algebraic side-channel attack, Trace driven, Cache attack,

Error-tolerant, AES-128/192/256.

1. Introduction

Cache attacks are a class of Side-channel attacks (SCAs) that extract the secret from the behavior of

cache in the processors. These attacks utilize the fact that a cache miss has a different profile of leakages from

∗Corresponding author. Email: zhaoxinjieem@163.com.
∗∗Corresponding author. Email: fan.zhang@engineer.uconn.edu.

Preprint submitted to Computers & Security August 27, 2013



a cache hit. Cache attacks demonstrated fall into three categories, depending on the channels used to collect

the leakages. These channels are spy processes [1], timing information [2, 3] and power/electromagnetic

(EM) traces [4, 5, 6, 7, 8, 9, 10, 11]. The focus of this paper is trace driven cache attack (TDCA), which

exploits the power or electromagnetic traces.

With direct access to the cryptographic device, the adversaries can monitor the power/EM traces, which

minimizes the invasion to the device. As the name suggests, TDCAs monitor cache hits and misses from

power/EM traces, and recover the secret key used in the computation. The number of traces required

in TDCAs is much less than in the conventional differential power attacks (DPAs) [12], correlation power

attacks (CPAs) [13] or other types of cache attacks [1, 2, 3]. Considering AES for example, only 30 cache

traces are required in TDCAs [9, 10] instead of hundreds (or thousands) of power traces in DPAs, CPAs [13],

hundreds of cache traces in access driven cache attacks [1], and millions of cache traces in timing driven

cache attacks [2, 3].

AES was targeted in many TDCAs [4, 5, 6, 7, 8, 9, 10, 11]. Throughout this paper, AES refers to

AES-128 by default. Bertoni et al. [6] showed that the cache traces manifested in the power profiles can be

used to reveal the secret key. The cache events in the first round of AES S-Box lookups1 implemented with

a table of 256 bytes were estimated from power simulations and analyzed in [6]. Further research in TDCAs

on AES splits into two directions. One is about exploiting new and real leakages in TDCAs, where cache

traces were collected from real power consumptions in [8, 9] and from EM in [10]. The other is improving

the efficiency of TDCAs on different AES implementations. In attacks on AES with large lookup tables

(e.g., 1K bytes), TDCAs can exploit cache events in the first round [11], the first two rounds [4] or the last

round [5, 7]. For AES implemented with a compact table (256 bytes), TDCAs can exploit the cache events

in the first round [6], or the first two rounds [8, 9, 10]. This paper is under the latter direction and tries to

improve TDCA on AES.

In the aforementioned TDCAs on AES, the cache events utilized are limited to the first 20 table lookups

in the first two rounds because of the avalanche effect. Since the traces are captured for entire encryptions,

exploiting the cache events in the third and later rounds can improve the efficiency of TDCA. Combining

TDCAs with algebraic techniques and conducting algebraic side-channel attacks (ASCA) [14, 15, 16, 17] is

a very promising way to improve TDCA. Previous ASCA mainly focused on power based Hamming weight

leakage model [14, 15, 17] or Hamming distance leakage model [16]. The original ASCA [14, 15] can only

work when the deduction on the targeted states is single and correct. The error tolerant ASCA in [16, 17]

can only work with limited deductions where the variance of the error is small and fixed. Previous ASCA

cannot be directly and easily combined with TDCA because in practice, there are multiple deductions and

the variance of the errors are large and uncertain.

1S-Box is usually implemented with lookup table and S-Box lookup is identical with the table lookup throughout the paper.

2



In COSADE 2012, Zhao et al. proposed the multiple deductions-based ASCA (MDASCA) [18]. The

work in [18] showed that, due to the inaccurate measurements or the interferences from other components

in the cryptosystem, the deduction on the targeted intermediate state from SCA is not always correct. As a

result, attacks have to deal with the fact that the correct value is among multiple candidates obtained during

the process, which are also referred to as multiple deductions. How to represent and utilize these multiple

deductions is critical to improving the error tolerance and exploiting new leakage models for ASCAs [14, 15,

16, 17]. They showed that MDASCA can utilize the leakages in the first three rounds of AES in TDCAs.

Under error-free attack scenario2, the number of cache traces required to attack the AES implemented with

a compact lookup table of 256 bytes can be reduced to only five. However, there remain some questions to be

answered. For different AES implementations (e.g., AES implemented with 1KB, 2KB tables in OpenSSL

cryptography library [19]), different attack scenarios (e.g., error-tolerant scenario [10], partial preloaded

cache scenario [7, 9, 10]), different AES key lengths (e.g., AES-192/256), how many rounds of leakages can

MDASCA exploit, how much can MDASCA improve TDCAs in terms of the data complexity, and what are

the new scenarios where we can apply MDASCA in cache attacks?

This paper aims to answer these questions and gives a systemic and comprehensive study of the multiple

deductions-based algebraic TDCAs (MDATDCAs). The rest of this paper is organized as follows. Section 2

describes the notations used throughout the paper. In Section 3, we formalize the key recovery problem in

TDCA with an abstract model, which is independent of specific TDCA techniques [4, 5, 6, 7, 8, 9, 10, 11, 18].

Then we categorize previous TDCAs on AES into three types and study their limitations in Section 4. In

Section 5, we describe the detailed procedure of MDATDCA and analyze the overhead. To evaluate the

efficiency of MDATDCA on AES, we build a mathematical model in Section 6 to estimate the maximal

number of leakage rounds that can be exploited and the minimal number of cache traces required in a

successful MDATDCA. Unlike previous work that can only analyze the cache events in the first round, this

paper can analyze any cache events. The attack setup is described in Section 7. The preliminary results

under an error-free scenario are presented in Section 8 to verify the theoretical analysis results. The results

with different error rates are showed in Section 9. MDATDCAs on AES with partially preloaded cache are

described in Section 10. To demonstrate the power of MDATDCA, we extend the attack to AES-192/256

in Section 11. Finally, we conclude the paper in Section 12.

2In TDCA, error means that the deduction for the cache events (hit or miss) from side channel leakages is incorrect.

error-free attack scenario means that the adversary can deduce all the cache events correctly in one attack. Comparatively,

error-tolerant attack scenario means that there exists errors when deducing some cache events in an attack.

3



2. Notation

Throughout the paper, P denotes the public variable (plaintext or ciphertext) and K denotes the targeted

secret variable (the master key or equivalent key). Variables pi and ki denote the i-th (i ≥ 0) part in P and

K, respectively. Each part contains l bits. Let qj denote the j-th table lookup in the execution of block

ciphers, λ denote the number of table lookups considered in the attack, 0 ≤ j < λ. H and M denote whether

qj is a cache hit or miss respectively. yj denotes the index of the lookup qj . Uj and Vj are the set of pi and

ki that represent yj , where Uj ⊆ P, Vj ⊆ K. Let f j(·) be the function that computes yj from Uj and Vj ,

yj = f j(Uj , Vj). Suppose each entry in the table has 2e bytes and each cache line has 2δ bytes. Let 〈yj〉b be

the b most significant bits (MSBs) of yj leaked in qj , b = l − (δ − e). Assume qt is the t-th targeted cache

events in TDCA and yt denotes the related table lookup index. Suppose among the first t−1 lookups, there

are n cache misses in n different table lookups qM1 , . . . , qMn , which form a set OtM = {M1, . . . ,Mn} (n < t).

Let StM be the set of the b MSBs of the indexes yM1
, . . . , yMn

, i.e., StM = {〈yM1
〉b, 〈yM2

〉b, . . . , 〈yMn
〉b}.

3. The TDCA Problem

In this section, we propose an abstract model which can be used to generalize all TDCAs.

TDCA on a block cipher is illustrated in Fig.1, where λ lookups are considered. Observing power or

EM traces, one can detect whether qj is a cache hit (H) or miss (M), 0 ≤ j < λ. From Fig.1 we can see

that a cache miss has a distinct amplitude peak than a cache hit (Note also that the amount of clock cycles

is distinctly different). The goal of TDCA is to extract the value of all ki in K (the secret key) from the

knowledge of the pis (known public variables) and qjs (cache events).

y0=f 0(U0,V0)

S …... …...

q0

yt=f t(Ut,Vt)

S

qt

S(y0) S(yt)

yλ-1=f λ-1(Uλ-1,Vλ-1)

S

qλ-1

S(yλ-1)

…... …...M H M

 

Figure 1: S-Box (Table)Look-up structure targeted in TDCA

Suppose the cache contains no data from the table before each encryption. As to the analysis of the

cache event in qt, suppose qj is the only cache miss before qt. A cache hit of qt means both yt and yj access

the same cache line. Eq.(1) holds if qt is a cache hit.

4



〈yt〉b = 〈yj〉b =⇒ 〈f t(Ut, Vt)〉b = 〈f j(Uj , Vj)〉b (1)

The key technique of TDCA is to use Eq.(1) to reduce the search space of Vt
⋃
Vj , which converges to

K if t is large enough. Since both Ut and Uj are known, the adversary can check all the assignments to

those ki in Vt
⋃
Vj with Eq.(1). If Eq.(1) is satisfied, the assignment is a possible value for ki. Otherwise,

the assignment is an incorrect guess. Similarly, if qt is a cache miss, Eq.(2) can be used in the key search.

〈yt〉b 6= 〈yj〉b =⇒ 〈f t(Ut, Vt)〉b 6= 〈f j(Uj , Vj)〉b (2)

From Section 2, there are n cache misses qM1
, . . . , qMn

before the first t − 1 lookups. The set OtM =

{M1, . . . ,Mn} (n < t) can be used to build n additional equations (or inequations). If qt is a hit, only one

of qM1 , . . . , qMn accesses the same cache line as qt (because if two of them are in the same cache line as qt,

one of them must be a hit). In this case, Eq.(3) holds

∃j ∈ OtM : 〈f t(Ut, Vt)〉b = 〈f j(Uj , Vj)〉b

∀j∗ ∈ OtM ∧ (j∗ 6= j) : 〈f t(Ut, Vt)〉b 6= 〈f j
∗
(Uj∗ , Vj∗)〉b

(3)

If qt is a miss, Eq.(4) holds

∀j ∈ OtM : 〈f t(Ut, Vt)〉b 6= 〈f j(Uj , Vj)〉b (4)

Using the n equations (inequations) in (3) or (4), more assignments to key bits in VM1

⋃
· · ·
⋃
VMn

⋃
Vt

can be verified. The key recovery is converted into the problem of how to converge VM1

⋃
· · ·
⋃
VMn

⋃
Vt

to the master key K with cache events. In TDCA, the adversary can analyze different table lookups and

traces until the search space of K is reduced to a level where a brute-force attack is feasible.

The above abstract model can help us to understand the TDCA problem and is generic to block ciphers

using the S-Box (table) lookup structure [4, 5, 6, 7, 8, 9, 10, 11, 24, 25, 26, 27, 28]. Different attack techniques

can be developed to solve this problem, such as traditional TDCA technique [4, 5, 6, 7, 8, 9, 10, 11], MDASCA

technique [18] or others to be proposed in the future.

4. Analysis of Previous Work

4.1. AES implementations

All the AES implementations can be categorized into three types based on (1) gt, the number of the

lookup tables; (2) gs, the size of the lookup tables; (3) gl, the number of lookups in one round that access

the same table; (4) gc, the size of the cache line, where gc = 2δ. Note that the scope of this paper is about

AES implementations that use one or more lookup tables for the sole S-Box, and not the lookup tables for

the field multiplication in the MixColumns operation of AES [8].

5



Type A. A single table is used in all rounds, gt = 1. Each round has 16 table lookups, gl = 16. The size of

the lookup table can be 256B (256 bytes) or 2KB (2K bytes). The examples of this type include the

implementation studied in [8, 9, 10, 20] where gs=256B, gc=16B, and b=4, and an implementation in

OpenSSL v1.0.0d [19], where gs=2KB, gc=64B, and b=5. Recall b is the number of bits revealed from

one table lookup.

Type B. There are four 1KB tables, gt = 4. Each round has 16 table lookups, where each table is accessed

four times, gl = 4. For example, AES in OpenSSL v0.9.8j uses four 1KB tables, T0, T1, T2, T3, in all

the 10 rounds, and OpenSSL v0.9.8a uses them in the first 9 rounds. In this paper, as to Type B, we

mainly focus on AES in OpenSSL v0.9.8j.

Type C. There is only one 1KB table in the last round (gt = 1), where it is accessed 16 times (gl = 16).

For example, OpenSSL v0.9.8a uses table T4 in the 10-th round.

Table. 1. depicts the list of widely used AES implementations targeted in TDCAs.

Table 1: List of widely used AES implementations targeted in TDCAs

implementation Type gt gs gl gc TDCAs

standard NIST implementation [20] Type A 1 256B 16 16B, 32B, 64B etc [6, 8, 9, 10]

AES in OpenSSL v0.9.8a [19] Type B,C1 5 1KB 4,162 16B, 32B, 64B etc [5, 7]

AES in OpenSSL v0.9.8j [19] Type B 4 1KB 4 16B, 32B, 64B etc [4]

AES in OpenSSL v1.0.0d [19] Type A 1 2KB 4 16B, 32B, 64B etc

4.2. TDCA on AES of Type A

Bertoni et al. performed the first TDCA on an implementation of Type A [6], which focused on the cache

events of the first round of AES. To further reduce the key search space and the number of plaintexts (or

power traces) required, attacks in [8, 9, 10] also utilized some cache events in the second round.

In [8], equations are generated only from the cache hits as shown in Eq.(3). In the first round, Uj =

pj , Vj = kj and Ut = pt, Vt = kt, (0 ≤ j < t ≤ 15). f j(·) is the bitwise XOR and 〈kj ⊕ kt〉4 can be

derived. It is shown in [8] that the search space of the AES key can be reduced to 268 with at most 240

adaptive chosen plaintexts. To improve the attack, the work in [8] also considered the case where the first

two lookups in the second round (q16 and q17) are cache hits. Consequently, more variables are used in

Eq.(3) and f j(·) becomes more complicated. Considering q16 as an example (t=16), suppose n=8, and

1Type B for TDCA on the first nine rounds and C for TDCA on the 10-th round
24 for the first nine rounds, and 16 for the 10-th round.

6



O16
M = {M1,M2,M3,M4,M5,M6,M7,M8} = {0, 2, 4, 5, 7, 8, 10, 14}. For each qMi (1 ≤ i ≤ 8), the key

search space of VMi

⋃
V16 can be reduced via Eq.(5).

〈yMi
〉4 = 〈y16〉4 =⇒ 〈fMi(UMi

, VMi
)〉4 = 〈f16(U16, V16)〉4

=⇒ 〈pMi ⊕ kMi〉4 = 〈02 · S[p0 ⊕ k0]⊕ 03 · S[p5 ⊕ p5]⊕ S[p10 ⊕ k10]⊕

S[p15 ⊕ k15]⊕ S[k13]⊕ 01⊕ k0〉4

(5)

From Eq.(5), U16 = {p0, p5, p10, p15} and V16 = {k0, k5, k10, k13, k15}, so f16(U16, V16) becomes more

complicated than that in the first round. The result in [8] is that 1280 chosen plaintexts are required to

reduce the key search space to 224.

In WISA 2010, under known plaintext scenarios, Gallais et al. analyzed the cache misses along with the

hits in [8]. They showed that on average 19.43 known plaintexts can reduce the key search space to 268

if qj (0 ≤ j ≤ 15) is analyzed. 30 plaintexts can further reduce the search space to 230 if q16 and q17 are

added. Later in COSADE 2011, Gallais et al. [10] extended the analysis to q18, q19, and showed that 30

known plaintexts can reduce the key search space to 10.

4.3. TDCA on AES of Type B

Acı̈ıçmez [4] presented the first TDCA on AES for such implementation, in which four lookup tables

are used for each round and each is accessed four times. In TDCA on the first round, only four groups of

〈kj ⊕ kt〉b (j ≡ t mod 4) can be derived and the key search space can be reduced to 2128−4×(4−1)×b. More

key bits can be derived via the analysis of the second round. In [4], q16 . . . q19 are added. They showed that

about 40 and 55 power traces were required to reduce the key search space to 233.50 and 234.26 for b = 4

and 5 respectively. Acı̈ıçmez [4] also pointed out that TDCA on the third or the deeper rounds was an open

problem.

4.4. TDCA on AES of Type C

The work in [5, 7] showed that under Type C implementations, TDCA on the final round of AES is much

more effective than in the first round. As to the first round of AES, f t(·) is a linear function and only the

higher b bits of kj ⊕ kt, (0 ≤ j < t ≤ 15) are leaked. While in the last round, f t(·) becomes a complicated

nonlinear function. As a result, all the 8-bits of k10j′ and k10t (j′ ≡ 5j mod 16) can be derived where j′ is the

j-th byte in the ciphertext. The work in [5, 7] requires only 14 and 25 traces to reduce the key search space

to 230 when b = 4 and 5 respectively.

4.5. Limitation of previous TDCAs

Traditional TDCAs rely on the representation of yt in different rounds. As noted in [4], the full avalanche

effect is achieved in the third round, where f t(Ut, Vt) becomes complicated if a manual analysis is conducted.

7



Because of this, current traditional TDCAs on AES [4, 5, 6, 7, 8, 9, 10, 11] can at most analyze the cache

events in the first two rounds, more precisely, from the first 20 lookups. Moreover, all current TDCA works

are for AES-128. As to AES with longer key lengths (e.g., AES-192 and AES-256), the key expansion

algorithms become more complicated and the first 20 lookups only leak partial bits of the master key. How

to recover more key bits and conduct effective TDCA on them are still open problems.

The manual representation of table indexes is awkward. It is imperative to provide a tool for the analysis

of the leakages in deeper rounds in order to improve the attacks. Combining algebraic techniques with TDCA

seems to be interesting and promising. The MDASCA proposed by Zhao et al. [18] in COSADE 2012 is a

generic method to exploit many types of side-channels leakages with algebraic techniques.

5. MDASCA-based Trace Driven Cache Attacks (MDATDCAs)

In TDCA, the key issue is to obtain the cache events related to table lookups and to represent the

possible (and/or impossible) candidates of lookup indexes with equations. We will use the same notations

in Section 2 in the following discussion. Recall that there are n misses qM1 , . . . , qMn before qt. As to the set

of the b MSBs of the indexes, StM = {〈yM1〉b, 〈yM2〉b, . . . , 〈yMn〉b}, let d be the correct value (or deduction)

of 〈yt〉b, dj be the j-th bit of d, di be the i-th element in StM , and dji be the j-th bit of di. If qt is a cache

hit, the cache line that includes the index yt has been loaded into the cache by earlier table lookups, which

means that d is equal to only one element of the multiple deductions in StM . If qt is a cache miss, the cache

line that includes yt has not been accessed, which means that d is not equal to any element of the multiple

deductions in StM .

From above, we can see that how to represent the relations between yt and its multiple possible or

impossible deductions for cache miss event is the most challenging part in TDCA. The work in [18] proposes

a generic method to convert the multiple deductions into algebraic equations and applies it to TDCA. For

convenience, we will refer to the MDASCA-based trace driven cache attack or so called multiple deductions-

based algebraic TDCA as MDATDCA. In this type of attack, the cipher is first represented with a system

of algebraic equations. Then the cache hit/miss events are profiled via power/EM measurements and then

convert the multiple deductions on b MSBs of the lookup index for each cache event into equations, which

are added into the original equation system of the cipher. Finally, the secret key is recovered by solving the

whole equation system [21, 22]. More details about MDASCA can be found in [18]. Next, we will describe

the core of MDATDCA, which is to represent cache hit and miss events with algebraic equations.

5.1. Representing a cache hit

Let D be the possible deduction set of d and sp be the size of D, where D = StM . A one-bit variable

ci is introduced to represent whether di is equal to d or not. Another one-bit variable eji is also introduced

8



to represent whether di
j is equal to dj . Then ci can be represented with Eq.(6), where ¬ denotes the NOT

operation.

eji = ¬(dji ⊕ d
j), ci =

b∏
j=1

eji (6)

Only one di is equal to d (ci is 1 then), which can be represented as:

c1 ∨ c2 ∨ . . . ∨ csp = 1, ¬ci ∨ ¬cj = 1, 1 ≤ i < j ≤ sp (7)

According to Eq.(6) and Eq.(7), (b + 1) × sp variables and (b + 1) × sp +
(
sp
2

)
Algebraic Normal Form

(ANF) equations are introduced to represent D.

5.2. Representing a cache miss

Let D denotes the impossible deduction set of 〈yt〉b and sn be the size of D. Then D = SM (yt). e
j
i is

also introduced as in Section 5.1. None of di in D is equal to d, which can be represented as:

eji = ¬(dji ⊕ d
j), ci =

b∏
j=1

eji = 0 (8)

According to Eq.(8), (b+1)×sn variables and (b+1)×sn ANF equations are introduced to represent D.

As shown in this section, the algebraic equations for new constraints are quite simple. They can be easily

fed into a solver, e.g., the SAT solver CryptoMiniSAT [22], to recover the key.

6. Evaluation of MDATDCAs on AES

For simplicity, this section only estimates the number of rounds that can be exploited, and the number

of cache traces required in MDATDCAs on AES-128 under the error-free attack scenario, where the cache

does not contain any AES data prior to each encryption. Extending these estimations to AES-192/256 is

straightforward.

6.1. The Number of rounds that can be exploited

For convenience, D is used to denote the set of cache lines that will be filled up with data from lookup

tables. Let m be the number of cache lines in D, m = 2b. Let Kt = VM1

⋃
· · ·
⋃
VMn

⋃
Vt. E denotes the

maximal number of rounds that can be utilized in MDATDCA. As long as D is not filled up, there may

exist some cache misses (before qt) that can be used for key recovery. To estimate E in MDATDCA, we

introduce the metric nt as in [4, 5, 18], which is the number of cache lines loaded after t table lookups.

For a cache line, the probability of not being filled after t lookups is (m−1m )t. Then, after t lookups to

the same table, the expected number of loaded cache lines, nt, can be calculate as

nt = m(1− (
m− 1

m
)t) (9)

9



Fig. 2 shows how nt changes with t and b in different types of implementations. The solid curves in blue,

green and red are for the cases where b = 3, 4, and 5, respectively. We can see that, for Type A (or B), after

the first 2/3/6 rounds (or 5/10/10 rounds), nt is approaching to m (i.e., D is filled up). For Type C, all the

16 lookups in the last round can be used for key recovery.

16 32 48 64 80 96 112 128 144 160
0

4

8

12

16

20

24

28

32

36

Number of table lookups

N
u
m

b
e
r 

o
f 
lo

a
d
e
d
 c

a
c
h
e
 l
in

e
s

 

 
b=3 b=4 b=5

(a) nt of Type A

4 8 12 16 20 24 28 32 36 40
0

4

8

12

16

20

24

28

32

36

Number of table lookups

N
u
m

b
e
r 

o
f 
lo

a
d
e
d
 c

a
c
h
e
 l
in

e
s

 

 
b=3 b=4 b=5

(b) nt of Type B

2 4 6 8 10 12 14 16
0

4

8

12

16

20

24

28

32

36

Number of table lookups

N
u

m
b

e
r 

o
f 

lo
a

d
e

d
 c

a
c
h

e
 l
in

e
s

 

 
b=3 b=4 b=5

(c) nt of Type C

Figure 2: nt for different AES implementations

6.2. The Number of cache traces required

The work in [18] presents a preliminary study of estimating the minimal number of cache traces required

in TDCA. In this section, we introduce four metrics and adopt the information-theoretic approach to optimize

the estimations on the minimal number of cache traces required for a successful MDATDCA.

(1) ρt: the ratio between the size of the search space of Kt after and before analyzing qt

The probability that qt is a cache hit is nt

m . If qt is a hit, the expected number for the candidates of 〈yt〉b
can be reduced from m to nt. It is also easy to check the probability when qt is a miss. Then ρt can be

calculated as

ρt = (
nt
m

)2 + (1− nt
m

)2 (10)

Fig. 3 shows how ρt changes with t and b. We choose ρt ≤ 0.9 as the threshold (marked as a purple

line in each subfigure). Note that the number of lookups read from the intersection between the purple and

other lines can also be used to calculate the maximal number of rounds that can be utilized and the result

is consistent with the earlier analysis.

(2) πt: the number of key bits that can be derived from qt

πt = −log2(ρt) (11)

10



0 16 32 48 64 80 96 112 128 144 160
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of table lookups

P
ro

p
o
rt

io
n
 o

f 
th

e
 r

e
d
u
c
e
d
 s

e
a
rc

h
 s

p
a
c
e

 

 

b=3
b=4
b=5

(a) ρt of Type A

0 16 32 48 64 80 96 112 128 144 160
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of table lookupsP
ro

p
o
rt

io
n
 o

f 
th

e
 r

e
d
u
c
e
d
 s

e
a
rc

h
 s

p
a
c
e

 

 

b=3
b=4
b=5

(b) ρt of Type B

0 2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of table lookups

P
ro

p
o
rt

io
n
 o

f 
th

e
 r

e
d
u
ce

d
 s

e
a
rc

h
 s

p
a
ce

 

 

b=3
b=4
b=5

(c) ρt of Type C

Figure 3: ρt for different AES implementations

Fig. 4 shows how πt changes with t and b. We can see that (1) q0 is always a cache miss. π0 = 0. (2)

πt ≤ 1 for all the values of t, which means that the number of key bits that can be extracted from adding

one lookup is less than one. This can also be observed in Fig. 3 where ρt ≥ 0.5 for all the curves.

16 32 48 80 80 96 112 128 144 160
0

0.2

0.4

0.6

0.8

1

Number of table lookups

N
u

m
b

e
r 

o
f 

re
c
o

v
e

re
d

 k
e

y
 b

it
s

 

 

b=3 b=4 b=5

(a) πt of Type A

16 40 48 64 80 96 112 128 144 160
0

0.2

0.4

0.6

0.8

1

Number of table lookups

N
u

m
b

e
r 

o
f 

re
c
o

v
e

re
d

 k
e

y
 b

it
s

 

 

b=3
b=4
b=5

(b) πt of Type B

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Number of table lookups

N
u
m

b
e
r 

o
f 
re

c
o
v
e
re

d
 k

e
y
 b

it
s

 

 

b=3
b=4
b=5

(c) πt of Type C

Figure 4: πt for different AES implementations

(3) σi: the average number of key bits recovered in the i-th round of a trace

For AES of Types A and B, since all the key variables can be extracted using the cache events in the

first two rounds, we just need to calculate σ0 and σ1. For Type C, we calculate σ9 in the final round. Note

that there are some intersects among Kt for different table lookups in practice, thus σi satisfies

σi ≤
z=16i+15∑
z=16i

πz (12)

11



(4) τi: the maximal number of key bits recovered in the i-th round

Let τ0, τ1, and τ9 denote the maximal number of the key bits recovered in the first, second and last round.

Since no information is leaked on the first access to each lookup table, according to Section 4, τ0 = 15b and

τ1 = 128 for Type A, τ0 = 12b and τ1 = 128 for Type B, and τ9 = 128 for Type C.

With the introduction of all the aforementioned variables, we can now roughly estimate the minimal

number of cache traces required to get τi bits in the i-th round, denoted as Ni. We calculate N0 and N9 as

Ni ≥
τi
σi

(13)

As τ0 bits are recovered in the first round, we only need to recover the remaining 128-τ0 bits in the

second round. So we roughly calculate N1 as

N1 ≥
128− τ0
σ1

(14)

Let EN denote the estimated minimal number of cache traces needed in order to recover the master key.

EN = dmax{N0, N1}e for Type A and B. EN = dN9e for Type C. Table 2 lists the value of N0, N1, N9 and

EN for different AES implementations. The value of EN can help us to determine the number of traces

needed in practical attacks. We will verify it with experiment results in Sections 7.

Table 2: Ni for different AES implementations

Type b N0 N1 N9 EN b N0 N1 N9 EN b N0 N1 N9 EN

Type A 3 4.25 34.69 35 4 5.06 6.88 7 5 8.72 3.42 9

Type B 3 4.89 5.93 6 4 11.77 6.49 12 5 28.43 9.45 29

Type C 3 12.10 13 4 10.79 11 5 14.88 15

7. Experiment Setup

The overall process of MDATDCA has been described in Section 5. Due to the page limit, here we only

list a few important details about the setup. Each run of MDATDCA with different parameters is referred

to as a case. Each case will be repeated many times and referred to as instances.

7.1. Build the AES equation set

How to represent the S-Box is the most difficult part in algebraic analysis. We adopt the technique in

[23] to derive every S-Box output bit with high-degree equations (degree 7) from the eight S-Box input bits.

More details can be found in Appendix 1.

12



16 32 48 64 80 96 112 128 144 160
1

5

 

 

16 32 48 64 80 96 112 128 144 160
1
5

16 32 48 64 80 96 112 128 144 160
1
5

4 8 12 16 20 24 28 32 36 40
1
5

4 8 12 16 20 24 28 32 36 40
1
5

4 8 12 16 20 24 28 32 36 40
1
5

2 4 6 8 10 12 14 16
1
5

2 4 6 8 10 12 14 16
1
5

2 4 6 8 10 12 14 16
1

5

 

 

Number of table lookups

Nu
m

be
r o

f c
ac

he
 tr

ac
es

b=3

b=4

b=5

b=5

b=4

b=3

b=5

b=4

b=3

Type A

Type B

Type C

Figure 5: Cache hit and miss sequences for Types A, B and C

7.2. Profile the cache traces

This paper mainly focuses on the analysis part of MDATDCAs. Details of profiling the events can be

found in [9, 10, 18]. In Section 8, 10, and 11, we assumed that the cache hits and misses are distinguishable

in the EM traces. This can be achieved by modifying the AES source code in OpenSSL and generate the

sequences of cache events under different configurations. Fig. 5 shows five traces for each implementation

of Types A B and C where b = 3, 4, 5. A cyan rectangle stands for a cache miss and a white for a hit. The

figure shows that for Type A, D of 8/16/32 cache lines cannot be filled up within the first 2/3/6 rounds.

For Type B, D of 8/16/32 cache lines cannot be filled up within the first 5, 10, 10 rounds. For Type C, D

of 8/16/32 cache lines cannot be filled up within the final round. This is consistent with the theoretical

analysis in Section 6.1.

To prove the feasibility of MDATDCA, in Section 9, we conduct concrete MDATDCA experiments

against AES implemented with 256B compact table on 32-bit ARM microprocessor NXP LPC2124. In

practice, the cache hits and misses are not always distinguishable from the EM traces, which are treated as

uncertain cache events or errors. We propose a method to adapt MDATDCA to exploit these errors. More

details can be found in Section 9.

13



7.3. Utilize the cache traces

We build additional equations from the generated cache events. When the leakage information is not

enough, there may exist multiple solutions in solving for the key. The SAT solver may output a wrong

but satisfied solution, which foils the whole attack, as noted by [16, 17]. In order to verify these multiple

solutions, we append a set of new equations which describes a full AES encryption with a pair of known

plaintext and ciphertext. Then, with this new approach, the correct key can always be derived within a

reasonable time.

For each instance, we first try to solve the generated equations directly. However, some instances cannot

be solved within a day. To accelerate the solving process, we give the guesses to nk key bits first and run the

exhaustive search for all the 2nk guesses. If the guess is correct, the solver can output the correct key within

a reasonable amount of time. Otherwise, it will output “unsatisfiable” very quickly. As to Types A,B,C, we

set nk = 4, 8, 4, respectively. We can see that nk is relatively small and the exhaustive search is affordable.

7.4. Solve the equation system

Many automatic tools can be used, such as Gröbner basis-based [21], or SAT-based solver [22]. We use

a SAT-based solver, CryptoMiniSat 2.9.0 [22], on an AMD Athlon 64 Dual core 3600+ processor clocked at

2.0GHz.

In Section 8, 9, and 10, three case studies are performed in MDATDCA on AES-128 considering different

attack scenarios.

8. Case 1: Error-free MDATDCAs on AES

In this section, we conduct MDATDCA on AES under two assumptions. The first is that the cache does

not contain any AES data prior to each encryption. The second is that the adversary can distinguish the

cache miss event from the cache hit event precisely. We name this scenario as MDATDCA on AES with

error free, which is also widely used in previous TDCA work [4, 5, 6, 7, 8, 9, 10, 11].

8.1. Data and time complexity

We conduct nine cases of MDATDCAs for Types A, B, C and b = 3, 4, 5. Then, for each case, we

randomly generate a secret key and collect N cache traces for N different pairs of plaintexts and ciphertexts

(N is chosen based on EN in Table 2). For each case, we run 100 instances where the correct values of nk

key bits are fed into the equation set first). Let t denote the average full attack time (in seconds) when the

correct key is retrieved in the exhaustive search procedure of guessing the 2nk key bits. Fig. 6(a)-6(i) show

the distribution of the different solving times (in seconds) for the nine cases by analyzing N cache traces.

The bold number is EN .

14



0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Solving time (seconds)

oc
cu

rr
en

ce
s

success rate = 100%
t=720

(a) Type A, b=3, N=35 (35)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Solving time (seconds)

oc
cu

rr
en

ce
s

success rate = 98%
t=180

(b) Type A, b=4, N=6 (7)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

Solving time (seconds)

o
cc

u
rr

e
n
ce

s

success rate = 97%

t=200

(c) Type A, b=5, N=7 (9)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

Solving time (seconds)

o
cc

u
rr

e
n
ce

s

success rate 88%

t=6000

(d) Type B, b=3, N=6 (6)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

Solving time (seconds)

oc
cu

rr
en

ce
s

success rate 98%

t=6600

(e) Type B, b=4, N=10 (12)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

Solving time (seconds)

o
c
c
u
rr

e
n
c
e
s

success rate 88%

t=7200

(f) Type B, b=5, N=25 (29)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Solving time (seconds)

oc
cu

rr
en

ce
s

success rate 96%
t=360

(g) Type C, b=3, N=13 (13)

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Solving time (seconds)

oc
cu

rr
en

ce
s

success rate 94%
t=600

(h) Type C, b=4, N=11 (11)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

Solving time (seconds)

o
cc

u
rr

e
n

ce
s

success rate 97%
t=660

(i) Type C, b=5, N=15 (15)

Figure 6: Data and time complexity

From Fig. 6, we can see that

(1) The number of cache traces required in practice, N , is consistent with the estimated value of EN .

For Types A and B, sometimes N is smaller than EN . This is because the calculation of EN only considers

the leakages in the first two rounds or in the last round, while in real attacks, the cache events in the deeper

rounds can also contribute to the attacks.

(2) The equation solving time seems to follow an exponential distribution. Most instances can be solved

in a short time (less than 100 seconds). Only a few require the longer time (more than 200 seconds as shown

at the right end of each subfigure). Similar observations are also reported in [14, 15].

(3) The time complexity of the full attack on AES is affordable. Most attacks can succeed within 7200

seconds. The time required in attacking AES for Type A and Type C is less than Type B.

15



Note that we set 200 seconds as the threshold of the equation solving time for a successful MDATDCA.

If the adversary has more computation power, the attack may require fewer cache traces. For example, d=4

for Type A, but if we set the threshold to 3600 seconds, only 5 cache traces are required [18]. How to find

a good tradeoff between the data complexity (the number of cache traces) and the time complexity (the

solving time) is a very interesting problem.

8.2. Overhead for the equation system

The original AES with r rounds can be represented with a set of equations. Suppose the number of

equations and variables to represent this set are Nr
e and Nr

v respectively. For the lookup qt, the overhead

introduced can be calculated as in Section 5.1 and 5.2. The number of variables and ANF equations in the

r-th round (denoted as Mr
e and Mr

v ) is the sum of the number of equations and variables for each lookup

in the round. The ratio of
Mr

e

Nr
e

and
Mr

v

Nr
v

are denoted as EQr and VAr respectively. Fig. 7 shows how EQr

and VAr change with r.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of rounds

R
a
ti
o
 o

f 
o
v
e
rh

e
a
d
s
 

 

 

VA, b=3
VA, b=4
VA, b=5
EQ, b=3
EQ, b=4
EQ, b=5

(a) Type A

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

Number of rounds

R
a

ti
o

 o
f 

o
v
e

rh
e

a
d

s

 

 

VA, b=3
VA, b=4
VA, b=5
EQ, b=3
EQ, b=4
EQ, b=5

(b) Type B

0 10
0

0.05

0.1

0.15

0.2

Number of rounds

R
a

ti
o

 o
f 

o
v
e

rh
e

a
d

s

 

 

VA, b=3
VA, b=4
VA, b=5
EQ, b=3
EQ, b=4
EQ, b=5

(c) Type C

Figure 7: Overheads introduced in MDATDCAs

We can observe that:(1) Both EQr and VAr are small (less than 1); (2) Both EQr and VAr increase

linearly with r (as the size of the deduction set, sp or sn, for qt increases); (3) EQr is a little larger than

VAr for the same r.

8.3. Comparisons with previous work

The comparisons of MDATDCAs with previous work are listed in Table 3. The first three columns

describe the AES implementations. The next three columns list the attacks, and the number of traces and

rounds that are required. The last column lists the reduced key search space. We can see that MDATDCAs

have better performances than all previous work in terms of both data and time complexity.

16



Table 3: Comparisons of error-free MDATDCAs on AES with previous work

Type Scenario b Attacks Attack rounds Cache traces Key space

Type A known plaintext 3 MDATDCA 2 35 1

Type A chosen plaintext 4 [8] 1 14.5 268

Type A known plaintext 4 [9] 1.125 30 230

Type A known plaintext 4 [10] 1.25 30 10

Type A known plaintext 4 MDATDCA 2-3 6 1

Type A known plaintext 5 MDATDCA 2-6 7 1

Type B known plaintext 3 MDATDCA 2-5 6 1

Type B known plaintext 4 [4] 1.25 40 233.50

Type B known plaintext 4 MDATDCA 2-10 10 1

Type B known plaintext 5 [4] 1.25 55 234.26

Type B known plaintext 5 MDATDCA 2-10 25 1

Type C known ciphertext 3 [7] 1 10 230

Type C known ciphertext 3 MDATDCA 1 13 1

Type C known ciphertext 3 [4] 1 20 224.22

Type C known ciphertext 4 [7] 1 14 230

Type C known ciphertext 4 MDATDCA 1 11 1

Type C known ciphertext 5 [4] 1 20 233.97

Type C known ciphertext 5 [7] 1 25 230

Type C known ciphertext 5 MDATDCA 1 15 1

9. Case 2: Error-tolerant MDATDCAs on AES

In this section, we will describe how to conduct MDATDCA on AES in practice, where there are errors

when deducing cache events.

Similar to [10], we implemented unprotected AES software implementations on a 32-bit ARM micropro-

cessor NXP LPC2124 and profiled the cache collisions via EM probe. We reset the cache to clear the AES

data prior to each encryption. The acquisition was performed with Langer RF-B 3-2 probe, Langer PA303N

30 dB preamplifier and Tektronix DPO 4104 oscilloscope.

In the attack, for most of the time, a cache miss related EM trace is likely to have a distinct peak

compared to a cache hit, which is also illustrated in Fig.1. However, for some table lookups, it is hard to

tell whether they are cache miss or hit because the peak is not high enough. We consider such cache events

as uncertain ones or errors. Under this scenario, the key issue is to deal with the uncertain cache events.

Next, we describe the error-tolerant strategy and present the experimental results on AES.

17



9.1. Error tolerance strategy

In the attack, we set two thresholds of the amplitude peak value to deduce the cache events, the upper

bound threshold VM and the lower bound threshold VH . Suppose Vt is the amplitude peak value of qt in

the trace. If Vt < VH , the targeted cache event qt is considered as a hit; if Vt > VM , qt is considered as a

miss; if VH 6 Vt 6 VM , qt is considered as a uncertain event. We adopt the following strategy to analyze

each cache event.

1. qt is a hit.

Then D, the possible deduction set of d (〈yt〉b), is composed of the index set related to both previous

cache miss events and uncertain cache events. Thus, the set size sp is much larger than the one in error-free

MDATDCA. Note that as some uncertain cache events might be cache hit in reality, there might exist two

or more deductions which are both equal to d. Thus, we need to update Eq.(6) of Section 5 to

c1 ∨ c2 ∨ . . . ∨ csp = 1 (15)

2. qt is a miss.

Then the impossible deduction set of d(〈yt〉b) is only composed of the index set related to previous cache

miss events. Note that as some cache miss events in practice may be considered as uncertain cache events,

the set size sn is much smaller than the one in error-free MDATDCA.

3. qt is an uncertain cache event.

Then no analysis is performed on this cache event.

9.2. Experimental results and comparisons

In the error tolerant MDATDCA experiments, we denote the error rate as e = NE

NA
, where NE is the

number of uncertain cache events, and NA is the number of all the utilized cache events.

For simplicity, we only perform the MDATDCA on AES for Type A when b = 4. The extensions to other

cases are straightforward. To investigate the number of cache traces required for a successful MDATDCA

for different e, we first conduct several attacks with different e and repeat the attacks for 100 random keys

in every case. The results are plotted in Fig. 8.

Fig. 8 shows the number of traces required for MDATDCA changes with e. It is clear to see that the

number of required cache traces increases linearly with the error rate. In practice, the error rate is about 40%.

Only 12 cache traces are required to break AES. The online complexity of data acquisition is comparable to

DPA, CPA and other types of cache attacks. The offline complexity is also affordable. Recovering the full

key from a set of cache traces takes less than an hour on a computer mentioned in Section 7.4.

Table 6 lists the comparisons of MDATDCA to [10] which is the only literature about TDCA on AES

with error tolerance. We can see that, our error-tolerant MDATDCA can analyze the cache events of the

18



0.0 0.2 0.4 0.6 0.8 0.9

20

40

60

80

100

Error rate

N
um

be
r o

f c
ac

he
 tr

ac
es

Figure 8: Number of required cache traces for a full key recovery of error-tolerant MDATDCA on AES

first three rounds and require less cache traces than [10]. Moreover, when the error rate is as high as 90%,

MDATDCA still works with 80 cache traces, which is better than 80% in [10].

Table 4: Comparisons of error-tolerant MDATDCAs on AES with previous work

Attacks Attack rounds Error rate Number of cache traces Key search space

[10] 1.25 0.0 30 10

MDATDCA 3 0.0 6 1

[10] 1.25 0.2 ≥ 30 10

MDATDCA 3 0.2 7 1

[10] 1.25 0.4 ≥ 30 10

MDATDCA 3 0.4 12 1

[10] 1.25 0.6 ≥ 30 10

MDATDCA 3 0.6 24 1

[10] 1.25 0.8 158 10

MDATDCA 3 0.8 48 1

MDATDCA 3 0.9 80 1

10. Case 3: MDATDCAs on AES with Preloaded Cache

The MDATDCAs in Section 8 and 9 are all conducted assuming the cache is cleaned before the attack.

In practice, the cache might be partially filled with some lines of the lookup table, which is also named

as TDCA in the partially preloaded cache scenario and widely studied in previous work [7, 9, 10]. This

section presents the cache analysis strategy and experimental results of MDATDCAs on AES with partially

preloaded cache.

19



10.1. Cache analysis strategy

Under this scenario, since some data of AES lookup table are already filled in the cache, more cache hit

events can be observed for a single cache trace in practice. Then, the cache hits that occur may correspond

to preloaded lines, and no valuable information can be provided to the attack. We utilized the cache miss

events in our MDATDCA on AES.

10.2. Experimental results and comparisons

The comparisons of our results with previous work are depicted in Table 5. We can see that, under

partially preloaded cache scenario, less cache traces are required to break AES by MDATDCA than [10].

Even when ten of sixteen cache lines are preloaded into cache before the AES encryption, MDATDCA can

still succeed within 120 cache traces, which is better than eight preloaded cache lines reported in [10].

Table 5: Comparisons of partially preloaded MDATDCA on AES with previous work

Attacks Preloaded lines Traces

[10] 0 61

MDATDCA 0 10

MDATDCA 2 14

[10] 4 119

MDATDCA 4 24

MDATDCA 6 40

[10] 8 296

MDATDCA 8 80

MDATDCA 10 120

11. Extensions of MDATDCAs to AES-192/256

11.1. Different difficulties in TDCAs on AES-128/192/256

All previous TDCA work targets AES-128 and can at most analyze 16 lookups in the first round and first

4 lookups in the second round. As far as we know, there is no published work of TDCA on AES-192/256

and there exists more difficulties in TDCAs on AES-192/256 than on AES-128.

Let P denote the plaintext, K0, K1, K2 be the round key of the first three rounds, and X1,X2 be the

output of the first two rounds (f(·) be the round function). The key leakages in TDCA on AES-128 are

depicted in Fig.9. We can see that, 16× b bits of K0 are associated with the 16 leaked indexes of the first

round, 16× b bits of K1 and 128 bits of K0 (when computing X1) are involved in the 16 leaked indexes of

the second round.

20



Take TDCA on AES of Type A when b = 4 as an example. As only the XORed results of the high 4 bits

of these indexes are leaked, the maximal number of key bits of K0 recovered from the 16 lookups in the first

round is 60. Due to the avalanche effect of the S-Box function, 128 bits of K0 and 64 bits of K1 can also be

leaked. According to the key expansion algorithm of AES-128, K1 can be represented by the K0 directly

and also can be used to recover K0. The work in [10] only used the first 4 table lookups, in which 128 bits

of K0 and 16-bit of K1 can be leaked.

Rot
Word

Sub
Word

Rcon1

Leaked 
bits of K0

K0

K1

P

Leak Leak Leak Leak

X1=f(P,K0)

Leaked 
bits of K1

Leak Leak Leak Leak

The 
1st 

round

The 
2nd 

round

The key 
schedule of 
AES-128

Figure 9: Leakages in TDCA on AES-128

However, such preponderance does not exist when attacking AES-192 and AES-256, in which the key

expansion algorithm is much more complicated and the second round key has little (e.g., AES-192) or no

relation (e.g., AES-256) with the first round key. How to conduct TDCA becomes an open problem when

facing the difficulty of analyzing the cache leakages in more rounds. Next, we show that why and how

MDATDCA can be used to attack AES-192 and AES-256.

21



11.2. MDATDCA on AES-192

The key leakages in TDCA on AES-192 are depicted in Fig.10. The right 64 bits of K1 and 128 bits of

K2 are computed by 128 bits of K0 and the left 64 bits of K1, which is exactly the master key.

Rot
Word

Sub
Word

Rcon1

K0

K2

Left 64-bit 
of K1

Right 64-bit 
of K1

Leak Leak Leak Leak

P

Leak Leak

Left 64-bit 
of X1

Leak Leak LeakLeak Leak

Leaked 
bits of K0

Leaked 
bits of K1

Leaked 
bits of K2

Leaked 
bits of K0 

and K1

Right 64-bit 
of X1

X2

X1=f(P,K0)

X2=f(P, K0,K1)

The 1st, 
2nd round

The 2nd, 
3rd round

The key 
schedule of 
AES-192

Figure 10: Leakages in TDCA on AES-192

Take TDCA on AES of Type A when b = 4 as an example. With the most efficient TDCA technique

in [10], at most 60 bits of K0 can be recovered if the first round is analyzed, 128 bits of K0 and 16 bits of

K1 can be recovered if the first 4 lookups of the second round are analyzed. In total 144 key bits can be

retrieved , which reduce the search space of the master key to 248.

In MDATDCA on AES-192, 60 bits of K0 can be recovered if analyzing the first round, 128 bits of K0

and 48 bits of K1 (the lower 4-bits of the first column in K1 cannot be leaked) can be recovered if analyzing

the second round, 128 bits of K0 and 64 bits of K1 can be recovered in analyzing the third round. We

can see that, in order to recover the full 192 bits of the master key, three rounds of cache leakages have

to be analyzed, which can be done with MDATDCA. We show that 10 cache traces can recover AES key

successfully within minutes on average under known plaintext and error-free scenario for the full attack.

22



11.3. MDATDCA on AES-256

The key leakages in TDCA on AES-256 are depicted in Fig.11. We can see that, K1 is independent of

K0, K2 is computed by 128 bits of K0 and the right 32 bits of K1.

Rot
Word

Sub
Word

Rcon1

K0

K2

Leak Leak Leak Leak

P

Leak Leak

Leak LeakLeak Leak

Leaked 
bits of K0

Leaked 
bits of K1

Leaked 
bits of K2

Leaked 
bits of K0 

and K1

X1=f(P,K0)

X2=f(P, K0,K1)

Leak Leak

K1
The key 

schedule of 
AES-256

The 1st, 
2nd round

The 3rd round

Figure 11: Leakages in TDCA on AES-256

Take TDCA on AES of Type A when b = 4 as an example. With the TDCA technique in [10], at most 60

bits of K0 can be recovered if the first round is analyzed. 128 bits of K0 and 16 bits of K1 can be recovered

if the first 4 lookups of the second round are analyzed. In total 144 key bits can be retrieved and reduce

the search space of the master key to 2112.

In MDATDCA on AES-256, 60 bits of K0 can be recovered if the first round is analyzed, 128 bits of K0

and 64 bits of K1 can be recovered if the second round is analyzed, 128 bits of K0 and 128 bits of K1 can

be recovered if the third round is analyzed. According to the key schedule of AES-256, the master key is

just the concatenation of K0 and K1. To break AES-256, analyzing at least the cache events of the first 3

rounds has to be considered and MDATDCA works well for this. We show that 15 cache traces can recover

the AES key within 30 minutes on average under known plaintext and error-free scenario for the full attack.

23



12. Conclusions and Future Work

This paper gives a comprehensive study on MDATDCA, the MDASCA-based trace driven cache attacks

on AES under different AES implementations, attack scenarios and key lengths. We show that MDATDCA

can exploit the cache hit/miss leakages in more rounds than the traditional TDCAs. Thus, the data and time

complexity in both the online and offline phases can be significantly reduced. For the first time, we show

that TDCAs on AES-192 and AES-256 become possible with the MDATDCA technique. We have achieved

many improvements of TDCA on AES compared to previous work. Combining algebraic cryptanalysis with

cache attacks is efficient for fully utilizing the leakages and improving cache attacks.

We stress that MDATDCAs are resistant to Boolean masking of software AES implementations in the

case where all S-Boxes share the same random mask, as detailed in [3]. When such a masking scheme is

used, our attacks will outperform higher order DPAs or CPAs that typically require thousands of traces.

The countermeasures of MDATDCA is the same as TDCA, which are widely discussed in the previous

works [4, 5, 6, 7, 8, 9, 10, 11]. They include pre-fetching the lookup table into the cache prior to encryption

and shuffling the order of table lookup computations.

Note that MDATDCA can also be extended to improve TDCAs on other block ciphers, such as Camel-

lia [24] and CLEFIA [25, 26, 27, 28]. The study of the trade-off between the data and time complexity in

online and offline phases of MDATDCA, how to further quantized evaluating MDATDCA in the contribu-

tions of the leaked key bits from cache events to the recovery of the maser key of AES, how to evaluate

MDATDCA on AES in case of error-tolerant and pre-loaded cache attack scenarios, how to develop new

attack techniques to solve the TDCA problem might also be interesting problems in the future. We hope

this paper can bring the understanding of both ASCA and TDCA to a new level, and help to evaluate the

physical security of block cipher implementations.

Acknowledgments.

The authors would like to thank the anonymous reviewers of CHES 2012 for their helpful comments,

Siwei Sun, Ruilin Li for fruitful discussions and their great help in improving the quality of the paper.

References

References

[1] D.A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: The case of AES. In the proceedings of

CT-RSA 2006, LNCS, vol. 3860, pp. 1-20, 2006.

[2] D. J. Bernstein. Cache-timing attacks on AES. Available at http://cr.yp.to/papers.html#cachetiming, 2004.

[3] J. Bonneau, I. Mironov. Cache-collision timing attacks against AES. In the proceedings of CHES 2006, LNCS,vol 4249, pp.

201-215, 2006.

[4] O. Acı̈ıçmez, Ç. Koç, Trace-Driven Cache Attacks on AES. Cryptology ePrint Archive, available at http://eprint.iacr.

org/2006/138.pdf, 2006

24

http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/2006/138.pdf
http://eprint.iacr.org/2006/138.pdf


[5] O. Acı̈ıçmez, Ç. Koç, Trace driven cache attack on AES. In the proceedings of ICICS 2006, LNCS, vol 4296, pp. 112-121,

2006.

[6] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, G. Palermo. AES Power Attack Based on Induced Cache Miss and

Countermeasure. In the proceedings of ITCC 2005, IEEE Computer Society, pp. 586-591, 2005.

[7] J. Bonneau. Robust Final-Round Cache-Trace Attacks Against AES. Cryptology ePrint Archive, available at http://

eprint.iacr.org/2006/374.pdf, 2006.

[8] J. Fournier and M. Tunstall. Cache based power analysis attacks on AES. In the proceedings of ACISP 2006, LNCS, vol

4058, pp. 17-28, 2006.

[9] J.-F. Gallais, I. Kizhvatov, and M. Tunstall. Improved Trace-Driven Cache-Collision Attacks against Embedded AES

Implementations. In the proceedings of WISA 2010, LNCS 6513, pp. 243-257, 2011.

[10] J.-F. Gallais, and I. Kizhvatov. Error-Tolerance in Trace-Driven Cache Collision Attacks. In the proceedings of COSADE

2011, pp. 222-232, 2011.

[11] C. Lauradoux. Collision Attacks on Processors with Cache and Countermeasures. In the proceedings of WEWoRC 2005.

LNI, vol. 74, pp. 76-85,2005.

[12] P.C. Kocher, J. Jaffe, B. Jun. Differential power analysis. In the proceedings of CRYPTO 1999, LNCS, vol. 1666, pp.

388-397, 1999.

[13] E. Brier, C. Clavier, F. Olivier. Correlation power analysis with a leakage model. In the proceedings of CHES 2004, LNCS,

vol. 3156, pp. 16-29, 2004.

[14] M. Renauld, F.-X. Standaert. Algebraic Side-Channel Attacks. In the proceedings of INSCRYPT 2009, LNCS, vol 6151,

pp. 393-410, 2009. Also available at http://eprint.iacr.org/2009/279, 2009.

[15] M. Renauld, F. Standaert, N. Veyrat-Charvillon. Algebraic side-channel attacks on the AES: Why time also matters in

DPA. In the proceedings of CHES 2009, LNCS, vol 5747, pp. 97-111, 2009.

[16] Y. Oren, M. Kirschbaum, T. Popp, et al. Algebraic Side-Channel Analysis in the Presence of Errors. In the proceedings

of CHES 2010, LNCS, vol 6225, pp. 428-442, 2010.

[17] Y. Oren and A. Wool. Tolerant Algebraic Side-Channel Analysis of AES. Cryptology ePrint Archive, available at http:

//eprint.iacr.org/2012/092.pdf, 2012.

[18] X.J. Zhao, F. Zhang, S.Z. Guo, et al. MDASCA: An Enhanced Algebraic Side-Channel Attack for Error Tolerance and

New Leakage Model Exploitation. In the proceedings of COSADE 2012, LNCS, vol. 7275, pp. 231-248, 2012.

[19] OpenSSL: The Open Source toolkit for SSL/TLS. http://www.openssl.org/, 2012.

[20] FIPS 197, Advanced Encryption Standard, Federal Information Processing Standard, NIST, U.S. Dept. of Commerce,

November 26, 2001.

[21] J.-C. Faugère, Gröbner Bases. Applications in Cryptology. In the proceedings of FSE 2007 Invited Talk, available at:

http://fse2007.uni.lu/slides/faugere.pdf.

[22] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT Solvers to Cryptographic Problems. In the proceedings of SAT,

LNCS, vol 5584, pp. 244-257, 2009.

[23] L.R. Knudsen, C.V. Miolane. Counting equations in algebraic attacks on block ciphers. International Journal of Information

Security , vol. 9, No. 2, pp. 127-135, 2010.

[24] R. Poddar, A. Datta, and C. Rebeiro. A Cache Trace Attack on CAMELLIA. In the proceedings of InfoSecHiComNet

2011, LNCS, vol. 7011, pp. 144-156, 2011.

[25] C. Rebeiro, D. Mukhopadhyay. Differential Cache Trace Attack Against CLEFIA. Cryptology ePrint Archive, available

at http://eprint.iacr.org/2010/012.pdf, 2010.

[26] C. Rebeiro, D. Mukhopadhyay. Cryptanalysis of CLEFIA Using Differential Methods with Cache Trace Patterns. In the

proceedings of CT-RSA 2011. LNCS, vol. 6558, pp. 89-103, 2011.

25

http://eprint.iacr.org/2006/374.pdf
http://eprint.iacr.org/2006/374.pdf
http://eprint.iacr.org/2009/279
http://eprint.iacr.org/2012/092.pdf
http://eprint.iacr.org/2012/092.pdf
http://www.openssl.org/
http://eprint.iacr.org/2010/012.pdf


[27] C. Rebeiro, R. Poddar, A. Datta, and D. Mukhopadhyay. An Enhanced Differential Cache Attack on CLEFIA for Large

Cache Lines. In the proceedings of INDOCRYPT 2011, LNCS, vol. 7107, pp. 58-75, 2011.

[28] X.J. Zhao, T Wang. Improved Cache Trace Attack on AES and CLEFIA by Considering Cache Miss and S-box Misalign-

ment. Cryptology ePrint Archive, available at http://eprint.iacr.org/2010/056.pdf, 2010.

Appendix 1: Building the AES Equation Set

We adopt the technique in [23] to derive every S-Box output bit (denoted as y1y2 . . . y8) with high-

degree equations (degree 7) from the 8 S-Box input bits (denoted as x1x2 . . . x8), which provides an explicit

representation of the dependence of the S-Box output on the input. An example of y1 represented by

x1x2 . . . x8 is shown as below.

y1 = x1⊕x3⊕x4⊕x6⊕x1x8⊕x1x7⊕x2x6⊕x4x6⊕x1x3⊕x6x7⊕x2x4⊕x2x8⊕x6x8⊕x3x5⊕x2x3x8⊕

x3x5x6⊕x3x7x8⊕x3x4x8⊕x1x4x7⊕x1x5x8⊕x1x2x8⊕x4x7x8⊕x2x3x6⊕x3x5x7⊕x3x6x8⊕x2x7x8⊕x1x2x4⊕

x2x6x7⊕x2x5x7⊕x1x2x6⊕x5x6x8⊕x1x3x5⊕x2x4x6⊕x3x4x5⊕x1x6x8⊕x3x5x8⊕x5x6x7⊕x2x3x4⊕x2x5x8⊕

x1x3x4 ⊕ x1x2x4x7 ⊕ x1x2x5x7 ⊕ x1x2x3x6 ⊕ x1x2x3x7 ⊕ x2x3x4x5 ⊕ x1x4x5x6 ⊕ x4x5x6x7 ⊕ x5x6x7x8 ⊕

x4x6x7x8⊕ x4x5x7x8⊕ x3x6x7x8⊕ x1x2x3x4⊕ x1x5x6x8⊕ x2x3x5x8⊕ x1x3x4x7⊕ x3x5x6x7⊕ x1x5x6x7⊕

x3x4x6x7⊕ x2x4x5x8⊕ x1x4x7x8⊕ x1x3x5x8⊕ x1x2x5x8⊕ x1x4x5x8⊕ x1x4x6x8⊕ x2x4x6x8⊕ x1x2x4x6⊕

x1x6x7x8⊕x1x4x5x7⊕x1x2x4x8⊕x2x5x7x8⊕x3x5x6x8⊕x2x5x6x8⊕x2x4x6x7⊕x1x2x3x5x7⊕x1x2x3x4x7⊕

x1x2x3x7x8⊕x1x2x3x4x5⊕x1x2x3x6x7⊕x2x3x4x6x7⊕x1x2x4x6x7⊕x1x2x4x5x8⊕x2x3x5x6x7⊕x1x2x3x5x8⊕

x4x5x6x7x8⊕x2x3x4x5x6⊕x2x3x4x7x8⊕x1x3x4x7x8⊕x3x4x5x7x8⊕x1x4x5x7x8⊕x2x3x4x5x8⊕x2x4x5x6x8⊕

x1x3x6x7x8 ⊕ x3x4x5x6x8 ⊕ x1x2x6x7x8 ⊕ x1x4x5x6x8 ⊕ x2x4x6x7x8 ⊕ x2x5x6x7x8 ⊕ x1x2x4x5x6x8 ⊕

x1x2x3x4x5x7⊕x1x2x5x6x7x8⊕x1x2x4x5x7x8⊕x1x3x4x5x7x8⊕x1x2x3x5x7x8⊕x1x2x3x5x6x8⊕x2x3x4x5x6x8⊕

x1x2x3x4x6x8 ⊕ x1x3x4x5x6x8 ⊕ x1x3x4x6x7x8 ⊕ x1x2x3x4x5x7x8 ⊕ x1x2x3x4x5x6x8
Each S-Box can be represented by 254 ANF equations with 262 variables. The number of the new

variables and ANF equations introduced for different AES operations are listed in Table 6.

Table 6: The number of the new variables and ANF equations that introduced

Operation Variables ANF Equations

AddRoundKey 256 (384) 1 128

SubBytes 262× 16=4192 254× 16=4064

ShiftRows 128 128

MixColumns 128 128

One encrypt Round 4704 (4832,4576)2 4448 (4320)3

One key expansion Round 1184 (1312)4 1144

1384 for the first AddRoundKey, and 256 for the others.
24832 for the first round (including the 128-bit plaintext), 4704 for the 2-nd to the 9-th round, 4576 for the last round.
34448 for the first 9 rounds and 4320 for the final round.
41312 for the first round and 1184 for the others.

26

http://eprint.iacr.org/2010/056.pdf

	Introduction
	Notation
	The TDCA Problem
	Analysis of Previous Work
	AES implementations
	TDCA on AES of Type A
	TDCA on AES of Type B
	TDCA on AES of Type C
	Limitation of previous TDCAs

	MDASCA-based Trace Driven Cache Attacks (MDATDCAs) 
	Representing a cache hit
	Representing a cache miss

	Evaluation of MDATDCAs on AES
	The Number of rounds that can be exploited
	The Number of cache traces required

	Experiment Setup
	Build the AES equation set
	Profile the cache traces
	Utilize the cache traces
	Solve the equation system

	Case 1: Error-free MDATDCAs on AES
	Data and time complexity
	Overhead for the equation system
	Comparisons with previous work

	Case 2: Error-tolerant MDATDCAs on AES
	Error tolerance strategy
	Experimental results and comparisons

	Case 3: MDATDCAs on AES with Preloaded Cache
	Cache analysis strategy
	Experimental results and comparisons

	Extensions of MDATDCAs to AES-192/256
	Different difficulties in TDCAs on AES-128/192/256
	MDATDCA on AES-192
	MDATDCA on AES-256

	Conclusions and Future Work

