\

Enforcement of Privacy Requirements
Padmanabhan Krishnan, Kostyantyn Vorobyov

» To cite this version:

Padmanabhan Krishnan, Kostyantyn Vorobyov. Enforcement of Privacy Requirements. 28th Security
and Privacy Protection in Information Processing Systems (SEC), Jul 2013, Auckland, New Zealand.
pp.272-285, 10.1007/978-3-642-39218-4_ 21 . hal-01463860

HAL Id: hal-01463860
https://inria.hal.science/hal-01463860
Submitted on 9 Feb 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01463860
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enforcement of Privacy Requirements

Padmanabhan Krishnan' and Kostyantyn Vorobyov?

! paddykrishnan@ieee.org
2 Centre for Software Assurance
Bond University, Gold Coast, Queensland, 4229, Australia
kvorobyo@bond.edu.au

Abstract. Enterprises collect and use private information for various
purposes. Access control can limit who can obtain such data. However,
the purpose of their use is not clear. In this paper we focus on the purpose
of data access and demonstrate that dynamic role-based access control
(RBAC) mechanism is not sufficient for enforcement of privacy require-
ments. To achieve this we extend RBAC with monitoring capability and
describe a formal approach to determining whether access control policies
actually implement privacy requirements based on the behaviour of the
system. We demonstrate the advantages of our approach using various
examples and describe the prototype implementation of our technique.

Keywords: Privacy protection, Access control, Formal analysis.

1 Introduction

Organisations collect, store and share information with individuals and other
organisations. They need to respect the privacy of the entities they interact with
and comply with legislative requirements. Privacy policies are used to specify
how organisations handle the data in their interactions. These policies can also
be shown to be compliant with legislation.

Privacy, especially privacy enhancing technologies (PETS), is focused on pro-
tecting an individual’s information. Thus, issues such as identity management,
user consent, data anonymisation and retention have been the focus of PETs.
These issues have implications for enterprises, as they collect data from individu-
als and use it for various purposes. While access control can limit who can obtain
the information, it is not clear (especially to an individual) how an enterprise
restricts the use of data. This affects both, individuals (who may be reluctant
to transact with an enterprise) and enterprises (which may be inadvertently
breaching various privacy guarantees).

While technologies, such as encryption, access control and authorisation can
be used to implement a policy, it is important to capture the privacy require-
ments. The policy then has to be developed from the requirements and finally
one can develop enforcement mechanisms.

Policy authoring and enforcement are challenging issues. As it is not possible
to anticipate all possible uses of data, it is difficult for designers to indicate the

appropriate policy. Thus, policies are often changed when inappropriate usage
(i.e., a breach) is detected. Consequently, it is easier to specify what happens
when a breach occurs [1]. The difficulty of writing privacy policies is increased
as privacy does not have a standard meaning. Each person is likely to have a
different interpretation, which could also depend on the application domain [2].
Additionally, privacy is context dependent and would depend on the user and
also the queries handled by the system [3]. Finally, it is important for policies
not to impede normal behaviour [4].

The purpose of data access [5, 6] has attracted attention, especially as there
are often conflicting issues between organisations and individuals. For instance,
in health systems the importance of surveillance indicates that not all personal
information may be private. In general, the purpose for which data is used is
important in privacy. Users give permission to enterprises for specific tasks (and
they assume that the data will not be used for other tasks). For example, Face-
book’s privacy policy states that they can use the information they receive for
any services they provide including making suggestions of new connections. This
is a very broad policy, as anything can be viewed as a service. Amazon allows
users to opt out of receiving promotional offers. However, it is not clear if the
user’s information is not used in creating such offers. Amazon also states that
they will not share personally identifiable information to third party providers.
But what is personally identifiable is not clearly stated.

Personally identifiable information could include name, date-of-birth, address
and national identity number. The chances of identifying an individual from a
collection depends on the data. For example, a commonly occurring name or
a specific date-of-birth in a census data is unlikely to identify an individual.
However, by combining various data types personal information can be identified.
Thus, it is important to control the collection of accesses rather than only a single
data access.

The main contribution of this paper is a formal approach to determining
if access control policies actually implement privacy requirements given a be-
haviour. We show how a dynamic access control mechanism is not sufficient to
enforce privacy requirements. We need to extend the access control mechanism
with some monitoring capability.

A prototype implementation that supports this approach is also described.
The usefulness of this approach is demonstrated via various examples. In Sec-
tion 2 we present the formal details. In Section 3 we give some simple examples
that illustrate our approach and in Section 4 we give a description of a proof-
of-concept implementation of our technique. Section 5 presents a review of the
related work. Finally, we draw some conclusions and describe future directions
in Section 6.

2 Framework

A specific system in our framework consists of an automaton that represents
the behaviour (such as gathering and using the gathered information) and an

automaton that represents a controller (including access control). For the be-
haviour automaton we do not separate individuals into separate automata. We
have a single automaton where the label on the transition has the action as well
as the individual (and role) who performs the action. The controller can observe
actions exhibited by the behaviour automaton, but can also prevent certain ac-
tions. This is achieved using dynamic role based access control (RBAC) [7] and
a simple semantics of purpose.

Before we describe the formal details, especially of the access control part,
we present a motivating example. Assume that Alice releases some personal in-
formation. This information can be used for internal purposes, but cannot be
used for marketing purposes. Assume Bob can access this information and can
decide how to use it. But Bob has to be prevented from using it for marketing
purposes. One way is to force Bob to assume different roles for each use. This,
however, could increase the number of roles. Also, then there is no difference
between purpose (which is a semantic concept) and roles (which is an enforce-
ment concept). Furthermore, the access control mechanism will have to permit
and then withdraw the role being assumed. Therefore, it is better to tag certain
actions with predicates that represent purposes. The access control entity now
either permits or disallows actions. This can be viewed as a mixture of access
control and workflow transition enabling.

Thus the control automaton’s alphabet will consist of normal actions, ac-
cess control actions (i.e., permitting and withdrawing roles) and purpose related
actions.

We define a composition operator that combines the behaviour automaton
with the controller. The composition is based on synchronisation on common
actions. However, the access control automaton cannot prevent behaviour purely
via the synchronisation requirements. Hence, the composition operator allows
actions to occur when the access control automaton cannot exhibit an action.

2.1 Formal Details

The main focus of the formalism is to describe the interactions between be-
haviour, access control and privacy policies.

We assume a set of atomic access control actions indicated by A. These
actions correspond to operations on data elements. We also assume a set of
individuals Z and a set of roles R.

The set of behavioural actions (say A) that are performed by individuals
assuming a particular role is defined by the set A X Z x R. A typical element of
this set is indicated by « or by (a,,r) where a is an action (element of A), 7 an
individual (element of Z) and r is a role (element of R). We define projection
functions act, indiv and role which identify the action, the individual and the role
respectively. That is, act({a,i,r)) = a, indiv({(a,i,r)) =i and role({a,i,r)) = r.

The dynamic access control system uses the set of behavovioral actions of
the form (a,i,7), (i,+r) or (i, —r). The access control uses actions belonging to
A to observe the evolution of behaviour. The access control process can keep
track of the behaviour and change the permission accordingly. For instance, if

an individual has accessed a data item, the access control process can withdraw
access to other data items so that the privacy requirements are met.

The action (i, +r) indicates that user ¢ can assume role r while the action
(1, —r) indicates that user ¢ can no longer assume role r. This will be extended
with actions related to the semantics of purposes.

To capture the semantics of purposes, we assume P to be a set of atomic
predicates (where a typical element is denoted by p). That is, each element of
P represents a specific purpose. We use subsets of P to mark behaviours as a
particular behaviour could correspond to many purposes.

We use finite state automata to describe the possible behaviours and ac-
cess control actions. A behaviour automaton (denoted by Ap) is of the form
(@B, A,—B,qB,), while an access control (denoted by A¢) automaton is of
the form (Qc¢, Ac, —c, qcy)-

Here Qg and Q¢ are the sets of states, A and A¢ the alphabets (or transition
labels), — p and —¢ the transition relations and ¢p, and g¢, the initial states
of the respective automata. We do not have any notion of accepting states as
behaviours are valid. For the sake of simplicity, we will assume that the automata
are deterministic and hence the transition relations are functions.

Given a behaviour automaton, a purpose map is a function from the tran-
sition function to a subset of P. We let Mp = {f | f:—p— P(P)} be the
set of all possible purpose maps. Functions in M p mark each transition in the
behavioural automaton with a set of purposes.

Formally the labels of the control automaton are drawn from the set (which
was denoted by Ac) AU (Z x {+,—} x R) U P(P). That is, it can observe
actions of the behaviour automaton, can change role permissions and allow or
deny purpose related action. We will use S to indicate a typical element of this
set.

To define the semantics of how the access control process influences or con-
trols the exhibited behaviour, we need to keep track of the roles that can be
assumed by the individuals. That is, we need to track the potential role assign-
ments that are currently permitted. This set of possibilities is denoted by the
set S which is the set of all functions from individuals to a subset of roles (i.e.,
Z — P(R)). We use p to represent a typical element of S.

Given a specific role assignment, we define if a behavovioral action « is per-
mitted only if the individual performing the action can assume the required rule.
The formal definition is given below.

Definition 1. The predicate permit(p, «) is true if and only if role(a) € p(indiv(a))
18 true.

We define the ready set of the access control automaton in a given state as
the set of actions it can potentially exhibit at the state. The standard definition
is given below.

Definition 2. For a state q. belonging to Q., we define ready(q.) as follows.
ready(q.) = {B | exists ¢, such that q. —ﬁ>c q.}

In order to ensure that the access control system can indeed control the
behaviour, we introduce a notion of stability. Essentially we want a system to
evolve only after the access control process has finished making all the access
control changes.

Definition 3. An access control automaton is stable in state q., written as
stable(q.), if and only if ready(q.) C A.

An access control automaton is stable when it can only observe behaviour
actions and cannot exhibit any action that can change the role assignment.

This implies that a state that has both observable and access control transi-
tions is not stable.

To define the semantics of the joint behaviour of the behavioural and access
control automata, we define the set of possible states of the overall computation.

Definition 4. The set of possible system states is the S X Qp X Q¢
A particular state of the computation is represented by a triple denoted by
’va QBan] where pE 87 gB € QB and qc € QC

The transition relation of the automaton obtained by composing the be-
haviour and access control automata indicated by || is defined as follows. For
this, we assume a specific purpose map m.

Definition 5. A | Ac = (S x Qp x Qc, Ac, (fo,48,q5), —) where — is
defined by the following rules.

1. [pyabsqc] — [pah a1 if @ — 4}, gc — q_. provided stable(q.), permit(p, o)
and m(qy — gq}) = 0.

2. [P, @y, 9] = [pidpac] if @ —— qj provided stable(q.), o ¢ ready(qc),
permit(p,a) and m(qpy — q) = 0

3 (o apae] == [0 an ;] if ge 5 q; where p'(j) = p(j) if i # j and
P (i) = p(i) U{r} otherwise.

4o Ipsavsae] == [0 sav,al] if ge == q. where p'(j) = p(j) if i # j and
p' (@) = p(i) \ {r} otherwise.

5 0pyapnac] —= [podhydl] if @ = qh, g 2> q. provided stable(q.) and
[0
m(q, — q;) C ps.

The first two rules specify permitted behaviour. This requires the action to
be permitted in the current state. Furthermore, the access control automaton
must be in a stable state and the transition has no specific purpose. Note, that if
an action has the right permissions, it cannot be prevented by the access control
automaton. That is, there is no need for the behaviour automaton to synchronise
on all common actions. The third and fourth rules describe the access control

automaton changing the current permissions. Thus, the behaviour automaton
does not change its local state. The last rule enforces the required semantics
of purpose. If the transition of the behaviour automaton has a purpose related
marking, it is permitted only if the controller allows all the purposes present in
the marking.

We write [p, gy, qc] == [p/,q5,q.] if there is a sequence of transitons
k
g 5y

[p.av, 0] — [p',q5,00] —— - [obap,a81 — [p"' g
[0',4;,q.]. That is, there is a sequence of “internal” moves (indicated by the e
transitions) around a transition exhibiting «. We write this as the triple (o, o, o)
where o is [p, b, ¢.| and o’ is [p',q}. q.].

Before we present a few simple examples, we make some observations about
the structure of the access control automaton.

At any state if the automaton has a transition of the form (a, 4, r) and (j, +r)
or (j, —r), the transition with the label (a, i,) can be removed without affecting
the overall semantics. This is because of the definition of stability; the transition
with the label (a,,r) will never be taken. Similarly, if there is no transition of
the form (i, +r) from the initial state of the access control automaton, the joint
behaviour will not exhibit any action.

For the behaviour automaton, any state that has transitions of the form
(a,i,7) and (b, i,r) can exhibit neither or both actions unless there is a purpose
that distinguishes the two transitions.

2.2 Privacy Requirements

We use linear time temporal logic (LTL) to encode the requirements, including
privacy, on the behaviour of the composed system. We define two types of atomic
predicates. The first is occurs({a,i,r)) which is true at a given state if there is
a transition with the label (a,i,r). We also define abbreviations where we can
leave one of the fields blank. This implicitly implies universal quantification. For
instance, occurs({a, —,r)) is an abbreviation for Vi € T : occurs({a,i,r}).

The second is occurs(p) where p is a purpose and is true if there is a transition
marked with a set that contains p. As usual we take runs of the composed
automata to define satisfaction. More precisely, (oq, ag, 01), (01, 01,02),- -, i |=
occurs(a) iff a; = a. Similarly, (o9, ag, 01), (01, a1,02), -+, i | occurs(p) iff one
of the transitions in (o;, a;, 04+1) has a marking that contains p.

To express LTL properties we use standard logical and LTL operators, such
as V, A, =, —(for implies), &, O and <.

3 Examples

In this section we present some simple examples that illustrate our approach.
The first example is of a user, say Alice, who writes a blog and also applies for
the job. The interviewer (which is a role) is allowed to read the job application
and once they have read the application they can not read the blog.
To model the behaviour we use the following abbreviations:

ay = (blogWrite, Alice, user),

ag = (apply, Alice, user),

ag = (readApplication, Bob, interviewer),
ay = (readBlog, Bob, interviewer),

This requirement can be written as
occurs({readApplication, —, interviewer)) — O=(occurs({readBlog, —, interviewery)).

If the behaviour automaton had the following structure,

(23}

= = =

the following automaton can enforce the above requirement:

@ (Alice,+alice) @ (Bob,+interviewer) @
asg
(Bob,—interviewer)

This is because after Bob has read Alice’s application (a3), he cannot assume
the role of an interviewer. Note, that the stability requirements on the access
control automaton means that oy is not enabled until the transition from r3 to
ry is executed. But once this transition is executed, ay cannot be exhibited as
the permit predicate will evaluate to false.

The second example is when Alice generates some data item and Bob can
access it only after it is made anonymous. To model this we let:

oy be (dataWrite, Alice, generator),
ag be (dataAnonimise, Alice, generator),
ag be (dataAccess, Bob, accessor).

The privacy requirement is captured by the formula
= occurs(asg) U occurs(az)

The behaviour can be represented by

Then, the enforcement automaton is as follows.

Alice,+generator@ ag @(Bob,+accessor>@

In this case the access control automaton gives Bob the permission to assume
the role of accessor only after observing as. Hence, the behaviour automaton
cannot perform exhibit ag in state g;. This is very similar to classical discrete
event control systems where the controller can observe certain actions before
enabling other actions.

Our final example is from [8].

Sometimes a patient needs to be transferred to another unit. This is normally
permitted unless the patient opts out. Also a patient’s treatment can be used for
training purpose. This, however, requires explicit permission from the patient.

For the sake of simplicity we assume there is only one patient Pat who can
assume the patient’s role (pat) and one doctor Doc who can assume the doctor’s
role doc.

The abbreviation «; stands for (optOut, Pat, pat) which indicates that the pa-
tient wants to opt out of the transfer scheme; while the abbreviation as
denotes (signPerm, Pat, pat) which indicates that the patient is happy for
the treatment information can be used for training.

The actions as: (diagnosis, Doc, doc) and ay: (treat, Doc,doc) are part of the
normal medical process.

The action as: (move, Doc, doc) indicates the patient being transferred while
the action ag: (useTrain, Doc,doc) indicates the treatment being used in
the training process.

We use the predicates forTraining and transfer as the set of purposes.
The privacy requirements are:

—occurs(ag) U occurs(forTraining) V O(—occurs(forTraining)), and
O(occurs(ay) — O(—occurs(transfer)))

Consider the following behaviour.

ail ag

Yy Yy

%%%
(o)

Let the transition g —% ¢ be marked with the purpose forTraining and
the transition go — g3 be marked with the purpose transfer.

Consider the following access control automaton.

{transfer} 1)
«@

ail

(Pat,+pat) @ (Doc,+doc) @

A
E
O)

{forTraining,transfer} {forTraining}

The joint behaviour ensures that whenever the patient selects to opt out (in-
dicated by the action «), the access control removes the option of the transfer
purpose (in this case the ability to exhibit c5). When the patients gives permis-
sion (indicated by the action «s), the action ag can be exhibited. Note, that all
these actions are executed by the medical staff (indicated by role doc) and hence
dynamic RBAC by itself cannot enforce such requirements.

4 Prototype Implementation

We now describe the proof-of-concept implementation of our approach.

The prototype implementation consists of two parts: the front-end (a graph-
ical user interface (Figure 1)) and the back-end (a code generator).

The graphical interface allows a user to specify atomic elements of a system,
which includes individuals, access control actions, roles, predicates and states.
Using these elements one can construct two labelled transition systems (LTS)
that describe behavioural and enforcement automata. Additionally, a user is
provided with the interface for specification of properties in LTL.

LTS specified via the front-end are used to generate a specification in the
SAL [9] language. The generated specification consists of two modules that repre-
sent behaviour and enforcement automata and SAL properties, which, depending
on the user’s intent, should or should not hold in a system with enforced privacy
requirements.

We now explain how we generate SAL specifications. At the SAL level we
remove the notion of users, roles and access control actions, replacing behavioural
actions with predicates. Actions observed by enforcement automaton (i.e. {a, i, 7},
a€ A i €I, re€R)are mapped to boolean variables, which indicate whether
a particular behavioural action was observed (true) or not (false). Similarly,
the set of roles, permitted or forbidden for individuals, is mapped to the set of
boolean variables, such that a user can assume a particular role, if the respective
variable is set to true and can not otherwise. Finally, a label in the behavioural
LTS may be associated with a set of predicates which represent purposes. Values
of purposes are specified by the user.

Generated modules are composed into an asynchronous system synchronised
as follows:

— A transition in an enforcement LTS with a label of the form (i, ®,r), i € A,
@ € {+,—}, r € R is executed unconditionally and sets a boolean variable
(say p1) that allows or forbids an individual ¢ to assume some role 7 to true
or false respectively.

— A transition in a behaviour LTS with a label of the form (a,i,r), a € A,
i €Z, r € R is executed if and only if permitted by p; (i.e., the value of p;
is true — an individual ¢ can assume role r) set by enforcement automaton.
That is, a given user can perform an action assuming a particular role only
if that is permitted by privacy requirements. This, in turn, sets to true a
boolean variable (say a1), which indicates that some action a, performed by
the individual ¢, assuming the role r was observed via the enforcement LTS.

— A transition in an enforcement LTS with a label of the form (a,i,r), a € A,
i € Z,r € R, is executed if and only if permitted by a1 (set by the behaviour
LTS). This indicates that some action action a, performed by the individual
i, assuming the role r was observed by the behaviour LTS.

TRANSITION [

behaviour_state = qO0 AND GeneratorAlice = true
-=>

behaviour_state’ = ql; al’ = true;

1

behaviour_state = ql AND GeneratorAlice = true
-=>

behaviour_state’ = q2; a2’ = true;

1

behaviour_state = ql AND AccessorBob = true
-=>

behaviour_state’ = q4; a3 = true;

[1

behaviour_state = q2 AND AccessorBob = true
-->

behaviour_state’ = q3; a3 = true;

Listing 1. Example 2. Behaviour LTS

TRANSITION [

enforcement_state = r0
-->
enforcement_state’ = ri;
1
enforcement_state = ril
-=>
enforcement_state’ = r2; GeneratorAlice’ = true;
1
enforcement_state = r2 AND a2 = true
-=>
enforcement_state’ = r3;
1
enforcement_state = r3
-=>
enforcement_state’ = r3; AccessorBob’ = true;

Listing 2. Example 2. Enforcement LTS

Code listings 1 and 2 depict SAL representation of enforcement and behaviour
LTS based on example 2. Variables enforcement_state and behavior_state
represent enforcement and behavioral automata states, booleans AccessorBob
and GeneratorAlice forbid or allow individuals to assume roles and boolean
variables al, a2, a3 represent observed actions ay, ag and a3 respectively. States
r0 ... r3ofthe enforcement transition system and q0 ... g4 of the behaviour
LTS refer to states rg,...,r73 and qo,...,q4 of the enforcement and behaviour
automata in example 2.

Note how enforcement automaton prevents privacy violation (i.e., a transition
from g1 to g4). The transition is executed only if Bob can assume the role of
accessor (i.e., AccessorBob is true), which is set to true only when action as
is observed (i.e., a2 is true), which is only possible if data is made anonymous.
That is, transition g — ¢4 is eliminated by the enforcement LTS, which prevents
a privacy violation.

Finally, the generated SAL specification can be checked with sal-smc (SAL
symbolic model checker) using LTL properties specified by the user via front-end.
For example, one can check whether privacy requirements are indeed enforced
or whether the enforcement of privacy requirements does not impede system’s
behaviour, i.e., a particular state in the behaviour transition system is reached
or a particular action is executed. For instance, in the above example, one can
specify a property G(not q4) (state g4, which constitutes a privacy violation,
is never reached) to verify that generated system does prevent the violation of
privacy.

[States

¥ Behaviour Automaton
] Enfarcement Autormaton
] Policies

Code Generation

= Privacy Tool _oxfim Palicies —ow
Privacy Tool Predicates Privacy Requirements
— { Transfer
[Add ‘ [predicates : | GINOT(ForTraining))
(ap | [Roles ‘ Falang | Gla1 == G(Transfer))
‘m; [Individuals Purposes
[(laereie | Next(x) | Eventually(F) || Globaliy(c) |

| awp | wor | or |

| Clear |

‘ Add palicy |

Label

Actions |

| access
Individuals | Bob
Roles iac:‘.essnr
Source State

[

o

[Add Transition

Destination State B

Behaviour _ox

Behaviour Automaton
Destination
qall
q2[]
q1[]
q3[]

Label

<Bob,accessor,access>

|
o

<Alice,generator.anan=
<Alice,generator,write>

<Bob,accessor,access>

<

5

Fig. 1. User Interface of Prototype Implementation

5 Related Work

Our semantic framework is based on parallel composition of finite state au-
tomata. Our composition operator is derived from the classical controller [10]
for discrete event systems and synchronisation on common actions [11].

The precise semantics of the different uses of purposes in the privacy policies
are not clear. The data-purpose algebra [12] shows how data can be used at each
stage in the computation. They use a set of atomic values to indicate purpose.
These atomic values are associated with data items indicating if the data can
be used for a specific purpose. The semantics in [13] is to support automatic
auditing. It is also based on Markov decision processes. Conditional purpose
using a hierarchical structure and compliance is presented in [5]. The meaning
of purpose via an action is presented in [6]. Semantics of intention [14] provides
another look at purpose. Johnson et al. [15] present the concepts of template
author, policy authors and policy implementers. But it is more about managing
privacy policies rather than semantics of the policies themselves.

RBAC [16] and its extensions [17] are very common forms of access control.
They can be used to specify who has access to data and also what role they need
to assume. One can verify if an implementation technique actually satisfies the
policies specified in RBAC. The link between access control and workflow [18] is
used to verify designs. The formalism is based on Petri nets. Our access control
automaton describes a much simpler semantics. However, our requirements are
also limited.

There is also need to model dynamic behaviour. Denotic logic [19] and modal
logic [6] have been used to give a semantics to purpose. [3] also develop a notion
of privacy where portions of data can be protected.

6 Conclusions

In this paper we have described a formal approach to determining whether access
control policies implement privacy requirements given a system’s behaviour. This
is achieved by extending dynamic role-based access control mechanism with mon-
itoring capability. We represent a specific system using two automata, such that
first, behaviour automaton, represents behaviour (e.g. gathering and using the
gathered data) and second, controller automaton, captures privacy requirements
of the system (including access control). Enforcement of privacy requirements
is achieved via a synchronised composition of the two, such that the controller
grants access permissions, observes actions exhibited by the behaviour automa-
ton and prevents actions which may violate privacy. In this paper we show how
access control may fail to detect privacy violations and demonstrate the ap-
plicability of our approach using various examples. We have implemented our
approach in a prototype tool, which provides a simple interface for specifica-
tion of the system’s behaviour and privacy requirements and can automatically
generate a specification in the SAL language. One can then model check the gen-
erated specification against an arbitrary set LTL properties using SAL symbolic
model checker.

Acknowledgements

The first author was affiliated with Bond University where most of this work
was done. He is currently affiliated with Oracle Labs. The second author was
supported by a VC grant from Bond University.

References

10.

11.

12.

13.

Ayres, L.T., Curtin, C.M., Ng, T.A.: Standardizing breach incident reporting: In-
troduction of a key for hierarchical classification. In: Proceedings of The 5th IEEE
International Workshop on Systematic Approaches to Digital Forensic Engineering,
IEEE Computer Society (May 2010) 79-83

. Cate, F.H.: The limits of notice and choice. IEEE Security & Privacy 8(2) (2010)

59-62

Farnan, N.L., Lee, A.J., Chrysanthis, P.K., Yu, T.: Don’t reveal my intension: Pro-
tecting user privacy using declarative preferences during distributed query process-
ing. In: Proceedings of the 16th European Symposium on Research in Computer
Security. Volume 6879 of Lecture Notes in Computer Science., Springer (September
2011) 628-647

Antén, AL, Earp, J.B., Carter, R.A.: Precluding incongruous behavior by aligning
software requirements with security and privacy policies. Information & Software
Technology 45(14) (2003) 967-977

Kabir, M.E., Wang, H., Bertino, E.: A conditional purpose-based access control
model with dynamic roles. Expert Systems with Applications 38(3) (2011) 1482-
1489

Jafari, M., Fong, P.W.L., Safavi-Naini, R., Barker, K., Sheppard, N.P.: Towards
defining semantic foundations for purpose-based privacy policies. In: Proceedings
of the 1st ACM Conference on Data and Application Security and Privacy, ACM
(February 2011) 213-224

Ferraiolo, D.F., Kuhn, D.R.: Role-based access controls. In: Proceedings of the
National Computer Security Conference, U.S. Department of Commerce, Gaithers-
burg, Md. 20899 USA, NSA/NIST, Elsevier Advanced Technology Publications
(October 1992) 554 — 563

LeBlanc, M.: Physiotherapists’ privacy requirements in Ontario. Technical report,
College of Physiotherapists of Ontario (2004)

de Moura, L., Owre, S., Rue8; H., Rushby, J., Shankar, N., Sorea, M., Tiwari,
A.: SAL 2. In Alur, R., Peled, D., eds.: Computer-Aided Verification, CAV 2004.
Volume 3114 of Lecture Notes in Computer Science., Boston, MA, Springer-Verlag
(July 2004) 496-500

Wonham, W., Ramadge, P.: Modular supervisory control of discrete-event systems.
Mathematics of Control, Signals and Systems 1 (1988) 13-30

Zielonka, W.: Notes on finite asynchronous automata. Theoretical Informatics and
Applications 21(2) (1987) 99-135

Hanson, C., Berners-Lee, T., Kagal, L., Sussman, G.J., Weitzner, D.J.: Data-
purpose algebra: Modeling data usage policies. In: Proceedings of the 8th IEEE
International Workshop on Policies for Distributed Systems and Networks, IEEE
Computer Society (June 2007) 173-177

Tschantz, M.C., Datta, A., Wing, J.M.: On the semantics of purpose requirements
in privacy policies. The Computing Research Repository abs/1102.4326 (2011)

14.

15.

16.

17.

18.

19.

Kagal, L., Pato, J.: Preserving privacy based on semantic policy tools. IEEE
Security & Privacy 8(4) (2010) 25-30

Johnson, M., Karat, J., Karat, C., Grueneberg, K.: Optimizing a policy authoring
framework for security and privacy policies. In: Proceedings of the 6th Symposium
on Usable Privacy and Security. Volume 485 of ACM International Conference
Proceeding Series., ACM (July 2010)

Jha, S., Li, N., Tripunitara, M.V., Wang, Q., Winsborough, W.H.: Towards formal
verification of role-based access control policies. IEEE Transactions on Dependable
and Secure Computing 5(4) (2008) 242-255

Fong, P.W.L., Siahaan, I.: Relationship-based access control policies and their
policy languages. In: Proceedings of the 16th ACM Symposium on Access Control
Models and Technologies, ACM (June 2011) 51-60

Barletta, M., Calvi, A., Ranise, S., Vigano, L., Zanetti, L.: Workflow and access
control reloaded: a declarative specification framework for the automated analysis
of web services. Scalable Computing: Practice and Experience 12(1) (2011)
Piolle, G., Demazeau, Y.: Representing privacy regulations with deontico-temporal
operators. Web Intelligence and Agent Systems 9(3) (2011) 209-226

