
Dexteroid: Detecting Malicious Behaviors in Android Apps
Using Reverse-Engineered Life Cycle Models

Mohsin Junaid, Donggang Liu, David Kung Dexteroid: Detecting malicious behaviors
in Android apps using reverse-engineered life cycle models, Computers & Security,
Volume 59,Pages 92-117, ISSN 0167-4048 http://dx.doi.org/10.1016/j.
cose.2016.01.008, June 2016.

Email addresses: mohsin.junaid@mavs.uta.edu (Mohsin Junaid), dliu@uta.edu
(Donggang Liu), kung@uta.edu (David Kung)

Preprint submitted to Computers & Security

ar
X

iv
:1

50
6.

05
21

7v
2

 [
cs

.C
R

]
 8

 A
pr

 2
01

6

http://dx.doi.org/10.1016/j.cose.2016.01.008
http://dx.doi.org/10.1016/j.cose.2016.01.008

Dexteroid: Detecting Malicious Behaviors in Android Apps
Using Reverse-Engineered Life Cycle Models

Mohsin Junaid∗, Donggang Liu, David Kung

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, United
States

Abstract

The amount of Android malware has increased greatly during the last few years.
Static analysis is widely used in detecting such malware by analyzing the code with-
out execution. The effectiveness of current tools relies on the app model as well as
the malware detection algorithm which analyzes the app model. If the model and/or
the algorithm is inadequate, then sophisticated attacks that are triggered by specific
sequences of events will not be detected.

This paper presents a static analysis framework called Dexteroid, which uses reverse-
engineered life cycle models to accurately capture the behaviors of Android compo-
nents. Dexteroid systematically derives event sequences from the models, and uses
them to detect attacks launched by specific ordering of events. A prototype implemen-
tation of Dexteroid detects two types of attacks: (1) leakage of private information, and
(2) sending SMS to premium-rate numbers. A series of experiments are conducted on
1526 Google Play apps, 1259 Genome Malware apps, and a suite of benchmark apps
called DroidBench and the results are compared with a state-of-the-art static analysis
tool called FlowDroid. The evaluation results show that the proposed framework is
effective and efficient in terms of precision, recall, and execution time.

Keywords: Static analysis, Mobile app security, Android, Malware, Privacy, Life
cycle models

1. Introduction

Android is the most popular mobile OS, with nearly 80% of the market share [1].
This attracts malware attacks such as leakage of sensitive information and sending SMS
to premium-rate numbers [2, 3]. These attacks can be implemented by well-crafted
malicious apps, or advertisement libraries used by Android apps [4]. To combat such
attacks, researchers have developed static analysis, dynamic analysis, and permission-
based techniques. Static analysis detects malicious behaviors by analyzing the app code

∗Corresponding Author
Email addresses: mohsin.junaid@mavs.uta.edu (Mohsin Junaid), dliu@uta.edu

(Donggang Liu), kung@uta.edu (David Kung)

Preprint submitted to Computers & Security

without execution [5, 6, 7, 8, 9]. The aim is to represent program logic in some models
(such as control flow graphs) and analyze such models to detect possible attacks. Dy-
namic analyses typically force the program to execute a set of carefully selected paths
and analyze the results to detect malware attacks [10, 11, 12, 13]. In addition to these,
Android provides a permission-based mechanism [14], which requires user approval to
access resources such as deviceID and internet.

This paper focuses on static analysis. It is motivated by recent success of [5, 6,
15, 7, 9, 8] in detecting Android malware. All of these techniques perform analysis
based on the Android-supplied life cycle models, which can be represented by a set
of state machines. The state machines model the state-dependent behaviors of An-
droid components, that is, Activity, Service, BroadcastReceiver, and ContentProvider.
A state represents the status of a component; a transition represents a callback in-
voked by Android. In particular, LeakMiner [5] and FlowDroid [6] derive a control
flow graph (CFG) based on life cycle model. The nodes of the CFG represent call-
backs in the life cycle model and the edges define the order that the callbacks can be
invoked. Taint analysis is then performed on paths of the CFG to detect information
leakage. Unlike LeakMiner and FlowDroid, DroidSafe [15] performs flow-insensitive
taint analysis and analyzes all possible orderings of callbacks in the life cycle model to
detect information-flows in Android apps.

An Android-supplied life cycle model provides a high-level abstraction of the An-
droid component behavior. However, this abstraction is also a limitation because it
does not capture all states and transitions implemented in Android. Furthermore, the
life cycle model does not specify guard conditions that govern the invocation of a call-
back. Thus, an analysis method based on an Android-supplied life cycle model may
not detect attacks that exploit such omissions (the motivating example presented in the
next section illustrates this). To fill this gap, we perform reverse-engineering to re-
construct the life cycle models that capture the omitted states and transitions, as well
as the guard conditions. We then propose the Dexteroid framework. This framework
systematically derives event sequences from the reverse-engineered life cycle models,
obtains callback sequences from the event sequences, and performs taint analysis on
the callback sequences to detect malicious behaviors.

The contributions of this paper are summarized as follows. First, Dexteroid detects
attacks that are missed by existing tools, due to the inclusion of omitted states and tran-
sitions in the life cycle models. Second, to the best of our knowledge, this research is
the first that uses event sequences (derived from a life cycle model) to generate call-
back sequences for analysis. Although callback sequences are considered in previous
studies, most of such sequences will not occur in real apps because they do not satisfy
the guard conditions. As a consequence, this could lead to a high false positive rate.
Third, our research is also the first to systematically generate and analyze permutations
of event sequences. This is because certain attacks can only be detected by analyzing
more than one event sequences in a given order. Finally, we have designed and im-
plemented a prototype of Dexteroid and conducted extensive experiments. The results
show that the proposed framework significantly improves both precision and recall.

The rest of the paper is organized as follows. Section 2 provides background on
Android components, and a motivating example to show the limitation of an Android-
supplied life cycle model of a component. Section 3 presents Dexteroid framework.

3

Section 4 provides the implementation details of Dexteroid and Section 5 presents ex-
perimental evaluation. Section 6 describes the related work. The last section concludes
the paper and discusses future work.

2. Background and Motivating Example

Android defines four basic components to develop Android applications: (1) Activ-
ity implements the application logic as well as provides an interactive screen to the user;
(2) Service performs long-running operations and runs in the background; (3) Broad-
castReceiver responds to system-wide notifications; and (4) ContentProvider manages
structured data.

Each component has a life cycle. That is, it goes through a series of phases, possibly
iterates some of the phases, during its life time. For example, an activity goes through
three phases when it becomes visible, partially visible and completely hidden to the
user. The transitions of a component from one phase to another are caused by the
occurrences of events, which trigger the invocations of callback methods or callbacks
in short. In the following sections, we define important concepts shown in italic font in
the sentences that define them. These concepts will be used throughout the paper.

2.1. Basic Definitions
An event is some happening of interest; it can be an external event, or an internal

event. An external event occurs when the app user submits a request, or performs an
action, such as tapping a button on an activity’s user interface. The device hardware
captures such events and delivers them to the operating system. An internal event
is generated by the operating system when certain condition, such as low on memory,
becomes true. Such events are captured by the operating system. Whenever an external
or internal event occurs, the operating system calls functions of the components. These
are callback functions or callback methods. More specifically, a callback method is
a method of a component that is invoked by the operating system in response to an
internal or external event. Table 1 shows example user operations, the corresponding
events, and callback sequences that are invoked by the OS in an activity.

Table 1: Sample User Operations, Triggered Events, and Invoked Callbacks in An
Activity

Operation performed Triggered event Invoked callback sequences
(1) Tap on app icon to start an activity createActivity onCreate(), onStart(), onResume()
(2) After (1), press Back button on the device backPress onPause(), onStop(), onDestroy()
(3) After (1), press Home button on the device overlapActivity onPause(), onStop()
(4) After (3), start the app from launcher menu restartActivity onRestart(), onStart(), onResume()

2.2. Android-Supplied Activity Life Cycle Model
The life cycle of a component can be modeled by a state machine. The phases of the

component are represented by states, and transitions between phases are represented
by state transitions. Figure 1 shows the Android-supplied activity life cycle model
[16] which describes the state-dependent behavior of an Android activity. It contains

4

eight states including one initial state (Android robot icon) and nine state transitions.
Each state transition in the model is caused by the invocation of a callback by the
operating system. These callbacks are called life cycle callbacks. For example, when
a user opens or starts a new activity, createActivity event is triggered as shown in first
operation of Table 1. The system invokes the callback sequence (e.g., onCreate(),
onStart() and onResume()) in the activity and in response, the activity makes
transitions to Created, Started and Resumed state, respectively. Activity waits for user
interaction in the Resumed state. A user can trigger many events in this state which
can make activity visit different states.

Destroyed

Created

Started
 (visible)

Resumed
 (visible)

Paused
(partially visible)

Stopped
(hidden)

Restarted

onPause()

onCreate()

onStart() onStop()

onDestroy()

onRestart()
onStart()

onResume()
onResume()

- static state
- transient state

Figure 1: Android-Supplied Activity Life Cycle Model [16]

Activity states are classified into static states and transient states [16]. A static
state requires an external event to cause the invocation of a callback method which in
turn triggers a state transition. Thus, an activity can stay in a static state indefinitely,
depending upon when the external event arrives. The state transition for a transient
state takes place automatically and immediately after its associated callback method is
invoked. For example, when the activity visits Created state, it automatically moves
to Started state (both are transient states) and then moves to Resumed state (a static
state). Figure 1 shows both static states (with bold border lines) and transient states.
According to this model, the user can interact with the activity only when it is visible
to the user in Resumed state.

There are seven life cycle callbacks in activity life cycle model shown in Figure
1. In addition to these callbacks, other types of methods which are defined in Android
applications are activity user-interface (AUI) callbacks, miscellaneous callbacks and
developer-defined methods. Activity user-interface callbacks or AUI callbacks are in-
voked by the operating system in response to external events on AUI elements. For
example, a typical user interaction of clicking a button triggers an event which causes
the system to invoke its registered callback (e.g., onButtonClicked()). Since only
an activity can provide user-interface for an application, AUI callbacks are defined in
the activity code. However, they can be registered with a layout xml file or dynamically
within the activity code. Miscellaneous callbacks can be invoked by internal or exter-
nal events and are not part of life cycle model of a component. For example, a user
tap on the screen causes the system to invoke onUserInteraction() callback.

5

Similarly, the system can trigger a ‘lowMemory’ event to invoke onLowMemory()
callback in both activity and service components. A developer-defined method is a
method which is executed by the system only when there is an explicit call to such
a method. Such methods can be invoked from callback methods or other developer-
defined methods.

The life cycle models of BroadcastReceiver and ContentProvider components are
straightforward: each contains one state and a callback method (onReceive() and
onCreate(), respectively). Activity is prevalent in Android apps and handles all
types of (above-defined) methods which makes its life cycle model more complex com-
pared to other components. Thus, we first discuss activity component and then service
component in detail in this paper.

2.3. Motivating Example
An attacker can launch a targeted attack using program flows overlooked by the

analysis tools. The motivating example shows that an attack can be designed to launch
by invoking a set of callbacks in a specific order. It further shows that Android-supplied
activity life cycle model can be exploited to launch such attacks due to its omission of
certain states and transitions. The example is a calculator app shown in Figure 2a, in
which a user can perform different operations, and then view their history in a dialog
activity as shown in Figure 2b. Listing 1 shows the app code. To save space, non-
essential code such as calls to super class functions and exception handling is omitted.

(a) A user can perform many calculations here (b) Calculations history is shown in a dialog activity

Figure 2: A Calculator Application

Consider the following sequence of operations performed by the user: (1) User
starts an activity for the first time. (2) The user performs a few calculations and taps
History button. History dialog activity is displayed as shown in Figure 2b. The user
taps Back button on the device to get back to MainActivity. (3) The user presses
Home button on the device and later opens the app again from launcher menu. (4) The
user rotates the device from portrait view to landscape view for better view of the app
layout.

Each of the above user operations triggers a sequence of one or more events which
causes the system to invoke a sequence of callback methods in the activity. The respec-
tive callback sequences for these operations are: (1) onCreate() and onResume().
(2) onBtnClicked(), onUserLeaveHint(), onSaveInstanceState().

6

This callback sequence obtains deviceID (line 18 of Listing 1) and stores it in d1 vari-
able. Upon returning to the activity, onResume() is invoked by the operating system.
(3) onUserLeaveHint(), onSaveInstanceState(), and onResume(). This
callback sequence copies deviceID to d2 variable (line 16) and then stores it into
the outState bundle (line 21). (4) Upon rotation of the device, the activity is de-
stroyed and recreated. Upon destroying, onSaveInstanceState() is invoked
which stores the deviceID in the outState bundle again. Three callbacks (onCreate(),
onRestoreInstanceState(), and onResume()) are invoked upon recreating
the activity. This callback sequence obtains deviceID from the state object (line 9)
and leaks it by sending a text message (line 13) to a number given in recpNo variable.

Listing 1: Motivating Example
1 public class MainActivity extends Activity {
2 String d1 = ""; String d2 = "";
3 String d3 = ""; String recpNo = "1066156686";
4

5 void onCreate(Bundle instance){
6 setContentView(R.layout.activity_main);
7 }
8 void onRestoreInstanceState(Bundle state){
9 this.d3 = state.getString("myData");

10 }
11 void onResume(){
12 if(!d3.equals(""))
13 SmsManager.getDefault().sendTextMessage(recpNo, null, d3, null, null);
14 }
15 void onUserLeaveHint(){
16 this.d2 = this.d1;
17 TelephonyManager tMgr = (TelephonyManager) getApplicationContext().getSystemService(

TELEPHONY_SERVICE);
18 this.d1 = tMgr.getDeviceId();
19 }
20 void onSaveInstanceState(Bundle outState){
21 outState.putString("myData", this.d2);
22 }
23 void onBtnClicked(View v){
24 if(v.getId() == R.id.add){ ... }
25 ... //calculator code here.
26 }
27 }

The above attack leaks sensitive information when a set of callbacks are invoked in
a specific order. The onUserLeaveHint() callback is invoked twice by two differ-
ent events to obtain and store the deviceID. While these two events can occur in any or-
der, they must be followed by a device-rotation event to successfully launch the attack.
These events can be triggered easily in real-world scenarios because pressing Back or
Home button is commonly used to switch between the activities and the apps. However,
their invoked callback sequences must be analyzed in the given order to detect this at-
tack. Moreover, the example involves callbacks such as onUserLeaveHint() and
onSaveInstanceState() to launch the attack. The system invokes these call-
backs in response to different events upon activity. Android-supplied activity life cycle
model omits these callbacks and their associated states, and hence, it will not be able
to detect the above attack. Therefore, a better activity life cycle model is required.

7

3. Dexteroid Framework

This section presents the Dexteroid framework, as shown in Figure 3. It uses
reverse-engineered life cycle models that include states and transitions previously omit-
ted in Android-supplied life cycle models. Dexteroid inputs an Android Application
Package (APK) file and decompiles it using Androguard [17] to extract Dalvik byte-
code and its manifest file. It identifies registered components from the manifest file
and analyzes these components iteratively. For each component, the framework sys-
tematically derives event sequences from the reverse-engineered life cycle model and
then derives callback sequences from these event sequences. These callback sequences
are guaranteed to be feasible because they are derived from the event sequences which
themselves are derived from the component life cycle model. Dexteroid then generates
permutations of callback sequences and performs taint analysis on them to detect ma-
licious behaviors. The following sections describe the reverse-engineering of these life
cycle models, and derivation of callback sequences in detail.

Reverse-
engineered
Life Cycle

Models

Derive Event
Sequences

Derive
Callback

Sequences

Attack
Report

Dexteroid Framework

Generate
Permutation
of Callback
Sequences

Detect
Malicious
Behaviors

Extract Dalvik
Byte Code

And Manifest

Input Output

APK

Figure 3: Dexteroid Framework

3.1. Reverse-Engineering of Activity Life Cycle Model

We follow [18] to reverse-engineer the activity life cycle model. An Android app
is developed in which each activity contains all life cycle callbacks, extracted from
Android API documentation. We add Log.v() API call in all the callbacks of the
activity. When a callback is invoked, the API call records that information. An exten-
sive set of operations are performed upon an activity to trigger events which an activity
can possibly receive during its execution. Table 2 shows a subset of user and system
operations which we use to trigger events upon an activity. When an event is triggered,
a set of life cycle callbacks are invoked in a specific order. For example, when a user
opens an activity for the first time, createActivity event is triggered. This event causes
the system to invoke a sequence of callbacks in the activity as shown in Table 2. Using
triggered events and the observed activity behavior, we reconstruct activity life cycle
model as shown in Figure 4. We use UML state diagram with composite sequential
states (CSS) [19] to present the proposed model and refer to it as the CSS model (of an

8

Android activity). This model contains new states (e.g., PostCreated) as well as all the
states (e.g., Created) shown in the Figure 1.

Table 2: User or System Operations and Resultant Triggered Events and Callbacks

User or System Operation Triggered
Eventa Invoked Activity Life Cycle Callbacks

1) Tap on app icon or start from
another activity createActivity∗

onCreate(), onStart(), onPostCreate(),
onResume(), onPostResume()

(2) After (1), press Back button
on the device

backPress onPause(), onStop(), onDestroy()

(3) After (2), tap on app icon to
start activity createActivity∗

onCreate(), onStart(), onPostCreate(),
onResume(), onPostResume()

(4) After (1), rotate the device
(e.g., from vertical to horizon-
tal)

confPR onPause(), onSaveInstanceState(),
onStop(), onDestroy(), onCreate(),
onStart(), onRestoreInstanceState(),
onPostCreate(), onResume(), onPostResume()

(5) After (1), alarm goes off stopActivity? onPause(), onCreateDescription(),
onSaveInstanceState(), onStop()

(6) After (5), snooze or stop the
alarm restartActivity†

onRestart(), onStart(), onResume(),
onPostResume()

(7) After (5), rotate device and
snooze or stop the alarm

confPOS‡ onDestroy(), onCreate(), onStart(),
onRestoreInstanceState(), onPostCreate(),
onResume(), onPostResume()

(8) After (1), press Home button
on phone overlapActivity◦

onUserLeaveHint(), onPause(),
onCreateDescription(),
onSaveInstanceState(), onStop()

(9) After (8), start the app from
launcher menu restartActivity†

onRestart(), onStart(), onResume(),
onPostResume()

(10) After (8), rotate device
and start the app from launcher
menu

confPOS‡ onDestroy(), onCreate(), onStart(),
onRestoreInstanceState(), onPostCreate(),
onResume(), onPostResume()

(11) After (8) or (5), the system
kills the process to recover
resources

killProcess• onDestroy()

(12) After (1), tap on add to
bookmark icon on the device
(e.g., Nexus 5 phone)

overlapActivity◦
onUserLeaveHint(), onPause(),
onCreateDescription(),
onSaveInstanceState(), onStop()

(13) After (12), remove the app
from bookmarks list

killProcess• onDestroy()

(14) After (1), start a dialog
activity from this activity hideActivityPartially�

onUserLeaveHint(), onPause(),
onCreateDescription(),
onSaveInstanceState()

(15) After (14), press Back
button

gotoActivity4 onResume(), onPostResume()

(16) After (14), press Home
button

savStop∧ onStop()

(17) After (16), start the app
from launcher menu

savRestart onRestart(), onStart()

(18) After (17), press Home
button

savStop∧ onStop()

(19) After (17), press Back
button

gotoActivity4 onResume(), onPostResume()

(20) After (14) or (17) , rotate
the device

confSTP onStop(), onDestroy(), onCreate(),
onStart(), onRestoreInstanceState(),
onPostCreate(), onResume(),
onPostResume(), onPause()

(21) After (20), press Back
button

gotoActivity4 onResume(), onPostResume()

(22) After (20), press Home
button

gotoStop onCreateDescription(),
onSaveInstanceState(), onStop()

Continued on next page

9

Table 2 – continued from previous page

User or System Operation Triggered
Eventa Invoked Activity Life Cycle Callbacks

(23) After (20), rotate the
device

confPAU onSaveInstanceState(), onStop(),
onDestroy(), onCreate(), onStart(),
onRestoreInstanceState(), onPostCreate(),
onResume(), onPostResume(), onPause()

(24) After (22), rotate device
and start the app

confSTO onDestroy(), onCreate(), onStart(),
onRestoreInstanceState(), onPostCreate(),
onResume(), onPostResume(), onPause()

(25) After (13), open the app
createActivity∗

onCreate(), onStart(), onPostCreate(),
onResume(), onPostResume()

(26) After (1), start another
activity overlapActivity◦

onUserLeaveHint(), onPause(),
onCreateDescription(),
onSaveInstanceState(), onStop()

(27) After (1), open notification
bar and tap on a notification overlapActivity◦

onUserLeaveHint(), onPause(),
onCreateDescription(),
onSaveInstanceState(), onStop()

(28) After (1), lock phone by
pressing Power button

stopActivity? onPause(), onCreateDescription(),
onSaveInstanceState(), onStop()

(29) After (28), unlock the
device restartActivity†

onRestart(), onStart(), onResume(),
onPostResume()

(30) After (1), receive the phone
call

stopActivity? onPause(), onCreateDescription(),
onSaveInstanceState(), onStop()

(31) After (30), accept and
finish the call or reject the call restartActivity†

onRestart(), onStart(), onResume(),
onPostResume()

(32) After (1), message preview
notification is received (e.g.,
from Viber [20] app)

hideActivityPartially�
onUserLeaveHint(), onPause(),
onCreateDescription(),
onSaveInstanceState()

a
Different user or system operations can trigger the same event—marked with the same symbol—in the above table. For
example, user operations (8), (12), (26), and (27) trigger overlapActivity event and invoke the same callback sequence
for the activity.

3.2. Our Proposed CSS Model

This section describes elements of the CSS model and its interpretation in detail.
Composite Sequential State: A CSS is a region of states which are related by state
transitions and only one of its states can be active at any given time [19]. When a
CSS is entered, the activity makes a transition from its pseudo-initial state (represented
with •) to the default state automatically. Similarly, a final state (represented with
•©) shows that no more state transitions are possible within this CSS. A CSS is a

static CSS if any of the substates is static, otherwise it is a transient CSS. In Figure
4, three life cycle states (Started, Resumed and Paused) are decomposed into their
respective CSS states (Started-CSS, Resumed-CSS and Paused-CSS). At a higher level,
the activity shows similar behavior both in a CSS and its counterpart non-CSS state but
CSS contains additional states to characterize more detailed behavior of the activity.
Guard Conditions: An activity can receive different types of events in a static state.
Based on the current and/or previously triggered events, the activity can make a spe-
cific sequence of state transitions. The event-related information required to make a
transition is shown using guard conditions, enclosed in ‘[’ and ‘]’ in Figure 4. A tran-
sition from a static state requires new event to be triggered. Guard condition for such
a transition indicates the new (and now current) event which needs to be triggered for
this transition. However, transition from a transient state does not require new event to
be triggered from this state. Guard condition for such a transition is evaluated for the

10

Resumed
Transient-

Paused

Static-
Stopped

Restarted

Created

[else]
onPostResume()

[ce==(hideActivityPartially ||
overlapActivity)]

onUserLeaveHint()

[ce==(confPR ||
backPress ||
stopActivity)]

[ce==backPress]

[(ce==savRestart && pe==savStop) ||
(ce==restartActivity && pe≠savStop)]

onRestart()

[else]
onCreateDescription()

[ce==gotoActivity]
onResume()

[else] onDestroy()

UserLeave-
Hint

onPause()

StaticSaved-
InstanceState

onResume()

onStart()

onCreate()

onStart()

StaticPost-
Resumed

[ce==(overlapActivity||
stopActivity ||

savStop||
gotoStop)]
onStop()

[ce==create
Activity]

onCreate()

Created-
Description

[ce==hideActivityPartially]
onSaveInstanceState()

[ce==confPR]
onSaveInstanceState()

TransientSave
dInstanceState

Transient
Stopped

[else]
onSaveInstanceState()

[else]
 onStop()[ce==backPress] onDestroy()

Transient
DestroyedStatic

Destroyed [ce==killProcess]
onDestroy()

[ce==kill
Process]

[ce==restart
Activity]

RestoreInsta-
nceState

PostCreated

[else]
onRestoreIns
tanceState()

onPostCreate()

[ce==createActivity]
onPostCreate()

Transient-
Started

Static-
Started

[else]

[ce==savRestart]

[ce==savStop] onStop()

[ce==(savStop ||
confSTP)]

[(ce==confSTO && pe==gotoStop) ||
(ce==confPOS && pe�gotoStop)]

onDestroy()

[ce==got
oActivity]

Static-
Paused

[ce==(confPAU || confSTP ||
confSTO)] onPostResume()

[ce==confPAU]
onSaveInstanceState()

[ce==gotoStop]
onCreateDescri

ption()

[ce==confSTP]
onStop()

[ce==(confPAU ||
confSTP ||
confSTO)]

[else]
TransientPo
stResumed

[ce==gotoActivity]
onResume()

[ce==createActivity]
onCreate()

- transient
state

- static
CSS

- pseudo initial
state

- final
state

- transition - guard
condition

[<Entry>] - system-
invoked callback

<m>()- static
state

- current
triggered event

ce - previous
triggered event

pe

Figure 4: Composite Sequential State Model (The Reverse-engineered Activity Life
Cycle Model

current triggered event from the last-visited static state. The activity makes a transi-
tion when guard condition is true or no guard condition is shown (which means always
true). In a case, when a transition can occur in response to multiple events, it is repre-
sented by ‘[else]’ branch, which is evaluated after all if conditions have been evaluated
to false.
Dual State Behavior: An activity stays only in a static state. However, depending
upon the triggered event, the static state may also behave like a transient state. In
that case, the activity visits the static state and moves to the next state immediately.
To distinguish between specific behaviors of a state, we present such static state as
two states. For instance, Stopped state which shows dual state behavior is shown as
TransientStopped state and StaticStopped state in Figure 4. Both states have the same
callback method (onStop()) for the activity to reach these states.
Explanation: All of the CSS states shown in Figure 4 are static CSS. The Resumed-
CSS state is reached with a call to onResume() callback method and it contains Re-
sumed, StaticPostResumed, TransientPostResumed and UserLeaveHint states. When
createActivity event is triggered from the initial state (Android robot icon), the activity
goes through different states to reach Resumed-CSS state. Upon entrance to this state,
the activity makes a transition from its pseudo-initial state (•) to Resumed state auto-
matically. Depending upon the triggered event, it moves to StaticPostResumed state or
TransientPostResumed state. When reached its StaticPostResumed state, the activity
waits for user-interaction in this state and requires a trigger to make next transition.
This indicates that Resumed state itself is a transient state as opposed to what is shown

11

in Figure 1 while StaticPostResumed state is a static state.
A triggered event in a static state can make activity go through a sequence of

transient states until it reaches its next static state. The specific sequence of states
that it goes through is dependent upon the triggered event. For example, rotating
a device from portrait view to landscape view in StaticPostResumed state triggers a
confPR event ((4) in Table 2). This event indicates the change in configuration for
the current app and the system destroys current activity in response and recreates
it in accord with the new configuration. The activity visits a sequence of transient
states in the CSS model to reach back to its StaticPostResumed state. Specifically, it
visits TransientPaused, TransientSavedInstanceState, TransientStopped, TransientDe-
stroyed, Created, TransientStarted, RestoredInstanceState, PostCreated, Resumed, and
StaticPostResumed states. In StaticPostResumed state, the user can trigger the same
or other event regardless of the previously triggered event. However, in some case,
the next state transition from a static state may be dependent upon the previously trig-
gered event from a static state. This scenario is shown with additional guard conditions
(&&) in Figure 4. For example, consider the state transition from StaticStopped state
to Restarted state under the same operation: the savRestart event is triggered only if
the previously triggered event is savStop, otherwise the restartActivity event is trig-
gered. Though both events bring activity to Restarted state but the future transitions
between the transient activity states are dependent upon the triggered event. The ac-
tivity visits Restarted and StaticStarted states for savRestart while it visits Restarted,
TransientStarted, Resumed, and StaticPostResumed states for the restartActivity event.

Table 2 shows that one single event can be triggered by many different operations.
For example, user operations (8), (12), (26), and (27) trigger overlapActivity event
and cause the system to invoke the same callback sequence for the activity. Thus,
Figure 4 shows only one triggered event from StaticPostResumed state for all these
user operations. We perform reverse-engineering on Android 4.4 (alias KitKat) version
which is the most widely used Android platform installed by the users1. The reverse-
engineered life cycle model in Figure 4 is much closer (if not completely same) to the
real life cycle than the Android-supplied activity life cycle model. This is due to use of
an extensive set of input events, which cover most of the events that can be triggered
in day-to-day app usage. This results in high coverage of callback flows in the activity
life cycle. However, like all other dynamic analysis approaches, our method may miss
some callback flows present in the real activity life cycle. In the future, we will define
test-adequacy code coverage criteria, and utilize automatic testing tools as well as code
coverage tools to substantially increase code coverage of the activity life cycle.
Example: The motivating example contains four operations. The first operation trig-
gers createActivity event and the activity reaches its StaticPostResumed state. The sec-
ond operation triggers hideActivityPartially and gotoActivity events and in response,
the activity moves to StaticSaveInstanceState and then StaticPostResumed state. The
third operation triggers overlapActivity and gotoActivity events while the fourth oper-
ation triggers confPR event. The activity visits many states against these events before

1Around 40% of the users are using Android KitKat at the time of publication (https://developer.
android.com/about/dashboards/index.html).

12

https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html

it reaches StaticPostResumed state.

3.3. Deriving Event Sequences

A motivated attacker can design a targeted attack which is launched only by a
specific ordering of the life cycle callback methods. Existing techniques such as [15]
analyze all possible orderings of callbacks to detect such attacks. However, such an
approach may lead to many false positives because most of the callback sequences
will not occur in a real Android app. For example, given an activity that contains all
callbacks given in the CSS model, an ordering sequence containing onCreate()
right after onStart() would violate the activity life cycle model and cannot occur
in an app.

3.3.1. Event Sequence-based Analysis
An activity waits for user interaction in its StaticPostResumed state. It can receive

different events in this sate. A triggered event can cause the activity to visit a specific
sequence of states. Following a visited state sequence in the CSS model, one can de-
rive callback sequence that the system invokes for a particular event. Thus, performing
analysis at event level becomes promising to analyze activity component because all
event-generated callback sequences follow activity life cycle model and can occur in an
Android app. To detect attacks that are launched by specific ordering of events, an anal-
ysis tool can consider permutation of events (i.e., their generated callback sequences)
for analysis. However, such an approach can lead to false positives because some of
the events in the CSS model occur only in a specific order. For example, in a Static-
PostResumed state, a user tap on Home button of the device triggers overlapActivity
event (e1) which moves current activity to its StaticStopped state and hides the activity
and the app into background. The user cannot interact with the activity in this state
unless an event is triggered which brings activity back to its StaticPostResumed state.
Thus, reopening the app triggers restartActivity event (e2) and the activity reaches its
StaticPostResumed state. These two events (e1 and e2) can occur only in this specific
order. Similarly, other events such as hideActivityPartially and gotoActivity can be
triggered only in the given order. Thus, analysis of event permutations can produce
false positives because some event sequences generated by the event permutation may
not occur in an app.

A key observation from the above discussion is that the event sequence (e1-e2)
makes the activity visit a combined sequence of states which starts from, and ends with
StaticPostResumed state. The user cannot directly interact with the activity (e.g., on
UI elements) in the intermediate states except triggering an e2 event. Such an event
sequence behaves like an individual event. Before and after execution of the event
sequence, the activity stays in its StaticPostResumed state where it can receive new
events, independent of previously triggered events. One can derive such event se-
quences from the CSS model which implies that the order of events in the sequences
is guaranteed to be feasible. Thus, considering event sequences in place of individual
events becomes very promising to accurately analyze activity component in Android
apps. The following section presents an algorithm to derive such event sequences from
the CSS model.

13

Algorithm 1 Driving Event Sequences from the Activity Life Cycle Model
Input:

M . State transition model
1: procedure ACTIVITYEVENTSEQUENCES(M)
2: s = M .getInitialState() . s gets initial state
3: e = NIL . e gets current triggered event
4: z = StaticPostResumed . z gets a goal state
5: T = NIL . T gets the running event sequence
6: for all State q ∈M do
7: q.color = WHITE
8: EVENTSEQUENCEDERIVATION(M, s, e, z, T)

3.3.2. Event Sequence Derivation Algorithm
The CSS model shown in Figure 4 is a compact representation of the activity life

cycle model. To facilitate the formulation and implementation of the event sequence
derivation algorithm, the CSS model is converted into a flat state diagram using the
semantics presented in Section 3.2. The resulting state transition model M retains the
static and transient states, while eliminates the CSS states. In addition, a transition with
a disjunctive guard condition “[e1 || e2 || ... || en]” is replaced by n transitions, which
can be triggered by the n events, respectively.

More formally, the model M is a 5-tuple (S, S0, Σ, Λ, δ):

• S is a set of static and transient states (e.g., Created state)

• S0 is an initial state (Android robot)

• Σ is a set of input events (e.g., createActivity)

• Λ is a set of callbacks (e.g., onCreate())

• δ: S × Σ→ S × Λ is a state transition function, which returns the next state and
a callback function.

Algorithm 2 describes an algorithm for deriving event sequences from state model
M by extending Depth First Search (DFS) algorithm described in [21]. It explores all
the events which can be triggered from a given static state and makes state transitions
based upon triggered events. It builds event sequences along the way which make
activity reach its goal state (i.e., StaticPostResumed for the CSS model). The algorithm
is passed five parameters: (1) a state model M , (2) current state s, (3) current triggered
event e (guard condition based on which next state transition is determined), (4) goal
state z, and (5) the running event sequence T .

Algorithm 1 takes the state model M as an input and performs initializations. It
then invokes Algorithm 2 to generate event sequences for activity life cycle model.
Starting from the initial state, Android robot (which is a static state), the algorithm
explores all possible transitions against different events which can occur from a static
state (line 14). In each iteration of the loop, a transition against a specific event is ex-
tracted and that event information is passed to future invocations of the algorithm. The

14

algorithm traverses a sequence of transient states based on the triggered event (line 22)
until it reaches the next static state. The algorithm returns when it reaches the Static-
PostResumed state because this state is already being explored in earlier invocation of
the algorithm.

Algorithm 2 Event Sequence Derivation From A State Model
Input:

M . State transition model
s . Current state
e . Current triggered event
z . Goal state
T . Running event sequence

1: procedure EVENTSEQUENCEDERIVATION(M, s, e, z, T)
2: if s.color 6= WHITE && s.name == z then
3: print T . T is an event sequence, starting from createActivity
4: return
5: else if s.color == RED && s.type == STATIC then
6: return
7: else
8: if s.type == STATIC then
9: currStateColor = s.color

10: if s.color == WHITE then
11: s.color = GREY
12: else
13: s.color = RED
14: for all Transition tr ∈M .nextTransitions(s, e) do
15: n = M .getTriggeredEvent(tr,e)
16: s′ = M .getDestination(tr)
17: tempT = T
18: if s′ 6= s then . avoid self-loop
19: Append n to tempT
20: EVENTSEQUENCEDERIVATION(M, s′, n, z, tempT)
21: s.color = currStateColor
22: else if s.type == TRANSIENT then
23: tr = M .getTransition(s,e)
24: s′ = M .getDestination(tr)
25: if s′ 6= s then . avoid self-loop
26: EVENTSEQUENCEDERIVATION(M, s′, e, z, T)

Handling Loops: The color attribute for a state is introduced to show its visited status
by the algorithm. Initially, all the states are set to WHITE. When events are explored
from a static state for first time, its color is set to GREY; upon another visit, its color
is set to RED. The three values for color attribute are introduced to capture all possi-
ble flows (at least once) among the activity states. For example, the state transitions
between StaticStopped and StaticStarted states form a loop in Figure 4 and it is desired

15

to capture the flow from end of loop to start of the loop at least once. Upon first visit,
the color of StaticStopped state (start of the loop) is set to GREY and savRestart event
is explored. The activity reaches its StaticStarted state. A savRestart event from this
state brings activity back to StaticStopped state. The color of StaticStopped is set to
RED and all events are explored again but the algorithm returns if StaticStopped is
seen again (line 5-6). The algorithm ignores self-loops while making state transitions
between the states. The color of transient states is not set or used because they do not
introduce new events to the sequences and just make transitions based on an already
triggered event.
Derived Event Sequences: All event sequences produced by the algorithm are shown
in Figure 5. When createActivity event is triggered for the first time, the activity
reaches its StaticPostResumed state and can then follow any of the 26 event sequences
presented in Figure 5. After the createActivity event, all other events in a sequence
move the activity from StaticPostResumed state and bring it back to StaticPostRe-
sumed state.

create
Activity

hideActivity
Partially

gotoActivity

confSTP

gotoStop

confSTO
gotoActivity

gotoStop killProcess createActivity

killProcess createActivity

confPAU
gotoActivity

gotoStop killProcess createActivity
gotoActivity

savStop

killProcess createActivity

savRestart

gotoActivity

confSTP

gotoActivity

confPAU
gotoActivity

gotoStop killProcess createActivity

gotoStop
confSTO gotoActivity

killProcess createActivity

savStop

killProcess createActivity

savRestart
gotoActivity

confSTP
gotoActivity

confPAU gotoActivity

overlapActivity

restartActivity

confPOS

killProcess createActivity

backPress createActivity

confPR

stopActivity

restartActivity

confPOS

killProcess createActivity

Figure 5: 26 Derived Event Sequences for the Reverse-Engineered Activity Life Cycle Model

45

Figure 5: Twenty-six derived event sequences for the reverse-engineered activity life
cycle model

3.4. Service Life Cycle Model
3.4.1. Android-Supplied Service Life Cycle Model

A service performs long running operations in the background and does not provide
a user interface. The life cycle of a service [22] depends upon how a service is run. A

16

service started by another application component (e.g., activity) using startService()
can run indefinitely, even if the component itself is destroyed later. The service is in
Started state now and should stop itself after the desired operations are completed. On
the other hand, a service bound to another component using bindService() runs
as long as the component is bound to it. The service can be bound to many com-
ponents simultaneously but it is unbound when any of the binding components calls
unbindService() API.

3.4.2. The Reverse-Engineered Service Life Cycle Model
Like activity, the Android-supplied service life cycle model omits some states and

transitions between the states. We apply the above mentioned technique (also described
in [23]) to reverse-engineer the service life cycle model. Static and transient states are
used to model the service life cycle as shown in Figure 6. The service is initially in
Shutdown state (static state). With events triggered from this state, the service can reach
its Started or Bound state. However, the service can be bound as well as started simul-
taneously to make it reach its BoundAndStarted state. In a Started state, if a service is
being bound for the first time or after the onUnbind() invocation has returned false,
the system invokes onBind() callback otherwise it invokes onRebind() callback.
This has been shown using guard conditions in Figure 6. The other API calls such
as startForeground() are not shown in Figure 6 because they do not cause any
interesting state transition or callback invocation for the security analysis purpose. The
completeness verification of the life cycle model is left as part of our future work.

Started

Created

Shutdown

Created

Bound

Destroyed

Unbound

BoundAnd
Started

[ce==start]
onStartCommand()

[ce==stop]

[ce==createAndStart]
onCreate()

[((ce==bind) &&
(isFirstBind ||

isUBReturnFalse))]
onBind()

[((ce==rebind) &&
isUBReturnTrue)]

onRebind()

[ce==unbind]
 onUnbind() [ce==start]

onStartCommand()

[ce==stopAndDestroy]
onDestroy() onDestroy()

[ce==unbindAndDestroy]
onUnbind()

[ce==bind]

onBind()
[ce==bind]

onStartCommand()

[ce==start]
onStartCommand()

[ce==createAndBind]
onCreate()

- transient
state

ce- transition - guard
condition

- current
triggered event

[<Entry>] - system-invoked
callback

<m>()- static
state

Figure 6: The Reverse-Engineered Service Life Cycle Model

3.4.3. Driving Event Sequences
Algorithm 2 derives event sequences from a state transition model which is based

on static and transient states. When applied to service life cycle model shown in Fig-

17

ure 6 with initial state as Shutdown and goal state as Destroyed state, the algorithm
produces 15 event sequences as shown in Figure 7.

3.5. Generating Permutation of Callback Sequences
This section first describes how callback sequences are derived from the event

sequences and then presents the logic to generate permutation of these callback se-
quences, and other callbacks (e.g., AUI callbacks).

3.5.1. Deriving Callback Sequences
Sections 3.1-3.4 present activity and service life cycle models and the event se-

quences derived from these models. Each event in these sequences causes the system
to invoke a specific sequence of callbacks in the respective component. Using Table
2, Dexteroid obtains callback sequences for the 26 activity event sequences and then
derives callback sequences using the life cycle callbacks defined in the activity code.
It further removes duplicate callback sequences from the list. Similarly, Dexteroid
obtains callback sequences for 15 event sequence of the service life cycle model. It re-
moves duplicate event sequences which can produce the same callback sequence. For
example, these two event sequences (createAndBind, start, unbind, stopAndDestroy;
createAndBind, start, stop, unbindAndDestroy) produce the same callback sequence.
It obtains 10 unique callback sequences from the 15 service event sequences shown
in Figure 6 and then derives callback sequences for analysis, given the actual service
callbacks.

<Shutdown>

createAndBind

unbindAndDestroy

start

unbind

bind
unbind stopAndDestroy

bind stop unbindAndDestroy

stopAndDestroy

rebind
unbind stopAndDestroy

stop unbindAndDestroy

stop
unbindAndDestroy

start unbind stopAndDestroy

createAndStart

bind

unbind

bind stop unbindAndDestroy

stopAndDestroy

rebind stop unbindAndDestroy

stop

unbindAndDestroy

start
unbind stopAndDestroy

stop unbindAndDestroy
stopAndDestroy

Figure 7: 15 Derived Event Sequences for the Reverse-Engineered Service Life Cycle Model

47

Figure 7: 15 Derived Event Sequences for the Reverse-Engineered Service Life Cycle
Model

Example: For the motivating example, Dexteroid identifies one activity and obtains the
26 callback sequences for the activity. With the given five activity callbacks, Dexteroid
derives 12 unique callback sequences for the analysis.

18

3.5.2. Generating Permutation Sequences
The callback sequences are derived from event sequences for both activity and

service life cycle models. They capture most of the callback orderings that can occur
in Android applications. However, a motivated attacker can still launch an attack using
a specific ordering of callback-sequences, in place of individual callbacks. A callback
sequence may be invoked more than once to launch the attack. Given the nature of a
typical user interaction with an Android app, a user can invoke these callback sequences
various times during the app life cycle. Thus, it is desired to analyze different orderings
of callback sequences to detect targeted attacks hidden in the obscure program flows.
Dexteroid uses permutation to obtain all possible orderings of these callback sequences.
Permutation Unit: After a createActivity event at the start in the activity event se-
quences in Figure 5, the remaining subsequences move activity from, and bring it back
to its StaticPostResumed state. Since they can be repeated randomly in any order in this
state, Dexteroid considers callback sequences derived from these event subsequences
as permutation units. Similarly, the AUI-callbacks and miscellaneous callbacks can
be invoked randomly in a StaticPostResumed state and are considered as permutation
units. Dexteroid generates permutation of all permutation units and obtains the per-
mutation callback sequences. It further prefixes these permutation callback sequences
with a callback sequence from the createActivity event. This ensures that only feasi-
ble flows are generated during permutation (e.g., a createActivity event from a Stat-
icPostResumed state would be an infeasible flow). The service does not have AUI
callbacks but can have miscellaneous callbacks (e.g., onLowMemory()), Dexteroid
generates permutation sequences for all permutation units.

3.6. Detecting Malicious Behavior

Dexteroid can analyze all components iteratively in any order. For each compo-
nent, it obtains permutation of callback sequences and analyzes them one by one. It
performs static taint analysis on them to detect malicious behaviors (see Section 4.1 for
implementation of taint analysis).
Threat Model: Dexteroid currently produces warnings for two types of attacks: (1)
leakage of sensitive information, and (2) sending SMS to premium-rate numbers. It
tracks sensitive information produced by any of the pre-defined source APIs through
callback sequences and reports a warning if such information is passed to any of the
sink APIs. Additional warnings are reported if an app sends SMS to hard-coded num-
ber or automatically replies to incoming SMS messages. The warnings may reflect the
legitimate functionality of the app, the determination of which is beyond scope of this
work. Dexteroid does not detect attacks based on implicit flows [24], Java reflection,
native code, or dynamically loaded-libraries. It further does not consider attacks for
detection that could be launched by exploiting system-level vulnerabilities [25, 26].
m-way Permutation: A permutation of all permutation units can provide thorough
analysis of the app code but it might be very resource-exhaustive task. Dexteroid in-
stead considers m-way permutation of N permutation units (i.e., NPm) where m is
1 ≤ m ≤ N . An m-way permutation generates sequences by taking m permutation
units at a time out of N permutation units. Dexteroid incrementally chooses m values
(starting from 1) for the analysis until it detects an attack. If an attack is found with

19

lower m values (e.g., 1-way permutation), it can stop the analysis on the current app,
and move to the next app.

With 1-way permutation, Dexteroid separately analyzes the 12 derived callback
sequences and onBtnClicked() method of the motivating example but does not
detect any attack. It then uses 2-way permutation for the analysis and detects that many
callback sequences can leak the deviceID. The 2-way permutation detects the attack
because the permutation sequences can contain onUserLeaveHint()method twice
to transmit the deviceID to other variables. Specifically, all those callback sequences
can detect the attack that contain (onUserLeaveHint(), onUserLeaveHint(),
onSaveInstanceState(), onRestoreInstanceState(), onResume())
callbacks in the given order. This attack seems difficult to launch because it demands
three event sequences to be triggered in a specific order but all of them are triggered
often during a typical user interaction with the Android apps.

4. Implementation

We have implemented a prototype of Dexteroid in Java. The tool works on Dalvik
bytecode of Android applications. We chose Dalvik bytecode [27, 28] so that our anal-
ysis does not get affected by inaccuracies which are introduced during decompilation
of an Android app into higher level languages [29, 30]. The following sections explain
the major components which Dexteroid uses to detect malicious behaviors in Android
apps.

Algorithm 3 Analysis Algorithm for an Activity

Input:
a . Input activity for analysis

1: procedure ACTIVITYANALYZER(a)
2: Sper ← Get callback sequences from m-way permutation of a
3: for all Sequence Pseq ∈ Sper do
4: for all Method d ∈ Pseq do
5: METHODANALYZER(d)

4.1. Taint Analysis

We call system defined APIs which produce sensitive data as source APIs and the
APIs which can potentially leak sensitive data out as sink APIs. A set of source and
sink APIs are specified in a configuration file which Dexteroid uses during analysis. It
marks a variable tainted if it obtains output of a source API. It performs forward taint
flow analysis while keeping a track of source APIs and reports a warning if a sink API
consumes data from a tainted variable. The reported warning contains specific sources
that can potentially be leaked by a sink API. For each source, Dexteroid reports its data
as well as its location in the code.

Dexteroid considers all components for analysis and handles them in an iterative
manner. For a component such as activity, Dexteroid derives the callback sequences

20

Algorithm 4 High-level Analysis Algorithm for a Method d
Input:

d . Input method for analysis
Sc . Context stack
Sm . Method call stack

1: procedure METHODANALYZER(d, Sc, Sm)
2: Remove back edges from CFG of d and add new edges if needed
3: Brpo ← Get basic blocks of d in reverse post order
4: for all BasicBlock bb ∈ Brpo do
5: for all Instruction i ∈ bb do
6: if i is a source API then
7: Mark output as tainted
8: else if i is a sink API then
9: Report information leakage if an input variable is tainted

10: else if i invokes a method dnew and dnew is not on stack Sm then
11: Save current context of symbol space on context stack Sc

12: Save dnew information on call stack Sm

13: Set relevant context for dnew
14: returnValue←METHODANALYZER(dnew)
15: Pop call stack Sm

16: Pop context stack Sc and set output to current context
17: Update symbol space with returnValue
18: else if i is a return statement then
19: Set return value for the caller method
20: else
21: Perform taint propagation on involved registers

21

from the event sequences generated by m-way permutation. It then analyzes the call-
back sequences as shown in Algorithm 3. For a callback sequence, it analyzes each
callback in the sequence using Algorithm 4. For each method d, Androguard [17] pro-
duces a control flow graph (CFG) consisting of basic blocks and directed edges between
them. Dexteroid detects natural loops and back edges in the CFG using dominators 2

[31] and removes back edges from the CFG (line 2 in Algorithm 4) . A back edge
typically forms a loop, and goes from end of true branch of the loop to the loop header.
To combine results at merge point from both branches (paths) of the loop, Dexteroid
adds new edge from end of true branch to false branch of the loop, as long as new edge
does not introduce a new loop in the CFG. Dexteroid then analyzes each basic block
in an order obtained by reverse-post-order (RPO) traversal of the CFG [32]. During
traversal, it maintains all analysis related information about predecessors and succes-
sors of a basic block which it later incorporates to perform path-insensitive analysis. It
combines tainted data from different paths (predecessors) at merge points in the CFG
[33]. This path-insensitive approach is more practical and less expensive as compared
to path-sensitive analysis, though it may produce false positives or false negatives in
some cases.

4.1.1. Context-Sensitive Analysis
Dexteroid analyzes each (callback) method d using Algorithm 4. It iterates over

instructions of each basic block where an instruction contains one of the 246 Dalvik
opcodes [28]. Dexteroid implements opcode-specific parsers and handlers which per-
form analysis on respective instructions. During the analysis, Dexteroid maintains a
symbol space (consisting of symbol tables at multiple levels) to keep up-to-date in-
formation about variables (registers) such that an instruction gets access to only those
variables which have been defined at current basic block, method, or class level, and at
global level (e.g., static fields).

Dalvik bytecode provides five invoke-kind instructions (e.g., invoke-virtual)
to invoke all types of APIs and methods [28]. If an instruction invokes a developer-
defined method or a library method for which definition exists in the app code (line 10
in Algorithm 4), its opcode-specific handler saves current context of symbol space on
context stack, finds the callee method by its signature, sets up context for the callee
method and invokes analysis on it. After completing analysis on the callee method, the
analysis execution automatically returns back to the caller-instruction handler which re-
trieves old context from the context stack and continues its analysis (line 10-17). Dex-
teroid obtains call-site context sensitivity by maintaining context automatically through
the instruction-specific handlers.
Handling recursive-functions: In addition to context stack, Dexteroid also maintains a
function or method call stack which it consults with before making the context-switch
for a callee method. If a method call with a matching signature does not exist in the
stack, it adds its entry into the stack and makes context switch otherwise it ignores
the method call. After a callee method returns, its entry from the stack is removed

2This loop detection technique does not work for irreducible CFGs which are rarely generated, however,
in our day-to-day programming [31]

22

and analysis of the caller method continues. Such an approach may not be completely
sound to analyze recursive functions but this does help Dexteroid avoid winding up
in an infinite loop, especially in two cases: (1) direct recursion in which a method
calls itself to implement the desired functionality, and (2) indirect recursion in which
multiple methods call each other to form recursion (e.g., method a calls method b and
method b calls method a).

4.1.2. Object and Field Sensitivity
To achieve high level accuracy, one important problem is how to obtain object-

level sensitivity to resolve aliasing during the analysis. In Dalvik bytecode, objects
are manipulated using variables (registers). Corresponding to each such variable, Dex-
teroid maintains one unique entry in the symbol tables. Each entry instance consists
of a name field and a details field of type ‘EntryDetails’. To resolve aliasing issues,
Dexteroid obtains shallow copy of a symbol table entry such that all changes made
later to shallow-copied object are automatically reflected in all aliases of that object. A
shallow-copied entry’s details object keeps pointing to the same details object of orig-
inal entry while a deep-copied entry’s details object gets a new copy of original details
object at a different memory location. During analysis, when one shallow-copied entry
is assigned a new object, other aliases still keep pointing to the original entry in the
memory. For primitive data types and immutable objects (e.g., String), Dexteroid
considers deep copy of symbol table entries for manipulations. This kind of heap ab-
straction ensures that all aliases are always pointing to the same object. Thus, when a
new method is called and context-switch happens, Dexteroid sets up formal parameters
by making shallow copy and deep copy of the actual parameters (depending upon their
data types). Similarly, Dexteroid obtains field sensitivity by storing each field within
‘fieldList’ of each symbol table entry’s details object. Each field in the ‘fieldList’ is
itself a symbol table entry, and recursively has its own ‘fieldList’. Dalvik bytecode [28]
provides a set of iget and iput instructions to access individual fields of an object.
Using these instructions, Dexteroid theoretically can maintain fields of any depth dur-
ing the analysis. This helps in performing very precise taint analysis for user-defined
classes with different fields (e.g., linked list). Consider an example in which a linked
list of objects of a user-defined class ’Node’ (with ’next’ and ’value’ fields) is defined,
and a specific node of the linked list (e.g., head.next.next.value) is set to tainted. Dalvik
bytecode uses iput and iget instructions to set and get these fields while to perform
analysis, instruction-specific handlers of Dexteroid recursively obtain, and store next
and value fields in ’fieldList’ of the head entry. Thus, when a specific node is accessed,
Dexteroid obtains the node and reports a warning if its value field is tainted.
Example: Listing 2 shows an object-sensitivity example, derived from example given
in [6]. The code creates x1 and y1 instances (line 2-3) for which Dexteroid creates two
symbol table entries and stores x1 symbol table entry into ‘fieldList’ of y1’s details
object. The variable x2 gets reference of instance x1 from y1 at line 4. Correspond-
ingly, Dexteroid makes shallow copy of the original symbol table entry pointing to x1
and renames it for x2. At line 5, Dexteroid invokes foo() and passes a copy of y1
symbol table entry as yP. Thus, when xT.val is assigned a source value (line 11),
Dexteroid taints its corresponding symbol table entry object in the memory. Upon re-
turn from analysis of foo(), changes made to x1 entry are automatically reflected in

23

x2 entry. Line 6 passes tainted value obtained from x2.getVal() to the sink API
for which Dexteroid reports an information leakage warning.

Listing 2: Object-Sensitivity Example
1 void main(){
2 x1 = new X();
3 y1 = new Y(x1);
4 x2 = y1.getX();
5 foo(y1);
6 sink(x2.getVal());
7 }
8 void foo(Y yP){
9 xT = yP.getX();

10 w = source();
11 xT.setVal(w);
12 }

Taint preservation along paths of a CFG: Dexteroid analyzes basic blocks of a CFG
in a fixed RPO order and conservatively combines results at merge points of the CFG.
It maintains an OUT symbol table for each basic block after completing its analysis.
An OUT symbol table reflects the method state after analysis of a basic block and is
used as an input by its successor basic blocks. At a merge-point basic block of a CFG,
results are combined (conservatively) from OUT symbol tables of all its immediate
predecessors. This means that if a tainted variable gets untainted along one path of CFG
but propagates taint on the other path, it will contain tainted information at the merge
point. However, since Dexteroid maintains shallow-copied entries corresponding to
heap objects, the first analyzed path may untaint a tainted object and cause the analysis
to modify, and untaint its corresponding symbol table entry in the memory. When the
second path is analyzed, it gets shallow-copy of the entry which would be untainted
now (caused by analysis of the first path). This will cause losing taints at the merge
point. To address this issue, Dexteroid sets a separate deep-copied duplicate of whole
OUT symbol table (OUTd) for each basic block after its analysis. Thus, if an entry is
modified and untainted along one path, the entries in OUTd are not modified, and still
contain taints for propagation along the other paths. An entry on any path can now
get preserved taints from the OUTd and propagate them to the merge point. The above
discussion assumed only one merge point in the CFG but in practice, there might be
many merge points for different predicates or loops. Another issue may arise during
the analysis in which an object can point-to different objects along different paths of a
CFG. A path-sensitive analysis can help Dexteroid to analyze separate program paths,
and resolve this issue but such an analysis is known to be a very expensive analysis.

4.1.3. Flow-Sensitivity
As shown in Algorithm 4, Dexteroid sequentially analyzes instructions in a basic

block while maintaining all up-to-date information about the variables. It performs on-
demand updates on the variables and hence automatically maintains flow-sensitivity
during the analysis.
Example: Listing 3 shows an example (derived from an example in [6]) where flow-
insensitive analysis would have reported two information leakage warnings at line 4
and line 6. At line 4, x2.getVal() is not tainted yet, Dexteroid does not report
anything but x1 gets tainted at line 5, Dexteroid then correctly reports information

24

leakage warning at line 6.

Listing 3: Flow-Sensitivity Example
1 void main(){
2 x1 = new X();
3 x2 = x1;
4 sink(x2.getVal());
5 x1.setVal(source());
6 sink(x2.getVal());
7 }

4.2. Handling APIs

While source and sink APIs are handled to produce and consume sensitive data re-
spectively, other set of APIs may play their part in taint propagation. These APIs belong
to different libraries such as Android, Java, and Apache etc. We have implemented spe-
cific handlers for most frequently invoked APIs, extracted from our evaluation dataset.
For example, call to an API such as Ljava/lang/StringBuilder;->append
is delegated to its specific handler which makes relevant variables tainted or untainted
based on information obtained from the symbol tables and API documentation. Simi-
larly, some native APIs such as Ljava/lang/System;->arraycopy have spe-
cific handlers for performing analysis on them. For remaining large set of APIs, Dex-
teroid has default invoke handlers which mark a caller object or returned value as
tainted if any of its input parameters or the caller object is tainted. However, the analy-
sis by default handlers is potentially unsound and may produce false positives because
output from an object containing sensitive information may not always be sensitive. For
example, for an ArrayListAPI (Ljava/util/ArrayList;->isEmpty()Z),
even if the list contains sensitive data, the returned boolean value from the list may not
provide any useful or sensitive information in most of the cases.

Dexteroid defines default handlers for all kinds of invoke instructions [28]. If
definition for the instruction-invoked method or API does not exist in the code, one of
the default invoke-kind handlers (e.g., InvokeStaticDefaultHandler) performs taint
analysis on it. For example, invoke-static makes calls to static methods and
APIs and does not need any caller or receiver object to invoke a method or API but
invoke-virtual typically requires it. When analyzing an API or a method call, the
invoke-specific handlers mark output value or caller object as tainted or not-tainted
based on input parameters and the caller object, if any. For collection objects (e.g.,
array, hashtable), Dexteroid considers the object as tainted if any of its elements gets
tainted. The object stays tainted even if the tainted element (specific indexed value) in
the object becomes untainted. However, it becomes untainted when a new untainted
object is assigned to it. For collection objects, it is difficult to statically get exact index
values, so marking the whole object as tainted ensures that we do not miss any attack,
though it may generate false alarms in some cases.

4.3. Handling Static Flow Discontinuity

Dexteroid handles static flow discontinuity issue [34] during the analysis which
arises when a component or method is invoked using a prototype which does not match

25

with its original prototype definition. For example, run() method of a thread is ex-
ecuted when a call to its start() method is made. Android dynamically resolves
such issues but a static analysis tool must handle such discontinuity issues during the
analysis. Similarly, an AsyncTask [35] is started by making a call to execute()
method but such a method is not defined for a task. In fact, following its life cy-
cle, Android invokes its four callbacks (onPreExecute(), doInBackground(),
onProgressUpdate(), and onPostExecute()) in the given order. Dexteroid
handles both component and method discontinuities by precisely making context switch
during the analysis. During preprocessing phase before the analysis, Dexteroid deter-
mines type of a class (e.g., task, thread) based on its parent class or defined (callback)
methods. Using this information, it determines if a caller to an execute() method
is an AsyncTask, and if so, it delegates analysis to the task-specific handler by mak-
ing a context-switch (as described in Section 4.1.1). The task handler analyzes all
callbacks following its life cycle model before returning back to the task-executor (or
caller) method. Similarly, a call to start() method is delegated to a thread handler
which analyzes its run() method before returning back to the caller method.

4.4. Comparison with Other Tools

This section compares the analysis approach of Dexteroid with those of other static
analysis tools such as FlowDroid [6] and DroidSafe [15], as below.

• Analysis-methodologies for event-triggered callbacks: Dexteroid analyzes per-
mutation of callback sequences which are systematically derived from the event
sequences, and are guaranteed to be valid callback sequences. In comparison,
FlowDroid builds a CFG of the callbacks (i.e., a dummy main method) and per-
forms analysis on paths of the CFG. This CFG-based approach may not accu-
rately model and analyze Android applications because they are event-driven
programs by nature. Events can invoke specific callback sequences in the pro-
gram and can themselves be triggered multiple times during the program execu-
tion. The CFG of callbacks, however, lacks guard conditions and does not reflect
conditional flows between the callbacks. A path-insensitive approach (such as
FlowDroid) combines results at merge points of the CFG which affects both ac-
curacy as well as precision. Thus, to bypass such an analysis, an attacker can
design attacks that are launched by specific ordering of event sequences, such
as given in the motivating example. In comparison, DroidSafe [15] considers
all possible orderings of callbacks for the analysis. The all possible ordering of
callbacks violates the activity life cycle model and can cause false positives in
the analysis results [15].

• Techniques for maintaining flow-sensitivity and call-site context-sensitivity: Dex-
teroid is inherently flow-sensitive and context-sensitive which leads to higher
accuracy and higher precision in the analysis results. It performs taint analy-
sis by analyzing callbacks guided by the callback sequences and within a (call-
back) method, it analyzes all instructions in a sequential order, maintaining flow-
sensitivity. Similarly, call-site context-sensitivity is ensured by an on-demand
analysis of the invoked method, as described in Section 4.1.1. In comparison,

26

FlowDroid uses context-injection in forward-analysis and backward-analysis to
maintain context-sensitivity. Furthermore, it relies on activation-statements to
achieve flow-sensitivity. Such an approach might be error-prone if all cases are
not handled carefully (We found in our experiments that FlowDroid is not able to
maintain flow-sensitivity for globally-defined objects, and can cause false posi-
tives. In one case, for a globally-defined object o1, a call to method m1() ini-
tializes o1, sets o1.f=deviceID, and then sets o1.f=“”. A call to method
m2() after m1() invokes o1.p() which gets f and passes it to a sink API.
FlowDroid reports an information leakage warning for this. This false positive
arises probably because of an on-demand backward analysis which is invoked
when a heap object is tainted. The backward analysis later causes forward anal-
ysis to map back to the caller of m1() from where it then spawns a forward
analysis. This forward-analysis analyzes m2() which then leads to reporting
of information leakage (i.e., a false positive)). Analysis of DroidSafe [15] is
context-sensitive but flow-insensitive. Its context-sensitivity is specific to object-
sensitivity: for a given method, it can accurately compute the receiver heap ob-
ject on which the method is called. However, it is unclear from the paper that
how the call-site context-sensitivity is maintained for static and direct method
calls.

• Alias-analysis approaches: Alias-analysis determines if two pointer variables or
references can point-to the same memory location during the program execution.
Corresponding to heap objects, Dexteroid maintains symbol table entries in the
symbol tables. Dexteroid resolves aliasing through shallow-copied entries such
that both entries point-to the same memory location (see Section 4.1.2). When-
ever a heap object is tainted, FlowDroid spawns backward-analysis to taint its
aliases which can further spawn new forward and backward analyses and so on.
It uses access-paths of specific length to track objects and their fields, and propa-
gates access-paths during the analyses. Our experiments show that alias-analysis
for global-level objects also gets affected by backward and forward analyses, as
discussed above. DroidSafe, in comparison, is very accurate in resolving-aliases
for object-sensitive analysis. It maintains k-level deep object-sensitivity for the
analysis.

• API-handling techniques: In addition to source and sink APIs, other APIs can
be involved in taint propagation. Dexteroid implements specific handlers and
default handlers to analyze such APIs (see Section 4.3 for details). Similarly,
FlowDroid has a concept of taint-wrappers to model and analyze these APIs.
However, both Dexteroid and FlowDroid do not analyze the internal code of
these APIs and may cause inaccuracy during the analysis. In comparison, Droid-
Safe’s accurate analysis stubs provide highly accurate execution model of An-
droid for a static analysis tool. Furthermore, it maintains deep object-sensitivity
for those API calls to perform highly accurate analysis of the program.

27

5. Experimental Evaluation

To evaluate the effectiveness of Dexteroid, we perform a series of experiments
to detect two types of attacks: (1) information leakage attack, and (2) SMS-sending
attack. An information leakage attack leaks sensitive or private information and in an
SMS-sending attack, an application can send SMS to premium-rate numbers.

5.1. Detection of Information Leakage

We evaluate Dexteroid against real-world Android applications from Google Play
(GPlay) and Genome Malware (Genome) [25], and further validate its effectiveness
against a benchmark suite of Android apps called DroidBench [6]. In addition, we com-
pare our results, where applicable, with previous open-source, state-of-the-art static
analysis tool called FlowDroid [6]. FlowDroid becomes an ideal candidate for com-
parison because like Dexteroid, it performs life-cycle aware, context, object, flow, and
field-sensitive taint analysis to detect privacy leaks. Furthermore, both tools do not
handle inter-component and inter-app communication for the analysis. We use Flow-
Droid’s source code version [36] obtained on September 9, 2014 in all our experiments,
unless specified otherwise. All experiments are run with default options set by Flow-
Droid, using -Xmx12g with no performance-improving arguments.

5.1.1. Evaluation on Real-World Android Apps
Experimental Setup: We run both tools on top free 1526 GPlay apps and 1259
Genome apps [25]. Each experiment for both tools is run with Dexteroid-provided
source and sink API set. Both tools derive these API sets from Susi project [37].
However, to avoid missing any privacy leak, FlowDroid uses over-approximation in
selection of source and sink APIs which may cause many false warnings. For example,
it assumes output from APIs related to different collection objects as source APIs (e.g.,
bundle.getDouble()), even if the object contains non-sensitive data. Similarly, a
flow to an API such as intent.setClassName() is reported as information leak-
age. Dexteroid-provided source and sink API set (68 sources and 75 sinks) does not
contain such APIs. Moreover, under time constraints, all our experiments with Dex-
teroid are run with 1-way permutation, unless specified otherwise. However, it might
be interesting to analyze applications with all-way permutation (i.e., consideringm=N
in NPm). An analysis time for an app is heuristically chosen to be 10 minutes.
Evaluation Criteria: Android apps from Google Play (GPlay) are assumed to be be-
nign apps with no defined set of true information leakage warnings. Similarly, Genome
samples are known malware and have reported malicious behaviors [25] but to the best
of our knowledge, the number of unique information leakage warnings produced by
each sample are not known. Thus, to evaluate analysis results, we first formally define
the number of warnings for an app set. We denote a set of maximum number of unique
true warnings an app set can theoretically have with WT , a set of combined true warn-
ings detected by existing tools (such as Dexteroid and FlowDroid) withWCO, and a set
of unique true warnings produced by Dexteroid and FlowDroid with WDT and WFD,
respectively.

28

WCO = WDT ∪WFD (1)
WCO ⊆WT (2)

We useWCO to evaluate analysis results (e.g., recall calculations) of both tools and
consider it as a reasonable assumption, given the fact that no set of true warnings are
available for existing apps. Hopefully, as true warning sets of other tools are added, the
WCO approaches WT . A unique warning for an app must meet two criteria: (1) it has
a unique combination of a set of source APIs and a sink API, (2) for another warning
with the same sink API, its source API set is not subsumed by that of the other. In our
evaluation, we consider only unique warnings produced by both tools.
Evaluation on Google Play Apps: When applied on GPlay apps, both tools report
many applications leaking sensitive information as shown in Figure 8. The x-axis
shows the top 20 source API data which are leaked and y-axis shows the number of
apps which leak the specific sensitive data (obtained from a source API). For example,
Dexteroid reports that ‘deviceID’ and ‘country’ information can be leaked by 97 and
96 apps, respectively. Similarly, 14 apps are reported to leak phone number obtained
using getLine1Number() API.

97
96

57
57

41

18 14 11 10 10

10 9 9 8
4 4 4 3 3 1

15 15
16

16 13

3
0

7
4

0
3 1 3 1 0 1 1 3

0 2

0

20

40

60

80

100

120
Dexteroid

FlowDroid

T
h

e
 n

u
m

b
e

r
o

f a
p

p
s

Source

Figure 8: Information Leakage Detection by Dexteroid and FlowDroid in 1526 Google
Play Apps

For 1526 GPlay apps, Dexteroid produced 661 warnings and FlowDroid produced
201 information leakage warnings. The manual verification of such a large number
of warnings is a very time consuming task. It took us one hour on average to verify
a warning produced by either tool because a warning may use many (e.g., more than
20) deep level method calls to obtain, and leak sensitive information. The manual ver-
ification becomes more difficult by obfuscation techniques used by developers to save
their code from stealing. Thus, to evaluate our approach in a meaningful manner, we
perform sampling at applications level and then apply both tools on the same set of

29

sampled apps. A random sampling is performed to pick 10% of the apps (152 apps).
Table 3 shows experimental setup, and evaluation results for both tools. In experi-
ment#1, Dexteroid produces 68 unique information leakage warnings; 8 of them are
false positives. The false alarms are raised because of the default handlers as well as
marking collection objects (e.g., HashMap) as tainted, even when value at a specific
index is tainted only (see Section 4.2). FlowDroid produces 16 warnings for the 152
apps which however include 5 false positives. Dexteroid detects all the remaining 11
warnings produced by FlowDroid and overall achieves 100% recall and 88.2% preci-
sion. Its recall is 100% because (1) all experiments are run independently with their
specific configurations, (2) in experiment#1, Dexteroid detects all the true warnings de-
tected by other tools (i.e., FlowDroid in this case) (see Section 5.1.1). In comparison,
FlowDroid achieves 18.3% recall and 68.7% precision.

Table 3: Evaluation of Dexteroid and FlowDroid on Sampled Google Play Apps

Item Experiment#1 Experiment#2 Experiment#3
DT FD DT FD FD-RE DT FD’ FD’-RE

Se
tu

p

#Test Apps 152 152 158 158 158 158 158 158
m-way Permutation 1 N/A 1 N/A N/A 1 N/A N/A
Max Time (min) 10 10 30 30 30 30 30 30
Source & Sink API Set DT DT DT DT DT DT DT DT
Warning Type I I I I I I I I

R
es

ul
ts

#Reported Warnings 68 16 155 26 27 155 140 145
#True Warnings 60 11 138 9 8 138 85 89
#Combined Warnings (WCO) 60 60 138 138 138 157 157 157
Recall(%) 100 18.3 100 6.52 5.8 87.8 54.14 56.68
Precision(%) 88.2 68.7 89.03 34.6 30.76 89.03 60.7 61.3
F-1 Score 0.93 0.29 0.94 0.11 0.1 0.88 0.57 0.59
#Killed(%) 24 39 0 0 3.16 0 0 1.89
#Finished(%) 76 61 100 100 96.84 100 100 98.11

DT=Dexteroid, FD=FlowDroid, FD-RE= FlowDroid with flows from reverse-engineered life cycle models,
FD’=FlowDroid’s latest source code, FD’-RE= FD’ with flows from reverse-engineered life cycle models,
I=Information leakage

FlowDroid reports 11 out of 60 true warnings in experiment#1. This low-detection
could be due to FlowDroid’s inaccurate modeling of Android components, or its in-
complete taint tracking process for the analysis. The analysis results of both tools
can be further affected by limited time or memory for the experiment [38](e.g., Flow-
Droid’s analysis is not completed under 10 minutes for 39% of the apps). To ad-
dress these issues, we first randomly pick 158 apps based on the experiment#1 such
that both tools do not run out of time or memory during the analysis. We then mod-
ify FlowDroid’s source code to include additional callback flows from our reverse-
engineered activity and service life cycle models. We add seven flows for an activ-
ity (e.g., from onStart() to onStop()) and three flows for a service (e.g., from
onStartCommand() to onUnbind()) in the modified code (FD-RE for short).
Experiment#2 is run on 158 apps and evaluation results are shown in Table 3. Dex-
teroid reports 155 warnings while FlowDroid reports 26 warnings. Dexteroid reports
false alarms because of default handlers and false positives for FlowDroid arise mostly
due to its over-approximations for intent-communication (e.g., considering an incom-
ing intent as a source). FD-RE reports one additional warning which is false positive
but interestingly, it misses also one true warning reported by FlowDroid. The missed
warning is reported by com.fingersoft.nightvisioncamera app for which

30

FD-RE is not able to complete its analysis under 30 minutes due to additional callback
flows for activity and service components.

FlowDroid has been under active development since its release as an open source
tool3. Thus, to examine how Dexteroid’s prototype implementation would perform
against FlowDroid’s updated version, we obtain FlowDroid’s latest source code (FD’
for short) [36] on August 28, 2015, and add flows from our component life cycle models
in the modified FD’ (FD’-RE for short). For high precision, none of the performance-
improving options is used for FD’ and FD’-RE. Experiment#3 is run on 158 apps of
experiment#2 and evaluation results are shown in Table 3. FD’ produces 140 warnings
of which 55 warnings are false positives. FD’-RE reports five additional warnings of
which one is false positive and four are true positives. Even with additional callback
flows, FD’-RE’s recall (57%) remains low than Dexteroid’s recall (88%). This could
be due to its dummy-main method based approach or incomplete taint tracking during
the analysis or both (see Section 4.4). Dexteroid also misses some of the true warnings
reported by FD’ and FD’-RE. They are missed because Dexteroid’s prototype imple-
mentation lacks complete modeling of different Android APIs and components. With
future improvements, we hope to detect all the missed warnings reported by FD’ and
FD’-RE. In addition, we are interested to perform more experiments in the future in
which we could run both tools (Dexteroid, and FlowDroid’s latest code with additional
callback flows) on all 1526 GPlay apps and 1259 Genome apps for at least 10 hours
per app with a reasonable amount of memory. In our earlier experiments with 1526
GPlay apps, FlowDroid’s analysis was killed after ten minutes for 42% of the apps
(see Section 5.3). Similarly, in some cases, FlowDroid may need more than 500 GB
of memory to complete its analysis [38]. Thus, ideally we would like to run our new
experiments with enough amount of time and memory so that both tools can complete
their analyses for all the apps. These experiments may take a few months while Flow-
Droid is continuously being updated in parallel; we will pick one specific version of
FlowDroid (such as FD’-RE) and run experiments with it.
Phone-Number Leaking Apps: The experiments in Table 3 report information leakage
warnings for all type of source APIs. Some APIs produce more sensitive data (e.g.,
phone number) than others (e.g., country). The leakage of phone number may expose
users to receive unwanted (e.g., advertisement) phone calls, and spam messages. To
detect such phone number leakage attacks, both tools are run on 1526 GPlay apps.
Dexteroid reports that 14 apps can potentially leak user’s phone number as shown in
Table 4 while FlowDroid does not report any warning. Most of the apps send phone
number using http connection or SMS while 2 apps (#1 and #2) write phone num-
ber into a “device_info.txt” file on external memory card. Two apps (#3 and #4), ap-
parently from the same developer, contain same (non-advertisement) code and pro-
duce the same four warnings each. They start threads from four different activities
(FirstRun, Login, PaidReturn, Subscription), obtain information such as
deviceID, phoneNo and subscriberID and send it to a hard-coded URL starting with
http://www.surveynotify.com. The FirstRun activity is started when user

3FlowDroid’s Android develop branch alone has 567 commits on its Github account at the time of publi-
cation.

31

http://www.surveynotify.com

opens the app for the first time and the activity leaks the sensitive information in plain
text. Similarly, app#5 obtains phoneNo in the onStartCommand() method of its
SimCardCheck service and leaks this information by sending a text message (SMS)
in sendSMS() method of a GF class.

All 14 apps produce 20 warnings: two of them are false positives. Dexteroid reports
that the app#14 in Table 4 leaks phone number and device information at two places but
our investigation reveals that they are false positives. The string contains phone number
and other device information but later device information is extracted and passed to the
sink APIs. Dexteroid’s default handlers pass tainted data from a string (operation) as it
is and hence lead to producing the false positives. The customized handlers or stubs for
specific APIs (e.g., String.split()) may help in eliminating such false alarms.

Table 4: Detection of Phone-Number Leaking Apps By Dexteroid in Google Play Apps

App ID Version True Positive False Positive
1 cz.aponia.bor3 3.10.16 X
2 cz.aponia.bor3.truck 3.10.28987 X
3 thecouponsapp.coupon 9.52 X
4 gas.coupons 9.15 X
5 com.alienmanfc6.wheresmyandroid 5.2.1 X
6 com.fatsecret.android 3.1.1 X
7 com.meraki.sm 0.9.51 X
8 com.tma.frontflip 5.0.37 X
9 ipnossoft.rma.free 2.3.3 X
10 com.facetime_plus.trendy 1.0.1 X
11 kst.DailyTextLite2 1.3.3 X
12 com.gau.go.launcherex 5.02.1 X
13 com.yinzcam.nfl.seahawks 1.1.1 X
14 com.unionbank.ecommerce.mobile.android 2.10.0.2 X

Supplementary Callbacks: The CSS model of activity life cycle includes six supple-
mentary callbacks in addition to seven callbacks shown in Figure 1. With 1526 GPlay
apps, Dexteroid reports one information leakage warning which is triggered from a sup-
plementary callback method. One app com.pelmorex.WeatherEyeAndroid
(“The Weather Network”) starts an asynchronous task from a supplementary callback
onRestoreInstanceState(). The task obtains geo-location coordinates, and
deviceID and makes a request to a third party server using a sink API. Dexteroid
passes parameters to the asynchronous task and performs context-sensitive analysis
to successfully detect this information flow.
2-way Permutation: To find out real-world Android apps that use event permutation
to leak information, we run Dexteroid on 1526 GPlay apps with 2-way permutation
and maximum allowed time per app to 30 minutes. We did not find any app which
exhibits specific malicious behavior using event permutation. However, we find one
such information flow in a ‘Virtual Zippo Lighter’ app which uses combination of a
miscellaneous callback method (onGeocodeTaskComplete()), and an AUI call-
back method (onEditorAction()) to pass sensitive information to a sink API.
With this information flow, the app passes geo-location address to obtain geo-location
coordinates from Google servers. Dexteroid detects only one such information flow
using 2-way permutation. However, it might be interesting to see evaluation results
with higher order permutation orders (e.g., all-way).
Evaluation on Genome Malware Apps: Genome app set [25] consists of 49 malware

32

families (with total of 1259 samples) where all members of a family exhibit similar
malicious behaviors (with minor variations). Both Dexteroid and FlowDroid are ap-
plied on 49 families and their detection results are summarized in Figure 9. The x-axis
shows the top 20 sources which are leaked while y-axis shows the number of families
which can leak that specific source data. The family here indicates that at least one
of its members leaks the specific information. Dexteroid reports that the deviceID and
location coordinates are leaked by 27 and 21 apps, respectively.

27

21 21
21

18
17

14 14 13 12

12

9 9 9
8 8

4 4 4
3

18

8

8

16

12
11

3

8

5

7

2

4 4

0

5

7

1
2

0
1

0

5

10

15

20

25

30
Dexteroid

FlowDroid

T
h

e
 n

u
m

b
e

r
o

f fa
m

ilie
s

Source

Figure 9: Information Leakage Detection by Dexteroid and FlowDroid in 49 Genome
Families

Table 5: Experimental Evaluation of Dexteroid and FlowDroid on 49 Genome Samples

Item DT FD

Se
tu

p

#Test Apps 49 49
m-way Permutation 1 N/A
Max Time (min) 10 10
Source & Sink API Set DT DT
Warning Type I I

R
es

ul
ts

#Reported Warnings 111 66
#True Warnings 94 49
#Combined Warnings (WCO) 101 101
Recall(%) 93.1 48.5
Precision(%) 84.7 74.2
F-1 Score 0.87 0.59
#Killed(%) 4 4
#Finished(%) 96 96

DT=Dexteroid, FD=FlowDroid, I=Information leakage

For 1259 Genome samples, Dexteroid produces 4352 warnings while FlowDroid
produces 2621 warnings. To reduce the number of warnings to a reasonably verification
level, we perform sampling at malware family level because of two reasons: (1) all
members of a family exhibit similar malicious behaviors (with minor variations). (2)
it removes biasness of a tool towards a specific family in the evaluation results. For
example, AnserverBot has 187 samples while GGTracker has only 1 sample. Sampling

33

at family level ensures that all samples are unique in nature and calculations are not
affected by the family size. One sample is randomly picked from each family and 49
samples are collected. Table 5 shows the experimental setup and the evaluation results
for both tools. Dexteroid achieves high recall (93.1%) and high precision (84.7%)
compared with FlowDroid’s recall (48.5%) and precision (74.2%). Most of the apps
for both tools are analyzed completely within 10 minutes. Dexteroid does not report
any additional attack with 2-way permutation or which starts from any supplementary
callback.
SMS And Phone-Number Leaking Malware: The 49 Genome families leak various
kind of information (as shown in Figure 9). However, many families are reported to
leak highly-sensitive data such as user phone number and SMS messages [25]. Table
6 shows a list of malware families in which at least one member of the family leaks
the specific information. Dexteroid detects reported SMS-leakage attacks for most of
the families (9 out of 13), in addition to additional attacks for four other families. It
misses detection for four families which use intent-communication (CoinPirate, Nick-
yBot) or read data from SMS-content providers (Gone60, Nickyspy). Dexteroid’s de-
fault handlers do not resolve input parameters for content provider APIs to find out the
database name pointed by a Uri and hence lead to the missed attacks. Moreover, one
false positive is produced for BeanBot malware. Similarly, Dexteroid detects phone
number leaks for 10 out of 15 families (with no false positive) and further reports
new (previously-unreported) leaks for 4 families (AnserverBot, BaseBridge, Droid-
KungFu4, RogueLemon). Five leaks are missed because of intent-communication or
incomplete prototype implementation of components such as adapter. FlowDroid re-
ports 5 malware families leaking SMS and 8 malware families leaking phone number
as shown in Figure 9.

5.1.2. Evaluation on DroidBench
DroidBench [6] is a suite of Android applications developed to evaluate correctness

and completeness of an analysis tool such as Dexteroid. Most of the apps leak sensitive
information such as deviceID. The apps evaluate a tool for both accuracy and precision
against different challenges such as object and field sensitivity, life cycle callbacks,
anonymous classes, AUI and miscellaneous callbacks, loops, inactive activity, and stor-
ing data into arrays and lists. We use latest version (2.0) of DroidBench apps. Since
Dexteroid does not analyze intent-communication, Java reflection or implicit flows
(see Section 3.6), applications that leak information using these features are removed
from the evaluation set. Many benchmark apps contain flow to logging APIs (e.g.,
Log.e()), we add such APIs to our sink API set for the evaluation. Table 7 shows
the evaluation results when both tools are run on the remaining 90 apps. Dexteroid
achieves higher accuracy and precision as compared to FlowDroid. It accurately detects
all the flows related to life cycle models of different components such as event (e.g.,
life cycle callback) ordering and multiple calls to onStartCommand() of the ser-
vice component. It misses 11 leaks because of incomplete modeling of functionalities
such as Serialization, Parcel, and SharedPreferenceChanged. These
flows can be captured by implementing specific handlers for such APIs in the Dexteroid
framework. Also, Dexteroid produces five false warnings: four for marking the whole
collection objects (e.g., array, list and hashmap) as tainted (even if a value at a specific

34

Table 6: Detection of SMS And Phone-Number Leaking Families by Dexteroid in
Genome Malware

Malware Sms Leakage Phone No Leakage
Reported Detected Reported Detected

ADRD - X - -
AnserverBot - X - X
BaseBridge - X - X
BeanBot - - X X
BgServ - - X X
CoinPirate X - - -
Crusewin X X - -
DroidKungFu1 - - X X
DroidKungFu2 - - X -
DroidKungFu3 - - X X
DroidKungFu4 - - - X
DroidKungFu5 - - X -
Endofday - - X X
GamblerSMS X X - -
Geinimi X X X -
GGTracker X X X X
GingerMaster - - X X
GoldDream X X X X
Gone60 X - - -
jSMSHider - - X -
NickyBot X - - -
Nickyspy X - - -
Pjapps - X X X
RogueLemon X X - X
SMSReplicator X X - -
Spitmo X X X X
YZHC - - X -
Zitmo X X - -

index is tainted only) and one for an invalid control flow in the exception handling.
In comparison, FlowDroid misses flows because of incomplete handling of features
such as static initializations, saved activity state in onSaveInstanceState() and
Arrays.toString() API, in addition to the flows missed by the Dexteroid. Simi-
larly, FlowDroid produces 8 false positives because of collection objects, invalid flows
in exception handling, unregistered callbacks, and incorrect resolving of aliases in
Merge1 app.

Table 7: Evaluation of Dexteroid and FlowDroid on DroidBench Apps

Tool Total Flows False Negatives False Positives Accuracy Precision
Dexteroid 79 11 5 83.7% 93.1%
FlowDroid 79 22 8 69.3% 87.6%

Additional Test Cases: We develop six test apps based on event sequences derived
from the reverse-engineered activity and service life cycle models and add these apps
to the DroidBench suite. The apps evaluate if an analysis tool correctly models the
component life cycle behaviors such as conditional flows between the callbacks, event-
generated callbacks and different orderings of the event sequences. The evaluation
results for both tools are shown in Table 8. Dexteroid accurately detects all the privacy
leaks while FlowDroid detects one of them, but misses five privacy leaks. Moreover,
the ActivityEveSeq3 app in Table 8 contains an attack given in the above moti-

35

vating example. Dexteroid detects this attacks with 2-way permutation but FlowDroid
does not detect this attack.

Table 8: Evaluation of Dexteroid and FlowDroid on Six Additional Test Case Apps

App Name Event Sequence For The Attack DT FD
1 ActivityEveSeq1 createActivity X ×
2 ActivityEveSeq2 createActivity→ hideActivityPartially→ savStop→ savRestart

→ savStop
X ×

3 ActivityEveSeq3 createActivity→ hideActivityPartially→ gotoActivity→ overla-
pActivity→restartActivity→ confPR

X ×

4 ServiceEveSeq1 createAndStart→ bind→ start X ×
5 ServiceEveSeq2 createAndStart→ bind→ unbind→ bind X ×
6 ServiceEveSeq3 createAndBind→ unbindAndDestroy X X
DT=Dexteroid, FD=FlowDroid, X=detects,×= does not detect

5.1.3. Evaluation on Additional Callback Flows from Other Tools
Experiments in Sections 5.1.1-5.1.2 show that Dexteroid can detect information

leakages with high precision and high recall as compared to the existing tools such as
FlowDroid. It considers life cycle callback sequences, UI callbacks and miscellaneous
callbacks for the analysis. However, the manually-compiled list of UI and miscella-
neous callbacks is potentially incomplete and may lead to many missed detections of
malicious behaviors. For example, a call to sort() method (a registration method)
of Collections class causes Android framework to implicitly invoke compare()
method (a callback method) implemented by its Comparator class. The Android
framework implicitly transfers program control flow from a registration method to its
associated callback method. However, Dexteroid has only a limited mapping of such
implicit control flow transitions (ICFT) (e.g., from sort() to compare() method)
and may miss many detections during the analysis. Similarly, Dexteroid currently does
not analyze callback sequences invoked by opening or dismissing dialog windows or
menu items. In this section, we incorporate implicit control-flow transitions from
EdgeMiner [39] and callback sequences from Gator [40] into Dexteroid to evaluate
their impact on Dexteroid’s analysis results.
Integrating ICFTs from EdgeMiner: EdgeMiner [39] statically analyzes Android
framework to automatically identify a complete set of implicit control flow transitions
(ICFTs) which can occur in Android application space (and framework space). Each
ICFT consists of a callback method and its associated registration method. An ICFT
can be of two types: (1) synchronous, and (2) asynchronous. In a synchronous ICFT,
a callback method (e.g., compare() method) is invoked synchronously as soon as
its registration method (e.g., sort() method) is invoked while in an asynchronous
ICFT, the callback method (e.g., onClick() method) is invoked after some delay
to the invocation of its registration method (e.g., setOnClickListener method).
EdgeMiner’s analysis, however, does not aim to identify life cycle callbacks of Android
components.

We apply EdgeMiner tool, thanks to its open-source nature, on Android 4.4 to gen-
erate 5,655,548 ICFTs (i.e., registration and callback method pairs). We further use
EdgeMiner to separate synchronous and asynchronous ICFTs and modify Dexteroid
to incorporate callbacks of these ICFTs. Upon identifying a registration method of a

36

synchronous ICFT during analysis, Dexteroid analyze its callback method, if present in
the program, using Algorithm 4 (see Section 4.1). For asynchronous ICFTs, it consid-
ers their callbacks as permutation units and analyzes them separately after the callback
sequence of createActivity event. This is because all such asynchronous callbacks can
be invoked randomly when activity is in a StaticPostResumed state. It should be noted
that in both cases, Dexteroid matches method-signatures to identify registrations and
callbacks for the analysis, instead of just relying upon the method name which may
lead to imprecise analysis results.

We perform two experiments with Dexteroid after integrating ICFTs from EdgeM-
iner. The first experiment aims to confirm that after integration, Dexteroid can detect
attacks launched by synchronous and asynchronous ICFTs. Due to unavailability of
six sample applications used by EdgeMiner [41], we develop four testbed applications
that leak sensitive information using synchronous and asynchronous ICFTs. Dexteroid
successfully detects all privacy leaks in these testbed applications.

In the second experiment, we further evaluate impact of EdgeMiner ICFTs on anal-
ysis results by running Dexteroid on 158 apps of experiment#2 in Table 3. Each app
is analyzed with 1-way permutation for a maximum of 30 minutes. Dexteroid re-
ports 9 new warnings by 6 apps, in addition to the 155 warnings reported earlier in
experiment#2 of Table 3. The new warnings leak information such as deviceID, geo-
location coordinates, and network operator name using callbacks such as onKeyUp(),
onViewCreated(), onExit(), and onAttachedToWindow(). After manual
verification, we find seven of these warnings are true positives. Moreover, all apps are
analyzed completely within the time limit of 30 minutes.
Handling Callback Sequences from Gator: Gator [40] performs static analysis to
build a window transition graph (WTG) of an Android application. The nodes in WTG
represent windows (e.g., activity, dialog) and edges represent transitions between the
windows, triggered by callbacks executed in the main UI thread. It accurately models
Android’s “back stack” [42] to determine possible valid transitions among the win-
dows. Using widget events, and five default events (back, rotate, power, home, menu),
it determines callback sequences which are invoked by Android for windows, and their
transitions. Since the WTG is aimed to be primarily used for GUI-testing, it generates
callback sequences only for GUI-elements (e.g., activity, dialog and menu). It does not
derive callback sequences for other components such as service, broadcast receiver and
asynchronous task.

To perform experiments with Dexteroid, we use authors’ [43] recommended imple-
mentation of Gator (version 3.0) to obtain callback sequences from the WTG because
it handles more events and more of the Android semantics as compared to its prede-
cessor version 2.0 [44] (see Section 6). Furthermore, we implement a parser to extract
callback sequences for individual components from the WTG output because due to
inter-component communication analysis, the produced callback sequences for a com-
ponent (e.g., activity) contain callbacks from other components. With Gator callback
sequences, we perform two types of experiments: (1) by replacing Dexteroid callback
sequences with Gator’s callback sequences, and (2) by integrating Gator callback se-
quences into Dexteroid callback sequences.

For the first type of experiment (i.e., with Gator callback sequences alone), Dex-
teroid is first run with 2-way permutation on six additional test case apps discussed in

37

Section 5.1.2. It reports warning for only one app (ActivityEveSeq1) which uses one
callback sequence to launch the attack. We then run Dexteroid with 1-way permutation
on 158 apps of experiment#2 in Table 3. The experiment is run with 30 minutes each
per application so that all apps are analyzed completely within the time limit. Dex-
teroid reports a total of 120 warnings which all are reported earlier in 155 warnings of
experiment#2 of Table 3. This reduction in warnings is because (1) Gator’s callback se-
quences are specific to GUI-elements only (e.g., activity, dialog and menu). Out of 155
warnings, a total of 27 warnings were earlier contributed by service and broadcast re-
ceiver components. Gator does not produce callback sequences for these components.
(2) For the activity component, Dexteroid now reports 120 warnings (as compared to
earlier-reported 128 warnings) because of reduced number of Gator callback sequences
for the analysis.

For the second type of experiment (i.e., with Gator callback sequences integrated
into Dexteroid), we repeat the above experiment on 158 apps. Dexteroid reports the
same 155 warnings without any new warning. This is partly because most of the events
used by Gator to derive callback sequences for activities are already covered by the
Dexteroid. For Dexteroid, the new callback sequences for analysis come only from
dialogs, option menus and context menus for which it does not report any new warning.
All apps are completely analyzed under 30 minutes in the above experiments.

5.2. Detection of SMS-Sending Attacks
An app can send SMS to premium-rate numbers which may cost users a lot in their

monthly bills. Dexteroid reports warnings for apps which can send SMS to hard-coded
numbers defined in the app code, or send automatic reply to an incoming SMS message.
FlowDroid does not aim to detect such attacks. Thus, we present our evaluation with
Dexteroid in the following sections.
Evaluation on Google Play Apps: Dexteroid analyzes 1526 GPlay apps with 1-way
permutation and 10 minutes per app configuration to detect SMS-sending attacks. Dur-
ing the analysis, it reports a warning if a hard-coded number or SMS sender’s phone
number obtained from an API such as SmsMessage.getOriginatingAddress
API is passed to the recipient parameter of an SMS sending API (e.g., first param-
eter of sendTextMessage() API). Dexteroid reports that two Google Play apps
(com.metropcs.service.vvm and com.saavn.android) can send SMS to
hard-coded numbers. We manually verified that both warnings are part of legitimate
functionality of the apps. Furthermore, Dexteroid successfully detects that three apps
(com.blendr.mobile, com.badoo.mobile, and com.hotornot.app) can
send automatic reply to an incoming SMS in onReceive() method of a broadcast
receiver. These apps contain the same in-app billing library which contains this func-
tionality.
Evaluation on Genome Malware Apps: Many of the Genome malware families are
reported to launch SMS-sending attacks [25]. Table 9 shows analysis results of Dex-
teroid on Genome malware. It successfully detects SMS-sending attacks to hard-coded
numbers in FakePlayer, HippoSMS, and Zsone malware, and SMS-reply to incoming
messages in Endofday, GPSSMSSpy, and GGTracker malware. Moreover, Dexteroid
finds that Pjapps, CoinPirate, Nickyspy, Geinimi and DogWars malware send SMS to
hard-coded numbers but these behaviors were not reported in [25]. However, Dexteroid

38

detects only those attacks which obtain their recipient numbers from within the app
code. For example, it does not detect attacks in Jifake and Crusewin malware because
their hard-coded numbers are given in configuration files. Similarly, SMSReplicator
and Walkinwat obtain hard-coded numbers from a cursor object. Other malware
such as NickyBot, Nickyspy, Pjapps, and YZHC malware communicate with com-
mand and control (C&C) server to obtain recipient numbers. Such attacks are harder
to detect by a static analysis tool because the required information is not available in
the app code.

Table 9: Detection of SMS-Sending Attacks by Dexteroid in Genome Malware

Malware Sms to Hard-coded Sms Reply to
Numbers Incoming Messages

Reported Detected Reported Detected
CoinPirate - X - -
Crusewin - - X -
DogWars - X X -
Endofday - - X X
FakePlayer X X - -
Geinimi - X - -
GGTracker X - - X
GPSSMSSpy - - X X
HippoSMS X X - -
Jifake X - - -
NickyBot - - X -
Nickyspy - X X -
Pjapps - X - X
RogueSPPush X - - X
SMSReplicator - - X -
Walkinwat - - X -
YZHC X - - -
Zsone X X - -

5.3. Performance Evaluation

All of our experiments are run on a desktop machine running Ubuntu 14.04 with
AMD Phenom II quad core processor, and 16 GB of memory. We run both tools on
1526 GPlay apps with maximum allowed time of 10 minutes per app. Dexteroid is
not able to complete its analysis for 30% of the apps (470 apps) while FlowDroid’s
analysis is killed for 42% of the apps (640 apps). The killed apps by both tools can be
different and can adversely affect the performance evaluations. To make an accurate
comparison, we choose only those applications for which both tools complete their
analyses without running out of time or memory. We use 158 GPlay apps from Table
3 and 47 Genome apps from Table 5. Table 10 shows the experimental setup and
evaluation results. It shows total CPU time in minutes for each experiment and average
CPU time per app in seconds taken by each tool for the analysis. We measure CPU
time in place of wall-time because CPU time measures the amount of time for which
CPU has been used to process all instructions of a program. The CPU time of a multi-
thread program (such as FlowDroid) can be significantly greater than its wall-time. For
example, for 158 GPlay apps shown in Table 10, FlowDroid’s CPU time is 195.49
minutes while its wall-time is only 86.8 minutes. In comparison, Dexteroid’s CPU
time for 158 apps is 105.5 minutes. For both sets of apps, Dexteroid takes less time for

39

analysis as compared to FlowDroid. However, we expect Dexteroid to take more time
for higher order m-way permutation analysis.

Table 10: Performance Evaluation of Dexteroid and FlowDroid

Item Experiment#1 Experiment#2
DT FD DT FD

Se
tu

p #Test Apps 158† 158† 47? 47?
m-value 1 N/A 1 N/A
Max Analysis Time/App (min) 10 10 10 10

R
es

ul
ts Total CPU Time (min) 105.5 195.49 20.08 38.69

Avg. CPU Time/App (sec) 40.06 75.23 25.63 49.39
#Killed(%) 0 0 0 0
#Finished(%) 100 100 100 100

FD=FlowDroid, DT=Dexteroid, †=GPlay, ?=Genome

6. Related Work

There is a large body of work on Android security including static analysis [5, 6, 7,
8, 9, 15, 45, 46, 47, 48, 39, 49, 50, 51, 52] and dynamic analysis [10, 11, 12, 13, 53]
but we discuss only closely-related work.

FlowDroid [6] and DroidSafe [15] are static taint analysis tools to detect privacy
leakages in Android apps, and have been discussed in detail in Section 4.4. In addi-
tion, DroidSafe analyzes inter-component communication also. However, given the
reverse-engineered life cycle models, we need more careful approach to model and
analyze inter-component communication which we leave as part of our future work.
LeakMiner [5] builds a dummy main method (like FlowDroid [6]) and uses static taint
analysis to detect information leaks. It includes supplementary callbacks in the CFG
but it does not consider the guard conditions for the accurate analysis. Moreover, its
context-insensitive approach can produce many false alarms. AndroidLeaks [45] per-
forms static taint analysis based on System Dependence Graph (SDG) of WALA [54].
It uses context-insensitive overlaying for heap dependencies in the SDG which leads to
object-insensitive analysis. CHEX [9] defines app split as the app code reachable from
an entry point (e.g., life cycle callback). It performs data flow analysis on permutation
of app splits to detect component hijacking vulnerabilities, which can be extended to
detect information leakage in Android apps. As expected, this app split permutation
may produce false positives because of the infeasible sequences [9]. ScanDal [47] is
an abstract interpretation framework which works on Dalvik bytecode of the apps to
find privacy leaks. It performs context-sensitive (with context depth=1) and hybrid of
flow-sensitive and flow-insensitive analysis. In [46], authors profile statically-extracted
user-trigger dependence to detect Android malware. AAPL [48] uses enhanced data
flow analysis techniques to find privacy disclosures and then uses peer-voting mecha-
nism to validate warnings reported for an application.

Other techniques such as [8, 50, 51, 52, 55] analyze inter-component communi-
cation for the analysis. ScanDroid [8] finds inter-component and inter-app data flows
in the application. Based on WALA [54], however, it requires source code or JVML
bytecode of the applications to perform analysis. IccTA [50] and DidFail [51] com-
bine FlowDroid [6] and Epicc [56] to detect inter-component privacy leaks. Most of

40

these techniques rely on Android-supplied life cycle models which lack possible flows
between the callbacks and the guard conditions to prevent infeasible flows. We plan
to extend the above reverse-engineered life cycle models to handle inter-component
communication for analysis in our future work.

Dynamic analysis tools perform analysis by executing apps either in an instru-
mented Android OS [10, 11] or in a virtualization-based environment [12, 13, 53].
TaintDroid [10] performs taint flow analysis at multiple levels in Android OS and apps
to detect potential information leakage in Android apps. DroidScope [12] provides
APIs to facilitate custom analysis at different levels: hardware, OS, and application
level. DroidPF [13] applies model checking techniques in a mocked-up Android OS
to verify security and privacy properties of Android apps. Andromaly [57] employs
host-based anomaly detection to detect Android malware.

In the realm of application life cycle models, Franke et al [18, 23] use same tech-
nique as discussed above to perform reverse-engineering on Android, iOS and Java
ME applications. Their activity life cycle model developed for Android 2.2—a pre-
Honeycomb version—contains some flows between the callbacks which do not occur
in the Android’s post-Honeycomb versions. AndroLift [58] helps developers to mon-
itor, implement and test life cycle related properties of Android applications. While
Dexteroid relies on input events and dynamic monitoring to discover callback flows,
Gator [44] performs context-sensitive static analysis to determine control-flow between
callbacks of an Android app. It builds a callback control-flow graph (CCFG) which pre-
cisely captures both intra-component and inter-component callback flows in the code.
However, Gator is specific to only user-driven components such as activities, dialogs,
and menus. It does not handle other components such as service and broadcast re-
ceiver. Furthermore, from an activity life cycle, Gator considers only two callbacks
(onCreate() and onDestroy()) in the CCFG, and identifies other flows (e.g.,
onClick()) between these two callbacks. Authors’ most recent version of Gator im-
plementation [40], however, includes more life cycle callbacks and uses many widget
and default events to produce window transition graph (WTG). This WTG can be used
to derive callback sequences for security analysis purposes (see Section 5.1.3).

7. Conclusion and Future Work

In this paper, we demonstrated that attacks can be designed to bypass early ap-
proaches, which are developed based on Android-supplied life cycle models. We per-
form reverse-engineering to reconstruct activity and service life cycle models and sys-
tematically derive event sequences from these models. In addition, the high-level event
sequences offer great value in selecting callback sequences for the taint analysis. A se-
ries of experiments performed on Google Play apps and known Genome Malware apps
show better performance in terms of precision and recall as compared with previous
static analysis tool. Further experiments on DroidBench apps and six additional test
case apps validate the effectiveness of the approach.

Dexteroid also has some limitations. First, as it does not handle inter-component
or inter-app communication. Given the above reverse-engineered life cycle models, a
careful modeling approach is required to handle inter-component communication for
the analysis which we leave for our future work. Second, Dexteroid currently does not

41

detect attacks based on implicit flows, Java reflection and native code. We would like
to improve Dexteroid to detect such attacks in the future. Third, our current model
detects only two types of attacks: (1) information leakage, and (2) sending SMS to
premium-rate numbers. In the future, we are interested in detecting other attacks such
as leaking a recorded voice call or making unintended phone calls.

Acknowledgements

We thank the two anonymous reviewers whose constructive and valuable feedback
helped improve quality of our paper. We appreciate Yinzhi Cao and Atanas Rountev
for providing us great help in using EdgeMiner and Gator tools, respectively. We also
thank Xuxian Jiang for sharing Android malware dataset with us for our experiments.

References

[1] IDC Press Release, http://www.idc.com/prodserv/smartphone-
os-market-share.jsp, [Online; accessed 10-September-2015].

[2] F-Secure, Mobile Threat Report, https://www.f-secure.com/
documents/996508/1030743/Mobile_Threat_Report_Q1_
2014.pdf (January-March 2014).

[3] A. P. Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A Survey of Mobile Mal-
ware in the Wild, in: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM ’11, ACM, New York, NY,
USA, 2011, pp. 3–14. doi:10.1145/2046614.2046618.
URL http://doi.acm.org/10.1145/2046614.2046618

[4] M. C. Grace, W. Zhou, X. Jiang, A.-R. Sadeghi, Unsafe Exposure Analysis of
Mobile In-app Advertisements, in: Proceedings of the Fifth ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WISEC ’12, ACM, New
York, NY, USA, 2012, pp. 101–112. doi:10.1145/2185448.2185464.
URL http://doi.acm.org/10.1145/2185448.2185464

[5] Z. Yang, M. Yang, LeakMiner: Detect Information Leakage on Android with
Static Taint Analysis, in: Proceedings of the 2012 Third World Congress on Soft-
ware Engineering, WCSE ’12, IEEE Computer Society, 2012, pp. 101–104.

[6] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, P. McDaniel, FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android Apps, in: Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, 2014, pp. 259–269. doi:10.1145/2594291.
2594299.
URL http://doi.acm.org/10.1145/2594291.2594299

42

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Mobile_Threat_Report_Q1_2014.pdf
http://doi.acm.org/10.1145/2046614.2046618
http://doi.acm.org/10.1145/2046614.2046618
http://dx.doi.org/10.1145/2046614.2046618
http://doi.acm.org/10.1145/2046614.2046618
http://doi.acm.org/10.1145/2185448.2185464
http://doi.acm.org/10.1145/2185448.2185464
http://dx.doi.org/10.1145/2185448.2185464
http://doi.acm.org/10.1145/2185448.2185464
http://doi.acm.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2594291.2594299
http://doi.acm.org/10.1145/2594291.2594299

[7] Y. Feng, S. Anand, I. Dillig, A. Aiken, Apposcopy: Semantics-based Detec-
tion of Android Malware Through Static Analysis, in: Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE 2014, ACM, New York, NY, USA, 2014, pp. 576–587. doi:
10.1145/2635868.2635869.
URL http://doi.acm.org/10.1145/2635868.2635869

[8] A. C. Adam P. Fuchs, J. S. Foster, Scandroid: Automated security certification of
android applications, Tech. Rep. CS-TR-4991, Department of Computer Science,
University of Maryland, College Park (November 2009).
URL http://www.cs.umd.edu/~avik/papers/scandroidascaa.
pdf

[9] L. Lu, Z. Li, Z. Wu, W. Lee, G. Jiang, CHEX: Statically Vetting Android Apps for
Component Hijacking Vulnerabilities, in: Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security, CCS ’12, 2012, pp. 229–240.
doi:10.1145/2382196.2382223.
URL http://doi.acm.org/10.1145/2382196.2382223

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth,
TaintDroid: An Information-flow Tracking System for Realtime Privacy Moni-
toring on Smartphones, in: Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’10, 2010, pp. 1–6.

[11] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, B. Zang, Vet-
ting Undesirable Behaviors in Android Apps with Permission Use Analysis, in:
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Commu-
nications Security, CCS ’13, ACM, New York, NY, USA, 2013, pp. 611–622.
doi:10.1145/2508859.2516689.
URL http://doi.acm.org/10.1145/2508859.2516689

[12] L. K. Yan, H. Yin, DroidScope: Seamlessly Reconstructing the OS and Dalvik
Semantic Views for Dynamic Android Malware Analysis, in: Proceedings of the
21st USENIX Conference on Security Symposium, Security’12, 2012, pp. 29–29.

[13] G. Bai, Y. Wu, J. Sun, J. Wu, Y. Liu, Q. Zhang, J. S. Dong, DroidPF: A Frame-
work for Automatic Verification of Android Applications, July 2014.
URL http://www.comp.nus.edu.sg/~a0091939/Publications/
DroidPF.pdf

[14] Android Permissions, http://developer.android.com/guide/
topics/security/permissions.html, [Online; accessed 10-
September-2015].

[15] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, M. Rinard, Information-
Flow Analysis of Android Applications in DroidSafe, in: Proceedings of the 22nd
Annual Network and Distributed System Security Symposium (NDSS’15), 2015.

43

http://doi.acm.org/10.1145/2635868.2635869
http://doi.acm.org/10.1145/2635868.2635869
http://dx.doi.org/10.1145/2635868.2635869
http://dx.doi.org/10.1145/2635868.2635869
http://doi.acm.org/10.1145/2635868.2635869
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://doi.acm.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2382196.2382223
http://dx.doi.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2508859.2516689
http://doi.acm.org/10.1145/2508859.2516689
http://dx.doi.org/10.1145/2508859.2516689
http://doi.acm.org/10.1145/2508859.2516689
http://www.comp.nus.edu.sg/~a0091939/Publications/DroidPF.pdf
http://www.comp.nus.edu.sg/~a0091939/Publications/DroidPF.pdf
http://www.comp.nus.edu.sg/~a0091939/Publications/DroidPF.pdf
http://www.comp.nus.edu.sg/~a0091939/Publications/DroidPF.pdf
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

[16] Activity Life Cycle Model, http://developer.android.com/
training/basics/activity-lifecycle/starting.html, [On-
line; accessed 10-September-2015].

[17] A. Desnos, G. Gueguen, Android: From Reversing to Decompilation, in: Pro-
ceedings of Blackhat, Abu-dhabi, 2011.

[18] D. Franke, C. Elsemann, S. Kowalewski, C. Weise, Reverse Engineering of Mo-
bile Application Lifecycles, in: 18th Working Conference on Reverse Engineer-
ing (WCRE), 2011, pp. 283–292.

[19] G. Booch, J. Rumbaugh, I. Jacobson, Unified Modeling Language User Guide,
(2nd Edition), Addison-Wesley Professional, 2005.

[20] Viber, https://play.google.com/store/apps/details?id=
com.viber.voip, [Online; accessed 10-September-2015].

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms,
Third Edition, 3rd Edition, The MIT Press, 2009.

[22] Android Services, http://developer.android.com/guide/
components/services.html, [Online; accessed 10-September-2015].

[23] D. Franke, C. Elsemann, S. Kowalewski, Reverse Engineering and Testing Ser-
vice Life Cycles of Mobile Platforms, in: 23rd International Workshop on
Database and Expert Systems Applications (DEXA), 2012, pp. 16–20. doi:
10.1109/DEXA.2012.40.

[24] D. King, B. Hicks, M. Hicks, T. Jaeger, Implicit Flows: Can’t Live with ‘Em,
Can’t Live Without ‘Em, in: Proceedings of the 4th International Conference on
Information Systems Security, ICISS ’08, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 56–70. doi:10.1007/978-3-540-89862-7_4.
URL http://dx.doi.org/10.1007/978-3-540-89862-7_4

[25] Y. Zhou, X. Jiang, Dissecting Android Malware: Characterization and Evolution,
in: Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP ’12,
IEEE Computer Society, Washington, DC, USA, 2012, pp. 95–109. doi:10.
1109/SP.2012.16.
URL http://dx.doi.org/10.1109/SP.2012.16

[26] X. Zhou, Y. Lee, N. Zhang, M. Naveed, X. Wang, The Peril of Fragmentation: Se-
curity Hazards in Android Device Driver Customizations, in: Proceedings of the
2014 IEEE Symposium on Security and Privacy, SP ’14, IEEE Computer Society,
Washington, DC, USA, 2014, pp. 409–423. doi:10.1109/SP.2014.33.
URL http://dx.doi.org/10.1109/SP.2014.33

[27] E. R. Wogensen, H. S. Karlsen, M. C. Olesen, R. R. Hansen, Formalisation and
analysis of Dalvik bytecode , Vol. 92, Part A, 2014, pp. 25 – 55.

44

http://developer.android.com/training/basics/activity-lifecycle/starting.html
http://developer.android.com/training/basics/activity-lifecycle/starting.html
https://play.google.com/store/apps/details?id=com.viber.voip
https://play.google.com/store/apps/details?id=com.viber.voip
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://dx.doi.org/10.1109/DEXA.2012.40
http://dx.doi.org/10.1109/DEXA.2012.40
http://dx.doi.org/10.1007/978-3-540-89862-7_4
http://dx.doi.org/10.1007/978-3-540-89862-7_4
http://dx.doi.org/10.1007/978-3-540-89862-7_4
http://dx.doi.org/10.1007/978-3-540-89862-7_4
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1109/SP.2014.33
http://dx.doi.org/10.1109/SP.2014.33
http://dx.doi.org/10.1109/SP.2014.33
http://dx.doi.org/10.1109/SP.2014.33

[28] Dalvik Byte Code, https://source.android.com/devices/tech/
dalvik/dalvik-bytecode.html, [Online; accessed 10-September-
2015].

[29] Bad Java decompilation means erroneous statement in research paper, http:
//www.android-decompiler.com/blog/2013/03/21/bad-apk-
decompilation-means-partial-erroneous-conclusion-in-
research-paper, [Online; accessed 10-September-2015].

[30] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, V. Shmatikov, The Most
Dangerous Code in the World: Validating SSL Certificates in Non-browser Soft-
ware, in: Proceedings of the 2012 ACM Conference on Computer and Com-
munications Security, CCS ’12, 2012, pp. 38–49. doi:10.1145/2382196.
2382204.
URL http://doi.acm.org/10.1145/2382196.2382204

[31] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles, Techniques,
and Tools (2Nd Edition), Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2006.

[32] M. Chen, K. Olukotun, Targeting Dynamic Compilation for Embedded Environ-
ments, in: Proceedings of the 2nd Java™Virtual Machine Research and Technol-
ogy Symposium, 2002, pp. 151–164.

[33] A. Avancini, M. Ceccato, Towards Security Testing with Taint Analysis and
Genetic Algorithms, in: Proceedings of the 2010 ICSE Workshop on Software
Engineering for Secure Systems, SESS ’10, ACM, 2010, pp. 65–71. doi:
10.1145/1809100.1809110.
URL http://doi.acm.org/10.1145/1809100.1809110

[34] M. C. Grace, Y. Zhou, Z. Wang, X. Jiang, Systematic Detection of Capability
Leaks in Stock Android Smartphones., in: NDSS, 2012.

[35] AsyncTask, http://developer.android.com/reference/
android/os/AsyncTask.html, [Online; accessed 10-September-2015].

[36] FlowDroid Wiki, https://github.com/secure-software-
engineering/soot-infoflow-android/wiki.

[37] S. Rasthofer, S. Arzt, E. Bodden, A Machine-learning Approach for Classifying
and Categorizing Android Sources and Sinks, in: 2014 Network and Distributed
System Security Symposium (NDSS), 2014.

[38] FlowDroid Mailing List, https://groups.google.com/forum/#!
msg/soot-list/BweTsvmjbwQ/FF5FULo6VgAJ, [Online; accessed 10-
September-2015].

[39] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna, Y. Chen,
EdgeMiner: Automatically Detecting Implicit Control Flow Transitions through
the Android Framework, in: Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS), 2015.

45

https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
http://www.android-decompiler.com/blog/2013/03/21/bad-apk-decompilation-means-partial-erroneous-conclusion-in-research-paper
http://www.android-decompiler.com/blog/2013/03/21/bad-apk-decompilation-means-partial-erroneous-conclusion-in-research-paper
http://www.android-decompiler.com/blog/2013/03/21/bad-apk-decompilation-means-partial-erroneous-conclusion-in-research-paper
http://www.android-decompiler.com/blog/2013/03/21/bad-apk-decompilation-means-partial-erroneous-conclusion-in-research-paper
http://doi.acm.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382204
http://dx.doi.org/10.1145/2382196.2382204
http://dx.doi.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/2382196.2382204
http://doi.acm.org/10.1145/1809100.1809110
http://doi.acm.org/10.1145/1809100.1809110
http://dx.doi.org/10.1145/1809100.1809110
http://dx.doi.org/10.1145/1809100.1809110
http://doi.acm.org/10.1145/1809100.1809110
http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://github.com/secure-software-engineering/soot-infoflow-android/wiki
https://groups.google.com/forum/#!msg/soot-list/BweTsvmjbwQ/FF5FULo6VgAJ
https://groups.google.com/forum/#!msg/soot-list/BweTsvmjbwQ/FF5FULo6VgAJ

[40] S. Yang, H. Zhang, H. Wu, Y. Wang, D. Yan, A. Rountev, Static Window Transi-
tion Graphs for Android, in: IEEE/ACM International Conference on Automated
Software Engineering, 2015, pp. 658–668.

[41] Y. Cao, Personal Communication, 2016.

[42] Tasks and Back Stack, http://developer.android.com/guide/
components/tasks-and-back-stack.html, [Online; accessed 5-
January-2016].

[43] A. Rountev, Personal Communication, 2015.

[44] S. Yang, D. Yan, H. Wu, Y. Wang, A. Rountev, Static control-flow analysis of
user-driven callbacks in Android applications, in: International Conference on
Software Engineering, 2015, pp. 89–99.

[45] C. Gibler, J. Crussell, J. Erickson, H. Chen, AndroidLeaks: Automatically Detect-
ing Potential Privacy Leaks in Android Applications on a Large Scale, in: Pro-
ceedings of the 5th International Conference on Trust and Trustworthy Comput-
ing, TRUST’12, 2012, pp. 291–307. doi:10.1007/978-3-642-30921-
2_17.
URL http://dx.doi.org/10.1007/978-3-642-30921-2_17

[46] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, X. Jiang, Profiling user-trigger
dependence for Android malware detection , Computers & Security 49 (0) (2015)
255 – 273. doi:http://dx.doi.org/10.1016/j.cose.2014.11.
001.
URL http://www.sciencedirect.com/science/article/pii/
S0167404814001631

[47] J. Kim, Y. Yoon, K. Yi, J. Shin, SCANDAL: Static Analyzer for Detecting Privacy
Leaks in Android Applications, in: Proceedings of the Mobile Security Technolo-
gies, MoST’12, 2012.

[48] K. Lu, Z. Li, V. P. Kemerlis, Z. Wu, L. Lu, C. Zheng, Z. Qian, W. Lee, G. Jiang,
Checking More and Alerting Less: Detecting Privacy Leakages via Enhanced
Data-flow Analysis and Peer Voting, in: 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2014, 2015.

[49] S. Liang, A. W. Keep, M. Might, S. Lyde, T. Gilray, P. Aldous, D. Van Horn,
Sound and Precise Malware Analysis for Android via Pushdown Reachability and
Entry-point Saturation, in: Proceedings of the Third ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices, SPSM ’13, 2013, pp. 21–32.
doi:10.1145/2516760.2516769.
URL http://doi.acm.org/10.1145/2516760.2516769

[50] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, P. Mcdaniel, IccTA: Detecting Inter-Component Privacy

46

http://developer.android.com/guide/components/tasks-and-back-stack.html
http://developer.android.com/guide/components/tasks-and-back-stack.html
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://www.sciencedirect.com/science/article/pii/S0167404814001631
http://www.sciencedirect.com/science/article/pii/S0167404814001631
http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.cose.2014.11.001
http://www.sciencedirect.com/science/article/pii/S0167404814001631
http://www.sciencedirect.com/science/article/pii/S0167404814001631
http://doi.acm.org/10.1145/2516760.2516769
http://doi.acm.org/10.1145/2516760.2516769
http://dx.doi.org/10.1145/2516760.2516769
http://doi.acm.org/10.1145/2516760.2516769

Leaks in Android Apps, in: Proceedings of the 37th International Conference on
Software Engineering (ICSE 2015), 2015.

[51] W. Klieber, L. Flynn, A. Bhosale, L. Jia, L. Bauer, Android Taint Flow Analysis
for App Sets, in: Proceedings of the 3rd ACM SIGPLAN International Workshop
on the State of the Art in Java Program Analysis, SOAP ’14, ACM, New York,
NY, USA, 2014, pp. 1–6. doi:10.1145/2614628.2614633.
URL http://doi.acm.org/10.1145/2614628.2614633

[52] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, X. S. Wang, AppIntent: analyzing
sensitive data transmission in android for privacy leakage detection, in: Proceed-
ings of the 2013 ACM SIGSAC conference on Computer & communications se-
curity, CCS ’13, 2013, pp. 1043–1054. doi:10.1145/2508859.2516676.
URL http://doi.acm.org/10.1145/2508859.2516676

[53] DroidBox - Android Application Sandbox, https://code.google.com/
p/droidbox/, [Online; accessed 10-September-2015].

[54] T. J. Watson Libraries for Analysis (WALA), http://wala.sourceforge.
net/wiki/index.php/Main_Page, [Online; accessed 10-September-
2015].

[55] D. Octeau, D. Luchaup, M. Dering, S. Jha, P. McDaniel, Composite Constant
Propagation: Application to Android Inter-Component Communication Analysis,
in: Proceedings of the 37th International Conference on Software Engineering
(ICSE), 2015.

[56] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, Y. Le Traon,
Effective Inter-component Communication Mapping in Android with Epicc: An
Essential Step Towards Holistic Security Analysis, in: Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, 2013, pp. 543–558.

[57] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, Y. Weiss, “Andromaly”: A Be-
havioral Malware Detection Framework for Android Devices, J. Intell. Inf. Syst.
38 (1) (2012) 161–190. doi:10.1007/s10844-010-0148-x.
URL http://dx.doi.org/10.1007/s10844-010-0148-x

[58] D. Franke, T. Roye, S. Kowalewski, AndroLIFT: A Tool for Android Application
Life Cycles, in: Fourth International Conference on Advances in System Testing
and Validation Lifecycle (VALID), 2012, pp. 28–33.

47

http://doi.acm.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633
http://dx.doi.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2614628.2614633
http://doi.acm.org/10.1145/2508859.2516676
http://doi.acm.org/10.1145/2508859.2516676
http://dx.doi.org/10.1145/2508859.2516676
http://doi.acm.org/10.1145/2508859.2516676
https://code.google.com/p/droidbox/
https://code.google.com/p/droidbox/
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x

	1 Introduction
	2 Background and Motivating Example
	2.1 Basic Definitions
	2.2 Android-Supplied Activity Life Cycle Model
	2.3 Motivating Example

	3 Dexteroid Framework
	3.1 Reverse-Engineering of Activity Life Cycle Model
	3.2 Our Proposed CSS Model
	3.3 Deriving Event Sequences
	3.3.1 Event Sequence-based Analysis
	3.3.2 Event Sequence Derivation Algorithm

	3.4 Service Life Cycle Model
	3.4.1 Android-Supplied Service Life Cycle Model
	3.4.2 The Reverse-Engineered Service Life Cycle Model
	3.4.3 Driving Event Sequences

	3.5 Generating Permutation of Callback Sequences
	3.5.1 Deriving Callback Sequences
	3.5.2 Generating Permutation Sequences

	3.6 Detecting Malicious Behavior

	4 Implementation
	4.1 Taint Analysis
	4.1.1 Context-Sensitive Analysis
	4.1.2 Object and Field Sensitivity
	4.1.3 Flow-Sensitivity

	4.2 Handling APIs
	4.3 Handling Static Flow Discontinuity
	4.4 Comparison with Other Tools

	5 Experimental Evaluation
	5.1 Detection of Information Leakage
	5.1.1 Evaluation on Real-World Android Apps
	5.1.2 Evaluation on DroidBench
	5.1.3 Evaluation on Additional Callback Flows from Other Tools

	5.2 Detection of SMS-Sending Attacks
	5.3 Performance Evaluation

	6 Related Work
	7 Conclusion and Future Work

