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Abstract

An important role carried out by cyber-security experts is the assessment of proposed computer systems, during their design
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stage. This task is fraught with difficulties and uncertainty, making the knowledge provided by human experts essential for suc-
cessful assessment. Today, the increasing number of progressively complex systems has led to an urgent need to produce tools
that support the expert-led process of system-security assessment. In this research, we use Weighted Averages (WAs) and Ordered
Weighted Averages (OWAs) with Evolutionary Algorithms (EAs) to create aggregation operators that model parts of the assessment
O)process. We show how individual overall ratings for security components can be produced from ratings of their characteristics, and
how these individual overall ratings can be aggregated to produce overall rankings of potential attacks on a system. As well as the
identification of salient attacks and weak points in a prospective system, the proposed method also highlights which factors and
security components contribute most to a component’s difficulty and attack ranking respectively. A real world scenario is used in
which experts were asked to rank a set of technical attacks, and to answer a series of questions about the security components that

are the subject of the attacks. The work shows how finding good aggregation operators, and identifying important components and
— factors of a cyber-security problem can be automated. The resulting operators have the potential for use as decision aids for systems
< designers and cyber-security experts, increasing the amount of assessment that can be achieved with the limited resources available.
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1 1. Introduction

As Internet use becomes ever more pervasive in day-to-day
life for tasks including internet banking, e-commerce and e-
government, the risk of cyber-crime is a growing concern (see
(© Detica and Office of Cyber Security and Information Assurance
w (2011), Anderson et al. (2013) and Cruz et al. (2014)). Assess-
() ing security risks associated with proposed systems in their de-
(O sign phase is a non-trivial task that involves managing multiple

1 sources of uncertain information. For example, it is very diffi-

= cult to estimate the costs of a successful attack, the likelihood
" of a rare attack, as the tools and technologies available to at-
>< tackers/defenders are constantly changing (Tregear, 2001). Be-
cause of these difficulties, a great deal of expertise is required
to carry out such assessments. Typically, cyber-security experts
are employed as they can provide comprehensive assessments
based on considerable expertise and insight while also being
able to assess the viability of existing cyber-security tools and
processes (e.g., anti-malware software). From a computational
point of view, their work can be likened to that of a highly com-
plex aggregation function, considering a large number of un-
certain data sources (e.g., other experts, users, systems design-
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ers and security software / hardware) and fusing these sources
to build overall security assessments. However, there is often
a shortage of the level of cyber-security expertise required to
carry out detailed assessments, leading to an urgent requirement
for techniques and tools that can be used to support experts, re-
ducing their workload, and systems designers, using models of
expert knowledge to obtain estimates of security for system de-
signs.

As stated previously, the job of performing security assess-
ments is comparable to a complex aggregation function, fus-
ing multiple sources of disparate data to form an overall as-
sessment. In order to replicate this process in a computational
model, aggregation operators such as the arithmetic mean, Wei-
ghted Average (WA), and Ordered Weighted Average (OWA)
could be considered. As will be shown later, WAs and OWAs
allow the application of weightings to specific objects and spe-
cific positions in an ordering, respectively. We will employ both
of these methods in this research, exploiting their characteris-
tics to produce fused assessments. WAs are used to compute
assessments of security components using sub-assessments of
their characteristics, and OWA operators are used to compute
salience/difficulty rankings of specific technical attacks using
security component assessments. A difficulty when using WAs
and OWAs is finding suitable weightings for a particular task,
as there are an near-infinite number of possibilities. Evolu-
tionary Algorithms (EAs) (Holland (1975) and Goldberg et al.
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(1989)) have been shown to be useful in tasks involving a large
search area, including searching for OWA weights (Nettleton
and Torra, 2001). In the research presented in this paper, we
will employ EAs to search for appropriate weights for WAs and
OWAs for use in a security assessment problem.

The data set used is from a decision making exercise that
was conducted at GCHQ, Cheltenham, UK, the UK govern-
ment’s signals intelligence and information assurance agency.
Thirty nine GCHQ selected cyber-security experts including
system and software architects, security consultants, penetra-
tion testers, vulnerability researchers and specialist systems eval-
uators, took part in two survey exercises. In the first, they were
asked to rank a set of ten technical attacks in order of how dif-
ficult they would be to complete without being noticed. The set
included attacks via a Voice Over IP (VOIP) client, a malformed
document via email and a malicious website. In the second ex-
ercise, experts were asked to rate the difficulty of compromis-
ing / bypassing the twenty six security components that make
up the ten attacks from the previous exercise. Security compo-
nents included anti-virus software, cryptographic devices and
firewalls. They were also asked to rate specific characteristics
of each component, for example, the complexity of a component
or the public availability of tools that could be used by a poten-
tial attacker to compromise / bypass the component. Undertak-
ing this type of survey can identify particularly weak points in
a system, and thus potential ‘breach-points’ in the system. As
such, this activity is an important part of the security assess-
ment process. The result is a data set containing three levels of
assessment:

[Figure 1 about here.]

1. Rankings of technical attacks on a proposed system.

2. Ratings of the level of security offered by security com-
ponents in the proposed system.

3. Ratings of specific characteristics of security components
in the proposed system.

Figure B.1 shows the structure of the data set. With this
data set we will show how, using WAs and OWAs with EAs,
the following can be achieved:

1. Ratings of the difficulty of attacking and evading security
components using ratings of specific characteristics.

2. Indication of the relative contribution each characteristic
makes to the overall difficulty rating for a security com-
ponent.

3. Rankings of specific technical attacks using ratings of se-
curity components.

4. Indication of the relative contribution components make
to the attack ranking based on their difficulty rating.

5. A combination of the previous aggregations, in which
rankings of specific technical attacks are computed using
security component ratings that have been created using
ratings of specific characteristics.

As we have data at all three levels, we are able to compare
the derived security component ratings and attack rankings with

experts’ actual ratings / rankings to validate them. Potentially,
this method could be used with a database of existing ratings for
components / characteristics to aid in security assessments on
proposed systems, reducing load on the cyber-security experts
who currently carry out such assessments.

The paper is structured as follows. Section 2 provides an
overview of the problem of performing security assessments on
information systems, a review of machine learning approaches
to this problem, WA/OWA operators and EAs. Section 3 de-
scribes the decision making exercise conducted with cyber-se-
curity experts at GCHQ, while Section 4 details how EAs, OWAs
and WAs have been implemented for this study. In Section 5,
overall difficulty ratings for security components are produced
using ratings of specific characteristics of each component. More-
over, we also produce weightings that signify the contribution
each characteristic makes to the overall difficulty rating. Then,
in Section 6 rankings for specific technical attacks are produced
using difficulty ratings of their constituent components, along
with weightings that give an indication of which components
contribute most to the rankings. Section 7 combines the pro-
cesses of the previous two sections to derive ratings and rank-
ings for specific technical attacks from ratings of specific char-
acteristics of their constituent components. Finally, the out-
comes of the work are discussed in Section 8, and Section 9
summarises the contributions of the research and considers fu-
ture directions of research.

2. Background

2.1. Cyber-Security Assessment

In current times, the use of the Internet and cellular net-
works has become the norm for a variety of every-day tasks
including banking, e-mail, e-government, e-commerce, VOIP,
social networking and mobile telecommunications. An ever-
increasing number of sensitive interactions are taking place on-
line, making them susceptible to attack by cyber-criminals who
may read, modify or delete sensitive data. Concurrently, the
volume and availability of tools to aid would-be attackers in
their acts are also increasing. These tools lower the barrier to
entry for attackers, as far less technical expertise is required
to operate them than to launch an attack from scratch. Exac-
erbating the situation further is the fact that it is often unclear
exactly how defensive security products achieve their claims,
and indeed, whether they are effective at all.

With the increasing threat of cyber-crime the practice of car-
rying out security assessments on proposed systems has become
a critical part of the systems design process. Understanding
the threats that attackers pose to a proposed system, their con-
sequences, how those threats can be addressed and what rep-
resents an appropriate level of security is a complex problem
involving many factors. These factors include (Tregear, 2001):

1. Data is limited on certain threats, such as the likelihood
of a sophisticated hacker attack and the costs of damage,
loss, or disruption caused by events that exploit security
weaknesses.



2. Some costs, such as loss of customer confidence or dis-
closure of sensitive information, are inherently difficult
to quantify.

3. Although the cost of the hardware and software needed to
strengthen controls may be known, it is often not possible
to precisely estimate the related indirect costs, such as the
possible loss of productivity that may result when new
controls are implemented.

4. Even if precise information were available, it would soon
be out of date due to fast paced changes in technology
and factors such as improvements in tools available to
would-be intruders.

The consequence of these difficulties is that it is necessary
for highly experienced cyber-security experts to carry out as-
sessments of system designs including their hardware/devices,
architecture, security software and practices before they are im-
plemented. The goal of such assessments is to ensure that there
is a proportionate level of security offered by the proposed sys-
tem in line with the consequences of a successful attack. Clearly,
investing too little in security measures leaves a system exposed
to an unacceptable level of risk, however, investing too much is
also a problem as it involves expending an unnecessary amount
of money and effort on security when the consequences of a
successful attack are considered.

Unfortunately, it is often the case that there is insufficient
expertise to carry out all of the security assessments necessary.
The ever increasing number of information systems, which them-
selves are of increasing complexity and exposed to constantly
evolving threats, mean that a greater number of security assess-
ments are required more quickly than ever before. In this re-
search we focus on modelling parts of the assessment process
in order to create decision aids that can be used by experts to
reduce load, and by non-experts to achieve an approximation of
security levels for security components and specific technical
attacks.

2.2. Machine Learning Approaches to Security Assessment

Over the years there have been many machine learning ap-
proaches to computer security, ranging from classic algorithm
based studies (Lane, 1998) to immune system inspired approaches
(Kim et al., 2007). What almost all of these past approaches
have in common is that they attack the problem from a quantita-
tive point of view, based on evaluating datasets such as network
traffic , but without an attempt to integrate often highly valu-
able knowledge held by security experts. Examples include
what is probably the earliest use of fuzzy sets in this context
(Clements, 1977), intrusion detection based on multisensor data
fusion Bass (2000) or fuzzy cognitive maps Siraj et al. (2001),
and various automated decision systems to support risk or threat
analysis (Shah, 2003; Ngai and Wat, 2005; Linkov et al., 2006;
Sun et al., 2006; Van de Walle and Rutkowski, 2006; Dondo,
2007; McGill and Ayyub, 2007). Other approaches include
anomaly detection algorithms, e.g. using Bayesian approaches
(Androutsopoulos et al., 2000) to detect spam in emails, or self-
organising map algorithms to learn combinations of external
signals and system call IDs to detect unusual patterns (Feyereisl

and Aickelin, 2012). Similar to anomaly detection is the area
of intrusion detection, which again typically relies on unsuper-
vised machine learning techniques for two class classification
approaches of ‘normal’ and ‘abnormal’ behaviour, for example
the work by Twycross and Aickelin (2010).

More general approaches to systematising and supporting
methods for the design of secure systems have been reviewed
by Baskerville (1993), Dhillon and Backhouse (2001) and more
recently by Jansen and Gallagher (2009). As a refinement of
more general approaches, this paper focuses on extracting and
making use of and leveraging the insight held by cyber security
experts. Experts are commonly good at assessing the security of
parts of systems — such as rating the vulnerability of individual
hops or attack paths. However, the major challenges for experts
are:

e The large number of hops and attack vectors in systems,
i.e. the finite number of suitably qualified experts makes
the timely assessment of hops and attack paths highly
challenging for many users (e.g. companies).

e The aggregation of often different ratings for the same
components by different experts, e.g. based on different
expert backgrounds or levels of expertise.

In this context, our paper focuses on alleviating the task load
for available experts by introducing, demonstrating and eval-
uating a novel approach to partially automating the rating of
attack vectors based solely on individual hop ratings. The ap-
proach proposed employs linear order statistics, specifically the
Ordered Weighted Average (OWA), to fuse individual hop rat-
ings into an overall attack path assessments, while the weights
of the OWA are determined using an evolutionary algorithm,
resulting in overall high quality attack vector vulnerability as-
sessments which closely follow those of experts (if these ex-
perts directly assess the vectors). The closest body of works in
computer security that is related to our approaches is that of at-
tack graphs and scenario creation, e.g. the work by Tedesco and
Aickelin (2008). However, in these approaches the aim tends
to be to develop improved techniques to construct and rate at-
tack graphs, rather than facilitating and partially automating the
overall process of integrating expert knowledge in cyber secu-
rity assessments.

2.3. Weighted and Ordered Weighted Averages

In the experiments shown in this paper, two aggregation
methods are employed: Weighted Averages (WAs), and Or-
dered Weighted Averages (OWAs) (Yager, 1988). OWA oper-
ators were chosen for the task of aggregating security compo-
nent ratings to produce attack rankings following discussions
with a group of GCHQ technical experts. In our discussions
the hypothesis emerged that the difficulty of a particular attack
is largely determined by the most difficult security component
to attack or evade; the remaining components contribute to the
difficulty in proportion with their own difficulty. Initially, we
tried simple maximum operators to see whether they could be
used. In practice however, this results in a lot of attacks having



tied ranks, providing little insight. This is because, if a particu-
larly difficult component appears in multiple attacks, they will
all receive the same rating. OWA operators allow us to assign
more weight to the most difficult components, while account-
ing for the difficulty of the remaining components too. This
greatly reduces the potential for tied ranks, and creates mean-
ingful rankings that distinguish between attacks.

Let X be a set of N information sources (e.g., reviewers, ex-
perts, etc.) with each information source contributing evidence
Xi, i =1...N. The standard Weighted Average, WA, combines
the information from all the sources by associating the evidence
from each source with a given weight. More formally, consider
a set W of weights w; corresponding to each source x;, where
Y w; = 1. Then:

N
WA(X) =) wix; (D
i=1

The Ordered Weighted Average, OWA, combines the informa-
tion from all the sources, ordered by the size of the evidence
(largest to smallest), using a pre-defined vector of weights, W’.
More formally, consider the vector of evidence O = (o1, ... ,0n),
formed by the ordering (largest to smallest) of the elements in
X, such that oy > 02 > ...0;. Then:

N
OWA(X) = Z wio; (2)
=1

Whereas in the WA, the weights are associated with each source,
in the OWA, the weights are associated with an ordered set of
the evidence by all sources. Thus, in the OWA, a change in
contributed evidence can result in a different ordering and thus
in a different mapping of weights to evidence. For example,
in this work we assign a weight to the most difficult compo-
nent, the second most difficult component and so on. Each of
the weights is multiplied by the corresponding component, the
first weight is multiplied by the first and thus largest component
and so on. If the first weight is near to one, the OWA behaves
similarly to a ‘maximum’ operator, thus resulting in the overall
assessment being based nearly exclusively on the most difficult
component.

OWAs are commonly used in decision making problems
to create aggregate scores and/or ratings. In Canés and Liern
(2008), OWA operators are used in a personnel selection prob-
lem to aggregate selection criteria. In Badea et al. (2011) an
OWA is used to compute a rating of the security of energy sup-
ply, Sadiq et al. (2010) describes the use of an OWA to ag-
gregate performance indicators of small water utilities creating
an overall performance assessment. Imamverdiev and Derak-
shande (2011) show how a fuzzy OWA operator can be used
for rating information security products in terms of reduction
of information security risk, and in Merigé and Gil-Lafuente
(2010) and Merigé and Gil-Lafuente (2011) modified OWA op-
erators are applied to a financial product selection problem and
a football team player selection problem respectively.

[Figure 2 about here.]

2.4. Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a set of well used heuris-
tic search methods that mimic aspects of biological evolution to
evolve solutions. The most popular EA, the Genetic Algorithm
(GA) (see Holland (1975) and Goldberg et al. (1989)), begins
with the generation of a random initial population of solutions
to which fitness-based selection and copy, crossover and mu-
tation operators are applied in order to discover near-optimal
solutions. The advantage of the GA is that it is able to search
a large area of the solution space, while evaluating a small pro-
portion of the possible solutions. This is critical for problems
like those seen in this work in which there are far more possi-
ble solutions than it is practical to evaluate. The use of a GA
to search for suitable OWA weights is demonstrated in Nettle-
ton and Torra (2001) and Torra (2011), and in our own previous
work (Miller et al., 2013a).

The work in the current paper significantly extends the work
seen in Miller et al. (2013a) in which EAs were employed to
search for appropriate OWA weights to be used for aggregating
ratings of security components to produce rankings of technical
attacks, and to search for WA weights to be used to aggregate
ratings of aspects of security components to produce overall se-
curity component ratings. Using an EA in this way not only al-
lows us to discover suitable aggregation operators, it also gives
an indication of the relative importance of each component of
the aggregation. For example, by looking at the resulting OWA
weights, we will be able to confirm or contradict our hypoth-
esis that the most difficult to attack/evade security component
contributes the most to the attack ranking. As the EA could
theoretically arrive at any OWA, and is led purely by the fitness
of an OWA (i.e., how well the resulting rankings match indi-
viduals’ actual rankings), the OWAs produced are a valid guide
to the relative contribution made by each security component.
Similarly, the WA weights found will provide insight into which
characteristics contribute most to the overall rating, and which
have little effect on the overall difficulty of attacking/evading a
security component.

2.5. Statistical Analysis

To make comparisons between the results produced by the
OWA/WA operators and the experts’ actual rankings, Spear-
man’s Rho is used. Spearman’s Rho (Spearman, 1904), also
called Spearman’s Rank Correlation Coefficent, measures the
statistical dependence of two sets of rankings (ordinal data).
The coefficient is a number in [-1,1] that indicates the level of
correlation; 1 denotes a perfect positive correlation, 0 means
there is no correlation, and -1 denotes a perfect negative cor-
relation. To measure the correlation between component char-
acteristics and overall difficulty questions Pearson’s r (Pearson,
1895) is used. Pearson’s r, also called the Pearson Product-
Moment Correlation Coefficient (PPMCC), is a method that
measures linear correlation between two sets of values (inter-
val or ratio data); a value of zero indicates no correlation and
a value of one indicates perfect correlation. For both methods,
generally, values above 0.5 are interpreted as strong correlation.



2.6. Experimental Validation

The experimental results and statistical analyses presented
in this paper are not tested in a formal manner against, for ex-
ample, pre-specified null hypotheses or similar. Thus, in sta-
tistical terms, it should be viewed as exploratory data analysis
rather than as formal hypotheses testing (sometimes called con-
firmatory data analysis), as discussed by Tukey in 1962 (Tukey,
1962). Overall validation of the experimental methods in this
paper is presented in terms of the degree to which it is possible
to model parts of cyber-security decision makers processes us-
ing statistical aggregation of components within attack vectors.
As this is exploratory, there are no explicit tests for falsifiability
— however, there is an informal null hypothesis that security
‘experts’ are not actually expert, and that no correlations, asso-
ciations or aggregations could be found that would link rating
of sub-components to rankings of attack vectors. But, the main
purpose of this work is to carry out exploratory data analysis
in this context to explore to what degree it may be possible to
submit security assessment to more systematic methods, which
in future could lead to new hypotheses with associated methods
of new data collection and analysis.

3. Data Elicitation

In this section we will describe the data elicitation exer-
cise conducted at GCHQ, Cheltenham, UK. As the data and
actual elicitation is vital to the design and functionality of the
automated reasoning system introduced later, we proceed by
describing the elicitation process and resulting data in detail.
Thirty nine highly experienced GCHQ selected cyber security
experts from government and commercial backgrounds includ-
ing system and software architects, technical security consul-
tants, penetration testers, vulnerability researchers and special-
ist systems evaluators took part in a decision making exercise.
While the detail of the actual attack scenarios and security com-
ponents is not available for general publication, we provide the
actual numeric ‘anonymised’ data in the paper.

3.1. Scenario

For the purposes of the exercise, a scenario was created and
presented by senior technical staff at GCHQ. The scenario was
designed to be a typical example of a government system. The
system has a range of core services and back end office facil-
ities, along with remote sites and mobile access. Figure B.2
provides an overview of the system architecture. The most sen-
sitive information is held in core systems, with assets rated at
Business Impact Level 3 (BIL3). Business Impact Levels are
the UK Government’s standard classification scheme for rating
the ramifications of assets being disseminated, altered or de-
stroyed, ranging from no consequences (BILO) to catastrophic
consequences (BIL6).

The experts were presented with information regarding the
architecture of the system and its components, and allowed to
ask questions. In real-world assessments, a great deal of infor-
mation about a system and its components is required in order
to perform a security assessment, including details of hardware

and software, version/revision numbers and the frequency with
which updates and patches are applied. In order to address this
in the scenario, without overcomplicating the exercise (mak-
ing it infeasible), the experts were asked to make assumptions
about the system, specifically, that the software/hardware used
was typical of this type of government system and that security
policy was being applied in manner consistent with how they
typically find it in their day-to-day work. This was acceptable
for the experts, as they all have considerable experience with
the type of BIL3 government system presented in the scenario,
and how security policies are generally applied.

In addition to details of the system, the experts were also
given a list of 10 technical attacks on the system, and the 26 se-
curity components that make up the attacks. Figure B.3 shows
an example of the information the experts were given about the
technical attacks. In this attack an email with a malicious at-
tachment is sent to a recipient within the system, when opened
the attachment runs an exploit taking control of the recipient’s
PC, allowing the attacker to launch further attacks from their
machine. Figure B.3a shows the path the attacker takes from
outside the system, through the back office systems. Once this
is achieved the attacker proceeds to the mobile sites as shown
in Fig. B.3b, completing the attack by compromising a client
desktop.

[Figure 3 about here.]
[Table 1 about here.]

The five steps in the attack are labelled A to E in Fig. B.3,
Table B.1 provides details of the security components involved.
Each of these components must be attacked (compromised) or
evaded (bypassed) in order for the attack to be successful. After
being shown the 10 attacks and their constituent components,
the experts were asked to complete two survey exercises:

1. Rank the 10 technical attacks in order of difficulty to
complete without being noticed.
2. Rate the 26 security components in terms of:
(a) The overall difficulty of attacking or evading the
component.
(b) Individual factors that contribute to the difficulty of
attacking or evading the component.

Each activity was conducted in silence, with experts sat at
separate desks, to avoid experts influencing each others’ opin-
ions. Ranking the technical attacks like this is an intuitive way
of establishing the relative difficulty of completing each of the
attacks successfully. Experts make direct comparisons between
attacks. e.g., ‘Is attack x more or less difficult than attack y?’,
in order to arrive at a ranked list. This approach can make it
easier for experts to identify salient attacks, as in some cases it
is difficult to place a precise value on the difficulty of an attack.

When rating security components, experts were asked to
give a rating on a scale from 0 to 100 to the question ‘Over-
all, how difficult would it be for an attacker to successfully at-
tack/evade this component without being noticed?’, and a series



of questions about factors that contribute to the overall diffi-
culty of attacking/evading a component. These questions were
created by GCHQ technical experts, who identified what they
believed to be the important factors that contribute to the dif-
ficulty of attacking/evading security components. The rating
scale from O to 100 was completely arbitrary, with no absolute
meaning of 0 or 100 being conveyed to the experts, and the
response included both a perceived location (‘mean’) and un-
certainty (‘variance’) of opinion as described in more detail in
Miller et al. (2013D).

Two sets of questions were used, one for when an attack re-
quired a component to be attacked (compromised), and another
for when an attack required a component only to be evaded
(bypassed). The categorisation of components into ‘attack’ or
‘evade’ was made by the GCHQ technical team who designed
the scenario. While it is possible that some components may in
practice be either attacked or evaded, and that different attach
vectors may be possible, such alternatives were not considered.
That is, the list of attack vectors created, and whether the com-
ponents were compromised or bypassed within such an attack,
were designed and specified by the GCHQ technical team.

The questions asked when a component needed to be at-
tacked were:

e How complex is the target component (e.g., in terms of
size of code, number of sub-components)?

e How much does the target component process/interact
with any data input?

e How often would you say this type of attack is reported
in the public domain?

e How likely is it that there will be a publicly available tool
that could help with this attack?

o How inherently difficult is this type of attack? (i.e., how
technically demanding would it be to do from scratch,
with no toolset to help.)

e How mature is this type of technology?

e How easy is it to carry this attack out without being no-
ticed?

e Overall, how difficult would it be for an attacker to do
this?

For components that needed only to be evaded, the follow-
ing questions were asked:

e How complex is the job of providing this kind of de-
fence?

e How likely is it that there will be publicly available infor-
mation that could help with evading this defence?

e How mature is this type of technology?

e Overall, how difficult would it be for an attacker to do
this?

This type of questioning allows experts to give an indication
of the absolute difference in difficulty between security compo-
nents, unlike ranking which provides an intuitive way to obtain
an ordering but elicits no information about the degree of dif-
ference between attacks.

The dataset created by this exercise is made up of three lev-
els:

1. Rankings of attacks.

2. Ratings of the overall difficulty of attacking/evading spe-
cific security components that make up attacks.

3. Ratings of characteristics/factors that contribute to the
overall difficulty of attacking/evading specific security com-
ponents.

Details of analysis work carried out previously on the re-
sulting data can be found in Miller et al. (2013b).

The exercise and methods described in this paper represent
an important part of performing a security assessment on a pro-
posed system. The process of rating security components and
highlighting the easiest ways to attack a system via its weakest
components is critical to understanding the levels of risk posed
by a system design. In this study we will show how rankings
of attacks can be produced from overall ratings of components,
how overall ratings of components can be created from ratings
of characteristics of components, and how the two stages can
be chained together to produce attack rankings from ratings of
characteristics of components.

4. Data Analysis Methods

4.1. OWA/WA Aggregation

The methodology in this paper is based on determining the
‘optimum’ weights for either WA or OWA aggregation of the
assessment of difficulty of compromising the various compo-
nents in a range of attack vectors. This in turn, enables both
the ranking of attack vectors in terms of their overall difficulty
as well as providing an understanding of exactly which compo-
nents in a security system contribute the most/least to an overall
system being compromised. Below, we briefly summarise the
methodology and detailed rationale for both the WA and the
OWA.

In all, 26 security components were rated, each belongs to
one or more of the 10 specified technical attacks. Table 2 lists
the attacks, and their constituent security components. Notice
that some components appear more than once in the same at-
tack, this is because in some cases more than one instance of a
component needs to be attacked or evaded for an attack to be
completed successfully. For example, an attacker may have to
compromise multiple firewalls in order to obtain access to their
target. The order of components is important — alternative or-
derings, with perhaps alternative attack methodologies, may be
possible in the real world, but these would be considered as dif-
ferent overall attacks.

[Table 2 about here.]



With the information regarding the composition of attacks,
a WA can be employed for the aggregation of the ratings of the
difficulty of attacking / evading a security component, to pro-
duce an overall difficulty rating. In the instance of the WA,
weights are applied to specific factors, e.g., the complexity of
a component. The result is a set of derived overall difficulty
ratings for all 26 security components. The core challenge here
is the search for the ‘optimal’ weights of the given WA. To ad-
dress this, this paper proposes the use of Evolutionary Algo-
rithms (EAs) which will be discussed in the next section.

Similarly, an OWA is used to produce attack rankings from
overall difficulty assessments of their constituent hops. How-
ever, as noted in Section 2.3, the OWA matches a vector of
weights to the ordered set of evidence (difficulties) for the in-
dividual components. For instance, an OWA can be used to
aggregate overall difficulty ratings of components to produce
a rating for each of the ten attacks. As an example, Table 3
shows the overall difficulty ratings that an expert gave for at-
tacking/evading the security components in Attack 1.

If we want to aggregate these values into an overall rating
for Attack 1 that gives more weight to the most difficult com-
ponents, we could choose the weights

W' =(0.33,0.27,0.20,0.13,0.07).
The next step is to order the ratings
X = {25.00,40.00,20.50,40.00,70.00}
by difficulty to create the ordering
O = (70.00,40.00,40.00,25.00,20.50).

Equation 2 shows how the OWA can then be applied by multi-
plying each weight by its corresponding element in the order-
ing. In this case the resulting value is 46.59. When we compare
this with the mean value 39.10, it can be seen that this OWA op-
erator has given more weight to those components with higher
difficulty ratings. If we then repeated this process with the re-
maining nine attacks, a complete set of attack ratings would be
produced that could be used to generate attack rankings.

[Table 3 about here.]

[Table 4 about here.]

4.2. EA Implementation

In this work, EAs (as introduced in Section 2.4) are used to
optimise the weights for:

1. WAs, used to aggregate ratings of difficulty of factors to
produce the overall difficulty ratings of security compo-
nents;

2. OWA:s, used to aggregate the overall difficulty ratings of
security components to create rankings of the overall at-
tack vectors.

The EA has been implemented for both the WA and OWA cases
as follows.

Solutions are represented as a vector of weights. In this
example, the maximum number of security components in an
attack is eight, therefore each vector contains eight weights.
Those attacks that do not have eight components are padded out
with zeros. This is to avoid concentrating weightings (which
must add up to 1) on fewer components, which can have the
effect of making an attack more difficult purely because the
weights are concentrated on fewer component ratings. In gen-
eral, an attack should get more difficult as components are added
to it.

An initial population of individuals is created at the begin-
ning of the algorithm. Each individual is produced by generat-
ing seven random points on a line from O to 1. From this, eight
weights are created by taking the distances between 0, each of
the seven points, and 1. This ensures that the result is eight
values that add up to 1.

To compute fitness each expert’s actual attack ranking is
compared with the attack ranking derived from the overall secu-
rity component rating with the current OWA. The comparison
is made using Spearman’s rank correlation coefficient, which
produces a value between -1 (perfect negative correlation), 0
(no correlation) and 1 (perfect positive correlation). An error
value is then calculated by subtracting the correlation coeffi-
cient from 1, so a perfect positive correlation produces an error
of 0, and anything less produces an error value greater than 0.
Once an error value has been calculated for each expert, the
Mean Squared Error (MSE) is computed to give an error value
for each solution in the population.

Selection is achieved by sorting the population of solutions
by fitness, and then generating the indexes of selected parents
from a complementary cumulative distribution. A lower num-
bered individual is more likely to be chosen, ensuring that fitter
individuals a more likely to be selected, though potentially any
individual can be selected.

To guarantee that the fittest individual in successive gener-
ations is not worse that in preceding generations elitism selects
the best individuals from the current generation and copies them
unaltered into the next generation. A similar operator is the the
copy operator, which takes a parent picked using the described
selection method and copies them into the next generation.

The mutation operator used in this EA implementation ran-
domly selects two weights from a solution, increases one by a
small amount and reduces the other by the same amount. This
ensures that the weights still add up to one afterwards. The re-
sulting weights are validated, if either becomes greater than 1
or less than 0, another two elements are selected.

The crossover method used is a single point crossover. Two
parents are selected and a child is created that consists of the
first four weights of the first parent, and the last four from the
second parent. It is unlikely at this point that the weights will
add up to 1, so they are normalised. This method of crossover
ensures valid OWAs, while preserving the characteristics of each
contributing parent.

Finally, the EA’s termination criteria is set to be a specific
number of generations, after which the algorithm stops.



5. From Factor Ratings to Security Component Ratings

In Section 4, we described how an EA has been imple-
mented for use in this research. In this section we employ the
described EA to perform a search for WA weights. In these ex-
periments, we show how overall difficulty ratings for security
components can be obtained from ratings of their characteris-
tics using WAs where the weights have been discovered using
an EA. As well as producing overall difficulty ratings, this pro-
cess will also highlight which questions contribute most/least
to the overall ratings. In this case it is not rankings that are
being compared, it is ratings. Because of this, Spearman’s rho
is not an appropriate method for comparison so an alternative
method of calculating fitness was established. The ‘error’ is
directly calculated by taking the sum of absolute differences
between the derived hop ratings and the experts’ actual hop rat-
ings. Each expert’s error value is then used to calculate a MSE
value for all experts, which is used as the fitness value for each
solution.

When performing data analysis with the ratings of charac-
teristics/factors we found that the relationship between them
and the overall difficulty of attacking/evading a security compo-
nent varies between question sets. This is because they contain
different numbers of questions, and some questions are specific
to a question set. Because of this, we will perform separate ex-
periments with the questions for attacking and evading security
components, finding WAs specific to each.

5.1. EA Configuration

Initially, a series of tests were conducted to find ideal con-
figurations of the EA. Full details of these experiments and their
results can be found in Appendix B. The best results for each
question set can be found in Table B.5; the best EA configu-
rations are shown in Table B.6. The best EA found for each
question set is used in the next subsection for extended experi-
ments.

[Table 5 about here.]

[Table 6 about here.]

5.2. Extended Experiments

In these extended experiments the best EA configuration
found for each question set will be used in 30 runs with dif-
fering random seeds. The purpose of these experiments is to
assess the consistency of the EAs, and to see the best results
we can reasonable expect with the EA. In experiments with the
attack question set the best configuration (Test 15) will be used;
Appendix B shows that multiple configurations achieved the
best result for the evade question set, of these we have arbi-
trarily chosen to use the configuration from Test 1. Table B.7
shows a summary of the results for the attack question set. The
results are extremely stable, there is little variation in the results
over the 30 runs. Table B.8 gives details of the best WA found.

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

The results of the experiments with the attack question set
show that there are clear differences in the relative importance
of each question in deriving the overall difficulty of a security
component. In order, the questions are ranked as shown in Table
B.9. For comparison, the mean (over all 39 experts) Pearson’s
r for the correlation between the ratings given for each charac-
teristic, and the overall difficulty is also given. The weightings
shown are taken from the test that resulted in the lowest MSE
(Test 22), though all tests produced similar results.

The inherent difficulty rating has the highest weighting, and
it is also strongly correlated with the experts’ overall ratings for
security components. This may be because the experts do not
make a strong distinction between the inherent difficulty of at-
tacking a security component and the overall difficulty, as the
terms are similar. The weights attributed to the ratings regard-
ing factors of component difficulty are in line with the corre-
lation between experts’ ratings of each factor and their overall
rating for each component. In view of the weightings and cor-
relations, it is reasonable to say that the questions ranked 1 to
4 have a demonstrable relationship with how experts rate the
overall difficulty of compromising a security component. There
does not appear to be a significant relationship between how ex-
perts rated the factors in questions 5 to 7 and how they rated the
overall difficulty of compromising security components.

From this we could infer that these three questions about
the security components are not useful when trying to deter-
mine the difficulty of compromising a component, and that only
the four with high correlation/weighting are necessary. Alter-
natively, it could be that the four high correlation/weighting
questions were the only ones that experts are able interpret and
answer in a consistent manner with the information given. Re-
gardless, using the four questions overall ratings that are closely
correlated with participants’ actual ratings of overall difficulty
can be produced.

Table B.10 provides a summary of the results with the evade
question set. Like the experiments with the attack question set,
the results are extremely stable. Over 30 runs, 28 produced the
same MSE. Table B.11 shows the WA found in Test 1, though
all weightings are within 0.0003 of those shown.

[Table 10 about here.]
[Table 11 about here.]

Again, some questions are consistently given more weight
than others. Table B.12 provides a list of the difficulty factor
questions ranked by the weight they were given by the EA. The
Mean Corr column in Table B.12 gives the mean Pearson’s r
value for the correlation between experts’ ratings of factors and
their overall ratings. When compared with the correlation val-
ues for the attack questions, these are much lower, which may
explain why the EA is unable to find a WA that produces overall
ratings that are strongly correlated with experts’ actual overall
ratings.

[Table 12 about here.]



6. From Security Component Ratings to Attack Rankings

In this section, we describe how the EA was employed to
perform a search for OWA weights. The OWAs are to be used
for aggregating overall difficulty ratings of security components
to produce difficulty rankings of attacks. In these experiments
three groupings of experts have been used: odd experts i.e.,
experts assigned an odd number, even experts i.e., experts as-
signed an even number and all experts. This has been done so
that OWAs discovered with one group (e.g., odd) can be ap-
plied to the alternate group (e.g., even) to assess their robust-
ness, and the all group can be used to obtain the best OWAs
that can be found for the entire group of experts for comparison
purposes. Extended experiments are used with the best con-
figuration found with the all group to test the stability of the
configuration, and to further explore the best OWAs that can be
found.

6.1. EA Configuration

Initially, a series of experiments was conducted to find ideal
configurations of the EA for use in these tests. Full details of
these experiments and their results can be found in Appendix
A.1. The best OWAs found are shown in Table B.4 and the best
results from these experiments are shown in Table B.13. The
best OWAs found for the odd and even groups will be assessed
for their robustness, and the best EA configuration for the all
group will be used in extended experiments.

[Table 13 about here.]

6.2. OWA Robustness

In order to assess the robustness of the OWAs found by the
EA, the best OWAs found for the odd group were applied to the
even group and vice versa. The results of these experiments are
provided in Table B.14. It can be seen that while there is some
degradation of performance when the OWAs are applied to the
alternate group, they produce rankings that are strongly corre-
lated with experts’ actual rankings (i.e., Spearman’s Rho > 0.5
indicating strong correlation) suggesting that they are robust.
As these OWAs work well on their alternate (unseen) group, it
is reasonable to expect that OWAs trained with sample data will
work well on unseen data.

[Table 14 about here.]
6.3. Extended Experiments

The final set of experiments take the best configuration found
with the all grouping and conduct 30 runs with varying random
seeds to allow assessment of the stability of the EAs, and to
give a better picture of the best OWAs that can reasonably be
expected using the proposed approach. The EA configuration
used is shown in Table B.15. A summary of the results of the
extended experiments can be found in Table B.16. The sum-
mary shows that with 30 different random seeds, the results are
very stable, there is minimal difference between the solutions
found and they all result in OWAs that produce rankings that
are strongly correlated with experts’ actual rankings. Also of
interest is that in all 30 runs the solutions found never place less

than 0.92 of the weight on the most difficult to attack/evade se-
curity component, corroborating our hypothesis that this is the
most important component when assessing the difficulty of an
attack.

[Table 15 about here.]

[Table 16 about here.]

7. From Factor Ratings to Attack Rankings

In this section we will use the best WAs and OWAs, identi-
fied as described in the previous sections, to derive attack rank-
ings from the difficulty factor ratings. This is a two stage pro-
cess: firstly, the best WAs will be used to compute overall dif-
ficulty ratings for security components from ratings of factors
of that difficulty; secondly, the derived overall difficulty ratings
will be aggregated using the best OWA to create attack rank-
ings. Table B.17 shows the WA and OWA operators used, and
Table B.18 gives a summary of the results. Note that in this
case pairs of rankings are being compared, as such, error is cal-
culated by subtracting the Spearman’s Rho value from 1, as in
Section 6. Because of this it can be seen that, for example, the
minimum error is the complement of the maximum Spearman’s
Rho as they refer to the same individual. In the previous exper-
iments where overall difficulty ratings for security components
were being compared, error was calculated by taking the abso-
lute value of the differences between the actual ratings provided
by the experts, and the ratings derived from the difficulty factor
ratings.

[Table 17 about here.]
[Table 18 about here.]

The mean Spearman’s Rho is 0.5562, this indicates that
there is a strong correlation between the rankings produced us-
ing the difficulty factor ratings and those that the experts actu-
ally gave. It is clear that most experts answer the questions re-
lating to the factors of difficulty in such a way that it is possible
to create overall ratings for security components and rankings
of attacks that closely match their opinions.

8. Discussion

The proposed method demonstrates that it is possible to
model parts of cyber-security decision makers processes using
WAs and OWAs.

For our first set of experiments we used an EA to search
for WA weights that can be used to take experts’ ratings of fac-
tors that contribute to the difficulty of attacking/evading a secu-
rity component, and produce overall difficulty ratings for those
components. The results showed that for the attack question
set it is possible to produce overall ratings that closely match
experts’ actual rankings. With the evade question set however,
much poorer results were obtained. The EA highlighted the
factors that contribute the most to the overall rating, specifi-
cally questions regarding the availability of tools to help with



an attack, the difficulty of achieving the attack unnoticed, the
frequency of such attacks being reported and the inherent dif-
ficulty of completing an attack. The correlation of experts’ an-
swers to these questions and their overall difficulty ratings show
that they have moderate/strong correlation, further supporting
their importance for this type of assessment. Conversely, ques-
tions regarding the maturity of technology, the amount of in-
teraction with data and the complexity of components attracted
the least weight and were weakly correlated with the overall
ratings. This suggests that these factors were not helpful in this
particular exercise, though they may prove to be useful under
different circumstances.

The second set of experiments focused on using an EA to
find OWA weights that allowed us to aggregate overall ratings
of the difficulty of attacking/evading security components to
produce rankings of attacks for each expert that are strongly
correlated with the actual attack rankings that they provided.
This shows that we can extrapolate from ratings of individual
components to rankings of complete attacks, lightening the load
on experts.

It was also shown that if the participants are split arbitrar-
ily, OWAs that work well with one group tend to well with the
other too. This is a useful result, as it alludes to the possibil-
ity of using OWAs to aggregate unseen experts’ hop ratings to
produce ratings and rankings of unseen attacks for a proposed
system. Comprehensive experiments showed that from 30 dif-
ferent starting positions (i.e., seeds) the EA consistently found
similar solutions, suggesting that they represent globally good
solutions, and that in all 30 runs the EA never placed less than
92% of the weight on the most difficult component. From this,
we can infer that when assessing the difficulty of an attack, the
most difficult to attack / evade security component is by far the
most important. Simply taking the maximum proves impracti-
cal however, as it results in many attacks being given the same
rating and ranking.

The final set of experiments combined the processes in-
volved in the first and second sets of experiments. The best
WAs and OWA found in previous experiments were used to-
gether to produce rankings of attacks from experts’ ratings of
factors that contribute to the difficulty of a component. The
rankings produced, on average, show strong correlation with
experts’ actual rankings. This indicates that by asking targeted
questions about characteristics of security components, specific
technical attacks on proposed systems can be rated and ranked
in terms of difficulty and salience. From a machine learning
point of view, the proposed methodology where the parameters
(i.e. weights) of aggregation operators (both WA and OWA) are
optimised using an EA is clearly not the only viable approach.
Different optimisation strategies such as simulated annealing
could be explored, while the actual aggregation operators could
be generalised for example to fuzzy integrals (Grabisch et al.,
2000) where more complex weights captured by fuzzy mea-
sures enable a more fine-grained weighting.

These results raise the possibility of using ratings of secu-
rity components to produce ratings and rankings for unseen at-
tacks on proposed information systems. This could take the
form of a database of ratings of generic security components
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(we have seen that lack of technical detail does not prevent rea-
soned assessment) which could be used for ‘What if?’ scenarios
to give an approximate assessment of the difficulty of attacks
when security components are altered or moved. The degree to
which this exciting possibility is feasible in practice is a matter
of future research.

The major contribution of this paper to cyber-security re-
search lies in its use of exploratory data analysis to demonstrate
the feasibility of linking the experts rating of components of at-
tacks to the overall ranking of the difficulty of the attack vectors
themselves. In doing so, it both confirms the technical method-
ology of using WAs and OWAs to perform the aggregation, as
well as confirming that the experts’ ratings and rankings do
have internal consistency with each other — which is not a a
priori given, and in some ways can therefore be taken as refu-
tation of our informally posed null hypothesis (that the security
experts are not really expert). Hence, not only do these methods
provide practical possibilities for systematising the analysis of
attack vectors, but they also offer the future possibility of being
used as some form of professional competence test (or accredi-
tation) of security expertise. The results of this work also have
the potential to reduce both the cost and time required to per-
form similar estimates through automation. However, we em-
phasise that these practical benefits will require further research
and development. We are not aware of similar approaches to
this problem being reported in literature, making direct com-
parisons impossible. We hope that this paper will initiate many
similar studies in the future.

9. Conclusions

In this work we have presented a method of finding good ag-
gregation operators for creating rankings of technical attacks on
a proposed system and ratings of security components, which
has the added advantage of also highlighting salient factors and
security components. To do this, we have used a data set col-
lected during a decision making exercise at GCHQ in which
cyber-security experts performed security assessment tasks on
a realistic system proposal. The results showed that using the
proposed method it is possible to produce rankings of techni-
cal attacks on a system using ratings of security components,
ratings of security components from ratings a specific factors
of difficulty, and finally, rankings of technical attacks on a sys-
tem from ratings of specific factors. These outcomes present
the possibility of using ratings of generic security components
(or their characteristics) in ‘What if?’ scenarios to assess the
impact of altering/moving components within a system design.

The work has produced important insights that enable the
construction of expert security assessment support tools. Such
tools have the potential to reduce the time and effort required of
experts for assessments, and enable systems designers to pro-
duce approximate security assessments before they seek expert
advice. These advances will address growing concerns about
the capacity of limited expert resources in view of the increas-
ing complexity and growing number of information systems
that are under attack from an ever changing set of attacks.



As noted in Section 8, this paper does not advocate the pro-
posed approach of optimising the parameters of the given ag-
gregation operators as a unique solution. Indeed, it is likely that
other approaches will achieve similar, and in the case of more
complex approaches such as fuzzy integrals, more nuanced re-
sults. However, the proposed architecture provides a viable ap-
proach which enables the generation of highly useful results
and insight in the challenging area of expert-led cyber security
system assessment. The same general methodology may be ap-
plied to a variety of similar situations in which the modelling
of expert opinion, particularly when aggregating sub-criteria, is
desired.

Future work in this area will involve efforts to create the
generic security component database mentioned previously and
applying the techniques shown here to assess the practicality of
providing decision support for systems architects in the process
of designing new systems. In addition, we are exploring the
applicability of the proposed approach to related areas such as
‘adversary characterisation’ in cyber-threat intelligence.
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Appendix A. EA Configuration Experiments

This appendix contains details of the experiments conducted
to find ideal EA configurations for the OWA/WA search.

Appendix A.1. EA for use with OWAs

This subsection contains the experiments conducted to find
an EA configuration to be used in the experiments performed in
Section 6

Initial experiments focused on discovery of an ideal config-
uration for the EA, which is a significant problem in itself. In
order to create a practical test schedule that could be completed
in a reasonable time frame, these experiments were split into
two parts: 1) evolutionary operator proportions and 2) genera-
tions and population sizes.

Appendix A.1.1. Part 1 - Evolutionary Operator Proportions

Table B.19 shows the configurations tested in the first part.
For all of these experiments 1% elitism was applied to a pop-
ulation of 250 over 250 generations. The population and gen-
erations values have been chosen arbitrarily in order to explore
the operator proportions. Appropriate values for population and
generations will be examined in later experiments.

[Table 19 about here.]
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The best results for these experiments are given in Table
B.20. The results for all three groupings show that configura-
tions that have a large proportion of mutation and a smaller pro-
portion of crossover work best, and that the proportion of copy
has little effect on the results. As the best individuals are au-
tomatically copied from one generation to the next via elitism,
this may reduce the impact made by the copy operator. Table
B.21 gives details of the OWAs found in each of the best ex-
periments listed in Table B.20. It can be seen that in all cases,
the EA is finding OWAs that place significantly more weight
on the most difficult to attack/evade security component than
the remaining components.

[Table 20 about here.]

[Table 21 about here.]

Appendix A.1.2. Part 2 - Population and Generations

In the second part of the EA configuration experiments, the
focus switched to the number of generations and population
size. The best evolutionary operator proportions from the first
part of testing were used in a series of experiments with vary-
ing population sizes/numbers of generations. Table B.22 pro-
vides the population sizes and numbers of generations tested.
The best results from these experiments are shown in Table
B.23. It should be noted that in the first part two configura-
tions were joint best for the all group, both were tested in this
part. The best result for the all group shown in Table B.23 was
achieved with operator proportions from Test 2. In this set of
experiments there is much less variation in the results than was
seen in the first part of testing; altering the operator propor-
tions had a greater effect on results than altering the population
sizes and number of generations. Table B.24 gives details of
the OWAs found in each of the best experiments listed in Table
B.23. Again, the EA is finding OWAs that place significantly
more weight on the most difficult to attack/evade security com-
ponent than the remaining components.

[Table 22 about here.]
[Table 23 about here.]

[Table 24 about here.]

Appendix B. EA for use with WAs

This subsection contains the experiments conducted to find
an EA configuration to be used in the experiments performed in
Section 5

Appendix B.1. Part 1 - Evolutionary Operator Proportions

In the first set of experiments a series of evolutionary op-
erator proportions are tested. As in the previous experiments,
a fixed population of 250 is run over 250 generations and 1%
elitism is applied. Table B.25 shows details of the configura-
tions tested, the best results for each question set are shown in
Table B.26.



[Table 25 about here.]
[Table 26 about here.]

These initial results show that the results are significantly
different for each question set. The attack questions produce
ratings that are extremely strongly correlated with experts’ ac-
tual overall difficulty ratings, while the WAs for the evade ques-
tions produce ratings that are weakly correlated with experts’
actual ratings.

Appendix B.2. Part 2 - Population and Generations

In the second part of the EA configuration experiments the
best evolutionary operator proportions found for each question
set in part 1 are used in a series of experiments with varying
population sizes and numbers of generations. Table B.27 pro-
vides the configurations tested and Table B.28 shows the best
results.

[Table 27 about here.]
[Table 28 about here.]
Again, the results for the attack question set are far superior
to those for the evade questions.
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Figure B.1: Structure of Assessment Data
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Table B.1: Components in Example Attack

Step | Attack/Evade Component
A Evade Content Checker
B Evade Anti-Virus Software
C Attack PDF Renderer
D Evade Anti-Virus Software
E Attack Client Access Controls
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Table B.2: Attacks and their Constituent Security Components

Attack Components
1 2,3,1,4,5
2 6,7,6,8.4
3 9
4 10,11,4,5
5 12,13,2,3,14,15,4,5
6 16,16,17,4,5
7 6,18,4,5
8 19,20,21
9 22,2324
10 25,26,1,4,5
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Table B.3: Overall Difficulty Ratings for the Security Components in Attack 1

Component | Overall Difficulty
1 25.00
2 40.00
3 20.50
4 40.00
5 70.00
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Table B.4: EA-OWA: EA Configuration - Best OWAs

Best Weights
Test 1 2 3 4 5 6 7 8
Even
12 | 0.8907 0.0011 0.0323 0.0120 0.0070 0.0174 0.0035 0.0359
13 | 0.8899 0.0044 0.0297 0.0126 0.0078 0.0242 0.0030 0.0284
Odd
13 | 0.7858 0.0223 0.1285 0.0471 0.0115 0.0031 0.0015 0.0002
16 | 0.7854 0.0246 0.1248 0.0479 0.0117 0.0033 0.0001 0.0021
All
1 0.9582 0.0028 0.0242 0.0003 0.0057 0.0029 0.0002 0.0056
2 0.9621 0.0017 0.0221 0.0003 0.0045 0.0059 0.0009 0.0025
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Table B.5: EA-WA: EA Configuration - Best Results

Test | Mean Sp. MSE
Attack
15 \ 0.7931 194.0125
Evade
1 \ 0.2270  420.2156
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Table B.6: EA-WA: EA Configuration - Best EAs

Attack
Test | Gens | Pop | Copy | Cross | Mut
15 400 | 155 | 0.20 0.20 | 0.59
Evade
Test | Gens | Pop | Copy | Cross | Mut
1 250 | 250 | 0.00 0.20 | 0.79
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Table B.7: EA-WA: Extended Experiments - Attack

Spearman’s Rho

Max Min Mean Standard Deviation
0.7940 0.7919 0.7935 0.0005
MSE
Max Min Mean Standard Deviation
194.2998 | 193.9896 | 194.0856 0.0741
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Table B.8: EA-WA: Extended Experiments - Best WA - Attack

Best Weights
Test  Complexity Interaction Frequency
22 8.43E-05 0.0012 0.1622
Tool Inherent Maturity  Unnoticed
0.2189 0.4020 0.0438 0.1719
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Table B.9: EA-WA: Extended Experiments - Question Ranking - Attack

Rank Question Weight | Mean Corr
1 How inherently difficult is this type of attack? 0.4020 0.6454
2 How likely is it that there will be a publicly available tool that could help with this attack? | 0.2189 0.6732
3 How easy is it to carry this attack out without being noticed? 0.1719 0.4543
4 How often would you say this type of attack is reported in the public domain? 0.1622 -0.6268
5 How mature is this type of technology? 0.0438 0.1701
6 How much does the target component process/interact with any data input? 0.0012 -0.2741
7 How complex is the target component? 8.43E-05 -0.0623
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Table B.10: EA-WA: Extended Experiments - Evade
Spearman’s Rho
Max Min Mean Std Dev
0.2273 0.2270 0.2270 | 5.38E-05
MSE
Max Min Mean Std Dev
420.2158 | 420.2156 | 420.2156 | 4.76E-05
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Table B.11: EA-WA: Extended Experiments - Best WA - Evade

Best Weights
Test | Complexity Information Maturity
1 0.2185 0.4971 0.2845

27



Table B.12: EA-WA: Extended Experiments - Question Ranking - Evade

Rank

Question Weight | Mean Corr
1 How likely is it that there will be publicly available 0.4971 -0.3307
information that could help with evading defence?
2 How mature is this type of technology? 0.2845 -0.0348
3 How complex is the job of providing this kind of defence? | 0.2185 0.0278
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Table B.13: EA-OWA: EA Configuration - Best Results
Test | Mean Sp. MSE
Even
12 0.6885 0.1421
13 0.6866 0.1421
Odd
13 0.5732 0.2519
16 0.5733 0.2519
All
0.6159 0.2069
0.6159 0.2069

N =
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Table B.14: EA-OWA: OWA Robustness Experiments

Test | Mean Sp. MSE

Best even OWA applied to odd
12 0.5228 0.3013
13 0.5146 0.3118

Best odd OWA applied to even
13 0.5915 0.2381
16 0.5947 0.2337
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Table B.15: EA-OWA: Extended Experiments - EA Configuration
Gens | Pop | Copy | Cross | Mut
250 | 250 | 0.00 0.20 | 0.79
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Table B.16: EA-OWA: Extended Experiments

Spearman’s Rho

Max

Min

Mean

Std Dev

0.6200

0.6104

0.6150

0.0022

MSE

Max

Min

Mean

Std Dev

0.2137

0.2057

0.2092

0.0020
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Table B.17: Factor Ratings to Attack Rankings: WAs and OWA
WA
Index | Attack Evade | OWA

1 8.43E-05 0.2185 | 0.9484

2 0.0012  0.4971 | 6.7E-05
3 0.1622  0.2845 | 0.0368
4 0.2189 - 0.0120
5 0.4020 - 0.0008
6 0.0438 - 0.0016
7 0.1719 - 0.0002
8 - - 0.0002
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Table B.18: Factor Ratings to Attack Rankings: Results

Spearman’s Rho

Max Min Mean | Std Dev
0.9636 | -0.4303 | 0.5562 | 0.3387
Error
Max Min MSE | Std Dev
1.4303 | 0.0364 | 0.3117 | 0.3387
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Table B.19: EA-OWA: Evolutionary Operator Proportion Experiments

Test | Copy | Cross | Mut
1 0.00 | 020 | 0.79
2 0.20 | 0.20 | 0.59
3 040 | 020 | 0.39
4 0.60 | 020 | 0.19
5 0.79 0.20 | 0.00
6 0.50 | 0.00 | 0.49
7 0.30 | 040 | 0.29
8 0.20 | 0.60 | 0.19
9 0.10 | 0.80 | 0.09
10 0.00 | 0.99 | 0.00
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Table B.20: EA-OWA: Evolutionary Operator Proportions - Best Results
Test | Mean Sp.  MSE

Even
3 \ 0.6866 0.1425
Odd
1 \ 0.5713 0.2543
All

1 0.6159 0.2069
2 0.6159 0.2069
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Table B.21: EA-OWA: Evolutionary Operator Proportions - Best OWAs

Best Weights
Test 1 2 3 4 5 6 7 8
Even
3 \ 0.8985 0.0059 0.0311 0.0102 0.0065 0.0258 0.0037 0.0184
Odd
1 \ 0.7872 0.0185 0.1242 0.0505 0.0111 0.0032 0.0029 0.0024
All
1 0.9582 0.0028 0.0242 0.0003 0.0057 0.0029 0.0002 0.0056
2 0.9621 0.0017 0.0221 0.0003 0.0045 0.0059 0.0009 0.0025
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Table B.22: EA-OWA: Population and Generations Experiments
Test | Gens | Pop
11 50 1250
12 100 625
13 200 315
14 300 | 210
15 400 155
16 500 125
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Table B.23: EA-OWA: Population and Generations - Best Results
Test | Mean Sp. MSE
Even
12 0.6885 0.1421
13 0.6866 0.1421
Odd
13 0.5732 0.2519
16 0.5733 0.2519
All
15 [ 06165  0.2080
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Table B.24: EA-OWA: Population and Generations - Best OWAs

Best Weights
Test 1 2 3 4 5 6 7 8
Even
12 | 0.8907 0.0011 0.0323 0.0120 0.0070 0.0174 0.0035 0.0359
13 | 0.8899 0.0044 0.0297 0.0126 0.0078 0.0242 0.0030 0.0284
Odd
13 | 0.7858 0.0223 0.1285 0.0471 0.0115 0.0031 0.0015 0.0002
16 | 0.7854 0.0246 0.1248 0.0479 0.0117 0.0033 0.0001 0.0021
All
15 \ 0.9456 0.0022 0.0296 0.0006 0.0068 0.0011 0.0086 0.0055
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Table B.25: EA-WA: Evolutionary Operator Proportion Experiments

Test | Copy | Cross | Mut
1 0.00 | 020 | 0.79
2 0.20 | 0.20 | 0.59
3 040 | 020 | 0.39
4 0.60 | 020 | 0.19
5 0.79 0.20 | 0.00
6 0.50 | 0.00 | 0.49
7 0.30 | 040 | 0.29
8 0.20 | 0.60 | 0.19
9 0.10 | 0.80 | 0.09
10 0.00 | 0.99 | 0.00
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Table B.26: EA-WA: Evolutionary Operator Proportions - Best Results

Test | Mean Sp. MSE
Attack
2 \ 0.7936 194.0279
Evade
1 \ 0.2270  420.2156
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Table B.27: EA-WA: Population and Generations Experiments
Test | Gens | Pop
11 50 1250
12 100 625
13 200 315
14 300 | 210
15 400 155
16 500 125
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Table B.28: EA-WA: Population and Generations - Best Results

Test | Mean Sp. MSE
Attack
15 \ 0.7931 194.0125
Evade
11-16 \ 0.2270 420.2156
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