Formal Modelling and Analysis of Receipt-Free Auction
Protocols in Applied Pi

Naipeng Dong®*, Hugo Jonker®, Jun Pang®

4School of Computing, National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
bSchool of Computer Science, Open University of the Netherlands, Valkenburgerweg 177, 6419 AT Heerlen,
The Netherlands
¢Faculty of Science, Technology and Communication & Interdisciplinary Centre for Security, Reliability
and Trust, University of Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359, Luxembourg

Abstract

We formally study two privacy-type properties for e-auction protocols: bidding-price-
secrecy and receipt-freeness. These properties are formalised as observational equiv-
alences in the applied pi calculus. We analyse two receipt-free auction protocols: one
proposed by Abe and Suzuki in 2002 (AS02) and the other by Howlader et al. in 2014
(HRM14). Bidding-price-secrecy of the AS02 protocol is verified using the automatic
verifier ProVerif, whereas receipt-freeness of the two protocols, as well as bidding-
price-secrecy of the HRM 14 protocol, are proved manually.

Keywords: e-auction, security protocol, formal verification, bidding-price-secrecy,

receipt-freeness

1. Introduction

Auctions are ways to negotiate exchange of goods and services. We use e-auctions
to refer to auctions over the Internet. A typical (e-)auction works as follows: a seller
offers items to bid, then bidders submit bids, finally auctioneers decide the winner. In
a traditional auction, bidders attend the auction in person. Compared to the traditional
auctions, e-auctions attract more participants, as users with the Internet can join an

auction. Real-life examples are well-known websites like eBay, eBid, Yahoo!auctions

*Corresponding author
Email addresses: dcsdn@nus .edu. sg (Naipeng Dong), hugo. jonker@ou.nl (Hugo Jonker),
jun.pang@uni.lu (Jun Pang)

Preprint submitted to Elsevier September 8, 2016

and so on. E-auction protocols are also the subject of an active field of research [1} 2}
3,415 16, 7,18} 9% [10].
There are different types of (e-)auctions. For instance, depending on whether the

bids are public, there are sealed-bid auctions and open-bid auctions;

e Sealed-bid auctions: There are two phases in an auction: the bidding phase and
the opening phase. Bidders can only submit bids in the bidding phase. All bids

are sealed in the bidding phase and opened in the opening phase.
e Open-bid auctions: Bids are broadcast to all participants.

Other criteria to classify (e-)auctions exist as well. For example, depending on
the bidding price increases or decreases, there are English auctions (a bid needs to
be higher than the previous one; the winning bid is the final bid) and Dutch auctions
(the bidding price decreases until a bid is submitted); depending on the calculation of
payment, there are first-price auctions (the winner pays for the price he bid (highest
price)) and Vickrey auctions (the winner pays for the second highest price). Different
auctions are suitable for different types of negotiations, e.g., English auctions are often
used in real estate, Dutch auctions are often used in flower selling, and Vickrey auctions
are favoured by economists as they are better at encouraging bidders to express their
real estimation on the value of the items to bid on [11]].

Many security issues have been identified in e-auctions, such as, a bidder may
falsely claim or forge bids, the auctioneer may corrupt with other bidders [12]. Beside
security issues, an important problem with existing e-auction systems is privacy. The
link between a bidder and his bids needs to be protected as such information can be
used to target a bidder with unsolicited junk mails or other malicious purposes, e.g.,
bid shieldingﬂ A major challenge of designing a protocol is to ensure the functionality
of the protocol. In addition to that, a challenge for designing a privacy preserving
e-auction protocol is that too much anonymity may allow bidders to repudiate bids,

whereas insufficient anonymity allows bidders to be profiled.

'A dishonest bidder submits a higher price to deter other bidders with lower valuations, when it ap-
proaches the close time of the auction, the dishonest bidder withdraws his bid in order to win with another
lower bid from him.

Depending on different types of auctions, privacy may have varying levels. For
instance, in sealed-bid auctions, all bids are sealed until the winner is determined.
Therefore, if auctioneers can decide the winners without knowing the non-winning
bidder’s bids, sealed-bid auctions can offer bidding-price secrecy for non-winning bid-
ders; while in open-bid auctions, all the bids are published. Some auctions require
that the auctioneer cannot link a bidder to his bids, whereas some others do not. The
arguments for this requirement are made according to the following lines. In Vickery
auctions, a bidder’s bid reflects the bidder’s valuation of the item bid on. Knowing a
bidder’s bid, an auctioneer knows the bidder’s valuation. Since the winning bidder pays
for the second highest price, the auctioneer could enter a bid just slightly lower than
the bidder’s valuation, to increase the auction’s revenue [11]. Contrarily in English
auctions, a bidder’s previous bids reveal less information of the bidder’s future bid,
thus, that the auctioneer knows the link between a bidder and his previous bids is less
harmful [11]]. In general, sealed-bid e-auctions require that the non-winning bidders’
bidder-bid relation should be kept secret.

In addition to the above privacy notions, a stronger privacy notion — enforced pri-
vacy — has also been identified. In sealed-bid e-auctions, a bidder may be coerced
to bid a low price, so that the coercer can win an auction with an unreasonably low
price. The phenomenon that a coercer tries to control the winning price by coercion
is called bid-rigging. Note that the traditional auctions do not suffer from bid-rigging,
as the bidders do not have receipts on submitting a bid [[13]]. Inspired by the require-
ment of receipt-freeness in e-voting that a voter should not be able to prove his vote to
a voter-buyer, the requirement of receipt-freeness for fighting against bid-rigging has
been identified [14]].

In general, the following two privacy notions are required in sealed-bid e-auctions:

Bidding-price-secrecy: A sealed-bid e-auction protocol preserves bidding-price-secrecy
for non-winning bidders if the adversary cannot determine the bidding price of

any non-winning bidder.

Receipt-freeness: A sealed-bid e-auction protocol is receipt-free for non-winning bid-

ders if a non-winning bidder cannot prove how he bids to the adversary.

In this paper, we first formalise these two privacy notions in the applied pi calculus
(Sectiond). Without a precise definition, many protocols claimed to satisfy a property
were later found flawed (see examples in [15]). For example, the Okamoto e-voting
protocol [16] which claimed to satisfy receipt-freeness expressed in natural language,
was later shown flawed with respect to a rigorous definition [17]; and according to
the author, one important reason is the lack of formal definition of receipt-freeness in
e-voting. To validate our formalisation, we model and study privacy properties of the
ASO02 protocol proposed by Abe and Suzuki [4] (Section [5) and the HRM14 proto-
col proposed by Howlader et al. [18] (Section [6). The authors of both papers claim
that their protocol satisfies the above two requirements for non-winning bidders and
provide an informal analysis. However, security protocols are notoriously difficult to
design and analyse, and proofs of security protocols are known to be error-prone, thus
we do not want to rely on an informal analysis. In several cases, formal verification
found security flaws in protocols which were thought to be secure [19} 20, [15} 21].
Formal verification has shown its strength in finding attacks and proving correctness
of security protocols. In this paper, we formally verify whether bidding-price-secrecy
and receipt-freeness hold in their protocols. We model both protocols using the ap-
plied pi calculus [22]] (Section [2). The applied pi calculus provides an intuitive way
to model concurrent systems, especially security protocols. Moreover, it is supported
by ProVerif [23]], a verification tool which can be used to verify a number of security
properties automatically (Section[3)). As suggested in [13], we use observational equiv-
alence to express bidding-price-secrecy and receipt-freeness in the applied pi calculus.
Previously, formalisation of privacy-type properties has already been successfully ex-
ecuted in the domain of voting [24} [15] (similar ideas were developed in a different
formal framework [25])). Bidding-price-secrecy for the ASO2 protocol is verified auto-
matically using ProVerif, whereas receipt-freeness, as well as bidding-price-secrecy for
the HRM 14, are proven manually. Related work is discussed in Section[7]and Section|g]
concludes the paper with a few future works.

Note that an extended abstract of our work has appeared in the proceedings of
7th International Workshop on Formal Aspects in Security and Trust [26]], where we

have formally analysed the AS02 protocol. In the current paper, we have included the

full details of our analysis the AS02 protocol, and extended our method to analyse
the recently published HRM14 protocol. For the HRM14 protocol, we showed that it
may not satisfy receipt-freeness and proposed a fix, and then we proved that the fixed

protocol satisfies receipt-freeness.

2. The applied pi calculus

The applied pi calculus is a language for modelling and analysing concurrent sys-
tems, in particular cryptographic protocols. It assumes the Dolev-Yao model [27]] for
adversaries which have full control of the network. Namely, an adversary can eaves-
drop, replay, block and inject messages. The adversary can be modelled as an arbitrary
process running in parallel with the protocol, which can interact with the protocol in
order to gain information.

The following briefly introduces its syntax, semantics and equivalence relations. It

is mainly based on [22} 28]].

2.1. Syntax

The calculus assumes an infinite set of names (which are used to model commu-
nication channels or other atomic data), an infinite set of variables (which are used to
model received messages) and a signature X consisting of a finite set of function sym-
bols (which are used to model cryptographic primitives). Each function symbol has an

arity. A function symbol with arity zero is a constant.

Example 1. In cryptographic protocols, typical function symbols are enc with arity 2

for encryption and dec with arity 2 for decryption.

Terms (which are used to model messages) are defined as names, variables, or func-

tion symbols applied to terms (see Figure [I)).

M, N, T:= terms
a, b, m, n,... names
X, ¥ z variables
f(My,...,.My) function application

Figure 1: Terms in the applied pi calculus.

The applied pi calculus assumes a sort system for terms. Terms can be of a base
type (e.g., KEY or a universal base type DATA) or type Channel{®) where o is a type.
A variable and a name can have any type. A function symbol can only be applied to
and return, terms of base type. Terms are assumed to be well-sorted and substitutions
preserve types.

Terms are often equipped with an equational theory E — a set of equations on terms.
The equational theory is normally used to capture features of cryptographic primitives.

The equivalence relation induced by E is denoted as =p.

Example 2. The behaviour of symmetrical encryption and decryption can be captured

by the following equation: dec(enc(x,y),y) =g x, where x,y are variables.

Systems are described as processes: plain processes and extended processes (see

Figure 2). In Figure 2] M and N are terms, n is a name, x is a variable and u is a

P O, R:= plain processes
0 null process
P|Q parallel composition
P replication
vn. P name restriction
if M=gN then P else Q conditional
in(u,x). P message input
out(u,M). P message output

A, B, Cu= extended processes
P plain process
A|B parallel composition
vn. A name restriction
Vx. A variable restriction
{M/x} active substitution

Figure 2: Processes in the applied pi calculus.

metavariable, standing either for a name or a variable. The null process 0 does noth-
ing. The parallel composition P | Q represents the sub-process P and the sub-process
QO running in parallel. The replication !P represents an infinite number of process P
running in parallel. The name restriction v n. P binds the name n in the process P,
which means the name n is secret to the adversary. The conditional evaluation M =g N

represents equality over the equational theory rather than strict syntactic identity. The

message input in(u,x). P reads a message from channel «, and bounds the message to
the variable x in the following process P. The message output out(u,M). P sends the
message M on the channel u, and then runs the process P. Extended processes add
variable restrictions and active substitutions. The variable restriction v x. A bounds the
variable x in the process A. The active substitution {M/x} replaces variable x with
term M in any process that it contacts with. We also write “let x = m in P” to represent
P{M/x}.

Names and variables have scopes. A name is bound if it is under restriction. A
variable is bound by restrictions or inputs. Names and variables are free if they are not
delimited by restrictions or by inputs. The sets of free names, free variables, bound
names and bound variables of a process A are denoted as fn(A), fv(A), bn(4) and
bv(A), respectively. A term is ground when it does not contain variables. A process is
closed if it does not contain free variables. A frame is defined as an extended process
built up from O and active substitutions by parallel composition and restrictions. The
active substitutions in extended processes allow us to map an extended process A to its
frame frame(A) by replacing every plain process in A with 0. The domain of a frame B,
denoted as domain(B), is the set of variables for which the frame defines a substitution.
A context €'|_] is defined as a process with a hole, which may be filled with any process.
An evaluation context is a context whose hole is not under a replication, a condition,

an input or an output. Finally, we abbreviate the process vny.---vn,. Pas via. P.

2.2. Operational semantics

The operational semantics of the applied pi calculus is defined by: 1) structural
equivalence (=), 2) internal reduction (—), and 3) labelled reduction (1>) of processes.

1) Informally, two processes are structurally equivalent if they model the same thing
but differ in structure. Formally, structural equivalence of processes is the smallest
equivalence relation on extended process that is closed by o-conversion on names and
variables, by application of evaluation contexts as shown in Figure 3]

2) Internal reduction is the smallest relation on extended processes closed under
structural equivalence, application of evaluation of contexts as shown in Figure 4]

3) The labelled reduction models the environment interacting with the processes. It

PAR—0 A0 = A

PAR—A A|(B|C) = (A|B)|C

PAR—C A|B = B|A

REPL P = P|'P

SUBST {M/x} |A = {M/x} | A{M/x}

NEW—0 vu.0 = 0

NEW—C VU.Vv.A = Vi Vvu. A

NEW— PAR A|lvu.B = vu.(A|B) if ugfn(A)Ufv(A)
ALIAS vx.{M/x} = 0

REWRITE {M/x} = {N/x} if M=gN

Figure 3: Structural equivalence in the applied pi calculus.

COMM out(c,x). P|in(c,x).Q — P|Q
THEN if N=gN then P else Q — P
ELSE if M =g N then P else Q — Q0
for ground terms M, N where M #gN

Figure 4: Internal reduction in the applied pi calculus.

defines a relation A = A’ as in Figure The label « is either reading a term from the

process’s environment, or sending a name or a variable of base type to the environment.

i M
N in(c,0). P M prag/x)
OUT — ATOM out(c,u). P 2y p
out(c,u) ,
OPEN — ATOM A — Oﬁ(c u)” ks
Vu. A : = A
SCOPE A % A u does not occur in «

o
Vu.A = vu. A

o

A % A bv(a)Uf(B) =bn(a)Nfn(B) =0

PAR o ;
A|B — A |B
— a / I _ pl
STRUCT A=B B —a> B/ A =B
A — A

Figure 5: Labelled reduction in the applied pi calculus.

2.3. Equivalences

The applied pi calculus defines observational equivalence and labelled bisimilarity
to model the indistinguishability of two processes by the adversary. It is proved that the
two relations coincide when active substitutions are of base type [22, [29]. We mainly
use the labelled bisimilarity for the convenience of proofs. Labelled bisimilarity is
based on static equivalence: labelled bisimilarity compares the dynamic behaviour of
processes, while static equivalence compares their static states (as represented by their

frames).

Definition 1 (static equivalence). Two terms M and N are equal in the frame B, written
as (M =g N)B, iff there exists a set of restricted names ii and a substitution & such that
B=vii.o, Mo =g No and in (fn(M) Ufn(N)) = 0.

Closed frames B and B’ are statically equivalent, denoted as B ~; B/, if
(1) domain(B) = domain(B’);
(2) ¥ terms M,N: (M =g N)B iff (M =g N)B'.

Extended processes A, A’ are statically equivalent, denoted as A ~; A', if their

frames are statically equivalent: frame(A) ~ frame(A”).

Definition 2 (labelled bisimilarity). Labelled bisimilarity (=) is the largest symmetric
relation % on closed extended processes, such that AZ B implies:

(1) A~ B;

(2)ifA — A’ then B—* B and A’ # B’ for some B’;

(3)ifA % A" and fv(or) C domain(A) and bn(ot) Nfn(B) = 0; then B —*%—* B and

A’ Z B for some B', where * denotes zero or more.

3. ProVerif

The verification of protocols modelled in the applied pi calculus is supported by an
automatic verification tool ProVerif [23,/30}131]. The tool has been used to verify many
security and privacy properties, e.g., see [32,133} 134,135,136, 9, 37, 121]].

ProVerif takes a protocol and a property modelled in the applied pi calculus as
input, returns a proof of correctness or flaws as output. A protocol modelled in the ap-

plied pi calculus is translated to Horn clauses [38]. The adversary ability is interpreted

as Horn clauses as well. Using these clauses, the verification of secrecy (e.g., secrecy
of M) is to determine whether a predicate (e.g., “attack : M’ meaning that attack knows
M) can be deduced. However, not all properties can be expressed as such predicates.
Many of such properties can be expressed as equivalences of processes, for example,
strong secrecy which is defined as the adversary’s inability to distinguish when the
secret changes. Therefore, in addition, ProVerif provides automatic verification of la-
belled bisimilarity of two processes which differ only in the choice of some terms [39].
Strong secrecy of a variable x can be verified by querying “noninterf x”’, meaning that
no matter how the variable x is instantiated, the adversary cannot detect any difference
between these instantiations. An operation “choice[a,b]” is also used to model the dif-
ferent choices of a term in the two processes. Using this operation, the two processes
can be written as one process — a bi-process. Using the first parameter of all “choice”
operations in a bi-process P, we obtain one side of the equivalence (denoted as fst(P));
using the second parameters, we obtain the other side (denoted as snd(P)). Given a

bi-process P, ProVerif determines whether fst(P) is labelled bisimilar to snd(P).

4. Formalisation of privacy notions in e-auctions

We formalise the two identified privacy notions, bidding-price-secrecy and receipt-
freeness, using the applied pi calculus in the context of sealed-bid e-auctions.

An auction protocol is essentially a specification of the behaviour of the roles par-
ticipating in the protocol. A protocol normally involves two roles: bidders and auc-
tioneers, e.g., the ASO2 protocol. Some protocols may involve other roles, such as
role sealers in the HRM 14 protocol. The behaviour of each role is a sequence of mes-
sage inputs, message outputs and conditional evaluations on messages. Recall that each
message is modelled as a term — names, variables, or function symbols applied on other
terms, in the applied pi calculus; and the message inputs, outputs and conditional eval-
uations are modelled as atomic events in the applied pi calculus. Thus, the behaviour of
each role specified in a protocol is formally defined as a process. Therefore, an auction
protocol with z roles (including the role bidder defined as process Pp, and auctioneer

defined as process P,) is formally defined as a tuple (P, Py, Prose, ;- - - » Prote, ,) Where

10

Pole; defines the behaviour of role i. These processes are composed using parallel op-
erator with communication channels and auxiliary data. The composed process is then
the whole model of the entire protocol. For instance, an e-auction protocol with ny,

bidders and n, auctioneers can be modelled as:
Ppiq := Vv chandata. (Pg | Pyy |-+ | Ppy, | Par | -+ | Pan,),

where Pyp; is an instance of a bidder process, P, ; is an instance of an auctioneer pro-
cess, Pk is the key distribution process, and chandata models private data and private

channels.

4.1. Bidding-price-secrecy

Bidding-price-secrecy for non-winning bidders can be formalised in two levels:
standard bidding-price-secrecy and strong bidding-price-secrecy. Standard bidding-
price-secrecy is formalised as the adversary cannot derive the bidding price of a non-
winning bidder. Strong bidding-price-secrecy is formalised as the adversary cannot
even distinguish between the case when a bidder bids for price a and the case when
the bidder bids for price c. In other words, the adversary cannot tell whether a bidder
changes his bidding price from a to c.

Formalisation similar to strong bidding-price-secrecy has been used, e.g., vote-
privacy [13]: a process in which voter v4 votes for a (P, 4{a/vote}) and voter vg votes
for ¢ (P,g{c/vote}) is observationally equivalent to a process where v4 votes for ¢
(Pya{c/vote}) and vp votes for a (P,g{a/vote}). The idea is that even if all other voters
reveal how they voted, the adversary cannot deduce the votes of voter v4 and voter
vp, given voter v4 and voter vp counterbalance each other. Different from privacy in
voting where the voting result is published, in sealed-bid e-auction protocols, normally
a non-winning bidder’s bidding price is not published. Therefore, we do not need a
counterbalancing process. Instead, we need a process in which a bidder bids for a
higher price so that non-winning bids are not revealed in the opening phase. Therefore,

strong bidding-price-secrecy is formalised as follows:

Definition 3 (strong bidding-price-secrecy for non-winning bidders). An auction pro-

11

tocol Pp;g, with a bidder sub-process represented as Py, satisfies strong bidding-price-

secrecy for non-winning bidders, if for all possible bidders by and bg we have:

ColPoale/p} | Pop{d/pn}] =0 ColPpa{/rv} | Pop{d/ps}]

witha < d and c < d.

The context 63[_] is used to capture the assumption made on the checked pro-
tocol, usually it includes the other honest participants in the protocol, i.e., €[] :=
v chandata. (Pg | Ppy | -+ | Po(n,—2) | - | Pa1 | *** | Pan,). The process Py, is a bidder
process executed by a non-winning bidder b4. The process Py is a bidder process ex-
ecuted by another bidder bp who bids for a higher price. The variable p, indicates the
bidding price in a process. Hence, the processes Ppa{4/py}, Ppa{</ps}, and Ppp{d/p,}
capture bidder b4 bidding for price a, bidder b4 bidding for price ¢, and bidder bp
bidding for price d, respectively. The intuition is that the adversary cannot determine
whether a non-winning bidder bids for price a or price ¢, provided there exists another

bidder who bids for a higher price d.

4.2. Receipt-freeness

Receipt-freeness means a bidder cannot prove to an adversary that he has bid in a
certain way. It is useful to protect bidders from being coerced to show how they bid.
Intuitively, bidding-price-secrecy protects a bidder’s privacy when the bidder does not
want to reveal his private information, while receipt-freeness protects a bidder’s privacy
when the bidder is willing (or coerced) to reveal this.

In voting, receipt-freeness can be formalised as an observational equivalence [15]].
A voting protocol satisfies receipt-freeness if the adversary cannot distinguish (obser-
vational equivalence) whether a voter genuinely did his voting or that voter claimed to
do so, but voted for another candidate. In order to model observational equivalence,
the situation that a voter provides his secret information to the adversary is modelled

first:

Definition 4 (process P2¢ [15])). Let P be a plain process and chc a channel name.

PR the process that shares all of P’s secrets, is defined as:

12

Ochc 2 0’

(P | Q)che 2 pehe | gehe,
e (vn. P)®h¢ = v n out(chc,n). PE¢ when n is a name of base type,

e (vn. P)h¢ = v n. P otherwise,

e (in(u,x). P)°*¢ = in(u,x). out(chc,x). P2¢ when x is a variable of base type,

o (in(u,x). P)*¢ = in(u,x). PEC otherwise,

(out(u,M). P)t¢ = out(u,M). P,
° (!P)chc 2~ !Pchc’
o (if M =g N then P else Q)*° = if M =g N then P°*° else Q°b°.

Delaune et al. also define process transformation A\°”t(°h°"), which can be consid-

ered as a version of process A that hides all outputs on public channel chc.

Definition 5 (process A\eut(ehe.) T3]y Ler A be an extended process. The process
A\eut(ehes) s defined as v che. (A |!in(che,x)).

When modelling online auction protocols, we also need to model the situation in
which a bidder shares his secret information with the adversary. We use the above
definition directly in our model. Intuitively, a bidder who shares information with the
adversary sends all input of base type and all freshly generated names of base type to
the adversary over a public channel chc. It is assumed that public channels are under
the adversary’s control.

Now, we can define receipt-freeness for sealed-bid e-auction protocols. Again, we
need a bidder process Pjp in which bidder bp bids for a higher price d, so that non-
winning bids are not revealed. Intuitively, if a non-winning bidder has a strategy to
cheat the adversary, and the adversary cannot tell the difference between whether the

bidder cheats or not, then the protocol is receipt-free.

Definition 6 (receipt-freeness for non-winning bidders). An auction protocol Py, with
a bidder sub-process Py, satisfies receipt-freeness for non-winning bidders, if there

exists a closed plain process Py such that:

13

L P 2, Py{/i),

2. Go[Ppaf{a/ps} ™ | Pog{/ps}] =0 € Py | Pop{d/ps}]

witha < d and c < d.

Process Py is a bidder process in which bidder b bids for price ¢ but communicates
with the adversary and tells the adversary that he bids for price a. Process Py4{</p,} is
a bidder process in which bidder b4 bids for price c. Process Pp4{4/p, }°t¢ is a bidder
process in which bidder b4 bids for price a and shares his secrets with the adversary.
Process Ppp{d/p,} is a bidder process in which bidder bp bids for a higher price d.
The first equivalence says that ignoring the outputs bidder b4 makes on the channel
chc to the adversary, Pr looks like a normal process in which b4 bids for price c.
The second equivalence says that the adversary cannot tell the difference between the
situation in which b4 obeys the adversary’s commands and bids for price a, and the
situation in which b4 pretends to cooperate but actually bids for price ¢, provided there
is a bidding process Pjp that bids higher, ensuring that bidding processes P4 and Py
are not winners. Receipt-freeness is a stronger property than bidding-price-secrecy, for
the same reason as receipt-freeness in e-voting is stronger than vote-privacy (as shown

in [15]).

5. Case study: the AS02 protocol

After receipt-freeness has been identified in sealed-bid e-auctions. Abe and Suzuki
proposed the first protocol which aims to prevent bid-rigging — the AS02 protocol [4].
In this section, we analyse both bidding-price-secrecy and receipt-freeness for non-

winning bidders in the AS02 protocol. The main steps of the protocol are depicted in

Figure [6]

5.1. Introduction

This protocol is a sealed-bid e-auction protocol. The protocol involves n bidders
by,...,b, and k auctioneers aj,...,a;. A price list is published before the protocol.
During the protocol, each bidder sends a commit for every price in the price list: ‘yes’

if he wants to bid that price, ‘no’ otherwise. Auctioneers work together to open the

14

commitments of all bidders from the highest price down until the winning bid(s) is/are

foundE]

5.2. Physical assumptions

In order to ensure privacy of bidders, the protocol has two physical assumptions:
al: a bidding booth for the bidders, and
a2: a one-way untappable channel from every bidder to every auctioneer.

The bidding booth enables a bidder to privately submit a bid free from control or obser-
vation of the adversary. The untappable channels ensure no adversary can see messages

sent.

5.3. Settings

Before starting the protocol, one auctioneer publishes an increasing price list py, ..., pm,
amessage My, for “I bid”, a message My, for “I do not bid”, a generator g of subgroup

of Z;, with order g, where g, p are large primes with p = 2g+ 1.

5.4. Description of the protocol

The protocol consists of two phases: bidding and opening.

Bidding phase. A bidder in the bidding booth chooses a secret key x, publishes his
public key & = g* with a predetermined signature. Then the bidder chooses a series
of random numbers 7y, ...,r, as secret seeds, one random number for each price, and
decides a price pj, to bid for. Then he generates a bit-commitment for each price py (1 <

¢ < m), using the following formula:

gMoes e if py = pp (a bid for price py)
gMropre if py # pp (not a bid for price py)

cmtPl =

Next, the bidder publishes the sequence of the bit-commitments with his signature.

Then he proves to each auctioneer that he knows the secret key log, 7 = x and the

2The protocol does not specify how to resolve the case where there are fewer bidding items than winners.

15

discrete logs (log, cmi®!,. .. log, cmtP) using interactive zero-knowledge proofs. Fi-
nally, he computes t—out—of—lﬂ secret shares r2 for each secret seed r, and each auction-
eer a;, and then sends the signed secret share r’é over the one-way untappable channel

to the auctioneer a;.

Figure 6: The AS02 protocol.

Opening phase. Auctioneers together iterate the following steps for each price py =
PmsPm—1,- - -, P1 until the winning bid is determined.
Each auctioneer a; publishes secret shares ré (the ¢-th secret share of a bidder sent

to auctioneer a;) of all bidders. For each bidder, all auctioneers work together to recon-

3¢ is a threshold, k is the number of auctioneers, it means only more than ¢ auctioneers together can
reconstruct the secret seeds.

16

struct the secret seed ry, and check for each bidder whether
? M,
cmtPt = gMvesp't,

If there exist some bidders for which the above equivalences are satisfied, the auction-
eers finish checking the current price and then stop. In this case, the price py is the
winning price, those bidders are winning bidders. If there is no equivalence existing,
which means there is no bidder bidding for the price p,, the auctioneers repeat the

above process on the next lower price.

5.5. Claimed properties

The authors claim the following properties: bidding-price-secrecy and receipt-
freeness for non-winning bidders. Intuitively, the bidding price of each bidder is sealed
in the bidding phase, and only the winning bidder’s bidding price is revealed in the
opening phase, thus the adversary does not know the bidding price for non-winning bid-
ders, thus standard bidding-price-secrecy is satisfied. The strong bidding-price-secrecy

is satisfied mainly due to the random number used in calculating the bit-commitments.

Informal reasoning of receipt-freeness. We use M to represent either My.; or M,,,

the formula for computing cmt®? is of the following form:
emiPt = gM 't = M (gF)t = gM e

since h = g*. Thus, log, cmtP* = M + xr,. By using interactive zero-knowledge proofs,
a bidder is proved to know his secret key x and discrete logs log, cmi®’. An interesting

property of chameleon bit-commitments is that if the bidder bids for price py,
log, cmtPl = Myos+xry
he can calculate a fake), such that:

log, cmiP =My +xr; and r) = (Myes +xr¢ — My,) /x.

17

Using the fake rj, the bidder can show that the bit-commitment c¢msP is opened as
message M,,,, which means the bidder did not bid for price p;. Using the same method,
a bidder can open a ‘no’ bit-commitment as a ‘yes’ bit-commitment. Thus, the commit
leaks no information concerning the bid, thus the bidder cannot prove how he bid, i.e.,

receipt-freeness is satisfied.

5.6. Modelling

We model the ASO2 protocol in applied pi, using two simplifications:
s1: one honest auctioneer; and
s2: perfect zero knowledge proofs.

In the protocol, auctioneers are cooperating to find the winning bid. It takes at least
t auctioneers to decide the winner, thus guaranteeing z-out-of-k secrecy. As we focus
on bidder privacy, we need to consider only one honest auctioneer. Thus, we simplify
the model to have only one honest auctioneer. The AS02 protocol uses interactive zero
knowledge proofs to guarantee that each bidder knows his secret key and the discrete
logs of bit-commitments. However, the details of these proofs are left unspecified, and
thus we did not include them in the model. We simply assume that the zero knowledge
proofs are perfect, that is, 1) we assume each bidder knows his secret key and discrete
logs of bit-commitments and 2) non-eligible bids are not allowed (modelled as the
adversary is not able to generate eligible bids), since the zero knowledge proofs are
used to prevent non-eligible bidders from submitting bids.

In addition, the ASO2 does not specify how the auctioneers tell the signed pub-
lic key from the signed commitments generated by the same bidder. In order for the

auctioneer to distinguish the two messages, in our modelling,

s3: we use a symbol k in the signed public key messages.

Signature and equational theory. The signatures and the equational theory model
cryptographic primitives used in the protocol. We fix a list of bidders (by,...,b,) and

an ordered list of prices (py,...,pm), Which are modelled as functions with arity O.

18

We define function nextbidder to find the next bidder in the bidder list, and function

nextprice to find the next lower price in the price list.

nextbidder(b;) = by nextprice(pn) = Pm-1
nextbidder(b,_1) = b, nextprice(p2) = pi
nextbidder(b,) = L nextprice(p1) = T

Function checksign is used to check whether the public signature key is the right one
for the signed message, and we use function getmsg to get the original message from
a signed message. Particularly, chameleon bit-commitments are modelled as a function
commit with arity 3 (a random number, public key of the bidder and message M either
Myes or Mp,). The relevant properties of chameleon bit-commitments are captured in

the following equational theory.

commit(r, pk(skp),Myes) =g commit(f(r), pk(skp), Myo) etl
commit(r, pk(skp),M,;0) =g commit(f(r), pk(skp), Myes) et2

open(commit(r, pk(skp),m),r,pk(sky)) =g m

Constants M,,, and M, represent “I do not bid” and “I bid”, respectively. The param-
eter pk(sk;) is the public key of a bidder, and r is the secret seed the bidder chooses.
Function f(r) returns the fake secret seed of a secret seed r. We can model the function
f by just giving one parameter - the real secret seed. Because we assume that each bid-
der knows his secret key and discrete logs of bit-commitments, he can compute the fake
secret seed for each real secret seed, as explained in the previous sectimﬂ In fact, from
the formula in Section f(r) returns the alternative secret seed of r, which leads to
the opposite opening result of a bit-commitment. Thus, given f(r), which opens a bit-

commitment as My¢,(M,,), the bidder can also compute r which leads to M,,,(M,,;),

4The bidder proves that he knows his secret key and discrete logs of bit-commitments, using zero-
knowledge proofs. Due to the perfect zero-knowledge assumption, the bidder is assumed to have that knowl-
edge; and the adversary is assume not to have the knowledge and thus cannot apply f function. Hence, f is
defined as private in Figure meaning that the adversary cannot apply it.

19

fun by /0, ..., fun b,/0, fun p1/0, ..., fun p,/0, fun M./0, fun M,,/0,
Sfun true/0, fun pk/1, fun commit/3, fun sign/2, private fun f/1, fun k/0

Figure 7: Functions.

reduc checksign(sign(m,sk),pk(sk)) = true

reduc getmsg(sign(m,sk)) = m

equation commit(r, pk(skp),M,o) = commit(f(r), pk(skp), My,s)
equation f(f(r)) = r

reduc open(commit(r, pk(skp),m),r,pk(sky)) = m

Figure 8: Equational theory.

i.e., f(f(r)) =g r. The first equivalence (etl) means that if a bidder chooses a secret
seed r, bids for a price, and calculates the bit-commitment commit(r, pk(sk), My,),
he can compute a fake secret seed f(r), and by using this fake secret seed, the bit-
commitment can be opened as message M,,,, which means “I do not bid”. The second
equivalence (et2) shows that the opposite situation also holds. The third equivalence
models that a bidder can open a bit-commitment with the corresponding public key and
secret seed (potentially being fake). These three equivalences allow a bidder to open a
bit-commitment as if he bids for that price, when actually he does not; and vice versa.
All functions defined in this model are shown in Figure [7| and the equational theory
is shown in Figure [§] Note that the functions and equational theory are defined in the
ProVerif untyped style (for details, see [40]), which slightly differs from applied pi El
In particular, fun is used to denote function in ProVerif, the numerical number follow-
ing a function symbol is the arity of the function, and reduc and equation are used to

denote the equational theory in ProVerif (instead of using = in applied pi) El

Main process. For each bidder b;, the main process (see Figure EI) generates two

private channels privchy, (m1) and privcha,, (m2). These channels are used for

SIn the untyped ProVerif style, function nextbidder and nextprice cannot be used as in Figure
In the ProVerif code, we consider them as predefined. Additionally, the two equations etl and et2 can
be unified into one, due to the equation f(f(r)) =g r, e.g., by replacing r with f(r) in etl, we obtain
commit(f(r), pk(sky), Myes) =g commit(f(f(r)), pk(sks),M,,). Since f(f(r)) = r, the equation coincides
with et2.

9The ProVerif code is available at ht tp: //satoss.uni.lu/projects/epriv, under title ‘For-
mal analysis of a receipt-free auction protocol in the applied pi’.

20

http://satoss.uni.lu/projects/epriv

instantiating a bidder process. In particular, a bidder receives his secret signing key
from channel privchbj; and the auctioneer receives the corresponding public key from
channel privchay, . In addition, the main process generates an untappable channel
untapchy, for bidders b; (m3). The untappable channel is shared between each bid-
der and the auctioneer. The private channels synchy, ,...,synchy, are generated for
modelling convenience (m4). These channels are used by the auctioneer to collect all
necessary information before moving to the opening phase. The main process launches
a key generating process Px (mS5), n instantiations of the bidder process (m5-m8) and
an instance of the auctioneer process (m8). Four variables need to be instantiated in
an instance of bidder process: the bidding price pp, the untappable channel untapch,
the private channel privch and the public channel for that bidder ch. For the simplicity
of modelling, each bidder b; has a distinct public channel chy,;. The correspondence
between privchabj, untapchbj and chy,; allows the auctioneer to distinguish mes-
sages from the same bidder. In this way, we avoid modelling the auctioneer classifying
messages by bidders (by checking signatures). Note that py,, ..., pp, are parameters,

each of these parameters has to be instantiated with a constant in the published price

list p1,...,pm-
Pysoz :=
ml. vprivchy . vprivch,,. .- . vprivehy, .
m2. v privcha, . vprivchay,. ---. vV privchay .
m3. Vv untapchy, . vV untapchy,. ---. vV untapchy, .
m4. v synchy, . v synchy,. ---. vV synchy, .
mS. (Pk | (let pp=pb, in let untapch=untapch, in
m6. let privch=privch, in let ch=chy in Pp)|
m7. | (let pp=pp, in let untapch=untapch, in
m8. let privch=privch, in let ch=ch,, in Pp)|Py,)

Figure 9: The main process.

Key distribution process. This process generates and distributes keying material mod-
elling a PKI — public key infrastructure (Figure[I0). This process first generates n secret
keys (k1). Each bidder b; has one secret key sskp,; for signing messages. Each secret

key corresponds to a public key (k2-k4). Each secret key is assigned to a bidder pro-

21

cess by being sent to the bidder over the private channel privchy, corresponding to
that bidder (k5). The corresponding public key is sent to the auctioneer over the private
channel privcha, (k6) and is published over the public channel chy; such that the ad-
versary knows the keys (k7). Therefore, only a bidder knows his own secret key, and
everyone, including the adversary, knows each bidder’s public key. Sending each pub-
lic key to the auctioneer over a private channel, models the following protocol setting:
There are fix number of bidders in sealed-bid auctions, and the auctioneer knows each
bidder’s public signing key as predetermined knowledge. This setting also disallows
the adversary to generate an eligible bid (to capture perfect zero knowledge proof), as

the adversary does not know any secret key which is needed to sign a bid.

P[(=

k1. V ssky, . V s8kp,. -++. V s8kp,.

k2. let spky, = pk(sskp,) in

k3.

k4. let spkp, = pk(sskp,) in

k5. (out(privchy, ,ssky,) |-+ |out(privchy, ,sskp,) |
k6. out(privchay, ,spkp,) | - | out(privchay ,spkp,) |
k7. out(chy, ,spky,) | --- | out(chy,,spky,))

Figure 10: The key distribution process.

Bidder process. The applied pi calculus process for a bidder P, is given in Figure
First, a bidder receives his secret signature key from his private channel (b1). Next,
the bidder generates his secret key sk, (i.e., the secret key x in Section [5.4)), signs
the corresponding public key (i.e., n = g* in Section and publishes the signed
message (b2). To indicate that this message contains a key, we add k into the message
(see s3). In addition, the bidder chooses a series of random numbers ry,...,r, as
secret seeds (b3). The bidder then computes each bit-commitment cmzP’ as described
in Section[5.4] For each price, the bidder computes a commitment: if the price is the
bidding price, then the bidder commits ‘yes’ with M., otherwise, the bidder commits
‘no” with M,,, (b4-b6 when he bids for p;). Finally, the bidder publishes the series of
bit-commitments cmzP! ... cmtP" with his signature (b7), and sends the signed series

of secret seeds to the auctioneer through the untappable channel (b8). The process of

22

bidding for other prices is similar (b9-b13 when bidding for p,,). As we assume there

is only one honest auctioneer in the model, we do not need to model secret shares.

P;, =

b1. in(privch, sskp).

b2. Vv sky. out(ch,sign((pk(skp), k), sskp)).

b3. VI .VIpy

b4. if pp=p1 then

b5. (let cmrP' =commit(ri,pk(sky),Mye) in

b6. let cmtP! = commit(ry,pk(sky),M;) in
b7. out(ch,sign((cmtPr, - cmtPm), sskp)).
b8. out(untapch,sign((xy,-- ,Tm),sskp)))

b9. if pp=pm then
b10. (let cmtPm = commit(x,, pk(sky),Mpy) in

bll. let cmtP" = commit(r,,pk(sky), Mye) in
b12. out(ch,sign((cmtPr,--- cmiPm), sskp)).
b13. out(untapch,sign((zi, - ,Tm),sskp)))

Figure 11: The bidder process.

Auctioneer process. During the bidding phase, the auctioneer launches n copies of
sub-process readinfo to gather information from each bidder b; (al).

In details, the auctioneer collects public signature key spk (r1) and the signed com-
mitting public key signedpk (supposed to be sign((pk(sks,),k),sskp;) for bidder b))
(r2) of each bidder. The auctioneer verifies whether the committing public key is signed
with the right signature (r3) and obtains the committing public key pk from signedpk
(r4). Next, the auctioneer reads in the signed commitments signedcommit of the bidder
(rS) and verifies the signature (r6). If the commitments are correctly signed, the auc-
tioneer obtains the series of bit-commitments cmzP! ..., cmtPm (r7), then the auctioneer
reads in the secret seeds sr from the untappable channel of the bidder (r8). The auction-
eer verifies the signature (r9). If the secret seeds are correctly signed, the auctioneer
obtains the secret seeds ssP!,... ssP» (r10). Finally, the auctioneer sends the signal
that information collecting for the bidder has finished, over the channel synch (r9). In

addition, the collected information (the committing public key, the commitments, the

23

P, =
al. let ch=chp in let privcha=privcha, in

let synch=synch, in let wuntapch=untapch, in readinfo |

let ch=chy, in let privcha=privcha, in

let synch=synch, in let untapch=untapch, in readinfo |
a2. in(synch,, , (pkbl,cmtgi,...,cmtE’I”,ssE:,...,ssET)).

in(synchy, , (pkp,, cmt&‘l, ... ,cmtgzl,ssgrll, ... ,SSEZ’)).
a3. if cmtE’I” = commit(ssg’l”,pkbl,Myes)
a4. then out(winnerch, (pm,b;)).
as. if nextbidder(b;) =1
a6. then 0

Pm
a7. else checknextbnextbidder(bl)
a8. else if nextbidder(b;) =L
a9. then if nextprice(ppy) =T
alo. then 0
all. else checknextbanj’tince(p”’)
Pm

al2. else checknextbnpnextbidder<b[)

Figure 12: The auctioneer process.

secret seeds) is sent to the sub-process in which the winning bidder is determined.
Next the auctioneer needs to synchronise with all bidders (a2). The auctioneer
process is not allowed to continue until all bidders reach the end of the bidding phase.
In the opening phase, the auctioneer evaluates whether the following holds cmtg;" <
commit(ssg’;_1 , Pk, M yes) for each bidder (a3, a7, al12). If the two values are equivalent
for the first bidder b; (a3), bidder by has bid for that price, otherwise, bidder b; has
not bid for that price. When bidder b; has bid for that price, the auctioneer publishes
the bidder together with the price over the public channel winnerch (a4), then the
auctioneer checks the evaluation for the next bidder (if exists) (a7). Once the auctioneer
has evaluated for every bidder (a5 when by is the only bidder) and has determined the
set of winning bidders (a4), he stops the process (a6). When bidder b; has not bid
for that price, the auctioneer checks the evaluation for the next bidder (if exists) (al2).
Once the auctioneer has evaluated for every bidder and no winner has been found (a8

when by is the only bidder), the auctioneer repeats the evaluation steps for each bidder

at the next lower price (all). If the next lower price does not exist (a9 when p,, is

24

readinfo :=

rl. in(privcha,spk).

r2. in(ch, signedpk).

r3. if checksign(signedpk,spk) = true

rd. then let (pk,= k)= getmsg(signedpk) in
r5. in(ch, signedcommir).

r6. if checksign(signedcommit,spk) = true

r7. then let (cmtP',...,cmtPn) = getmsg(signedcommit) in
r8. in(untapch, sr).

r9. if checksign(sr,spk) = true

r10. then let (ssPi,...,ssPn)=getmsg(sr) in
ril. out(synch, (pk,cmi®' ... cmitPm ssP1, ... ssPm))

Figure 13: The process readinfo.

the only price in the price list), the process stops (al0) and no bidder has bid for any
price. In a similar way, the sub-process checknextbgi is used to evaluate the bid of a
bidder b; at price pj, if there are already some winners before bidder b;. And the sub-
process checknextbnpgfl: is used to check the next bidder at price p;, if there is no winner
before that bidder. We use L and T to represent the end of the bidder list and price list,
respectively.

In the sub-process checknextbsf , the auctioneer checks whether the bidder b; has
bid for price p; (nl). If the bidder b; has bid for p;, b; is a winning bidder. The
auctioneer publishes the winning bidder b; and the winning price p; (n2). Note that
since there already exists one or more winning bidders, b; is not the first winner. The
auctioneer checks whether the bidder b; is the last bidder (n3). If b; is the last bidder,
the auctioneer has found all winning bidders, thus stops the opening process (n4);
otherwise, the auctioneer checks the evaluation for the next bidder at the same price
(i.e., whether the next bidder is also a winner) (n5).

In the sub-process checknextbn pgf , the auctioneer first checks whether the bidder
b; has bid for price p; (p1). If the bidder b; has bid for p;, b; is a winner. The auctioneer
publishes the bidder b; and the winning price p; (p2). Since there is no winning bidder
found before, b; is the first winner. Then the auctioneer checks whether the bidder b;
is the last bidder (p3). If b; is the last bidder, bidder b; is the only winner. Since the

auctioneer has found all winners, he stops the opening process (p4). Otherwise, the

25

checknextbgjl: =

nl. if cmtE’_j = commit(ssgf,pkbi,Myes)
n2. then out(winnerch,(p;,b;)).

n3. if nextbidder(b;) = L

n4. then 0

ns. else checknextbséxtbidder(bi)

Figure 14: The process checknexlbgf_ .

checknextbnpgfl: =

pl. if cmt&j = commit(ssgf,pkbi,Myes)
p2. then out(winnerch, (p;j,b;)).

p3. if nextbidder(b;) = L

p4. then 0

pS. else checknextszextbidder(bi)
pé. else if nextbidder(b;) =1

p7. then 1f nextprice(p;) =T
pS. then 0

p9. else checknextbnpgfxmr'ce(pj)
p10. else checknextbnpEéxtbidder(bi)

Figure 15: The process checknextbnpﬁ’: .

auctioneer checks whether the next bidder is also a winner (pS). Note that since there
is already a winner b;, the auctioneer use the process checknextbsé «tbidder(b;)" If the
bidder b; has not bid for p;, the auctioneer checks whether the bidder is the last bidder
(p6). If b; is the last bidder, since there is no bidder bid for price p; before b; and
b; has not bid for p;, there is no bidder bid for price p;. Thus, the auctioneer checks
the evaluations for every bidder at the next lower price p;_;. To do so, the auctioneer
first checks whether p;_; is the bottom (whether p; is already the lowest price in the
price list) (p7). If p;_ is the bottom, since the auctioneer has not found a winner,
there does not exist a winner. That is, the auctioneer has checked the evaluations for
all bidders at all prices, and no one has bid for any price. Thus, the opening process
stops (p8). If p;_; is not the bottom, the auctioneer checks the evaluation for the first

bidder at the next lower price p;j_;. Note that since by is the first bidder checked for

price pj_1, there is no winning bidder found before, the process for checking by is

26

nextprice(p;) (

checknextbnpbl p9). If b; has not bid for p; and b; is not the last bidder, the

auctioneer checks the evaluation for the next bidder at the same price (p10). Note that

Pj

since there is no winning bid found, the process is checknextbnp __ ., ., der(by)"
1

5.7. Analysis

After modelling the protocol in the previous section, we formally analyse bidding-
price-secrecy and receipt-freeness for bidders. In the ASO2 protocol, the winning bid is
published, and thus bidding-price-secrecy and receipt-freeness for the winning bidders
are not satisfied. Particularly, if all bidders bid for the same price, then all bidders
are winners, i.e., no bidder is a non-winning bidder, thus bidding-price-secrecy is not
satisfied in this case. From here on, when we refer to bidding-price-secrecy and receipt-

freeness, we mean only with respect to non-winning bidders.

5.7.1. Bidding-price-secrecy

In general, bidding-price-secrecy can be formalised in two levels: standard bidding-
price-secrecy and strong bidding-price-secrecy. Standard bidding-price-secrecy is de-
fined as no matter how the adversary interacts with the protocol, he cannot derive a
non-winning bidder’s bidding price. Thus, it aims to keep the price secret. However,
since the ASO2 protocol publishes the bidding price list, the adversary initially knows
all the prices. No matter which price a bidder bids for, the bidding price is not a secret
to the adversary. Therefore, a bidder’s bidding price is not a secret. In fact, what the
ASO02 protocol aims to protect is the link between bidders and the price he bid, instead
of the price itself. Therefore, bidding-price-secrecy of the AS02 protocol is captured
by strong bidding-price-secrecy.

Strong bidding-price-secrecy ensures the anonymity of the link between a non-
winning bidder and the price he bids for. It is formalised as that the adversary cannot
distinguish between the case when a bidder bids for price a and the case when the
bidder bids for price c. This property is formally defined in Definition 3]

In the verification, we assume all the participants in the context are honest. Thus,
the context Gasp2[-] (see Figure is defined as the auction process P4sg2 with a hole

(¢9) instead of two bidder processes, Pp4 and P,p. Sub-process ¢5 to ¢8 models the

27

Caso2]-] =

cl. vprivchy . vprivchy,. ---. vprivch, .

c2. v privchay . vprivchay, . ---.Vprivchay .

c3. Vuntapch,, . Vuntapchy,. ---. v untapchy .

c4. Vv synchy, . V synchy, . ---. vV synch,, .

c5. (Px| (let pp=pp, in let untapch=untapchy in

c6. let privch=privch, in let ch=chy in Py) |-
c7. | (let pp=pb,, in let untapch=untapch, , in

c8. let privch=privch, , in let ch=chy, _, in Pp) |
c9. -

cl0. P,)

Figure 16: The context Gaso2[-.

other n — 2 bidder processes. To verify strong bidding-price-secrecy is to verify the

following equivalence:

baso2| (let pp = a in let untapch = untapch,,, in
let priveh = privch,, inlet ¢h = chy, in Pp) |

(let pp = d in let untapch = untapch, in
let privech = privchy, inlet ch = chy, in Pp)]

~p Gasoz| (let pp = cin let untapch = untapchy, in
let privch = privchy, inlet ch = chy, in Pp) |

(let pp = d in let untapch = untapch, in

let privch = privchy, in let ch = chy,y in Pp)]

where a,c,d are from the list py,...,p, Witha < d and ¢ < d.

Normally, strong secrecy properties can be verified, using ProVerif, by querying
noninterf. Note that ProVerif is sensitive to evaluations of statements in the if-then-
else constructs [41]. ProVerif reports false attacks when directly querying the fol-
lowing predicate: noninterf p, among pi,...,pq—1. To be able to check the above
equivalence in ProVerif, we use the operation choice instead [40], and modify the bid-
der process by replacing if-then-else constructions with choices of a list of variables
Vpi,...,vpn—1 (see Figure [I7). Each variable vp; corresponds to a price p; and can

be assigned to two possible values, either M.s or M,,,. If the variable vp; is assigned

28

b1. in(privch, sskp).
b2. Vv sky. out(ch,sign((pk(skp), k), sskp)).

b3. VI .VIpy
b4. let cmtP! = commit(ry,pk(sky),vp1) in
b5. let cmtPm = commit(r,,pk(sky),vpm) in

b6. out(ch,sign((cmtPt,- - cmtPm), sskp)).
b7. out(untapch,sign((r1, - ,Tm),sskp))

Figure 17: The revised bidder process.

My.s, the bidder bids that price, otherwise, not. Hence, a bidder specifies his bidding
price by assigning M,.; or M,, to each variable vpy,...,vp, in his bidding process.
For example, in process (Pp) for bidder bp in the above equivalence, “let pb = d in”
shall be replaced by “let vp; = My, in ... let vpg = My, in ... let vp,, = M,;, in”.
The bidding price in the process (Pp4) for a non-winning bidder b4 shall be speci-
fied as follows, “let vp; = M, in ... let vp, = choice[Myes, M| in ... let vp, =
choice[Myo,My] in ... let vp, = M,, in”. The choice operations capture the differ-
ences between two processes: in the first process, the bidder b4 bids for a (Pps{4/py}),
and in the second process, the bidder b4 bids for ¢ (Ppa{¢/ps}). i.e., the non-winning
bidder process on the left hand side and the right hand side of the above equivalence, re-
spectively. To query strong bidding-price-secrecy, we specify the bidding price of each
bidder in the main process, including the above Py, and P;4 (m6 and m7 in Figure|[T8),
which captures the above equivalencem This process in Fi gureis a bi-process due to
the choice operations in the process (Pp,) for bidder b4. Given the bi-process as input,
ProVerif reports a positive result, which means that the above equivalence is satisﬁe

In this way, we prove that the protocol satisfies strong bidding-price-secrecy.

5.7.2. Receipt-freeness
Receipt-freeness is formally defined in Definition[6] To prove receipt-freeness, we

need to find a process Py which satisfies both equivalences in the definition of receipt-

"The *---’ at the beginning of m6, m7, m8 represents other bidders.
8The revised ProVerif code is available atfhttp://satoss.uni.lu/projects/epriv,

29

http://satoss.uni.lu/projects/epriv

Pasoz ==

ml. vprivchy . vprivch,,. ---. vprivehy, .

m2. v privchay . vprivcha,, . ---.Vprivchay .

m3. Vuntapch, . Vuntapchy,. ---. v untapchy .

m4. v synchy, . v synchy, . ---. vV synchy, .

m5. (PK |

m6. | (et vp1 =My, in ... let vpg =My, in

let vpu=M,, in let untapch:untapcth in

let privch=privch, in let ch=chp, in Pp)|
m7. | (let vp1r =My in ... let vp, = choice[Mye,M,0] in

let vp. = choice[Myo,Mye] in ... let vp, =M, in

let untapch =untapch,, in

let privch=privch,, in let ch=chy, in Pp)|
m8. <o | Py)

Figure 18: The bi-process.

freeness:
eql:
let untapch = untapchy, in
let privch = privchy, inlet ch = chy, in Rf\"”t(ChC")
~¢ let p, = cinlet untapch = untapchy, in
let privch = privchy, in let ch = chy,, in Py,
eq2:

Gaso2[(let pp = ain let untapch = untapchy, in
let privch = privchy inlet ch = chy, in Pp)*™ |
(let pp = d in let untapch = untapchy,, in
let privch = privchy, in let ch = chy,y in Pp)]
~r 6aso2[Pyl (let pp =dinlet untapch = untapch,, in

let privch = privchy, inlet ch = chy, in Pp)]

witha <d and c <d.

According to the properties of chameleon bit-commitments, the bidder can send
a sequence of fake secret seeds to the adversary, and sends the series of real secret
seeds to the auctioneer through an untappable channel. The adversary opens the bit-

commitments as the bidder bids for price a, using the fake secret seeds he received,

30

in(privch, sskp). out(chc, sskp)).

Vv skp. out(chc, skp).
out(ch,sign((pk(skp),k),sskp)).

VI -+ .VTg +.VTp . VIp.

f5. out(che, (r1,...,f(xg), - f(Te)ye ey Tm))-
let cmtP! = commit(ry,pk(sky),My,) in

2R R

let cmtPe = commit(ry,pk(skp),My) in

S8RIR

0. let cmtP=commit(r.,pk(skp), M) in

f11.

f12. let cmtPm = commit(ry, pk(sky),M;) in
f13. out(ch,sign((cmtP,... ,cmtPm), ssky)).

f14. out(untapch,sign((r1,...,Tay---sTcy--eysTm),85kp))

Figure 19: The process Py.

while the auctioneer opens the same bit-commitments as the bidder bids for price c,
using the secret seeds the auctioneer received through an untappable channel. Thus, the
bidder could execute the process Py as shown in Figure @] to lie to the adversary. The
bidder in this process communicates with the adversary through channel chc, sending
the adversary his secret signature key ssk;, (f1) and his secret key sk;, (f2). Later the
bidder sends to the auctioneer ry,...,r, through an untappable channel (f14), and
sends to the adversary the same list except changing r, and r. to f(r,) and f(z,),
respectively (f5). The untappable channel ensures the adversary cannot learn anything
about the differences.

\out(chc,-)

To prove the first equivalence, we can simply consider Py as process Py

\out(che,) works ex-

without communication on the channel chc. Since the process Py
actly the same as the process Pp{c/pp}, the first equivalence (eql) is satisfied. To
show the second equivalence (eq2), we need to consider all the transitions of each side
ﬂ On both sides, the process Px only distributes keys, and all the bidder processes

in the context follow the same process. For the sake of simplicity, we ignore the out-

9The satisfaction of eq2 is supported by ProVerif as well. ProVerif code is available at
http://satoss.uni.lu/projects/epriv.

31

in(privcth Jsskp)

i"(PriVCth-,b”kb) Vv xy. out(chc,x;

V xp. out(chc,xp)
_—

Vv x3. out(cth X3)
%

Vxg. out(cth X4)
V x5. out(chc,xs)
= e

V X out(cth X6)

Vv x7. out(chy; ,x7)
%

in(privcth Jsskp)

) P] |{sskb/x1}
vii. (Py| {ssky/x1} | {skp/x2})

vi. (Py| {sskp/x1} | {skp/x2} | {sign((pk(sky),k),sskp)/x3}
| {sign((pk(bsky),k),bsskp)/xa})

Vv ii. (Py| {sskp/x1} | {skp/x2} | {sign((pk(sky),k),ssky)/x3}
| {sign((pk(bsky),k),bssky)/xa} [{T1,....,Tm/x5}

Vii. (Ps| {sskp/x1} | {skp/x2} | {sign((pk(sky),k),sskp)/x3}
| {sign((pk(bsky),k),bssky)/x4}
[{r1,.,Tm/xs5}| {sign((cmtP1,... cmtPm), sskp)/x6}
| {sign((bemtP', ... ,bemtPm), bssky)/x7})

in(privcth,bsskb) Vv x1. out(che,x;

sy 01 | {ssky/x1}

Vv x3. out(chc,xp)
=

V X3. out(cth x3)
I EEEN

V xy. out(cth X4)

V xs. out(chc,xs)
_—

V X6. out(chp, .X6)
%

VX7, out(cth x7)

vii. (0| {ssky/x1} | {skp/x2})

vii. (Qs | {sskp/x1} | {skp/x2} | {sign((pk(skp),k),ssks)/x3}
| {sign((pk(bsky),k),bsskp)/xa})

Vii. (Qa | {ssky/x1} | {skp/x2} | {sign((pk(sks),k),sskp)/x3}
| {sign((pk(bsky),k),bsskp)/xa}
[{r1,....,f(ra), .-, f(xc)y s Tm/x5})

Vit (Qs | {ssky/xi} | {skp/x2} | {sign((pk(sk) k), ssk)/x3}
| {sign(((pk(bsky),k),bsskp)/xa}
[{r1,...,f(xa),...,f(xe), - Fm/x5}
| {sign((cmtP1 ... cmiPm) ssky)/x6}
| {sign((bemt®', ... ,bemiP™), bssky)/x7})

Figure 20: A brief proof of receipt-freeness in AS02.

puts in the process Px and those bidder processes in the context. During the bidding
phase the auctioneer process only reads information and synchronises on the private
channels synch,, ,...,synchy, . There is no output on public channels in the auction-
eer process. We denote the sequence of names skp,ry,...,Ty,bsky, bry,..., br, by

i, i.e., skp,T1,...,T; are names in the non-winning bidder processes Pp4 and Py, and

32

bskp,bry,...,br, are names in the winning bidder process Ppp. After the key distribu-
tion, we want to see whether the behaviour of the process Py4{a/pp }*° | Pop{d/pp} is
observationally equivalent to Py | Ppp{d/ps} (Ppa{a/pp}® := (let p, = a in

chc, and

let untapch = untapchy, in let privch = privch,, in let ch = chy, in Pp)
Pyp{d/pp} = (let pp = d in let untapch = untapch,, in let privch = privchy, in
let ch = chy,, in Pb)). For this purpose, we need to consider all possible executions
of these two processes. Here, we consider a particular execution and only show the
interesting part of the two frames after each step of execution by the two processes.
Let P = Ppa{a/pp}° | Ppg{d/ps} and Q = Py | Ppg{d/ps}, we have their labelled
transitions as shown in Figure

The frames we obtained at the end of P and Q are statically equivalent. In particular,
as the adversary knows the bit-commitments the bidder submits, the public key of the
bidder, and the secret seeds, the adversary can open all the commitments of the bidder.
The only functions the adversary can use are getmsg and open. By applying these two
functions, the adversary can get extra terms, the public key of the bidder represented as
Xmsg = getmsg(x3,x1) and a series of opened messages from bit-commitments. Since
x3 and x| are the same for both P and Q, x, is the same for both processes as
well. Particularly, P,4{a/pp} bids for price a. The adversary opens the commitments

cmtPe = commit(rg, pk(skp), Myes) and cmtPc = commit(re, pk(skp), M,,) as follows:
open(cmtP, ra,pk(sky)) = My open(cmt?, re,pk(sky)) = My

For the process Q, the process Py bids for price c. The adversary has a sequence of
secret seeds, in which two of them are fake: f(r,) and f(r.). According to the equa-
tional theory of chameleon bit-commitments (see Section [5.6), the adversary opens
cmtPs = commit(rg, pk(skp), Mpo) = commit(f(r,), pk(sky), Myes) and opens cmit’e =

commit(re, pk(skp), Myes) = commit(f(rc), pk(sks), Mp,) as follows:
open(cmtPe f(r,), pk(skp)) = Myes open(cmtPe f(r.), pk(skp)) = My,

All other secret seeds and bit-commitments are the same in both P and Q, hence the

33

adversary gets the same series of opened messages for both P and Q as well.

Next, we consider the opening phase, the auctioneer process is the only active pro-
cess. According to the protocol, the auctioneer process stops after finding the winning
bids. Therefore, non-winning bids are not revealed. Since we have assumed the auc-
tioneer is honest, the information that the auctioneer process reveals is the opened bit-
commitments of all bidders at prices no lower than the winning price, and the winning
bidders. Only the winning bid is opened as My, others are opened as M,,. Due to
the existence of a higher bid (d in the process Ppg{d/ps}) on both sides of the equiv-
alence, the bid made by the bidder by will never be published, hence the information
the auctioneer process reveals is the same on both sides. Now, we can conclude that

the protocol satisfies receipt-freeness.

6. Case study: the HRM14 protocol

HRM14 is a also seal-bid auction protocol designed with receipt-freeness in mind.
Similar to the AS02 protocol, the HRM 14 protocol allows a bidder to lie to the adver-
sary by providing fake bids. Unlike the ASO2 protocol, which depends on the use of
chameleon-bit-commitments and untappble channels, the HRM 14 protocol uses Plan-

Ahead Deniable Encryption (PDE) to achieve the same goal.

6.1. Description of the protocol

The protocol involves m bidders, k sealers (authorities who share the same pub-
lic key and execute sealing operations together) and an auctioneer. It works as follows:
each bidder encrypts his bid (‘yes’ or ‘no’) on each price with the public key of the auc-
tioneer and the public key of the sealer. All bids of a bidder form a bidding vector. The
bidder encrypts his bidding vector using PDE with the public key of the Coercing Re-
sistant Mix (CRM) and sends the resulting ciphertext to the CRM. The CRM decrypts
the ciphertext and obtains the bidding vector. The CRM collects all bidders’ bidding
vectors, permutes them and finally sends them to a group of sealers (the size of the
group is more than a threshold #) via an anonymous channel. The sealers nullify their

public keys in each bid, and seal each bid with two nonces. One of the nonce is used to

34

blind the bid, and the other is used to ensure the sealed message is not guessable. The
sealed bids are published to the Bulletin Board (BB) and read by the auctioneer. The
auctioneer signs each bidder’s bids using a specific scheme and publishes the signature
to the Bulletin Board, so that the bidders can check whether his bids are counted. Fi-
nally, the sealers and the auctioneer together open the bid from the highest price to the
lowest price. If the winning bid is found, the opening procedure stops. The main steps
are shown in Figure [21]

Intuitively, due to the use of PDE, a coerced bidder can prepare fake bidding vectors
with a different bidding price, and the adversary cannot verify which bidding vectors

(real or fake) are used, while the CRM can always get the real ones.

6.2. Settings

Bidding price. The protocol predefines a price list, represented as d ordered vec-
tors, veo,...,veq—1 from low to high, where each vector ve; consists of 10 numbers
from 0 to 9, denoted as pyg, - .., P9, i.€., the price list is pgo, - - -, P9s- - - 5 P(d—1)0 -+ >
P(a—1)9- representing the price from 0 to 104 — 1. The bidder bids ‘yes’ or ‘no’ on each
p;ji (0<i<9,0< j<d~—1). On each vector only one number is marked with ‘yes’.
The bidding price b is calculated as follows: for each pj; in the list, if it is marked with

‘no’, bidding price remains unchanged (b = b), if it is marked with ‘yes’, b = b+ j* 10'.

‘yes’ and ‘no’ marks. Like the AS02 protocol, the ‘no’ mark is a constant in the
HRM14 protocol, in particular the ‘no’ mark is the number 1 in the HRM 14 protocol.
Unlike the AS02 where the ‘yes’ is a constant, in the HRM 14 protocol, the ‘yes’ mark

) where G; = giB" . It is not clear what g, is in the paper.

is calculated as 7; . ;) G:i’(
Since the private key of bidder B; is xp, and the corresponding public key is g*%i, we
assume gy is similar to g in the public key, because G; = gf,B" share the same patter
as the public key g*%. Thus, we consider G; as a special public key of the bidder B;.
Unlike the normal public key which is assumed to be publicly known and is used to
identify a bidder, this special public key is not revealed, such that the adversary cannot
use it to identify the bidder. Otherwise privacy is trivially broken. However, given a

bidder’s secret key, the adversary can construct and thus verify the special public key of

the bidder. With the above assumptions, the ‘yes’ mark is modelled as a function with

35

Figure 21: The HRM 14 protocol.

36

two nonces and the special public key of the bidder as parameters, formally ‘fun B/3.’.
Note that unlike in the AS02 protocol, in this protocol, the ‘yes’ marks differ for each
bid.

6.3. Cryptographic primitives
6.3.1. PDE

The PDE enables a normal probabilistic encryption of a message m with a public
key pk (known by the adversary) using a random number r, denoted as denc(r, pk,m).
In the normal probabilistic encryption, the adversary can coerce for m and r, and thus
be able to verify the encrypted message m. However, in PDE, given a fake message
mf, it allows a user to generate a fake random number rf, such that denc(r, pk,m) =
denc(rf, pk,mf).

This can be modelled in a similar way as chameleon-bit-commitments. The dif-
ference is that the chameleon-bit-commitments are opened with the random number,

whereas the PDE is opened with the designated receiver’s secret key.

Sfun denc/3.

Sfun fake/4.

reduc ddec(denc(r, pk(k),m), k) = m.

equation denc(r,k,m) = denc(fake(r,k,m,mf),k,mf).

The function symbol denc models the PDE encryption which takes three parameters
(r, pk, m) as inputs and returns a deniable encryption as output. The function fake
produces the fake random, given the real random number r, the public key k, the real
message m and the fake message mf as parameters. The two equations ensure that that
the designated receiver of the deniable cipher always interprets the plaintext in only one
way — the real one. The adversary who does not have the secret key of the designated
receiver cannot get the real plaintext. Given the fake random, the adversary may get a
fake message mf. Due to the last equation, the adversary cannot distinguish whether

the coerced random number and the plaintext are genuine or not.

Remark on ambiguities of PDE. In the original paper [18], the PDE outputs two types

37

of encryptions: one type with three parameters, ¢ = Enc™ (my, pk, r;), and the other with
four parameters, ¢; = Enc™f (my, pk,r;), where m, and r, are real message and real
random and my is the fake message. Both of them is decrypted as m,. The fake random
rr is produced by a operation applied on ¢4, m; and my, such that Enc™ (my, pk,r;) =
Enc™ (my, pk,r¢). However, it is not clear whether ¢ equals c . Following the intuition
of PDE, we consider them as the same (or ‘look alike’ [[18]]). More importantly, if ¢ is
not the same as ¢y, the adversary would be able to distinguish whether the encryption
used is a three parametrised version or four parametrised version, by coercing for m;,
and ;. When noticing that the four parametrised version is used, the adversary knows
the user is trying to cheat. By additional coercing for my and ry, the adversary can

verify which message, ms or m;, is the genuine one. Hence, ¢ needs to be the same as

Cd.

6.3.2. Bidding encryption

Each bid is encrypted with both the public key of the auctioneer pky and the public
key of the sealers pks (All sealers have the same public key). Only with the sum of both
the secret key of the auctioneer and the secret key of the sealers, the ciphertext can be
decrypted. Providing the secret key of the auctioneer or the secret key of the sealers, its
corresponding public key component in the encryption can be nullified. Symbolically,
it works the same as cascaded encryptions — first encrypting the bid with pk4 and then
encrypting with pkg (or the other way), but using the same random number. Hence, it

is captured by the typical probabilistic encryption functions and equations.

fun penc/3.

reduc pdec(enc(a,pk(x),m),x) = m.

An encrypted bid is thus penc(a, pks, penc(a, pka,v)), where v is either ‘yes’ or ‘no’,

and a is a nonce.

6.3.3. Sealing operation
For each encrypted bid penc(a, pks, penc(a, pka,v)), after nullifying the sealers’

public key component (decrypting using sks which remains penc(a, pka,v)), the sealers

38

seal it with two nonces r and rs. The result of the sealing operation is the same as
encrypting v x rs with pk4 using nonce a + r, i.e, the message v is blinded. Thus the

sealing operation is captured by the following functions.

Sfun seal /4.
Sfun blind /2.
equation seal(penc(a, pk(sks),penc(a, pk,m)),r,rs,sks) =

penc(blind(a, r), pk,blind(rs,m)).

6.3.4. Bid verification

The bid verification is performed on each price vector, i.e., 10 bids. For each price
vector, the sealers publish the the response-vector — multiplication of the rs’s. This
is modelled as a hash function with ¢ * 10 arities — the 10 rs’s in the vector from all ¢
sealers. Assume that from the multiplication result, the adversary cannot deduce any
rs. That is, the sealers provide partial information on the blinding factor (rs’s). Then
the auctioneer provides partial information on his secret key and the blinded nonces
(blind(a,r)’s). The bidder knows the nonces (a’s) used in encrypting the bids. With
these partial information, the bidder can verify whether his bids in a vector is correctly
computed using an equation. For simplicity, we assume only one sealer. And this bid

verification can be formally captured as

Sfun hash/10.
fun sign/2.
fun combine/11.

equation sign((penc(blind(ag, 7o), pk, blind(rso,mg)), ...,
penc(blind(ay, r9), pk, blind(rsg, my))), sk)
= combine(blind(ag,), . . .,blind(ag, r9), sk). et3

reduc verify((penc(blind(ag, ro), pk, blind(rso,myp)), . . .,
penc(blind(ay, r9), pk, blind(rsg,my))),
combine(blind(ag,), - . ., blind(ag, r9), sk),

(ap,...,a9),hash(rsg,...,rsg)) = true. etd

39

Remark on formula of sealing and bid verification. In the original paper [18], by
applying Algorithm 2, a bid from bidder i at price represented by element (k, j) in the
price list is sealed as (XS,i,(k,j)aYS,i,(k,j))v where Si,...,S; are the sealers. We observe
that the calculation of Y,; ;) in the Algorithm 2 differs from the one in the appendix.
In Algorithm 2,

PN TSyi(kyj) 1 7Sy, (k) —xg
Yiitk) = Pty 1a’ " hgis, s Xsy i) sy yi(ka)

whereas in the appendix of [18]

A TSy k) TSk) —x
Ysitks) = Psie) 1a’ " hsgs, s, Ksi i) Yoy yitig) (1)
We suspect that there is a typo in Algorithm 2, and use the one in the appendix (formula
(@), since the following equation (2)) is proved using formula (T).
Later, the sealers publish a response-vector Rg,; x for each vector k, and the auction-

eer publishes X ;.

9 i
Y (i) L Fopish.j))

9 t 9

« =0 =1

Rsi =TT 5.0 Kik = ([T Xsi00)™ = Iy ‘
j=0v=1 j=0

The bidder verifies whether the following equation (2) holds:

9 9
H Ys,ikj) = Rsyik - Xig- H Gi (k) ()
=0 =0

where G; ;) is the ‘yes’ mark computed by using the public key of the bidder i and

the nonce used to generated the corresponding bid on element (, j) in the price list.
The response-vector Rg,; x is modelled by function hash. The signature X; ; is mod-

elled by function sign, combine and the equation et3, the equation (2)) is formally cap-

tured by the reduction et4.

40

6.4. Modelling

As shown in Figure [22] the protocol has a private channel privch between the
CRM and the sealers. The auctioneer has a secret key sk and a corresponding public
key pka and follows the behaviour of process Py (Figure 26). Since only more than a
threshold ¢ sealers together can nullify the sealers’ public key and perform the sealing
operation, we assume the sealers’ operations are honest, and abstract the sealers as one
honest sealer. Hence, the sealer has a secret key skg and a corresponding public key
pks, and follows the behaviour modelled in process Ps (Figure 25). The CRM has a
secret key skcgrys and a corresponding public key pkcgyr; and its behaviour is modelled
in process Pcgry (Figure[24). Each bidder b; has a bidding price, represented as a vector
pgi yeens psi_ |» Where each p?" is a number between 0 and 9. Lines m4-m6 model that
there are m bidders. The process out(ch, pka) | out(ch, pks) | out(ch, pkcry) ensures

that the adversary knows the public keys.

Prrmis =

ml. v privch. V sky. V sks. V skcry-let pka = pk(sks) in
m2. let pks=pk(sks) in let pkcgry = pk(skcrm) in
m3. (OUt(Ch7pkA) | OUt(Chvka) | OUt(ChvkaRM) |

m4. let pS:pgl in ...let pz%:pgil in Pg|

mé6. let pS:pS’” in ...let pb | :pS’fl in Pg|

m7. PCRM | PS | PA)

Figure 22: The HRM14 main process.

A bidder’s behaviour is shown in Figure[23] Each bidder has a private key skp and
a corresponding public key pkp (b1), which is used to calculate the ‘yes’ marks. The
bidder first generates a nonce ay; for each element in the price list, which is used for
encrypting his bids and a nonce r for generating the deniable encryption (b2). Then
according to the bidding price, the bidder chooses the branch to calculate his bids. For
instance, lines b3 -b14 model the bidder calculating the bidding vector and sending it
out, when the bidding price is 0. Line b15 models the bidder’s behaviour when the
bidding price is 1 and line b16 models the bidder behaviour when the bidding price is
2, and finally, lines b17-b28 model the bidder’s behaviour when the bidding price is

41

bl1.
b2.
b3.
b4.
bS.
b6.

b7.
b8.

b9

b10.

b11.
b12.
b13.
b14.
b15.

b16.

b17.
b18.
b19.
b20.

b21.
b22.

b23.
b24.

b25.
b26.

b27.
b28.

v skp. let pkp =pk(skg) in

vr.vag. ---.Vap.Vap. ---.Vajo. "'.Va<d_1)0. .Va(d_l)g.
if ph=pooApi=pi0 N...AP,_ = P@a-10 then
<Vr0.

let bPO = penc(a007pk57penc(a007pkA7B(rOapkBaaOO))) in
let bPOI :penc(a()l7I7k57penc(a017[7kAaMno)) in

let bP¥ = penc(a097pk57penc(a097pkA7Mno)) in
let veg = (bPw0, ... bP®) in

Vrg_1.
let bP-10 = penc(a(y_ 1), ks, penc(ai 1), Pka,
B(ri-1,pks,24-1)0))) in

let bP@-1° = penc(a(s1)9, Pks,Penc(ai—1)9, Pka,Mno)) in
let veg = (bP@-10 .. bP@-19) in
let ve=(vey,...,ve4_1) in
out(ch,denc(z, pkcru, ve))). Pcheck)
else if pf=po A pi=pio A...ApPS_ | =pu_1)o then

else if pgzpog A pll’zplo /\~~-/\P371=P(d71)0 then

else if p8=P09 A plf:mg /\.../\pz_lzp(d,l)g then
(VI'().

let bP® = penc(ago, pks, penc(ago, pka,Mpo)) in

let bPO! = penc(ag, pks,penc(apr, pka,My)) in

let bP® = penc(aq, pks,penc(ang, pka,B(ro, pkp,an))) in
let veo = (b",... bP) in

Vrg_1.
let bP@-10 = penc(a(y_1)o, Pks;penc(a(g—1yo; pka,Myo)) in

let bP-1 = penc(ay_1)o, pks, penc(a—1)o, Pka,
B(ra-1,pPkp,24-1)9))) in

let veg = (bP@-10 .. bP@-19) in

let ve = (vep,...,veq—1) in

out(ch, denc(r, pkcra, ve)). Pepeck)

Figure 23: The HRM 14 bidder process.

42

the maximum price 9...9 (=10f — 1). After sending out his bids, the bidder waits for
the bids to be sealed and signed, and then verifies whether his bids are correctly sealed
and signed. The verification behaviour is modelled in the subsequent process Pcjeck
(Figure [27).

On receiving the bidding vectors from each bidder (c1), the CRM decrypts the de-
niable encryption and obtains the real bidding vectors (c2), and then sends the bidding
vectors to the sealer via private channel privch (¢3), see Figure 24 The permuta-

tion is modelled as sending the bidding vectors in parallel, which captures all possible

permutations.
Pcpy =
cl. in(ch,xevy). in(ch,xevy). --- . in(ch,xevy,).
c2. let xv| = pdec(xevi,skcgy) in ---
let xv, = pdec(xevi,skcry) in
c3. (out(privch,xvy) | -+ | out(privch,xvy,))

Figure 24: The CRM process.

When the sealer receives bidding vectors of all m bidders (s1), he first gets each bids
in the bidding vectors (s2-s3). For each bid of a bidder, the sealer generates two nonces,
and seals the bid with the nonces together with the sealer’s private key which is used to
nullify the sealer’s public key in the bid (Figure 25). For instance, line s4 generates the
nonces for bidder By; lines s5-s11 seal all bids for bidder By; then the sealed bidding
vectors for B is published (s12). Other bidder’s bidding vectors are treated in the
same way. Lines s13-s21 show the sealing of bids for bidder B,,. In addition, for each
bidding vector (containing 10 elements), the sealer publishes the response-vector. For
instance, for the first vector of bidder B; (sv(l)), the sealer generates the hash of all rs’s
used in the vector as its response-vector (s22). Other B;’s bidding vectors’ response-
vectors are calculated in the same way (s23). Finally, B;’s bidding vectors and their
response-vectors are published to the Bulletin Board (s34). Other bidders’ bids are
sealed in the same way (s25-s27).

The auctioneer reads in each bidder’s bidding vectors together with their corre-
sponding response-vectors (al-a2). The auctioneer signs each bidding vector of all

bidders (Figure . For instance, a3 models that the auctioneer signs the first vector of

43

sl.
s2.

s3.
s4.
s5.

s6.
s7.

s8.

s9.

s10.
s11.
s12.

s13.
s14.

s15.
s16.

s17.

s18.
s19.
s20.
s21.
s22.

s23.
s24.

s25.

$26.
s27.

in(privch,xvsy). in(privch,xvsy). -+ . in(privch,xvs,).
Pa—1)0 P(a—1)9 .
let ((xvs'foo,...,xvs?°9)7...,(xvs1(),...,xvsl())):xvsl in
Pa—1)0 P(a—1)9 .
let ((xvsfnoo,...,xvs%°9)7...,(xvsm(0 xvsp))):xvsm in
Pa-1)9 P@—-1)9
v . ---.vrl(. v s ---.vrsl(s,

let s1i% =seal(xvsi®, r® rsf® skg) in

let svi® =seal(xvs{®,r0® rsf” skg) in

let s = (%, 0®) in
Pd-1)0 Pa— P(d—1 P(d-1 .

let svl() zseal(xvsl(')O,rl()O,rsl()o,sks) in
P(d—1 P@-1)9 _Pa- Pa— .

let svl(>9zseal()cvsl(D ,rl(')9,rsl(1)9,sk5) in
d—1 _ P(a-1)0 P19y .

let sv{ = (sv (,1~~1~,sv1) in

let svy=(sv],--, 99 ") in

out(ch,svy).

P00 P(d-1)9 P00 P(a-1)9
vyl . vy ceevrsyll o Vs,

let svp® =seal(xvsh®, rp®, rsh’ sks) in

let svp? =seal(xvsh?®, rh”, rsh?, sks) in

let sv) = (svh®, .- svp®) in
P(d—1 Pd— P P .
let svp mzseal(xvsm(')O,rm(D0 g])O,Sks) in
P(d—1 P(a— P(a- P(d- :
let sy ¢ :seal(xvsm(')9,rm(d])g,rsm(d])g,sks) in
— P(a-1)0 P(a-1)9
let vl = (sup - v)
0 a1y
let svy = (sViy, -,V ') in
out(ch, svy,).
0 _ 0 Poo P09 :
let response] = (sv{,hash(z}®,...,r{”)) in
d—1 _ d—1 P@-1)0 P(a-1)9 .
let response|” = (s 7hasz(r11 . &)) in
out(ch, (response?,. .. response{")).
let responsed = (510 hash(rp® ..., rh?)) in
d—1 d—1 P-1)0 P@-1)9 -
let responsey, = (svy, hash(r;y ~",...,.tw" 7)) in
out(ch, (responsel,, ... responsed=1))

Figure 25: The sealer process.

44

bidder B1; a4 models that the auctioneer signs the last vector of By. The signed vectors

are appended to their corresponding vectors (a5) and then are published to the Bulletin

Board (a6). Other bidders’ sealed vectors are signed in a similar way (a7-al0).

Py =
al. in(ch, ((xva?,xra?), ..., (xva?™" xrad=1))).
a2. in(ch, ((xvad,xrad), ..., (xvad " xrad=1))).
a3. let av) =sign(xval,sks) in
a4. let av? ! =sign(xva?! sks) in
as. let av; = ((wad,xrdd,a),. .., (xvad " xrad™" @i™1)) in
a6. out(ch,avy).
a7. let a) =sign(xval),sks) in
a8. let avd! =sign(xval' sky) in
a9. let avy = ((xvad,xrdd,a),... (xvad= xrad=' avi=1)) in
al0. out(ch,vay)
Figure 26: The auctioneer process.
Peheck ==
k1. in(ch, ((xkv), xkr) xks?), ..., (kv xkrd =1 xksd 1)),
k2. if verify(xkv),xkr?, xks?, (ago, . . ., a00)) = true A... A
k3. verify(xkv‘ffl,xkrffl,xksffl,(a(d_l)o,...,a(d_l)g)) =true then 0
k4. else in(ch, ((xkv,xkrd, xks3), ..., (xkvd " xkrd =t xksd1))).
k5. it verify(xkvy,xkrd, xks), (ago, - - ., a00)) = true A... A
k6. verify(xkv‘z‘{*l,xkrgfl,xksg’l,(a(d_1>0,...,a(d_1)9)) =true then 0
k7. else in(ch, ((xkvy,xkrd,xksd), ..., (xkvi ' xkrd ! xksd1))).
k8. else in(ch, ((xkv?,xkrd xks®), ..., (xkvd ! xkrd ! xksd=1))).
k9. it verify (xkvO xkrd, xksO . (ago, - .- ,a09)) = true A... A
k10. verify(xkv%’l,xkrf;i’l,xksgfl,(a<d,1)0,...,a(d,1)9)) =true then 0
k11. else out(ch,e)

Figure 27: The bidder verifying process.

Once the singed bids are published, the bidders can verify whether his bids are

counted correctly (Figure[27). Since the bidders’ bids are sealed and permuted, a bidder

does not know which signature corresponds to his bids. Hence, the bidder reads in

45

signatures of an arbitrary bidder, (k1), and verifies the signatures using function verify
(k2-k3). If for all d bidding vectors, the verification of their signatures are true, the
bidder knows that the sealed-bids corresponding to the read-in signatures are the correct
calculation of his bids. Otherwise, the bidder reads in another set of signatures and
performs the verification again (k4). The bidder keeps checking until find his bids
(k5-k10). If none of the sealed-bids are his bids, the bidder reports an error message

represented by a constant e (k11).

6.5. Analysis

Receipt-freeness. We found that the protocol may not satisfy receipt-freeness due
to that how the fake bidding vectors are generated is not clear. For instance, when
generating the fake bidding vectors, if a set of fresh nonces are used, there will be a
receipt for the adversary to verify the bidding price of a coerced bidder.

In details, if a bidder B. claims that he bid w in vector v ((v,w) is marked as
‘yes’), the adversary can coerce for the bid of (v,w), i.e., the adversary asks for the
bid penc(ay, pks, penc(ayy, pka, B(ry, pka,,avw))). In addition, the adversary can ask
for the bidder’s private key skp_, the g, to calculate the public key pkg. and the two
nonces that are used to form the ‘yes’ mark for the bid, i.e., , and a,,,. Using these

information, the adversary can construct the ‘yes’ mark B(r,, pks,,a,y), i.e., Ge,(vw)-

9
Then, for each bidder’s v-th signature, the adversary tests whether H Ys,i o) = Ry
=0
9
Xiy- HGQ(V,W) holds. If the bidder did not lie, there should exist exactly one sig-
j=0

nature satisfying the above equation. If the bidder lies to the adversary — the bid-
der bids for u, instead of w, in vector v, but claims that he bids for w. In order
to cheat, according to the protocol, the bidder first calculates his real bid for (v,u),
i.e., bP" = penc(ayy, pks, penc(ay, pka, B(ry, pkp.,a,))), and his real bid for (v,w),
i.e., b2 = penc(ayy, pks,penc(an,, pka,M,,)). Then he calculates the fake bid for
(v,u), ie., b;':"“ = penc(a'yy, pks, penc(a’yy, pka, My,)), and the fake bid for (v,w), i.e.,
b‘;-””' = penc(@yw, pks,penc(a’yy, pka, B(ry, pkp,,a’,y))). The bids are encrypted with
deniable encryption, so that the CRM reads the real bids (bP* and bE™), whereas the

adversary reads the fake bids (b?"“ and b?"”’). Since the adversary can ask for the nonces

46

of each bid and verify whether the nonces are those used in the bids, the bidder cannot
lie about the nonces, i.e., the bidder has to send a’,,, a’y,,, T, to the adversary, from
which the adversary calculates the ‘yes’ mark as B(r,, pks,,a’,,). Then the adversary

uses this ‘yes’ mark to test whether the v-th signature of each bidder satisfies the equa-

tion IleSri,(v,W) =Rs,iv-Xiy- fI Gno, where G = B(xy, pkg,,a'yw). There is no vec-
tor seJl;i(s)fying the equation, becjzizlose in B.’s v-th vector, the G equals B(ry, pkp.,a),
which satisfies the equation, instead of B(r,, pkg.,a’,,). Hence, the adversary can tell
that the bidder lied.

Similarly, when generating the fake bids, if the nonce used in each fake bid is
exactly the same old nonce in the corresponding real bid, there exists a receipt as
well. In this case, we have b?"“ = penc(a,y, pks, penc(ay,, pka,M,,)) and b?"w =
penc(ayy, pks, penc(ayy, pka, B(ry, pkp.,auw))). The adversary coerces for a,, r, and
skp,. The bidder cannot lie about them because the adversary can use them to construct
b?"w and verify whether they are the real ones used in b;':"w. Since the bidder claims that
he bids for (v,w), the adversary constructs the ‘yes’ mark as B(r,, pkg,,ayy), which

differs from the real ‘yes’ mark (B(ry, pkp.,ay,)) in the v-th vector. Thus, there is no v-

9 9

th signature satisfying H Ysi (o) = Rsin - Xiy - HGD’ where GO = B(x,, pkg,, ayw).
j=0 j=0

Hence, the adversary knows that the bidder lied.

Therefore, only using deniable encryption is not a guarantee of receipt-freeness.

Our fix. To ensure receipt-freeness, we additionally require that when the bidder cal-
culates the fake bid, the bidder should use the real ‘yes’ bid’s nonces for the fake ‘yes’
bid. That is, the bidder uses ay, to calculate the fake bid for price (v, w), i.e., the fake bid
for the price (v, w) shall be penc(ayy, pks, penc(ayy, pka, B(ry, pks.,avw.))), as shown in
Figure

Assuming the sealers and auctioneer are honest on the opening phase, we prove that
after fixing the flaw on how to calculating the fake bids, the protocol satisfies receipt-
freeness up to the bidding phase. We manually proved it because, the equations for
PDE cannot be handled by ProVerif — ProVerif would not terminate. Differing from
the chameleon-bit-commitments equations in the AS02 protocol, where the message is

either a constant My, or a constant M,,, in the PDE equations, the message is not a

47

Pge =
cl.
c2.

c3.
c4.

cS.
c6.

c7.
c8.
c9.

cl10.
cll.

cl2.

cl3.

cl4.
cls.
cl6.
cl7.

v skp. out(chc,skp).let pkp = pk(skg) in

v r.out(che,).V agy. out(chc,ag). -+ . V agy. out(chc,apg). - .
V a,0. out(chc,ay). -+ . V ay,. out(chc,ay,). -+ . V a,,. out(chc, ay,).
“++.Vay. out(chc,ay9). -+ . V ag_1)o. out(chc,aiy_i)p). -+ -

\% a(d_l)g. OUt(ChC,a(d_l)g).
(vro. out(chc,rg).let bP® = penc(agg, pks,penc(ago, pka,Mpo)) in

let bPY = penc(ay;, pks, penc(ao;, pka, B(ro, pkp,api))) in

let bP® = penc(ag, pks,penc(ang, pka,Mpo)) in
let ve():(bp°07...,b'30i,...,bp°9) in

vr,. out(che,ry).let bPW = penc(ayo, pks, penc(ayo, pka,Mp,)) in
let bPw = penc(aww, pks,penc(aww, pka,B(xry, pkp,ayw))) in
let bPw = penc(ay, pks,penc(ay,, pka,M,,)) in

let bP® = penc(ay9, pks,penc(a, pka,My,)) in
let ve, = (bP0 ... pPw ... bPW) in

vry_i.out(che,ry_1).
let bPU-10 = penc(aiy_1yo, Pks, penc(ai—1yo;, Pka,Mno)) in

let bP@-Di = penc(ay_1)j, pks,penc(ai—1);; Pka,
B(xrx, Pk, ag-1);))) in

let bP@-1® =penc(ai), Pks,penc(ai 1y, pka,Muo)) in
let veg_y=(BPU-10,... BP@-Di . pPa-19) in

let ve=(vey,...,ve,,...,veq_1) in
out(ch,denc(r,kaRM,ve)). Pcheck)

Figure 28: The P§° process.

constant, when the message is a ‘yes’ mark. Thus, although the equations are similar,

the chameleon-bit-commitments equations can be handled, whereas the PDE equations

cannot be handled. The main proof steps are shown as follows: Let P = P§*® and let

0= P’;;’ke. First, Q\out(che,) jg exactly the same as the process where the bidder bids

for (v,u). Second, we show that the adversary cannot distinguish P from Q. In both

of the two processes P and Q, the bidder sends to the adversary his secret key and the

48

ki
Pk
cl.
c2.
c3.

c4.

cS.
c6.

c7.
c8.
c9.
c9'.
c10.
cll.

cll’.

cl2.
cl3.

cl4.
cl5.
clé6.
clé’.
chcel.

che2.
cl7.

v skp. let pkp =pk(skg) in

vr.vap. ---.vVag. ---.
Va. --.Vau. . Vay. .V
ay9. " .Va(dfl)(). ~~-.Va<d,]>9.

(vro. let bP® = penc(ago, pks, penc(ago, pka;Muo)) in
let bPU = Penc(aOth& penc(aoi7pkA7 B(r()vpkBaaOi))) in

let bP® = penc(ago, pks,penc(ag, pka,My,)) in
let veg=(bPO,... BP0 ... HPM) in

vr,. let bPW = penc(ajg, pks,penc(ajo, pka,My,)) in

let bPw = penc(ayy, pks, penc(aw, pka,My,)) in
let bz}‘(; = PenC(awnPkSaPe”C(avu,PkmB(rwpk&avu))) in

let bPw = penc(ayy, pks,penc(ay,, pka, B(ry, pkp,ay,))) in
va,,. let b}’;,?e = penc(a’,y, pks, penc(a’ .y, pka,My,,)) in

let bP¥ = penc(av97pk57 penc(av%l’kAa Mno)) in
let vel, = (BP0bPw, ... bP¥) in
_) Pyvw Pyu ¥ .
let vey,, = (bP Oy Dites - D - -+ BP 9) in
Vrg_i1.
let bP@-10 = penc(ay_1)o, Pks;penc(a(g—1yo; pka,Myo)) in

let bPUE-1/ = penc(a(d_l)j,pks,PenC(a(d—l)jaPkAv
B(ry—1,pks,a(4-1);))) in

let bPU-19 = penc(a(y_1y9, Pks, penc(ai—iy9, pka,Mpno)) in
let veg_y=(BPU-10,... BP@-Di, . pPa-19) in

let ve=(vey,...,ve,,...,ve4_1) in

let vepke = (vel,...,vevfake,...,ved,l) in

out(chc, skg).out(chc,fake(r, pkcrm, ve, vesie))-out(che,agp). - - .

out(chc,agg). ---.out(chc,ay).--- .out(chc,a’,,). - .out(chc,ay,).
. out(chc,ay9)). ---.out(chc,aig_yy). - -out(chc,ag_qy)-

out(che,ry). - .out(che,xy). -+ .out(che,ry_1).

out(ch,denc(x, pkcru, ve)). Pejeck)

Figure 29: The fake process.

nonces used in calculating the bids and the deniable encryptions. The transition steps

are shown is Figure@} If the bidder claims that he bids py;, ..., Pyw, ..., Pk; in the price

49

out(chc,skg) out(che,r)

P))
out(chc,aqpp) out(chc,apg)
out(chc,a,() ’ ’ out(chc,ayy) 7 7 out(chc,ayy,) out(chc,a,g)
out(chc,a(d,]’)o) 7 out(chc,a;d,l);) ’ ’ 7 ,
R
out(che,rg) out(chc,ry) out(che,ry 1)
out(ch,denc(;7pkc;M,ve)) , ,
Pheck | {SkB/xSk} | {I/Xr}
| {a00/x00} | -+~ [{209 /x00} | -+
| {avo/xo} [+ [{aw /Xt |- [{avu/xod [+ [{20 /x0} | -+
[{a@=no/x@-10} | - | {a@=19/x@-1)9}
[{ro/yo} [--- 1 {xv/W} |-+ [{ra-1/ya—1}
| {denc(x, pkcrum,ve)/y}
0 out(chc,skp) out(chc,fake(r,pkcrarve,vesuke))
out(chc,aqq) , out(chc,agpg) ’
S S
out(chc,a,() out(chc,a’yy) out(chc,ayy) out(chc,ayg)
out(chc,a(d,l,)o) ’ out(chc,a(;,l)g; ’ ’ , ,
out(che,rg) , out7(chc,rv) out(che,ry 1)

S S
out(ch,denc(z,pkcrar,ve))

Peheck | {skp/xa} | {fake(xr, pkcrum, ve,veure) /X1 }
| {a00/x00} | -+ | {200/x00} | -+
[{avo/x0} |- [{a"w/xow} | [{aw/xu) |- | {20 /xv0} | -
[{a@=no/x@-10} | -+ | {a@=19/xX@-1)o} |
[{ro/yo} |-+ [{xv/w} |-+ [{ra-1/ya-1}
| {denc(z, pkcrum,ve)/y}

Figure 30: A brief proof of receipt-freeness in fixed HRM 14.

list, with the coerced information, the adversary can calculate each bid and obtains the
vector ve, and then verifies the equation denc(x,, pkcry,ve) =g y. This equation is ob-
viously satisfied in process P, since the bidder did not lie. In process Q, the adversary
calculates the vector veyy, instead of ve. The fake vector veg,, only differs from the
real one ve on bid (v,w) and bid (v, «), due to that nonces x,,, and x,,, differ in P and Q
but other nonces remain the same. Furthermore, in process Q, the adversary receives

a fake nonce for the deniable encryption {fake(r, pkcrum, ve,veuke) /X, }. The fake bid-

50

ding vector together with the fake nonce also satisfy denc(x,, kaRM,vefake) =,
due to that denc(r,k,m) = denc(fake(r,k,m,mf),k,mf). Hence, the equations that
are satisfied in the frame {skp/xg} | {z/x}-- | {aw/%w} | - | {2w/Xu} | -+ |
{denc(z, pkcrm,ve)/y} (originated from process P) are also satisfied in the frame
{skp/xs} | {fake(r,kaRM7ve7vefake)/x,} [] @ we/xw) | | {awe/xd |-]
{denc(r, pkcrm,ve)/y} (originated from process Q). Hence, the adversary cannot tell
whether the bidder lied.

In the subsequent steps, in both cases (P and Q), the CRM reads exactly the same
bidding vector ve. For each bid, the sealer blinds them with newly generated nonces and
publishes the blinded result. Hence, the adversary would not be able tell any difference.

In particular,

v 1.V sy, {penc(blind(x,,r’), pka,blind(rs,,, B(zy, pkg,aw)))/z}
g VIV s, {penc(blind(r,,r’,), pka,blind(rs,, M) /z}
~s VI,V s, {penc(blind(r,,r'y), pka,blind(rs,,, B(r,, pkg,a’ww)))/z}

v ' v rsy,.{penc(blind(z,, '), pka, blind(rs,,, M) /2}
s V1.V rsy.{penc(blind(x,,r'\,), pka,blind(rsy,, B(zy, pkp,aw))))/z}
~y V'V rs,.{penc(blind(ry,r'y,), pka,blind(rs,,, M) /z}

where the first process in the equations is the case where the bidder did not lie and z is
the real sealed bid, the second process is the case where the bidder lied and z is the real
sealed bid, and the third process is the case where the bidder lied and z is the sealed bid
that the adversary thought would be.

In the subsequent bidding verification step, assuming the sealer and the auction-
eer are honest, the bidder can verify his bids in both cases and thus no error message
would be received. In addition, the published information by the sealer (response-
vectors) and the auctioneer (signatures) can only be used to verify the equation (2).
After fixed the flaw mentioned earlier, the adversary cannot tell the two processes, P
and Q, apart by applying function verify. In particular, in the v-th vector, the sealer pub-

lishes hash(rlg, ..., .-y s .-, Fhg), the auctioneer publishes sign(ve,,sks) when

51

the bidder did not lie, and publishes sign(ve),, sk4) when the bidder lied. After obtain-
ing the published information, the only equations that can be additional applied by the

adversary is

sign((penc(blind(ao, ro), pk, blind(rso,mo)), . . .,
penc(blind(ag, r9), pk, blind(rsg,my))), sk)

= combine(blind(ag, rp), - . ., blind(ag, r9), sk).

verify((penc(blind(ag, ro), pk, blind(rso,myp)), ...,
penc(blind(ay, r9), pk,blind(rsg,my))),
combine(blind(ag,7),...,blind(ag, r9), sk),

(ao,-..,a9),hash(rso,...,rsyg)) = true.

However, none of them can be used to distinguish whether the bidder lied. In particular,

V Irsyg. - .V rs,9.{combine(blind(rs,o, M), ...,

blind(rsvy, B(zy, pkp,aw))), - - ., blind(rsyu, Mpo), . . ., blind(rsyg, My,), sk) /1 }

)

blind(rsyu, B(zy, pkg,au)),. .., blind(rsye,M,,),sk)/t}

Ay VIsy.- .V rsg.{combine(blind(rs,o,Mpo),...,blind(rsyy, My), . ..

That is, the adversary cannot distinguish the two cases using the first